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The management of the exponential growth of data that Next Generation Sequencing techniques produce 
has become a challenge for researchers that are forced to delve into an ocean of complex data in order 
to extract new insights to unravel the secrets of human diseases. Initially, this can be faced as a Big 
Data-related problem, but the genomic data have particular and relevant challenges that make them 
different from other Big Data working domains. Genomic data are much more heterogeneous; they are 
spread in hundreds of repositories, represented in multiple formats, and have different levels of quality. 
In addition, getting meaningful conclusions from genomic data requires considering all of the relevant 
surrounding knowledge that is under continuous evolution. In this scenario, the precise identification of 
what makes Genome Data Management so different is essential in order to provide effective Big Data-
based solutions. Genomic projects require dealing with the technological problems associated with data 
management, nomenclature standards, and quality issues that only robust Information Systems that use 
Big Data techniques can provide. The main contribution of this paper is to present a Big Data-driven 
approach for managing genomic data, that is adapted to the particularities of the domain and to show 
its applicability to improve genetic diagnoses, which is the core of the development of accurate Precision 
Medicine.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the pillars for understanding the genetic aspects that 
make our predisposition to disease and our response to treatments 
different from each other is genetic diagnosis. Next-Generation Se-
quencing (NGS) technologies, such as Whole-Genome Sequencing 
(WGS) and Whole-Exome Sequencing (WES), have provided re-
searchers with an exponentially growing list of DNA variants that 
are potentially relevant in calculating the subsequent likelihood 
of developing specific diseases. These advances and the growing 
availability of health data have allowed the development of novel 
approaches such as Precision Medicine, in which health care is in-
dividually tailored based on the genetic characteristics, lifestyle, 
and environment of each patient [1].

While other fields such as Astronomy have faced the challenges 
of Big Data for decades, it was not until the 1000 Genomes Project 
was launched in 2008 that Genomics entered the domain, with 
the total amount of sequence data being produced doubling ap-
proximately every seven months [2]. Fig. 1 depicts a chart with 
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the growth of genome sequencing and the growing expectations 
in the following years. The left axis represents the total num-
ber of human genomes sequenced. The right axis represents the 
worldwide annual sequencing capacity (Tbp: Tera-basepairs, Pbp: 
Peta-basepairs, Ebp: Exa-basepairs, Zbps: Zetta-basepairs). As can 
be seen, sequencing capacities are expected to continue growing 
at a faster pace than the ability of experts to review and analyze 
the data produced.

What, at the outset, may have seemed a significant step for-
ward for the development of novel approaches such as Precision 
Medicine has caught researchers and clinicians unaware and forced 
them to delve into an ocean of complex data in order to extract 
new insights to unravel the secrets of human disease.

Many efforts in the Big Data community have been oriented 
to providing efficient solutions to open problems such as NGS 
read alignment [3–5] and variant calling for detecting rare genetic 
variants in the DNA sequence with higher confidence [6–8]. Nev-
ertheless, the next step (their classification and interpretation for 
clinical purposes) remains unsolved and is becoming more and 
more complex.

Once the genome is sequenced and the variants regarding the 
sequence of reference are determined, the introduction of this 
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Fig. 1. Growth of DNA sequencing - Image obtained from [2].
knowledge into clinical practice requires answering two important 
questions: i) Can the impact of these variants lead to a disease 
phenotype? ii) Does the impact of these variants cause the symp-
toms observed in the patient?

To answer these questions, all of the additional knowledge 
about each variant must be considered regarding published stud-
ies, population frequencies, gene impact predictions, and segrega-
tion data. Surprisingly, the collection and analysis of these data are 
tasks that are mainly performed manually, which constitutes a bot-
tleneck in the genetic diagnosis workflow and a potential source of 
errors.

To solve this problem, geneticists, clinicians, and biologists need 
to change the way they manage the data flow, facing well-known 
challenges that are inherent to the Big Data life cycle such as col-
lection, integration, cleansing, transformation, storage, processing, 
analysis, and governance [9]. However, Genomics has specific chal-
lenges that must be taken into consideration.

Genomic data are spread in hundreds of repositories. This 
means that instead of having only one shared ecosystem to pro-
cess the data, they are distributed among many independent ac-
tors with no centralized control or coordination. In addition, ge-
nomic data: i) are represented in multiple formats (e.g., FASTQ, 
VCF, BAM, unstructured text descriptions, and quantitative mea-
surements from laboratories); ii) come from different technolo-
gies (e.g., DNA sequencing, protein-DNA binding occupancy, health 
records, and sensors); iii) cover different domain scopes (e.g., gene 
regulation, protein interactions, epigenetic interactions, and DNA 
methylation), and iv) have different levels of quality (e.g., the ChIP-
seq data is sparse, noisy and discontinuous). Furthermore, the 
knowledge of the domain is in continuous evolution because of 
the ambitious human challenge of understanding the genome.

To succeed in providing a reliable and accurate genetic diagno-
sis in this Big Data scenario, some aspects are strictly required: i) 
retrieval and storage mechanisms to improve data acquisition and 
ensure scalability; ii) a high level of data quality must be guaran-
teed to facilitate the knowledge extraction process which is threat-
ened by redundant and uncertain data; and iii) advanced data 
visualizations that combine appearance and functionality must be 
provided to extract value from the data.
2

In order to provide a solution to these problems, the novelty of 
this paper is to reuse and adapt current Big Data-based techniques 
to propose a framework that is: i) scalable enough to deal with 
the increasing amount of data that is being generated; ii) flexi-
ble enough to adapt to the dynamicity of the knowledge; and iii) 
searchable enough to extract valuable insights to support variant 
classification and interpretation for the genetic diagnosis. The use 
of a method that is specifically designed for managing genomic 
data and supported by conceptual modeling conforms the original-
ity of the present work.

To achieve this objective, this work is structured as follows: 
Section 1 presents the introduction, Section 2 provides more de-
tails about the problems that constitute what we call “genomic 
data chaos”. Section 3 presents the Big Data background that con-
forms the methodological and technological basis of this work. 
Section 4 describes the proposed framework, focusing on its ar-
chitecture and justifying why its components have been selected 
and how they are combined. Section 5 describes a real example in 
which the framework has been successfully applied. Finally, Sec-
tion 6 presents our results, conclusions, and future work.

2. Genomic data chaos

Genetic diagnosis is a complex process that involves the ex-
traction, transcription, and organization of genetic and clinical data 
from disjointed data sets into an Information System. However, this 
process is hindered by some issues that are inherent to the domain 
that must be carefully considered in order to succeed. We focus on 
the lack of standardized nomenclature, the problem of huge data 
dispersion, and the strict need for the use of reliable data.

2.1. Lack of a standardized nomenclature

As the genetics field emerged, naming conventions were not de-
fined, which means that there are genes, proteins, organisms, dis-
eases, technologies, and protocols that do not follow any nomen-
clature standard. This means that the same concept can be rep-
resented in different and sometimes ambiguous ways, leading to 
open debates in the community [10]. Therefore, it is not always 
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clear how to make correspondences between the different con-
cepts that are represented by each data source, causing redundan-
cies and conflicts.

Great efforts have been made by the community to revert 
this situation by providing ontologies and nomenclature standards 
with the aim of unifying knowledge and making it interopera-
ble through consistent vocabularies. Examples of such efforts are 
the following: HUGO Gene Nomenclature Committee (HGNC) [11], 
which is responsible for approving unique symbols and names for 
human genes; HGVS Sequence Variant Nomenclature [12], which 
proposes a standardized way of naming sequence variants; and the 
Human Phenotype Ontology (HPO) [13], which proposes a stan-
dardized vocabulary of phenotypic abnormalities that are encoun-
tered in human disease.

Nevertheless, even when the use of such recommendations is 
highly encouraged, it is still not a standardized practice, which 
hinders the process of identifying the genomic elements and also 
hinders establishing the correct connections among them.

2.2. Huge data dispersion

Besides the ontological problem, there is a second one that is 
related to the dispersion of genomic information. All of the knowl-
edge is spread over thousands of heterogeneous databases with 
different sizes, formats, and structures. Some of these sources store 
information about one organism (e.g., Flybase for Drosophila [14], 
RAP-DB for rice [15], and GDB for humans [16]). Others provide 
information about specific parts of the genome (e.g., Uniprot for 
proteins [17], HGMD for genes [18], and Reactome for pathways 
[19]). Each of these data repositories represents a different and 
complementary view of the whole picture. However, the correct 
understanding of the role that each genomic element plays in the 
development of a disease requires more information than that pro-
vided by only one source.

Bringing together all of these heterogenous and distributed 
databases can lead to interoperability issues that are related to se-
mantic heterogeneity, data integrity, data representation, and cor-
rectness of the interpretation of the data sets obtained from them.

2.3. Lack of reliability

The third challenge to face is related to the lack of reliability 
because the information may contain errors caused by the com-
plexity of biological processes, the noisy nature of experimental 
data, and the diversity of sequencing technologies. This leads to 
a great variability in the quality of the available information. For 
example, probe design and experimental conditions are known to 
influence signal intensities and sensitivities for many sequencing 
technologies [20], experiments performed on a population sample 
that it is not representative enough can lead to erroneous conclu-
sions [21], and the use of different criteria and methods can lead 
to conflicts in variant classification [22].

All the above-mentioned problems constitute what we call “ge-
nomic data chaos”, which is associated with having a huge number 
of different, complex, and diverse data sources where the relevant 
genomic data is stored in partial views, a holistic perspective is 
missing, and there are problems that are well known to the Big 
Data community. These include lack of consistency, different for-
mats for representing similar data, lack of conceptual standards, 
and difficulties with data heterogeneity and data interoperability 
management.

This chaos leads to data analysis processes that are mainly 
manual, tedious, and repetitive, and that are no explicit or system-
atic methods, they are prone to human errors and make repetitive 
navigation through complex hyperlinks unavoidable.
3

3. Methodological and technological background

In a previous work [23], we presented the basis for the efficient 
management of genomic information. The core of this work is the 
SILE method, which considers the problems of genomic data chaos 
and proposes a systematic approach that is divided into four main 
stages:

• Search: In this stage, the most appropriate and relevant 
sources are selected to extract the required data for the task 
at hand.

• Identification: During this stage, the relevant and high-quality 
data from each source is identified.

• Load: In this stage, the data identified as relevant is loaded 
into the appropriate storage repository taking into account the 
analytical requirements.

• Exploitation: In this stage, the value from the stored data is 
extracted in order to fulfill the knowledge requirements.

The method is supported by a sound ontological background 
and a data quality methodology that ensures the reliability of the 
data in each stage. It has been validated in different case stud-
ies and has proven to be useful in the identification of relevant 
variants that are associated to different diseases [24,25]. The SILE 
method provides the conceptual framework, but it requires sound 
Big Data architectural support in order to be used in a broader 
and more complex spectrum of diseases. This architecture must be 
based on existing Big Data solutions that are suitably adapted to 
the particularities of the domain under investigation (in our case, 
the genomic domain for diagnostic purposes in the context of Pre-
cision Medicine).

A Big Data system that is in charge of supporting the different 
stages of the SILE method must be based on a suitable infrastruc-
ture that fulfills the processing requirements identified by Krishnan 
in [26]. These that can be summarized as follows:

• Flexible data models to adequately manage complex data.
• Scalable systems to collect and process data either in real-time 

or in batches.
• Data partitioning to adequately support the volume of data.
• Efficient and fault-tolerant storage mechanisms.
• Replication across multiple nodes.

There are two well-known Big Data architectures that can be 
used to fulfill these requirements: The Lambda Architecture and 
the NIST Architecture.

The Lambda Architecture [27] is divided into three main com-
ponents or layers that satisfy different needs: batch, serving, and 
speed. The batch layer stores all of the data in an immutable 
and constantly growing master dataset, the serving layer contains 
views of precomputed data from the master dataset in an indexed 
storage, and the speed layer computes the functions that propagate 
the views between the batch and the serving components.

The NIST Big Data Reference Architecture [28] is an open ref-
erence architecture for Big Data that is divided into five main 
components: System Orchestrator, Data Provider, Big Data Appli-
cation Provider, Big Data Framework Provider, and Data Consumer 
(see Fig. 2).

The System Orchestrator ensures that the different applica-
tions, data, and infrastructure components all work together. The 
Data Provider introduces new data or information that come from 
different sources into the Big Data system for discovery, access, 
and transformation. The Big Data Application Provider contains 
the business logic and functionality necessary to transform the 
data into valuable knowledge through five main activities: collec-
tion, preparation, analytics, visualization, and access. The Big Data 
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Fig. 2. NIST Big Data Reference Architecture (NBDRA) adapted from [28].
Framework Provider has the resources and services for data stor-
age and processing. Finally, the Data Consumer uses the interfaces 
or services provided by the Big Data Application Provider to get 
access to the information of interest.

Besides the NIST and the Lambda architectures, there is a new 
approach proposed in [29], that extends the NBDRA with new 
components with the aim of providing a reference architecture to 
build Big Data Warehousing systems.

4. A Big Data framework for the management of genomic 
information

Using the four stages of the SILE method as basis along with 
the recommendations of the above-mentioned works, we present 
a Big Data framework with the aim of improving the variant classi-
fication and interpretation processes in genetic diagnosis. The aim 
of this framework is to solve, or at least minimize, the impact 
that the problems derived from genomic data chaos create for re-
searchers and clinicians. To such aim, the presented framework can 
be used to help data scientists to build information systems that 
can help clinical experts to analyze and interpret the genetic data, 
using the results obtained to improve the genetic diagnosis.

One of the characteristics of genomic data is that they are col-
lected in batches and consequently the implications of real-time 
or streaming data collection do not need to be considered. Never-
theless, these requirements could be added to the framework in a 
future if needed.

As Fig. 3 shows, the framework simplifies the Lambda Architec-
ture and the NBRDA, and adds a new specific component (Quality 
Assessment), not explicitly considered in the mentioned architec-
tures, that oversees supporting the core tasks of the Identifica-
tion stage. The framework is divided into four main components: 
The Data Provider, the Data Consumer, the Big Data Application 
Provider, and Big Data Storage (which is a simplification of the Big 
Data Framework Provider to be adapted to the genome data that is 
managed).

Following the systematic steps defined by the SILE Method, the 
different modules of the framework can be implemented. In the 
following sections, details about how each module supports the 
tasks of the method are presented.
4

4.1. The Data Provider and the Data Consumer

The first stage of the SILE method (Search) requires determin-
ing the sources that provide the data to the system. These data 
sources must be determined by the clinical expert and will be part 
of the Data Provider component. They must provide complete in-
formation about the DNA variants, their location in the genome, 
the frequency of appearance in different populations, and the evi-
dence collected by the scientific community in different published 
literature. Consequently, they will have different scope, format, and 
structure. The selection of the sources among all of the currently 
available ones is a huge problem by itself that is out of the scope 
of this work.

The Data Consumer can be an end user or another system 
that uses the results of the Big Data Application Provider to per-
form different activities such as search, retrieve, download, anal-
ysis, reporting, or visualization. As examples of activities that can 
be performed by the Data Consumer are the processing of a pa-
tient sample to find DNA variants that are causative of disease, the 
generation of a genetic report based on the findings, or just the 
visualization of the stored data to infer new knowledge. This is 
closely related with the last stage of the SILE method (Exploita-
tion).

4.2. The Big Data Application Provider

The Big Data Application Provider module is responsible for 
ensuring the data flowing through the different activities that sup-
port the stages proposed by the SILE method.

Once the sources are determined, the Search stage also involves 
the collection of data from them. This task is supported by the 
Raw Data Collection module. After the collection of data, the rel-
evant information must be identified. The Identification stage is 
supported by the Data Preparation and Quality Assessment mod-
ules. The Quality Assessment module has been added to the frame-
work due to the importance that this task has for the identification 
of relevant genomic data. Once the relevant information has been 
identified, it must be stored into the system. The Load stage is per-
formed on two different types of data storages (Raw Data Storage 
and Indexed Storage). Finally, the stored information can be ana-
lyzed in the Exploitation stage, supported by the Data Exploitation 
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Fig. 3. The Big Data framework that supports the SILE method.
module through three main tasks namely Analytics, Access, and Vi-
sualization. In the following subsections we detail each component 
of the Big Data Application Provider.

4.2.1. The Raw Data Collection module
Once the data sources that will provide the input data to the 

system are determined, the next step is to extract the raw data 
from them. The genetic sources may provide data in different for-
mats (e.g., XML, CSV, VCF, and JSON) and can be collected manually 
or automatically. The raw data is collected with the same level of 
detail that they have in the source, so they can serve different ana-
lytical purposes. The collection may require the implementation of 
custom collectors developed using some well-known programming 
languages such as Java and Python.

The collected data are stored in a raw data storage to be pro-
cessed in the next stage. This storage must be flexible enough to 
store data in the raw state and serves not only for data preparation 
and transformation, but also for other purposes, such as training 
data science models or text mining tasks.

4.2.2. The Data Preparation module
Once the raw data have been extracted from the data sources, 

the next stage of the SILE method (Identification) requires the 
preparation of the data stored in the raw data storage repository 
for analysis. Depending on the analytical purpose, not all of the 
data extracted from each source may be required, so determin-
ing which information will be analyzed requires specific knowl-
edge about the domain. In this case, the knowledge is provided by 
the Conceptual Schema of the Human Genome (CSHG) [30], which 
represents the ontological structure of the core concepts of the ge-
nomic domain and the relationships among them. As an example, 
Fig. 4 shows how the CSHG represents the contextual information 
about a DNA variant.

The main entities of the conceptual schema are Variation and 
Gene. The Variation entity represents the changes in the DNA that 
5

are the cause of the disease (phenotype) of interest. There are dif-
ferent types of variants, depending on the frequency of appearance 
in a certain population and the precision of the information asso-
ciated to them. The Gene entity represents the elements whose 
alteration derives in a malfunction that leads to the manifestation 
of the disease. The conceptual schema also represents the informa-
tion that is associated to the databases from where the information 
has been extracted to ensure the traceability of the information 
and to help keep the information updated.

The extraction of the required data must be done following a 
set of extraction rules defined according to the different analyti-
cal tasks required by the clinical expert. Each extraction rule is a 
logic formula with variables on its left-end side that are computed 
from the variables on its right-end side. These rules are defined by 
the data scientist in charge of the system development and main-
tenance. As an example, Fig. 5 shows how the information about a 
DNA variant can be extracted from the data coming from different 
data sources.

According to the example, a variant can be represented by 
three attributes. The attribute db_variation_id can be extracted 
from GWAS, ClinVar (requires transformation), Ensembl, and db-
SNP databases. The attribute clinically_importance is provided by 
ClinVar and Ensembl, and the information associated to the at-
tribute other_identifiers is provided by the attribute DOCSUM of 
dbSNP.

Some data are acquired exactly as they are in the original 
source, but others need the application of transformations that are 
specified in a set of transformation rules. The preparation of the 
data requires all sorts of cleansing, integration, and deduplication 
tasks that can be performed with tools like Rapid Miner, Talend 
Open Studio, and Pentaho Data Integration.

4.2.3. Quality Assessment module
One of the key stages of the SILE method is the identification of 

relevant and high-quality data through the application of a set of 
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Fig. 4. Simplified view on how the CSHG represents the context of a DNA variant.

Fig. 5. Example of the extraction rules required to represent a DNA Variant.
quality metrics. This ensures that the conclusions and the knowl-
edge derived from their analysis are reliable and accurate enough 
to be used for clinical purposes. These metrics must be defined 
by the clinical expert and may consider different quality issues in 
the genomic information such as the presence of conflicts in the 
literature, the statistical evidence, or the presence of data that is 
out-of-date [31]. These quality metrics can be implemented with 
ETL tools like Pentaho or using languages like R, Python, etc.

After the extraction and transformation process, the data con-
form a common format and structure (determined by the CSHG), 
and the quality assessment can be executed to determine if the 
data comply with the quality thresholds stablished. If this is the 
6

case, the data are stored in an indexed storage repository for their 
further analysis.

4.2.4. Data Exploitation module
The last stage of the SILE method (Exploitation) requires provid-

ing access to the data as well as a set of visualization mechanisms 
and tools that are specifically designed for the user requirements. 
This task is crucial since it allows access to the data that is stored 
in both storage systems for different analytical purposes; for exam-
ple, the modification of the quality thresholds to be adapted to the 
different disease contexts and the extraction of relevant insights 
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through the processing of patient samples and the generation of 
genetic reports.

4.3. The Big Data Storage

This component is a simplification of the Big Data Framework 
Provider. It considers only the two types of storage required to pro-
cess batch data (the master dataset and the batch views). The main 
roles of this module are: i) to provide the infrastructure required 
to ensure that large and diverse formats of data can be stored and 
transferred in a cost-efficient, secure and scalable way; ii) to fa-
cilitate and organize distributed processing in distributed storage 
solutions; and iii) to deliver the functionality to query the data 
and perform runtime operations on the data set.

As already stated, the Master Data Storage must be flexible and 
scalable enough to store data in the row state, without any con-
straints on volume and format. Since genome data is provided in 
batch mode, one solution could be the use of a Distributed File 
System (DFS). This is an unstructured data storage repository that 
does not need to have a specific schema or to be modeled in a 
specific way and allows the data to be explored in the raw state. 
There are several DFS providers, but one of the most well-known is 
Hadoop DFS, which is highly fault-tolerant, supports large datasets, 
and is designed to be deployed on low-cost hardware [32].

The Indexed Storage Repository is in charge of storing the com-
puted views that come from the Master Data Storage and must 
comply with a specific structure. In this case, it is the one provided 
by the ontological background specified in the CSHG. Several op-
tions are available for this purpose, from SQL to NoSQL/New SQL 
systems or graph databases. Unlike the Master Data Storage, the 
Indexed Storage is updated as new data, which are useful from an 
analytical point of view, enter the system. It must also consider 
scalability, but the volume would be less that the one managed by 
the first storage system, and, therefore, other characteristics such 
as query performance, data consistency, and security are prefer-
able.

Most of the modules above described, can be automated. Nev-
ertheless, due to the current complexity of the domain, some 
tasks must be performed manually. For example, when a new data 
source is added to the system, the extraction and transformation 
rules must be defined by the data scientist in collaboration with 
the clinical expert that has deeper knowledge of the domain, to 
correctly harmonize the data into a common structure. Once this 
is done, the extraction, transformation, quality assessment, and the 
rest of the tasks can be automated.

5. Evaluation in a real example: epilepsy

In order to prove that the framework proposed is useful to solve 
the problems mentioned in the introduction, we have applied it to 
a real example in collaboration with a group of experts in genetic 
diagnosis. The aim of the example is to provide an Information 
System that helps the experts to find the relevant DNA variants 
that are associated to a higher risk of having epilepsy.

Epilepsy is a spectrum condition that has a wide range of 
seizure types, which what makes the gathering and analysis of the 
genetic information a challenge [33]. Furthermore, epilepsy means 
the same thing as “seizure disorders”, and the word “epilepsy” 
does not indicate anything about the cause of the person’s seizures 
or their severity. Many people with epilepsy have more than one 
type of seizure and may have other symptoms of neurological 
problems as well, which can be defined as an epilepsy syndrome. 
In addition, most individuals with genetically determined epilepsy 
are thought to have a polygenic basis in which multiple genes of 
low-to-moderate risk interact (sometimes with an environmental 
7

contribution) to produce the epileptic disease [34]. Thus, to pro-
vide an accurate genetic diagnosis, it is crucial to manage as much 
information as possible, which is a complex and time-consuming 
task for researchers. To such aim we have followed the different 
stages of the SILE method in order to build an information system 
to support the process.

To accomplish the objective of this example, different data 
sources were selected to provide a global view of the genetic con-
text of the disease:

• DNA variants: The data about all of the DNA variants that the 
scientific community has studied in connection with epilepsy 
have been extracted from three different databases, namely 
ClinVar [35], dbSNP [36], and Ensembl [37].

• Genes: The data about the genes whose alteration could lead 
to epilepsy have been extracted from Entrez Gene [38] and 
HGNC [39].

• Genomic context: The data about the location of the variants 
in the genome have been extracted from NCBI Assembly [40].

• Population studies: The data about the frequency of appear-
ance and the populations where the variants were studied 
have been extracted from 1000 Genomes [41].

• Published literature: The data about the different studies per-
formed by the scientific community have been extracted from 
PubMed [42] and GWAS Catalog [43].

Each of these sources has particularities when accessing and 
downloading the required data, which hinder the integration pro-
cess. For example, to access ClinVar data the database provides the 
following options: i) performing a manual search using the web-
site and downloading the data in CSV format, ii) downloading the 
entire database using the FTP server, iii) accessing a partial view of 
the data in VCF format, and iv) using the REST API (known as e-
utils) [44]. Each of these options allows access to different content, 
with the most restrictive one being the manual search. In addition, 
the processing of the downloaded data is also different because 
the XML or JSON structure of the result provided by e-utils is to-
tally different from the XML structure of the FTP files. In addition, 
VCF has a specific format that is different from the ones mentioned 
above. This can be extended to the rest of the sources, which gives 
an idea about the complexity of the task to be performed.

In our example, a specific connector to query and extract the 
information from each data source has been implemented using R 
and the different APIs that each source provides. For the data com-
ing from NCBI (ClinVar, dbSNP, Gene and Assembly) we used the 
Rentrez library, that provides a useful wrapper for the functions 
provided by Entrez and is optimized to work in R. For Ensembl we 
used the biomaRt package, and for the rest of sources we imple-
mented the corresponding REST services to extract the raw data. 
These connectors have been included in a R package that experts 
can reuse to extract data from these sources about other interest-
ing diseases.

After the data sources were determined, we defined the set of 
mapping and transformation rules. These rules were also imple-
mented in R, extending the functionality of the package with the 
possibility of integrating the data coming from the selected sources 
into a homogenized dataset.

As Fig. 6 shows, data about 11,506 DNA variants, 1,509 genes, 
and 844 studies on four populations have been extracted from the 
sources and stored in the Master Data Storage. The current evalua-
tion of this amount of data, which is mainly performed manually, 
is a task that can take weeks or even months to complete. The bot-
tleneck that this situation produces when trying to provide a more 
accurate diagnosis for each patient is understandable, considering 
the increasing interest in characterizing the genetic causes of each 
disease and the huge number of existing diseases.
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Fig. 6. Data extraction associated with epilepsy.
Fig. 7. Data Quality workflow to asses
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After establishing the extraction and transformation rules, the 
clinical experts defined the quality criteria and thresholds that the 
variants should fulfill to be considered as useful in a genetic di-
agnosis. Figs. 7 and 8 show the quality workflows that have been 
implemented using Pentaho Data Integration (PDI) to perform the 
quality assessment once the integration and cleansing is done. We 
used PDI due to the clinical experts considered this tool more in-
tuitive than the implementation with other environments such as 
Python and R.

Starting from a dataset of variants, the different criteria that 
have been previously identified classify the variants according to 
their relevance for clinical purposes into four main categories: 
Discarded, Contradictory Evidence, Not Enough Evidence Provided, 
and Accepted. Accepted variants are also classified according to the 
strength of the associated evidence.

Starting from a list of literature identifiers, the different arti-
cles are classified according to the type of study performed. The 
classification is based on the analysis of the title, the abstract, the 
keywords, and the MeSH terms provided by PubMed. Depending 
on the type, a set of quality metrics are applied to assess the 
population and the statistical evidence regarding the number of 
participants.

The DNA variants that comply with the quality criteria are 
stored in the Indexed Storage, which in this case has been im-
plemented as a relational database. This technology has been se-
lected because it is well-known and widely accepted, it has a solid 
technological background, and it provides an intuitive organization 
based on the table structure that is close to the way the con-
cepts are represented in the CSHG. In addition, data integrity is an 
essential feature of the relational databases; as well as they pro-
vide strong data typing, validity checks, and referential integrity 
that ensure the accuracy and consistency of the data. The Indexed 
s the relevancy of a DNA variant.
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Fig. 8. Data Quality workflow to assess the statistical relevance of a genetic study.
Storage is called the Human Genome Database and it has been im-
plemented using MySQL.

Once the data is stored in the Human Genome Database, the 
user can access a dataset of high-quality and reliable DNA variants 
as well as all of the contextual information about their position in 
the genome, the population where they were studied, and all of 
the relevant information required to perform an accurate genetic 
diagnosis. The data can be accessed through a web application that 
structures the content according to a set of visualization patterns 
specific for the genomic domain [45,46]. The rest of the data that 
do not have sufficient quality remain in the Master Data Storage 
and are available to be queried if the quality criteria are changed 
by the user or they are required to perform different types of 
analysis. As more data are collected from the sources, they are 
evaluated, and if they comply with the quality criteria, the Human 
Genome Database is updated.

To enhance the genetic diagnosis, another tool is under devel-
opment which allows clinically relevant DNA variants to be found 
in a patient’s sample. In this case, the user provides a VCF file with 
the information about the genome of a patient. The system returns 
a genetic report with the DNA variants that have been found to 
be associated with a higher risk of having epilepsy based on the 
data stored in the Human Genome Database. This tool has been 
developed as a prototype called GenesLove.Me.

6. Results

From the 11,506 DNA variants stored in the Master Data Stor-
age, only 32 were stored in the Human Genome Database and thus 
are considered to be relevant to perform genetic diagnosis. These 
are the variants that will be checked and reported as highly reli-
able when a patient sample is analyzed.

The rest of the variants were discarded because contradictory 
evidence was found, not enough evidence to verify the relationship 
with the disease was provided, or because the results were not 
statistically significant. A further study of the discarded variants is 
required from the scientific community since the genetic causes of 
9

epilepsy are not yet fully understood; therefore, they should not 
be used if an accurate genetic diagnosis must be performed. Nev-
ertheless, since knowledge is evolving so fast, as more evidence is 
collected, it will be added to the Information System and will con-
tribute to re-evaluating the stored data and improving the process 
in a more efficient way thanks to its scalability.

Another advantage of using this Big Data framework is the pos-
sibility of analyzing different types of epilepsy and seizures. While 
the experts were focusing only on a part of the domain due to 
the complexity and amount of data to review, with this system, an 
analysis of the whole spectrum was performed allowing the pos-
sibility of finding new biomarkers with evidence that had initially 
been discarded or missed.

To validate the results, we consulted with companies that face 
the stated problem when interpreting genomic data. These com-
panies provide genetic diagnosis services performed by geneticists 
and clinicians. As mentioned in the introduction, surprisingly, the 
diagnosis process is performed mainly manually or, in the best 
case, supported by tools such as Excel, which do not provide a suit-
able integration and analysis environment for this purpose. This 
constitutes an important loss of human resources for the compa-
nies because the study of complex diseases such as epilepsy can 
take weeks.

We have made an initial validation of the framework with some 
of the phenotypes that they manage (in addition to epilepsy), and 
they have confirmed the advantages that our approach introduces 
in their daily work. Once the selection of the data sources and 
the implementation of the system were finished, the time required 
to determine the relevant variants for a disease were decreased, 
improving their capacity to explore new knowledge and consider 
the exploration of additional data sources.

7. Conclusions and future work

The huge amount of data that technological advances in ge-
nomics produce has opened the door to new paradigms, such as 
Precision Medicine, for the prevention, diagnosis, and treatment 
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of human diseases. Nevertheless, these advances have occurred in 
such a short period of time that researchers and clinicians feel 
overwhelmed and without the appropriate tools to manage and 
extract valuable insights.

Big Data methods and techniques are expected to facilitate the 
right context to obtain the needed solutions. However, Big Data 
solutions need to be adapted to the particularities and complexity 
of the genomic domain. The application of a Big Data-driven ap-
proach that takes into consideration the special characteristics of 
genomic data constitutes a step forward in solving the bottleneck 
that tasks such as variant classification and variant interpretation 
produce.

The Big Data framework proposed in this work has been de-
signed to provide an effective and efficient solution and complies 
with two important requirements of this domain: scalability to be 
able to gather the increasing amount of data, and flexibility to 
adapt to the fast-changing evolution of knowledge. It has proven to 
be useful in improving the genetic diagnosis of a particularly dif-
ficult disease (epilepsy) and is currently under evaluation in other 
disease contexts such as research in pediatric oncology and sud-
den cardiac death. In the use case presented it has been shown 
how the framework can be useful to solve the heterogeneity prob-
lems associated to the study of epilepsy. Nevertheless, for other 
diseases such as cancer, the main problem is the volume of the 
data to be managed (hundreds of thousands of variants). For such 
cases, the framework is prepared to provide the required support 
to analyze the data.

This proposal is in constant evolution, trying to solve emerging 
problems such as the specification of extraction and transforma-
tion rules that, in the real example, have been performed manually. 
This requires deep knowledge of each data source. New methods to 
automate the generation of the mapping rules required to perform 
the integration of the different datasets are also being evaluated. 
This will facilitate the addition of new data sources, which is a key 
task in such a complex domain. In addition, a new module to per-
form text mining is under development in order to deal with one 
of the most challenging tasks of genomic research, the extraction 
of data from the published literature.
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