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Shallow neural network with kernel approximation 

for prediction problems in highly demanding data 

networks 
  

Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas and Jaime Lloret  

 

Abstract— Intrusion detection and network traffic classification are two of the main research applications of machine learning to 

highly demanding data networks e.g. IoT/sensors networks. These applications present new prediction challenges and strict 

requirements to the models applied for prediction. The models must be fast, accurate, flexible and capable of managing large datasets. 

They must be fast at the training, but mainly at the prediction phase, since inevitable environment changes require constant periodic 

training, and real-time prediction is mandatory. The models need to be accurate due to the consequences of prediction errors. They 

need also to be flexible and able to detect complex behaviors, usually encountered in non-linear models and, finally, training and 

prediction datasets are usually large due to traffic volumes. These requirements present conflicting solutions, between fast and simple 

shallow linear models and the slower and richer non-linear and deep learning models. Therefore, the perfect solution would be a 

mixture of both worlds. In this paper, we present such a solution made of a shallow neural network with linear activations plus a 

feature transformation based on kernel approximation algorithms which provide the necessary richness and non-linear behavior to the 

whole model. We have studied several kernel approximation algorithms: Nystrom, Random Fourier Features and Fastfood 

transformation and have applied them to three datasets related to intrusion detection and network traffic classification. 

This work presents the first application of a shallow linear model plus a kernel approximation to prediction problems with highly 

demanding network requirements. We show that the prediction performance obtained by these algorithms is positioned in the same 

range as the best non-linear classifiers, with a significant reduction in computational times, making them appropriate for new highly 

demanding networks.  

 

 
Index Terms—shallow neural network; kernel approximation; intrusion detection; network traffic classification. 
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I. INTRODUCTION 

Considering the importance of current security attacks on modern networks with the highest demands (e.g. IoT networks), the 

economic importance of services running on these networks and the increased demands on data networks imposed by these 

services, it is more important than ever to rely on new automatic systems capable of detecting intrusions in a fast and reliable 

manner. Such a system is an Intrusion Detection Systems (IDS) [1], being its final goal to fast and accurately analyze network 

traffic and to predict potential threats. Similarly, Network Traffic Classification (NTC) [2][3] is also an important prediction task 

in data networks. NTC uses network traffic information to predict the type of services of a network flow. This prediction is 

important to address network management and quality of service tasks which are dependant of the type of service of the data 

connection. 

IDS and NTC are identified as two of the main research applications of machine learning for data networking [4][5] and are 

representative of many other applications. Both IDS and NTC present important prediction problems for data networks. Both 

deal with large, noisy, unbalanced and complex data. The labels to predict have a very (sometimes extremely) unbalanced 

distribution. The data to process, in both problems, is usually large, and, the features extracted from the network traffic are 

complex with usually a noisy assignment of labels to its corresponding ground-truth state, due to the difficulty to ascertain the 

true value of the intrusion state (with manual detection or intrusion detection tools) or type of traffic (with deep packets 

inspection tools). 

This work has manifold objectives: (1) To demonstrate that shallow linear models can be a competitive alternative to more 

complex models, when former models are used together with a feature transformation based in kernel approximation (KA) 

theory. Simple linear models with a feature transformation based on KA have the prediction and training speeds of a simple 
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linear model and the detection performance of complex non-linear models (e.g. kernel-Support Vector Machines) or deep 

learning models (e.g. Convolutional Neural Networks), making them a perfect alternative for prediction problems in data 

networks. (2) To analyze the different architectural alternatives for the linear model and KA transformations and justify the 

reasons for the selected architecture. (3) To propose a model that can be trained with a differentiable loss function in modern 

high-performance platforms (e.g. Tensorflow). (4) To provide a thorough comparison of our proposed model with several 

Machine Learning (ML) models for some important and representative prediction problems in data networks (e.g. IDS and 

NTC), with a focus in prediction performance, prediction and training times, model flexibility, model richness and capacity to 

deal with large datasets.  

In order to generalize as much as possible the results obtained, to as many prediction problems as possible, we have compared 

all the models using three different datasets: NSL-KDD [6], ADFA UNSW-NB15 [7][8] and Moore [9] datasets, each with 

different characteristics and objectives (Section III.A): two datasets are related with intrusion detection systems (IDS) and one 

with network traffic classification (NTC).  

The proposed model consists of a linear classifier based on a Neural Network (NN) with linear activations, with a previous 

KA transformation (Section 4.3) of the input features. The study covers several variants of KA transformations based on 

different algorithms: Nystrom, RFF and Fastfood transform [10][11][12].   

The KA transformations provide the nonlinearity among features, which is needed to give flexibility and richness for pattern 

detection. We have also studied different configurations for the linear model, all of them based on a linear NN with different 

activation and loss functions, extracting interesting conclusions about the best architectures for this task. 

To evaluate the model’s performance, we have compared it with the following supervised machine learning models: Linear 

and Radial Basis Function (RBF) Support Vector Machine (SVM), Multilayer Perceptron (MLP), Gradient Boosting Machine 

(GBM), Random Forest, AdaBoost, Multinomial Logistic Regression and Convolutional Neural Networks (CNN). The 

comparison was implemented for the three datasets.  

Considering the dependence of the results when performing a classification with a different number of labels, we repeated the 

experiment for the three datasets considering two groups of results: one with a binary classification and another with a multilabel 

classification. In addition, a Wilcoxon signed-rank test guarantees the significance of the results. 

Along with the importance given to classification performance metrics, we provide an exhaustive study of the training and 

prediction times of the different algorithms considered for the study. Computation times are of crucial importance when the 

classification must be carried out in time-critical scenarios or when changes in the environment demand flexibility and rapid 

reaction of the proposed classifier. 

 

The paper is organized as follows: Section II identifies related works. Section III presents the work performed and the models 

analyzed in the paper. Section IV shows the results obtained and finally, Section V provides discussion and conclusions. 

II. RELATED WORKS 

There are no works presenting results of the application of linear models plus KA transformations for IDS and NTC problems, 

but there are many considering other prediction models. In this section we present the most representative of these works applied 

to the NSL-KDD, UNSW-NB15 and Moore datasets. 

 

Being a mature dataset there are many works providing results for classification models applied to the NSL-KDD [6] dataset: 

In [13], applying an MLP with three layers, they report an accuracy of 79.9% for test data for the 5-labels prediction scenario. 

For the scenario of 2-label prediction, it is obtained an accuracy of 81.2% for test data. Authors in [14], for the 2-labels scenario 

and using Self Organizing Maps (SOM), report a recall of 75.49% on test data. The work in [15] for the 2-labels scenario, and 

using Naive Bayes with several feature engineering methods, reports an accuracy of 96.5% but the test set used is unclear. 

Similarly, in [16] they report an accuracy of 99.1% using several methods (SVM, NB...) with a previously performed 

dimensionality reduction on the features, but again, it is not clear the test set used, and the metrics are given on subsets of the 

anomaly types. Again, in [17] they report an accuracy of 99.9% with AdaBoost and a selection of features using a wrapper 

model; they use a subset of the NSL-KDD dataset for training and an unclear test set. In [18] for the 2-labels scenario and using 

AdaBoost with weak learners being simple decision stumps, they report a detection rate of 90% on test data.  In [19] using 

AdaBoost with Naive Bayes as weak learner and a previous feature selection, they report an F1 of 98% for the 5-labels scenario; 

test results are based on 10-fold cross validation over the training data, not on the test set. The work in [1] explains why and how 

the NSL-KDD data set was created. They provide results of applying several methods to the NSL-KDD data. The best accuracy 

reported is 82.02% with Naive Bayes Tree using Weka. They use the full NSL_KDD dataset for training and testing for the 2-

labels prediction scenario. Finally, in [20] is proposed a variational autoencoder to perform detection on NSL-KDD with a 5-

labels configuration obtaining an overall accuracy of 80%. 

 

Compared with NSL-KDD, the UNSW-NB15 [7][8] is a much modern dataset for intrusion detection with a larger training 

and test set. There are several works that present prediction results for this dataset: In [21] three classification algorithms; 
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Expectation-Maximization (EM) clustering, Logistic Regression (LR) and Naive Bayes (NB) are applied to UNSW-NB15 

achieving a best accuracy of 83% for LR, with a previous feature selection based on the central points of attribute values and an 

Association Rule Mining algorithm. These results are obtained with the 2-labels configuration of the dataset. With the same 2-

labels configuration, five models are used in [8]: NB, Decision Tree (DT), Artificial Neural Network (ANN), LR and EM 

Clustering, with DT obtaining the best classification accuracy (85.56%). In [22] the authors employ a DT to achieve an accuracy 

of 81.42% for the 2-labels configuration; previously they apply a feature selection wrapper approach, based on a combination of 

genetic and logistic regression algorithms to select the best subset of features. In [23] a previous separation of TCP and UDP 

traffic is performed for training with a Reduced Error Pruning Tree (REPTree) algorithm, obtaining an accuracy of 88.9% for the 

2-labels and 81.2% for the 10-labels configuration of the UNSW-NB15 dataset. 

 

The Moore [9] dataset is a well-known dataset for classification of network traffic from Cambridge University. There are 

several works reporting prediction results for this dataset: In [24] an MLP is applied in to the Moore dataset obtaining a 

classification accuracy of 96% for a 10-labels configuration of the dataset. A very similar accuracy is achieved in [25], for the 

same dataset, using a Directed Acyclic Graph-Support Vector Machine.  And, in [26] is presented a modification of the C4.5 

decision tree algorithm to classify a 12-labels configuration of the Moore dataset, reporting a one vs. rest accuracy moving 

between 60-90%, depending on the label, with only two labels with an accuracy higher than 90%. Authors of the Moore dataset 

propose in [27] a Naïve Bayes classifier with an average accuracy of 66%, which is further improved by refinements in [28] to 

achieve an accuracy of 95%. These refinements consist in a Naïve Bayes model based on kernel-estimates and feature selection 

based on Fast Correlation-Based Filter (FCBF). Finally, in [9] same authors propose a better model using C4.5 obtaining an 

accuracy of 94-99% depending on the data configuration used for training and test. 

 

There are few works that apply KA techniques to data networks prediction problems: In [29][30] are presented several KA 

methods applied to intrusion detection. They use KA with the LS-SVM model to reduce the dimensionality of the input dataset. 

They apply the model to the KDD-99 dataset with results not comparable to results from NSL-KDD.  

There is no reported work applying KA methods for NTC. There is a modern work [31] presenting the application of KA 

methods for speech recognition. It has been applied to visual recognition in [32] with results comparable to best known methods 

with a significant reduction in training and prediction times. 

 

III. WORK DESCRIPTION 

In this Section we describe the datasets chosen to carry on the experiments, the different variants of KA algorithms used for 

feature transformation and the best model that we believe can tackle the diverse requirements imposed to data networks 

problems, which are: (1) fast prediction and training times, (2) to deal with unbalanced, noisy and large datasets, and (3) to detect 

complex and non-linear patterns in the data. 

The datasets employed are described in Section III.A. The proposed model is presented in detail in Section III.B.  

 

A. Selected datasets 

To verify the capabilities of the proposed model in an environment as close as possible to the different requirements imposed 

by a prediction problem in a data network, we have selected three well-known datasets designed with different objectives: the 

NSL-KDD datasets [6], ADFA UNSW-NB15 [7] [8] and Moore [9]. Each one offers the opportunity to evaluate the performance 

of the models under different restrictions and goals. Two of the datasets are related to IDS and one to NTC. They vary in size 

from medium to large and with different distributions of continuous and categorical variables. All datasets are intended for 

classification. 

 

1) NSL-KDD dataset (intrusion detection) 

The NSL-KDD [6] dataset is a classic well-known IDS dataset. It solves the problem of redundant records in the KDD-99 [6] 

dataset, which causes the learning algorithms to be biased towards the more frequent records. For this reason, the detection 

scores on the KDD99 are usually much higher than for the NSL-KDD dataset.  

The NSL-KDD dataset provides 125973 training samples and 22544 test samples, with 41 features, being 38 continuous and 3 

categorical (discrete valued). We have performed an additional data transformation: scaling all continuous features to the range 

[0–1] and one-hot encoding all categorical features. This provides a final dataset with 122 features: 38 continuous and 84 with 

binary values ({0, 1}) associated to the three one-hot encoded categorical features. This is a very unbalanced dataset with a 

frequency of 43.1% and 1.7% for the most and least frequent labels.  

Each training sample has a label output from 23 possible labels (normal plus 22 labels associated to different types of 

anomaly). The test data has the same number of features (41) and output labels from 38 possible values. That means that the test 

data has anomalies not presented at training time. The 23 training and 38 testing labels have 21 labels in common; 2 labels only 
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appear in training and 17 labels are unique to the test dataset. Up to 16,6% of the samples in the test dataset correspond to labels 

unique to the test dataset, and which were not present at training time. The existence of new labels at testing introduces an 

additional challenge to the learning methods.  

To facilitate interpretation of results the labels have been aggregated into meaningful categories. As presented in [6], the 

training/testing labels can be associated to one of five possible categories: NORMAL, PROBE, R2L, U2R and DoS. All the 

above categories correspond to an intrusion except the category: NORMAL, which implies that no intrusion is present. We have 

considered these five categories as the final labels driving our results (Section IV). These new labels are useful for characterizing 

intrusions, maintaining a fairly unbalanced distribution (an important feature of intrusion data) and with a number of samples, in 

each category, large enough to provide significant results.  

The results presented in Section IV for this dataset also include a different prediction setup for two labels (NORMAL and 

INTRUSION values). In this case, the INTRUSION value corresponds to any original label different to NORMAL. This two-

labels setup has been included to assess the performance of the model under different number of prediction labels. 

 

2) UNSW-NB15 dataset (intrusion detection) 

The UNSW-NB15 [7][8] is a much more modern IDS dataset than NSL-KDD. It was released in 2015. It includes a mixture of 

normal network activity with modern attack type behaviors and modern normal traffic scenarios. 

The dataset consists of 2540044 samples with a test set of 82332 samples. It is also provided a training subset of 175341 

samples, which has been used in this work. This is a larger dataset than NSL-KDD and includes nine attack types, and 42 useful 

features that are created by summarizing the information of the data packets exchanged in real network dataflows. The 42 

features are divided into continuous (39) and categorical (3), which after one-hot encoding produce a final dataset with 196 

features. The continuous features are also scaled to the range [0-1]. 

Similar to the NSL-KDD dataset, labels (attack types) are very unbalanced, with a frequency of 44.9% for the most frequent 

label (NORMAL) and 0.05% for the least frequent. Unlike NSL-KDD, the distribution of labels for the training and test sets is 

similar for this dataset. 

The results in Section IV for this dataset also include a configuration of two labels (NORMAL and INTRUSION values), with 

the value of INTRUSION associated with any of the nine attack types. For the same IDS classification problem, this dataset 

provides different constraints and challenges to the ones imposed by the NSL-KDD dataset, which allows a better generalization 

of the results obtained (Section IV) 

 

3) Moore dataset (network traffic classification) 

The Moore [9] dataset is intended for NTC classification. It is a large dataset with 12 continuous features and over 1 million 

samples. All the features are continuous. The dataset does not provide a test set; therefore, we have constructed one from a 

random subset of 20% of the original samples, holding the distribution of labels in both the resulting training and test sets. 

The features for this dataset are obtained by summarizing (e.g. median, variance of bytes in packets…) information contained 

in the first five packets of each network data flow. A window size of five packets is considered by the authors of this dataset as 

optimal to achieve good classification results.  

The dataset includes 15 labels associated to different types of network traffic (e.g. WWW, MAIL, P2P, VoIP…). It is 

extremely unbalanced with a frequency of 83.9% and 0.0001% for the most and least frequent labels. In order to have a still 

unbalanced dataset but not so extremely unbalanced, we have aggregated the labels with a frequency less than 0.1% into a single 

label, resulting in a final dataset with 9 labels with the frequency for the most and least frequent labels being now 83.99% and 

0.11% respectively. 

Similarly to the two other datasets we have included in Section IV the results for this dataset when the 9 labels are aggregated 

into only two (WWW and REST). The only intention of this result is to present the prediction performances under a variety of 

comparable scenarios between datasets. 

This dataset provides a different scenario for classification, having only a small set of continuous features. 

 

 

B. Model description 

When doing classification with linear models we try to find a linear decision surface that separate the classes. This surface is 

obtained as an inner product of a vector of weights ( ), with the vector of features ( ), given by:      . But, in general, the 

classes are not linearly separable. In this case, a solution is to perform a projection of the vector of features into a higher 

dimensional vector space (ϕ  )), where the associated classes can be linearly separable with a new linear decision surface, given 

by:         . The parameters   can be obtained by some optimization mechanism (e.g. Stochastic Gradient Descent - SGD). To 

ensure linear separation, the best approach would be to perform the projection into a transformed space with a large number of 

dimensions, ideally an infinite number of dimensions, but that would make it impossible to calculate the required inner product. 

The Representer Theorem [33] and Reproducing Kernel Hilbert Space theory [34] provide a solution to this problem with the 
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kernel trick that applies a kernel function:        , such that: 

 

                           (1) 

 

That is, the inner product in the possibly infinite transformed space can be easily calculated with the kernel function in the 

original feature space. Applying this solution, the new decision surface is obtained by: 

 

                          
                

 
     (2) 

 

The parameters    in (2) can be obtained by quadratic optimization (dual solution) [35] as an alternative solution to obtaining 

the parameters   (primal solution) [35]. 

These principles are applied in the kernel-SVM model, usually with an RBF kernel. SVM is one of the best models for 

classification, being able to capture nonlinearity in the features, what is important to detect complex patterns. As will be shown 

later on this paper, SVM produces very good prediction results but has real problems in terms of time and resources needed to 

accomplish both training and prediction.  

The applicability of the dual solution depends on the number of samples and features, not being applicable when the number 

of samples is large, since that implies solving a problem of quadratic programming with huge matrices. When it is necessary to 

deal with datasets with a large number of samples (as is usually the case in IoT predictions), it is necessary to use the primal 

solution with its associated problem of non-applicability of the kernel trick. The kernel approximation (KA) algorithms comes as 

a way out in these cases, since they provide a projection into a higher dimensional space (but not infinite dimensional) with the 

property than the inner products in this transformed space are approximately equal to those obtained by applying the associated 

kernel. 

Classification problems in data networks generally have a large number of samples which require using the primal solution, 

and it makes it necessary to use a KA transform before applying a linear model. To implement the KA transformation there are 

several techniques. Section III.C gives details on the techniques used in this paper. 

Our proposed model is presented in Fig. 1, where the input data is the matrix    composed of N samples of dimension   (  

features). The input data is transformed to a higher dimensional space by a KA transform producing a new matrix    of 

dimensions     , where    , and   being the dimension of the KA transformed data. The matrix     is multiplied by a 

matrix of weights   of dimensions     , generating an output matrix of results   of dimensions     . The dimension M of 

the output vector corresponds with the M values of the predicted label (one-hot encoded). The matrix   contains the ground truth 

values for the labels of the training data, with dimensions        . 

Fig 1. Linear model with KA transformation of features. 

 

To learn the parameters of the weights matrix:  , we use SGD with a loss function shown in Fig. 1. The loss function 

corresponds to the average value through the samples of the sum of a hinge function applied to the difference between the values 

of    (the   position of vector  ) with the value of    
 associated with the index    of the correct output in   . The parameter 

  corresponds to the margin value, being       for the hinge loss (linear SVM) or      for the perceptron loss. The final term 

is a regularization term to penalize weights with big values; in this case we have used a    norm for regularization, the parameter 
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  being a hyperparameter to control the importance of regularization. 

To implement the model we have used Tensorflow as an efficient platform to perform automatic differentiation, to obtain the 

necessary gradients to minimize the loss function during training, and capable of handling large datasets. 

 

C. Kernel approximation variants 

In order to implement kernel approximation, there are several techniques. We have employed Random Fourier Features (RFF) 

[10] and Nystroem Method [11] to approximate a Radial Basis Function kernel. Similarly, we have also applied a KA based on 

the Fastfood transformation [12] which is a fast implementation of Random Kitchen Sinks [36] 

In the case of RFF [10], we create the new features using random Fourier basis (3):  

                     (3) 

 

where         and     , being    the original data to be transformed,    a random variable from a distribution obtained 

from the Fourier transform of the kernel, and   a random variable from a uniform distribution on       ; both         have the 

same dimensionality (  , which is the same as the number of initial features. The random mapping works using Bochner’s 

theorem [37] which states that the Fourier transform of a shift-invariant positive definitive kernel is a proper probability 

distribution [10] 

The feature transformation will provide a feature map: 

                    (4) 

 

Which transforms   features to   features, where   is bigger than  , but not infinity, as would be necessary if we want to do 

the real mapping associated to the RBF feature map (5): 

                     (5) 

 

The important property of the transformation given by (4) is that the inner products of the approximated function (in this case 

the one associated to the RBF kernel) can be made similar to the inner products of the transformed data (as given in (6)): 

                                       (6) 

 

Where         is the RBF kernel applied to samples         

The objective of Nystroem Method is similar to RFF in obtaining a transformation similar to (4) but the method used is 

different.  Nystroem Method implements a low-rank approximation to the Gram matrix (kernel matrix) using sampled columns 

of the original       Gram matrix [11][38][39]. Nystroem method generally provides a better approximation to the true kernel 

transform, at the cost of increasing the required time to perform the transformation when the number of features is big. 

The Fastfood transformation is a fast implementation of Random Kitchen Sinks which approximate the function      by 

multiplying the input vector (original features) with a dense Gaussian random matrix, followed by the application of a non-

linearity. Fastfood operates in a similar way, but replacing the dense Gaussian matrix by a combination of Hadamard and 

diagonal Gaussian matrices, which are more efficient to multiply and store [12][36]. 

In Fig. 2, are presented the times needed to perform the feature transformation for the different KA algorithms, depending on 

the number of transformed features. The dataset used has been NSL-KDD with 122 features (Section III.A). We can see that 

Nystroem requires more time and that this time increases with the number of features. Fastfood starts to be competitive when the 

number of features is greater than 1000 (as predicted in [12]). Similar results are obtained for the UNSW-NB15 and Moore 

datasets. 

 

Fig 2. Time required to perform the KA transformation of features. 
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IV. RESULTS 

In this section, we compare the results of applying different machine learning models to the NSL-KDD, UNSW-NB15 and 

Moore datasets, specifically the models are: Multinomial Logistic Regression, SVM with linear kernel and RBF kernel, Random 

Forest, GBM, AdaBoost with one weak learner (simple trees), MLP, CNN and our proposed model: Linear model + KA 

transformation.  

All results presented in this section are based in a neural network with no hidden layers (it consists just of the input and output 

layers), linear activation function for the last layer, and linear loss function (hinge loss) with a margin value for the hinge loss 

equal to zero         and an L2 regularization parameter for the weights equal to 0.001 (            This architecture, for the 

shallow neural network, is applied for all datasets and all configurations of labels (2-labels or multi-label). We have observed 

that this configuration provides best results, with small differences, for all datasets and models. 

The KA transformation that achieves best results does depend on the dataset. For the NSL-KDD the best KA transform has 

been the Nystroem method, with a number of transformed features equal to 400. The final model for the UNSW-NB15 consists 

of a KA transformation based in the Fastfood method with 512 features, and, finally, the Moore dataset obtains best prediction 

results with the RFF method with 512 generated features.  

It is interesting that the element that creates a difference is the selection of the KA method and the number of features created 

by the transformation.  

All results presented in this paper are based in the test sets defined in Section III.A. To analyze the prediction performance for 

the different models, and considering the highly unbalanced distribution of labels, we provide the following performance 

metrics: accuracy, F1 score, precision and recall. We base our definition of these performance metrics on the usually accepted 

ones [1].  

Regarding highly unbalanced datasets, F1 is considered a better metric for prediction performance than accuracy, precision 

and recall. This metric (F1) will be the metric used to rank the different algorithms applied to the three datasets. 

For a binary classification there is no ambiguity to provide results, but, when facing a multi-class classification problem, there 

are two possible ways to give results: aggregated and One vs. Rest. For One vs. Rest, we focus in a particular class (label) and 

consider the other classes as a single alternative class, simplifying the problem to a binary classification task for each particular 

class (one by one). In the case of aggregated results, we try to give a summary result for all classes. There are different 

alternatives to perform the aggregation (micro, macro, samples, weighted), varying in the way the averaging process is done 

[40]. Considering the results presented in this paper, we have used the weighted average provided by scikit-learn [40], to 

calculate the aggregated F1, precision and recall scores. 

Aggregated performance results for the NSL-KDD, UNSW-NB15 and Moore datasets are summarized in Fig. 3, 4 and 5 

respectively. These figures are divided into two parts, with the upper part giving results for the 2-labels configuration of the 

datasets and the lower part for the multi-label configuration. (Section III.A) 

Considering F1 as our main performance metric, the results in Fig. 3-5 can be interpreted as follows: The NSL-KDD dataset 

(Fig. 3), highly noisy and with a difficult test set, has the SVM-RBF model as its best model for the configuration of 5-labels 

(followed immediately by the Linear+Nystroem model) and the Linear+Nystroem model as the best for the 2-labels 

configuration. The UNSW-NB15 dataset (Fig. 4) provides best results for the CNN-1D model, closely followed by 

Linear+Fastfood. This behavior occurs for both the configuration of 2 and 10-labels. For the Moore dataset (Fig. 5) with a large 

number of samples and a small number of features the best results are for bagging and/or boosting models based on decision 

trees (random forest, GBM, Adaboost) and for the CNN-1D model, all of them highly non-linear and complex models. In this 

case, Linear+RFF is with the best models for the 2-label configuration and immediately behind them for the 5-labels 

configuration. The performances of MLP and SVM-RBF are not good for this dataset.  

From the results in Fig. 3-5 we can conclude that Linear+KA models are among the best models for all three datasets and in all 

label configurations.  

It is important to mention several details about the different models applied in the study. For SVM with linear kernel, we have 

used the primal solution which provides a much faster implementation in our specific case (high number of samples and small 

number of features). For the SVM with RBF, we had to use the dual implementation. Results related to linear models plus KA 

transformation are provided using three KA methods: Nystroem (400 features), RFF (512 features) and Fastfood (512 features). 

We have implemented the MLP with several hidden layers (3 layers with 1024, 512 and 128 nodes). Considering the CNN model 

[41], we have applied the one-dimensional CNN due to the nature of the features in all datasets (no spatial allocation of features). 
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Fig 3. Aggregated performance scores for the NSL-KDD dataset.  

 

 

 
 Fig 4. Aggregated performance scores for the UNSW-NB15 dataset.  
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Fig 5. Aggregated performance scores for the Moore dataset.  

 
 

To ensure that the good results obtained by the Linear + KA model are significant, Table I presents the application of the 

Wilcoxon signed-rank test for the comparison of the prediction results, for each metric, between the best Linear+KA model by 

dataset and the other models for that dataset. The test is performed including all datasets. The last row in Table I presents the 

results when all the metrics are included in the comparison. The conclusion is that the Linear+KA model has results with a 

higher average value and significantly different from the rest of the models. Only the precision metric, even having a higher 

average value, presents a non-significant result at a level of significance of 1% 

 

 
Table I. Wilcoxon signed-rank test: significance of results 

 

Fig. 6 shows One vs. Rest detailed performance metrics for the linear model + RFF transformation applied to the Moore 

dataset with the multi-label configuration. We can observe how the frequency distribution for the labels is highly unbalanced 

(column “Frequency” in Fig. 6). We get an F1 score greater than 0.8 for the most frequent labels. The accuracy obtained is 

always greater than 0.98 regardless of the label and usually much higher. 
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Fig. 6. One vs. Rest performance scores for Linear+RFF model (Moore dataset). 

 

Prediction and training times are essential for IDS and NTC predictions, since traffic is permanently changing. Good 

prediction metrics by themselves are not enough for deciding the best model. In Fig. 7 are shown the computing times for 

training and prediction for all models applied to the three datasets.  

As expected Linear-SVM and Logistic regression present the best prediction times, followed by Linear Models + KA 

transformation. Linear-SVM model is implemented as a Linear Model without KA transformation, hence its better performance 

regarding prediction time. For training times, the best values are obtained with Linear-SVM and Linear Models + KA 

transformation closely followed by Logistic regression. 

 

 

Fig. 7. Training (upper chart) and prediction times (lower chart) for all learning models and datasets. 

 

The main gains in computational time obtained by the Linear+KA models are less evident for the Moore dataset, which after 
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applying the KA transformation increases the number of features from 12 to 512. This large increase justifies that some non-

linear models that work with 12 features can bring their computing times closer to those of the Linear+KA models. 

As a final check of the good balance presented by the Linear+KA models between the prediction times and the predictive 

capacity, Fig. 8 presents a graph that shows all the models against their F1 metric using the size of the point to indicate the time 

needed to make a complete prediction of the test data set. Fig. 8 provides the values for the NSL-KDD dataset; similar graphs 

can be obtained for the other datasets. In this graph we can see how the Linear+KA models have a predictive performance close 

to the best non-linear model (SVM-RBF) but with a much lower prediction time required. 

 

 

 
 

Fig. 8. Prediction times vs. F1 score for all learning models.  

 

It is interesting to compare the low prediction performance of all linear models (logistic regression and SVM with a linear 

kernel) with the excellent performance results of the different variants of the proposed model: Linear Model+KA. This largely 

justifies the application of the initial KA transformation to the features, and demonstrates that the prediction problems generally 

dealt with in data networks require the application of non-linear models. 

In addition, a curious finding of this work is that the KA transformation provides a performance improvement only when used 

with models strictly linear, which means that the loss function is linear and the activation functions are also linear, otherwise the 

results obtained are worse than without the KA transformation.  This behavior has been verified with the Multinomial Logistic 

Regression, CNN and MLP which all include non-linearities (e.g. ReLU, Softmax activations or cross-entropy loss function), 

and, that provide poorer results when combined with a KA transformation. 

We have implemented all the models in python using the scikit-learn package [40], except all linear models (including linear-

SVM and Multinomial Logistic Regression), MLP and CNN models for which we have used Tensorflow.   

 

V. CONCLUSION 

Intrusion detection and network traffic classification are two of the main research applications of machine learning to highly 

demanding data networks e.g. IoT/sensors networks. We propose and analyze a prediction model that is appropriate for these 

applications, requiring high detection performance with reduced computation times. 

The proposed model consists of a shallow linear architecture with a multiclass hinge loss and a feature transformation based in 

kernel approximation theory. This combination provides a fast and flexible model with non-linear behavior.  

This paper presents the first application of a linear model plus a transformation KA of the features to prediction problems of 

data networks.  

We provide a thorough comparison study of the model with alternative models, considering three performance aspects: 

prediction scores, prediction and training times. We also consider different variants for the proposed model, including the 

analysis of three KA transformations: Nystroem, RFF and Fastfood. The results of the study show that the proposed model is 

positioned uniquely in the upper part for the three performance aspects, being similar in detection performance to the best non-

linear models (e.g. Kernel-SVM, CNN...) and with computation times similar to linear models (e.g. Logistic regression and 

Linear-SVM). 
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We have chosen IDS and NTC as two representative prediction problems in modern data networks (e.g. IoT), and selected 

three well-known datasets (NSL-KDD, UNSW-NB15 and Moore) in these areas. These datasets were created under a variety of 

objectives and constraints and represent a good example of the different requirements imposed on prediction problems in data 

networks. 

The observed low detection performance of all linear models seems to imply that linear relationships are not enough to capture 

the underlying structure of the datasets used in prediction problems for data networks, then the importance of providing the 

models with non-linear behavior while still achieving the best prediction and training times.   
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 Most prediction problems of data networks are non-linear 

 Shallow neural networks are fast 

 Kernel approximation is a non-linear data transformation 

 Shallow neural networks with kernel approximation are non-linear and fast models  

 Proposed model is faster with prediction results comparable to deep models 

*Highlights (for review)


