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Informática el haberme permitido investigar durante estos años los pro-

blemas de algoritmos distribuidos tratados en esta tesis, y compaginar
mi trabajo con la investigación y la docencia en otros campos.

Mi agradecimiento también es para el profesor Francesc D. Muñoz
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Resumen

Los sistemas distribuidos gozan hoy de fundamental importancia entre los sistemas
de información, debido a sus potenciales capacidades de tolerancia a fallos y escalabili-
dad, que permiten su adecuación a las aplicaciones actuales, crecientemente exigentes.
Por otra parte, el desarrollo de aplicaciones distribuidas presenta también dificultades
espećıficas, precisamente para poder ofrecer la escalabilidad, tolerancia a fallos y alta
disponibilidad que constituyen sus ventajas. Por eso es de gran utilidad contar con
componentes distribuidas espećıficamente diseñadas para proporcionar, a más bajo
nivel, un conjunto de servicios bien definidos, sobre los cuales las aplicaciones de más
alto nivel puedan construir su propia semántica más fácilmente.

Es el caso de los servicios orientados a grupos, de uso muy extendido por las apli-
caciones distribuidas, a las que permiten abstraerse de los detalles de las comunica-
ciones. Tales servicios proporcionan primitivas básicas para la comunicación entre dos
miembros del grupo o, sobre todo, las transmisiones de mensajes a todo el grupo, con
garant́ıas concretas. Un caso particular de servicio orientado a grupos lo constituyen
los servicios de pertenencia a grupos, en los cuales se centra esta tesis. Los servicios de
pertenencia a grupos proporcionan a sus usuarios una imagen del conjunto de proce-
sos o máquinas del sistema que permanecen simultáneamente conectados y correctos.
Es más, los diversos participantes reciben esta información con garant́ıas concretas de
consistencia. Aśı pues, los servicios de pertenencia constituyen una componente fun-
damental para el desarrollo de sistemas de comunicación a grupos y otras aplicaciones
distribuidas.

El problema de pertenencia a grupos ha sido ampliamente tratado en la literatura
tanto desde un punto de vista teórico como práctico, y existen múltiples realizaciones
de servicios de pertenencia utilizables. A pesar de ello, la definición del problema no
es única. Por el contrario, dependiendo del sistema concreto para el cual se diseñe
el servicio, se requieren de este unas garant́ıas u otras. Las especificaciones e imple-
mentaciones originales estaban enfocadas a escenarios clásicos, donde un número de
nodos reducido se interconectaban a través de redes con relativamente pocos fallos y
de comportamiento bien conocido (t́ıpicamente redes de área local). Sin embargo, con
el desarrollo de los sistemas modernos, la expansión de Internet, la generalización de
las comunicaciones inalámbricas, etc., se ha hecho predominante otro tipo de sistemas
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2 Resumen

distribuidos más dinámicos para los cuales los servicios distribuidos clásicos no resul-
tan convenientes. Por ese motivo, se han desarrollado en los últimos años servicios de
pertenencia a grupos a propósito para otro tipo de entornos.

En este trabajo nos hemos centrado en la especificación y realización de servicios de
pertenencia a grupos para determinados sistemas dinámicos que presentan interés de
cara al desarrollod e eplicaciones altamente disponibles. En concreto, hemos estudiado
tres tipos de escenarios.

• Sistemas con topoloǵıa bien conocida, y tamaño moderado, en los que las parti-
ciones son bastante probables, como podŕıa ser el caso de un sistema compuesto
por varios nodos o clusters localizados, conectados entre śı por enlaces WAN de
alta velocidad. Para estos sistemas hemos definido e implementado el servicio de
pertenencia a grupos particionable HMS, que proporciona las garant́ıas de con-
sistencia más estrictas de un servicio clásico de pertenencia, más una propiedad
adicional. Esta propiedad, o Acuerdo uniforme mayoritario facilita la recuperacin
de las aplicaciones usuarias tras la reparación de fallos y particiones, gracias al
mantenimiento de la historia mayoritaria de forma uniforme dentro del grupo.

• Arquitecturas cliente–servidor a gran escala, en las cuales un reducido grupo
de servidores atiende las peticiones de un gran conjunto de clientes dinámico
y de identidades y tamaño no conocidos de antemano. Para este tipo de esce-
nario hemos especificado un servicio de pertenencia de clientes, que proporciona a
clientes y servidores la información más relevante respecto al grupo opuesto, para
mantener las conexiones de los clientes al grupo de forma unificada y simplificar
la reacción a fallos de cualquiera de los dos tipos de nodo. La especificación se
ha realizado en la definición e implementación completa del protocolo HaloMS,
también descrito en este trabajo.

• Las redes móviles ad hoc o espontáneas introducen nuevos retos para el desar-
rollo de servicios distribuidos. En concreto el consumo de enerǵıa y ancho de
banda son en este caso parámetros a tener en cuenta a la hora de diseñar pro-
tocolos. Para este tipo de sistemas, y otros con similares requisitos de ahorro de
recursos, hemos especificado un Servicio de Pertenencia a Grupos Bajo Demanda,
capaz de proporcionar garant́ıas de consistencia estricta solo durante periodos de
tiempo finitos, que se deciden en función de las exigencias de las aplicaciones.
Esto permite evitar el gasto innecesario de recursos energéticos y de comunica-
ciones derivado de rondas de acuerdo y costosas reconfiguraciones cuando ningún
componente está haciendo uso de de la información de pertenencia. También
presentamos aqúı la realización de este servicio en el protocolo MODUS, que im-
plementa la especificación Bajo Demanda a partir de un servicio de pertenencia
clásico ya existente.

Espećıficamente para el escenario ad hoc, además, la falta de una topoloǵıa pre-
definida supone una dificultad añadida para el desarrollo de servicios de perte-
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nencia, y de cualquier protocolo basado en acuerdo distribuido. Esta carencia de
conocimiento inicial puede suplirse mediante un servicio de estimación de perte-
nencia que no proporcione consistencia estricta. Hemos analizado una propuesta
de servicio de estimación de tipo epidémico, que sirve como base para el de-
sarrollo de otros protocolos más restrictivos, de los cuales pertenencia a grupos
estricta seŕıa un ejemplo. En nuestro análisis hemos tenido en cuenta que tal
servicio deberá ser utilizado conjuntamente con un servicio de encaminamiento.
Basándonos en la simulación de los protocolos, hemos estudiado dos posibles ar-
quitecturas que proporcionan ambos servicios y comparado su rendimiento en
diferentes escenarios, en términos de su consumo energético y de la calidad de la
información de pertenencia facilitada.

Este trabajo describe la especificación de todos estos servicios, y la implementación
de los correspondientes protocolos. Todos estos han sido implementados completa-
mente y están disponibles para su descarga en la web. Puesto que el objetivo del
trabajo es ofrecer un soporte de uso práctico para el desarrollo de aplicaciones dis-
tribuidas en los diferentes escenarios estudiados, todas las implementaciones encajan
en una arquitectura modular más general, caracterizada por la independencia de cada
uno de los servicios, implementados como componentes autónomas. Estas componentes
tienen asimismo interfaces bien definidas que pueden ser utilizadas indistintamente por
otros servicios del sistema o por aplicaciones de alto nivel.
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Resum

Els sistemes distribüıts gaudeixen hui en dia d’una importància fonamental dins
dels sistemes d’informació, degut al seu potencial d’escalabilitat i tolerància a fallades,
que permiteixen la seua adequació a les aplicacions actuals, cada vegada més exigents.
D’altra banda, el desenvolupament d’aplicacions distribüıdes presenta també dificul-
tats espećıfiques, precisament per tal d’aconseguir l’escalabilitat, tolerància a fallades i
alta disponibilitat que constitueixen els seus principals avantatges. Per això és de gran
utilitat comptar amb components distribüıdes disenyades espećıficament per propor-
cionar, a un nivell més baix, un conjunt de serveis ben definits, per damunt dels quals
les aplicacions de més alt nivell puguen construir la seua pròpia semàntica amb més
facilitat.

És el cas dels serveis orientats a grups, d’ús molt comú per part de les aplicacions dis-
tribüıdes, a les quals permiteixen abstraure’s dels detalls de les comunicacions. Aquests
serveis ofereixen primitives bàsiques per a la comunicació entre els membres del grup i,
principalment, per a la transmissió de missatges a tot el grup, amb garanties particulars.
Un cas particular és el constitüıt pels serveis de pertinença a grups, en què aquesta tesi
es centra. Els serveis de pertinença a grups proporcionen als seus usuaris una imatge
del conjunt de processos o màquines del sistema que romanen connectats i correctes
simultàniament. Més encara, els diversos participants reben aquesta informació amb
garanties de consistència determinades. Aix́ı els serveis de pertinença constitueixen
una component fonamental pel desenvolupament de sistemes de comunicació a grups i
d’altres aplicacions distribüıdes.

El problema de pertinença a grups ha estat profusament tractat en la literatura,
tant des d’un punt de vista teòric com pràctic, i existeixen multitud d’implementacions
de serveis de pertinença utilitzables en la pràctica. Malgrat tot això, la definició del
problema no és única. Pel contrari, depenent del sistema particular pel qual es disenye
el servei, s’exigeixen d’ell unes garanties o altres. Les especificacions i implementacions
originals estaven destinades a escenaris clàssics, als quals un nombre redüıt de nodes
es connectaven mitjançant xarxes de comportament ben conegut amb fallades relati-
vament escasses (t́ıpicament xarxes d’àrea local). Tanmateix, amb el desenvolupament
dels sistemes moderns, l’expansió d’Internet, la generalització de les comunicacions
sense fils, etc., altres tipus de sistemes distribüıts més dinàmics s’han convertit en
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6 Resum

predominants. Per a ells els protocols clàssics no resulten ja convenients. Per això els
últims anys s’han desenvolupat serveis de pertinença a grups expressament per diversos
tipus d’entorns.

En aquest treball ens hem centrat en l’especificació i realització de serveis de per-
tinença a grups per una sèrie determinada de sistemes dinàmics que presenten interès
pel desenvolupament d’aplicacions altament disponibles. En particular, hem estudiat
tres tipus d’escenari.

• Sistemes amb topologia coneguda i tamany moderat, als quals les particions són
relativament probables, com podria ser el cas d’un sistema format per diversos
nodes o clusters localitzats, interconnectats per enllaços WAN d’alta velocitat.
Per aquests sistemes hem definit i implementat el servei de pertinença a grups
particionable HMS, el qual proporciona les garanties de consistència més estrictes
d’un servei de pertinença clàssic, a més d’una propietat adicional. Aquesta propi-
etat, anomenada Acord uniform majoritari, facilita la recuperació de les aplica-
cions després que una fallada o partició ha sigut reparada, gràcies al manteniment
de la història majoritària de forma uniforme dins del grup.

• Arquitectures client–servidor a gran escala, a les quals un grup redüıt de servidors
atén les peticions d’un ample conjunt de clients, la identitat i el nombre dels
quals no són coneguts per endavant. Per aquest tipus d’escenari hem especificat
un Servei de Pertinença per Clients, que proporciona a clients i servidors la
informació més relevant respecte a l’altre grup, per tal de mantenir les conexions
dels clients al grup de manera unificada i simplificar la reacció a fallades d’ambdós
tipus de node. L’especificació s’ha realitzat en la pràctica amb la definició i
implementació completa del protocol HaloMS, també descrit en aquest treball.

• Les xarxes mòbils ad hoc o espontànies introdueixen nous reptes pel desenvolu-
pament de serveis distribüıts. En particular, el consum d’energia i d’amplària
de banda esdevenen paràmetres rellevants a l’hora de disenyar protocols. Per
a aquest tipus de sistema i d’altres amb similars requisits d’estalvi de recursos,
hem especificat un Servei de Pertinença a Grups Sota Demanda, capaç d’oferir
garanties de consistència estricta sols durant peŕıodes finits de temps, decidits
en funció de les exigències d’informació de pertinença per part de les aplicacions.
Això permet evitar el consum innecessari de recursos energètics i de comunica-
cions que es derivaria de rondes d’acord i costoses reconfiguracions quan ningú
no està fent ús de la informació de pertinença. Aix́ı mateix presentem aćı la re-
alització d’eixe servei en el protocol MODUS, el qual implementa l’especificació
Sota Demanda a partir d’un servei de pertinença clàssic ja existent.

Espećıficament per l’escenari ad hoc, a més, la falta d’una topologia predefinida
suposa una dificultat afegida pel desenvolupament de serveis de pertinença, i de
qualsevol altre protocol distribüıt basat en acord. Aquesta manca de coneixement
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inicial pot suplir-se amb un servei d’estimació de pertinença que no pretenga pro-
porcionar consistència estricta. Hem analitzat una proposta de servei d’estimació
de tipus epidèmic, que serveix com a base pel desenvolupament d’altres protocols
més restrictius, dels quals el de pertinença a grups seria un exemple. La nostra
anàlisi ha tingut en compte que aquest servei haura d’ésser utilitzat conjuntament
amb un servei bàsic d’encaminament. Basant-nos en la simulació de protocols,
hem estudiat dues possibles arquitectures que proporcionen ambdós serveis i hem
comparat el seu rendiment en diversos escenaris, en termes de consum energètic
i de qualitat de l’estimació de pertinença.

Aquest treball describeix l’especificació de tots els serveis esmentats, i la imple-
mentació dels corresponents protocols. Tots ells han sigut completament implementats
i estan disponibles per la seua descàrrega a la web. Puix que l’objectiu del treball
és oferir un suport utilitzable en la pràctica pel desenvolupament d’aplicacions dis-
tribüıdes als diferents escenaris descrits, totes les implementacions s’ajusten a una
arquitectura modular més general, caracteritzada per la independència de cadascú dels
seus serveis, els quals són implementats com a components autònomes. Tals compo-
nents tenen també interf́ıcies ben definides que poden ser utilitzades indistintament
per altres serveis del sistema o per les aplicacions d’alt nivell.
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Abstract

The importance of distributed systems in current information systems is due to their
potential capabilities to support the growing requirements of increasingly demanding
applications. However, developing distributed applications is not easy. On the con-
trary, specific difficulties arise as they are devised to offer scalability, fault tolerance
and higher availability. Therefore, it is most useful to count on specific distributed
components that provide, at a lower level, a suit of well–defined services upon which
higher level applications, or other such services, can build up.

This is the case of group oriented services, extensively used by distributed appli-
cations, as they allow them to abstract from the details of communications. Such
services provide basic primitives to achieve one-to-one and one-to-many communica-
tions with specific guarantees. One particular case of them are group membership
services, on which this thesis is focused. Group membership services provide their
users with an image of the set of system processes or machines that are simultaneously
correct and connected. Moreover, the various participants receive this information with
well–defined consistency guarantees. Thus they are a fundamental building block for
group communication services, also useful for other distributed applications.

Although the group membership problem has been largely discussed in the liter-
ature from a theoretical and a practical point of view, and despite the existence of
multiple empirical realisations, there is no unique formulation of the problem. On
the contrary, the characteristics required from a membership service depend on the
particular system for which it is devised. The original specifications and implemen-
tations were directed to classical settings, with reduced number of members, and well
behaved connections (typically over LANs). However, with the development of modern
systems, the expansion of the Internet, wireless communications, etc., more dynamic
scenarios have become predominant. For them, the classical distributed services are
not well suited. Different membership services have therefore then been defined for
more changing environments.

In this work we focus on the specification and realisation of group membership ser-
vices for certain dynamic systems of practical interest for highly available applications.
In particular, we have studied three different scenarios.

9
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• Systems with well–known topology and moderate size, where partitions are likely
to occur, as could be the case of a system composed of several sites connected
through a WAN with high speed links. For this kind of systems, we have designed
and implemented a partitionable group membership service, HMS, that provides
the most strict classical guarantees plus the property of Uniform Majority View
Agreement to ease the recovery of user applications after a failed member rejoins
the group.

• Large client–server architectures, where a reduced group of servers receive re-
quests of a large, dynamic set of clients, of a priori unknown identities and num-
ber. For them a Client Membership Service has been specified that provides
clients and servers with the relevant information regarding the opposite group,
so to unify the maintenance of volatile client connections, also in case of core
node faults. This specification has been realised and fully implemented in the
HaloMS protocol, also described in this work.

• Mobile ad hoc networks introduce new challenges to the development of dis-
tributed services. In particular, the energy and bandwidth consumption become
relevant for the design of protocols. For these and other systems with a simi-
lar concern for saving resources we have specified an On Demand Membership
Service, capable of providing strong consistency guarantees only for finite peri-
ods of time, decided as a function of user application requirements. This avoids
the resource consumption derived from agreement rounds and costly reconfigura-
tions when no component is making use of membership information. We present
also a realisation of this service in the MODUS protocol, which provides the On
Demand guarantees from a generic membership service.

For the specific scenario of ad hoc networks, in addition, the lack of a priori
knowledge about the topology raises a special difficulty for the development of
membership and other agreement based services. To supply this initial infor-
mation we have analysed the usage of a membership estimation service in the
epidemic style. Such service will not provide strict consistency guarantees but
will serve as basis for more demanding protocols, e.g. strict group membership.
We have taken into account that such service will be used in conjunction with
routing. Our analysis, based on simulation, studies two possible architectures
that provide both support services, and compares their performance in different
scenarios.

This work describes the specification of all these services, and the implementation
of the corresponding protocols. All of them have been fully implemented and are now
available for downloading. Since the goal of this work is to offer a practical support
for the development of applications in the various studied scenarios, all these imple-
mentations fit within a more general, modular framework. The latter is characterised
by independent components for each service. These components have clearly defined
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interfaces that can be employed by user applications as well as by other services in the
system.
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Chapter 1

Introduction

1.1 Motivation and Scope

Nowadays the increasing requirements on systems and applications often exceed the
capabilities of available single computers. Moreover, the usage of communication sys-
tems connecting computers at various levels is becoming a general practice, responding
to the present trend towards globalisation. Distributed systems are thus becoming the
general model, as distributed applications are extensively used.

The concept of distributed system applies to very different settings, from the widely
used client–server architectures to computer clusters, including more recent scenarios
as P2P systems and Grids. In all cases, they offer a number of advantages with respect
to centralised systems, as their potential performance, scalability, reliability, etc. But
they also present specific difficulties regarding their design and implementation. The
coordination of distributed components often requires information on the state of the
system, or particular guarantees related to communications and other fundamental
services. Therefore distributed services that provide well–defined semantics may act as
fundamental blocks to ease the building of correct distributed applications.

Some of the most significant among such services are the group oriented ones,
widely used by highly available applications. These services help the development of
distributed components by allowing the abstraction from the details of group commu-
nication and by providing guarantees upon which to build up the desired semantics.
This thesis is focused on group membership services, one type of such fundamental dis-
tributed components, which can provide support both to other group communication
components and to user level applications. The group membership problem has been
extensively discussed in the literature, both from a theoretical [1, 2, 3, 4, 5] and from
a practical point of view (e.g. [6, 7, 8, 9, 10, 11]). A unique specification of the prob-
lem does not exist but, informally speaking, a group membership service must provide

13
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its user applications or components with consistent information about the correct and
failed processors in the system.

The variety of scenarios falling under the category of distributed systems implies
also variated requirements on the support services that potential applications exploit.
The firstly devised distributed systems were typically characterised by a reduced num-
ber of members and stable connections over, for instance, a LAN. Therefore the original
distributed services, in particular group membership ones as [8, 9], were specified and
designed for such scenarios. The cost of the strong consistency provided by classi-
cal algorithms may become excessive when the same algorithms are applied to larger
scale or rapidly changing systems. Thus, with the utilisation of larger systems and
wide area networks, alternative services (e.g. [7, 12, 13, 14]) were specially designed to
adapt to the new system features. Some of them (e.g. [15, 16, 17]) implement different
semantics, with more relaxed consistency guarantees.

The divergence between classical and more modern distributed systems becomes
more evident the larger the scale and the faster the group changes. Our main interest
is focused on the following particular scenarios, characterised by their dynamism and
by their interest as frameworks for the deployment of distributed applications.

• Systems of moderate size and well–known topology where partitions are likely to
occur. For instance, a system supporting a replicated service over different sites
which are connected through a WAN over high speed links. In the following we
will refer to these systems as WAN–wide clusters (or WAN clusters). Contrary
to classical cluster–like environments, where network partitions are rare, in such
a scenario it is possible that some sites become isolated. This scenario happens
in systems as MADIS [18] and DeDiSys [19].

• Large scale client–server architectures, consisting of a reduced, preconfigured
group of nodes serving requests from a set of external clients whose identities
and number are not predetermined, and which will typically connect over a WAN.
From a practical point of view, this is the typical scenario that appears on the
interaction between clusters devoted to offer highly available services and clients
that connect to access to those services.

This problem involves the interaction between two node sets with very different
properties, since the scale and changing rate of the group of clients is much higher
than that of servers.

• Mobile ad hoc networks. They are entirely formed by wireless nodes, connected
through a network that has no fixed structure. Failures and other changes are
common to these systems, conferring them high dynamism. Moreover, they have
other characteristic features, in particular the limited energy supply. Thus energy
and bandwidth consumption become factors to be minimised by any devised
protocol.
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For each such system we have defined the guarantees to be provided by a usable mem-
bership service, ensuring their implementability by the definition of specialised pro-
tocols. Since the objective of this work is mainly to ease the development of higher
level distributed components on such systems, all our protocols fit within the frame-
work of a modular architecture in which the various services are clearly delimited and
communicate only through well–defined, system independent interfaces.

1.2 Contributions

Partitionable group membership with uniform majority agreement. HMS
is a membership service defined to fulfil the specification of the partitionable GMP and
to be used as a membership service for WAN clusters. Although multiple specifications
and implementations of GMP exist for such scenarios, HMS presents the particularity
of being completely independent of communication guarantees, so that it is easy to
couple it with any desired protocol, of whichever type, including diverse reliable or
unreliable transport services and group communication components. As distinguishing
features, HMS presents the particularity of clearly specifying the different treatment
to minority and majority groups, and, most of all, it provides higher level components
with a uniformity property regarding the majority group history.

While in a primary component membership service there exists a unique history of
the group, in partitionable services disjoint views of the group may coexist, so that the
concept of a unique group history disappears. Nevertheless, the history of majority
groups is unique. Many applications making use of partitionable membership services
need to be aware of the majority or minority character of their current view, in order
to decide about their progress. When majority is lost and later recovered, special
recovery protocols are typically run in order to resume their normal operation. The
last property guarantees that HMS user applications can receive information about the
past majority history and simplify such recovery.

The correctness of HMS with respect to the GMP specification has been shown and
the protocol has also been completely implemented. We have produced a fully usable
version that is available for download from the web [20].

Client membership service for large–scale systems. For client–server architec-
tures we have specified a client membership service which provides servers with the
most useful information about clients connections and disconnections. This is mainly
intended for replicated services in which the servers form a group with the consistency
guarantees of the classical GMP and have to handle possibly redundant invocations
from a large and quickly changing group of clients. The client membership information
is maintained consistently among the different servers that form a classical group, so
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that new clients are allowed to join the group and are assigned a unique identifier in
an open group fashion.

Conversely the service provides clients with information about reachable server
nodes, guaranteeing validity and a certain level of liveness of this information. Our
specification is a realisation of the suggestion by Babaoglu and Schiper [21] about using
different roles for group members in order to tackle the large scale problem.

The specification has been implemented by HaloMS, a client membership service
which ensures the desired semantics with the support of a running membership ser-
vice with the classical guarantees. HaloMS maintains client membership information
tolerating server faults. It has been completely implemented in the framework of our
modular architecture, and it has been tested using as support the implementation of
HMS. A version is available for download from the web [20].

On demand membership service specification. For the particular case of band-
width and energy aware networks we have proposed an On Demand Membership Ser-
vice that provides the strong classical semantics of GMP only when required. This has
the advantage of saving extra agreement rounds when no application or component is
actually making use of the membership information, or does not need the consistency
guarantees associated with the GMP. On the other hand, these same guarantees are
indeed provided when an application requires them. Such a service is useful for the de-
velopment of distributed services that need more than probabilistic QoS in the context
of ad hoc networks.

MODUS is a membership service that implements the On Demand specification but
making use of an existing classical membership service. We have defined the MODUS
protocol and fully implemented it [20]. To evaluate its performance, it has been tested
using again HMS as basis, and its performance has been evaluated with the message
sending rate as metrics. Even not being the most efficient alternative to implement the
on demand specification in an ad hoc network, MODUS still shows advantages with
respect to a classic GMP approach and also when compared to a trivial On Demand
realisation.

Membership estimation service for ad hoc networks. Finally, for the devel-
opment of a membership service specific for ad hoc networks, we have proposed an
alternative architecture. There, a membership estimation service based on gossip–style
failure detection is used as support for a membership agreement component, which
would use the inconsistent information of the former to launch agreement rounds when
required. Nevertheless, if the goal is to optimise energy consumption while maintain-
ing a certain QoS, it is not possible to separate the performance of such membership
estimation from other necessary underlying services, as routing. Therefore, we have
carried on a comparison of two different approaches that would provide both routing
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and estimation services, and we have analysed a set of scenarios in order to characterise
their performance in terms of power consumption and liveness of the provided estima-
tion. This type of combined study has not been performed before, to our knowledge,
but makes clear that different services are inseparable if the performance of the whole
system is to be optimised in terms of energy consumption.

1.3 Structure

The rest of this document is structured as follows.

Chapter 2 presents the preliminary material, including a general introduction to
the group membership problem and a review of some of the most notable specifications
and realisations of membership services for various types of systems.

Chapter 3 presents the basis for this work. From the architectural point of view,
a modular framework is presented in which all our services fit. The general interfaces
that regulate the interaction among the most relevant services are also introduced.
From a more formal point of view, this chapter explains our choice for a stand-alone
specification of the basic membership problem, decoupled from group communication
properties. This is achieved by the set of safety and liveness properties extracted
from [22, 10], whose enunciate is also presented in this chapter.

Chapter 4 describes the HMS protocol. HMS is a partitionable group membership
service suitable for clusters or for a group of sites that have to provide distributed
services over a WAN, but are interconnected with high speed links. Its operation and
performance are detailed in this chapter, and its particularities are discussed. A more
detailed proof of the algorithm correctness is provided in Appendix A.

In chapter 5 we present the specification of the client membership service and its
implementation by the HaloMS protocol. As for the previous protocol, the correctness
of the algorithm is proofed in Appendix A.

Chapter 6 introduces the specific features of ad hoc networks, that have motivated
the particular on demand specification. The On Demand membership service specifica-
tion is presented, and some alternatives for its implementation are discussed, including
the detailed description of the MODUS protocol and the immediate alternative that
achieves the on demand semantics from a basic group membership service. Different
measurements were made to characterise their performances.

In chapter 7 we study a basic service for providing a membership estimation in
an ad hoc network. We have studied how providing this and the routing service in
a joint manner would affect the performance of the system, in terms of the relevant
parameters of energy consumption and liveness of membership information. Finally,
chapter 8 summarises our conclusions from this work.
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Chapter 2

The Group Membership Problem

Informally speaking, the membership problem consists in the agreement among
a group of processes about the composition of the group, i.e. the set of correct or
operational processes. This information is provided to the group members in the form
of views, which report in an ordered sequence those changes occurred to the group
along the execution, including joined, failed and left nodes. The semantics provided
by such a service is fundamental for the development of other distributed components.

Nevertheless, from a formal point of view, the specification of the problem is not
unique. On the contrary, multiple definitions and implementations exist, depending on
the type of system for which they are devised.

In this chapter, we try to locate the group membership problem in the context of
distributed systems, highlighting its relationship with other fundamental problems in
the area. Then, we review some of the most notable specifications and implementations
of membership services for various system models, including the most static and re-
duced systems for which the original membership services were designed and the more
dynamical settings that better fit the current distributed systems and on which our
work is mainly focused.

2.1 The Group Membership Problem in Distributed

Systems

Group membership services are fundamental components for fault–tolerance in dis-
tributed systems. Boosted by the development of practical solutions for group com-
munication, a large number of membership services have been designed and used in
the framework of various systems. The specification of the problem, however, has been
subject to intensive research effort and discussion, with variated proposals for the for-
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mal enunciate of the problem and for experimental developments. In [4], Anceaume et
al. evidenced the existence of flaws in the formalism of various specifications. Contrary
to other well–known problems in the area of distributed systems, then, this one lacks a
unique and well–defined formalisation. Moreover, the various specifications and exist-
ing protocols make use of different formalisms and assumptions on the system, which
makes the comparison among them difficult.

Two types of membership services can be distinguished, namely primary component
and partitionable. The former attempts to maintain a single image of the group compo-
sition, whereas the latter allows various views to exist concurrently in the group, so to
reflect network partitions. Partitionable services, then, may deliver different (disjoint)
images of the group membership to members of the different partitions.

The first specification of the primary–component group membership problem is
due to Cristian [1] in the model of synchronous distributed systems. In this model,
processes are equipped with synchronised clocks, and any message sent by a correct
node is received by another correct node within a known delay.

In the asynchronous system model neither a global clock nor bounded delays exist.
Given the impossibility to distinguish crashed nodes from very slow ones or large delays
in network channels, the asynchronous model renders agreement problems much harder
to solve. Furthermore, the original specification of the membership problem does not
apply in such a system.

The first specification of a primary–component membership problem in an asyn-
chronous model was done by Ricciardi and Birman [3, 8]. They assumed FIFO reliable
communication channels and an unlimited space of potential members. Furthermore,
the assumed failure model was crash/no recovery. The so called Strong Group Member-
ship Problem was specified as a set of properties expressed as predicates on consistent
cuts. Flaws of this specification were noticed in [4], as the incompleteness of predicate
definitions, unreasonable requirements and failure to capture the intended semantics
of primary–component.

A partitionable group membership problem was first presented by Dolev et al. [23,
6]. The crash/recovery failure model was assumed, and the problem was defined over
a finite space of processes. All communication among processes was assumed to take
place by means of reliable, causally ordered multicast. Failure detection was assumed
to be done by the communication layer. The joint specification of membership and
communication guarantees included virtual synchrony as one of the properties to be
satisfied. In [4], however, it was noticed that the specification, even in its later refined
version, also suffered from defects, as it allowed useless solutions in which the group
was arbitrarily split for most of the time. Moreover, it permitted arbitrary removal of
processes but did not require explicit actions after a suspect was received.

A different partitionable specification was due to Ezhilchelvan et al. [5]. It as-
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sumed communication among processes took place only by multicast addressed to
the members of the group, over FIFO reliable channels. Although the failure model
was crash/recovery, processes were not allowed to rejoin a group after leaving it, but
were forced to start a new group. The specification also enclosed that of group com-
munication guarantees, and was thus expressed as a set of properties regarding view
consistency and message delivery, and including virtual synchrony and causally consis-
tent total ordering of messages. As noticed in [4], however, the specification allowed a
trivial solution where every member installed a singleton view.

Other authors have later proposed different specifications for practical membership
services (for instance [7, 9, 10, 11]), but still there is none commonly accepted. More
recently, the survey of group communication systems by Chockler et al. [22] identified
a series of basic properties to be satisfied by every membership service and group
communication protocol, and a set of optional properties that finally define the provided
guarantees of each service. It also classified an important number of existing services
according to their fulfilling of these properties.

The initial specifications were mainly focused on systems with a reduced number
of members, relatively well connected (typically over a LAN). With the expansion
of Internet, wireless technologies, etc., more dynamical scenarios became susceptible
of hosting distributed applications and interest arose about membership services for
such systems. Since applications for such environments may be quite specific and
have particular requirements, different specifications have also appeared for special
membership services that serve particular cases, broadening even more the diversity of
specifications.

2.1.1 Consensus and Impossibility

As other agreement–like problems, the group membership problem (at least in its
most traditional enunciates) can be reduced to consensus. It is then possible to build
membership services from a basic consensus layer [7, 24].

Consensus is a basic problem in distributed systems [25]. The problem is defined
for a finite set of processes. Each of them proposes an initial value and all the correct
ones have to agree on a final value that corresponds to some proposal. Its formal
specification consists of three properties.

Property C.1 (Termination). Every correct process eventually decides.

Property C.2 (Agreement). Two correct processes do not decide differently.

Property C.3 (Validity). If a process decides a value v, this was proposed by some
process.
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Some of the most fundamental theoretical results in distributed systems are re-
lated to the consensus problem. In 1985, Fischer, Lynch and Paterson [26] proved
that the consensus problem is not solvable by any deterministic algorithm in asyn-
chronous systems where even a single process may crash. It is possible to circumvent
such impossibility by relaxing the assumptions on the system, as considering partially
synchronous models [27], or by equipping the system with a failure detector [28].

The impossibility result for consensus naturally maps in an impossibility result for
membership and other consensus based problems. Chandra, Hadzilacos, Toueg and
Charron-Bost [2] proved that it is also impossible to solve a primary component group
membership problem in an asynchronous system where processes may fail. Their result
does not hold however for partitionable specifications, which do not require that all
correct processes agree on the current view. Nevertheless, partitionable specifications
are at risk of being trivially solvable by arbitrarily splitting the group in singleton sets.

2.1.2 Failure Detection

The concept of failure detector was introduced by Chandra and Toueg [28] to over-
come the impossibility of consensus in asynchronous systems. An unreliable failure
detector provides each process with a list of other processes it currently suspects to
have failed. These suspicions, however, may be incorrect and be later removed.

A failure detector is characterised by its completeness (it suspects all failed pro-
cess) and accuracy (it does not suspect correct processes). Formally, the completeness
property is enunciated as follows.

Property FD.1 (Strong Completeness). Eventually, every failed processes is suspected
by every correct process.

The variable degree of accuracy is formalised as the following four properties.

Property FD.2 (Strong Accuracy). No process is suspected before it crashes.

Property FD.3 (Weak Accuracy). Some correct process is never suspected.

Property FD.4 (Eventually Strong Accuracy). There is a time after which correct
processes are not suspected by any correct process.

Property FD.5 (Eventually Weak Accuracy). There is a time after which some cor-
rect process is never suspected by any correct process.

Each one of these four properties, satisfied in conjunction with FD.1, defines one
of the four independent classes of failure detectors in [28], respectively P (perfect), S
(strong), �P (eventually perfect) and �S (eventually strong).
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In [29], Chandra, Hadzilacos and Toueg proved that �W, a class of failure detectors
equivalent to �S, is the weakest failure detector that enables consensus to be solved in
asynchronous systems with a majority of correct processes.

Although eventual accuracy properties FD.4, FD.5 are not achievable in an asyn-
chronous system, it is easy to build a failure detector that suspects all failed processes
and thus satisfies strong completeness FD.1, for instance by means of periodic heart-
beats and timeouts. Wrong suspicions cannot be completely eliminated, but in practice
it is possible to reduce them so that the eventual accuracy properties hold for long
enough1 and the failure detector behaves as �P or �S. For instance, in a heartbeat–
timeout scheme, it is enough to enlarge the allowed timeout for a given process after a
suspicion proves to be wrong, to virtually obtain an accurate failure detection.

Many specifications for the group membership problem thus consider a system
model enriched with an eventually perfect failure detector.

2.1.3 Notation

Here we briefly introduce some terms widely used in the context of group member-
ship services specification and description.

• View. Each one of the group images produced by a membership service is called
a view, and represents a picture of the system status regarding failures and par-
titions. A membership service produces its output in the form of a succession of
views that are delivered to the participants.

• Installation. The event of delivering a new view to a process is called installation.
It is an irrevocable decision. In the remaining of this work we will sometimes use
the terms confirming or committing to refer to the installation of a view, as a
remainder of this irrevocability. In particular, we say a view is committed when
it has been installed by some node.

• Virtual Synchrony. The concept of virtual synchrony was first introduced by
Birman and Joseph [30]. It is the most popular property of group communication
systems, and imposes that view change events are delivered in a consistent order
with respect to the flow of messages. If two processes transit together from one
view to the following, the virtual synchrony property requires that both of them
deliver the same set of messages in the first view. This property gave origin to
the virtual synchrony model, useful for distributed applications that implement
replication. Other related models include Weak Virtual Synchrony [31], Extended
Virtual Synchrony [32] and Optimistic Virtual Synchrony [33].

1Although formally wrong suspicions are required to never happen, it is enough that the accuracy
property holds for long enough so that the algorithm can make progress.
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2.2 Related Work: Group Membership Services

As discussed above, multiple practical solutions exist for group membership prob-
lems, that have been employed in a number of systems with variated properties and
requirements.

Here we review some of the most significant, for either their usage in well–known
systems or their tackling environments with particular features or necessities.

2.2.1 Classical Systems

The best known membership services are those used in the first and most popular
distributed systems. Most of them were, at least originally, designed for reduced groups
of computers, connected over a LAN.

Isis S-GMP. The first and best known group communication system, Isis, imple-
mented as membership service a protocol that solved the Strong Group Membership
Problem specified by Ricciardi and Birman [8]. S-GMP is a primary component ser-
vice whose main goal is to provide a consistent and unique global view of the system.
The service assumes reliable FIFO channels between every pair of processes, and the
existence of a local failure suspecter that fulfils the strong completeness property FD.1.

The group is dynamic, with no predefined set of nodes. The algorithm uses, never-
theless, collective startup from a reduced and preconfigured set of members. Since the
model of crash/no recovery is assumed, any node that recovers after a failure will use
a different identifier and be treated as a new member by the protocol.

In the asymmetric, centralised protocol that solves S-GMP, one node plays the
manager role. To exclude a failed node, the manager leads a two–phase protocol, in
which it proposes the change to all members, and after receiving acknowledgements
from all of them, commits the view change. When a new member wants to join,
the manager directly submits the commit instruction for the enlarged group to the
members of the view, after transferring the proper group state to the joined process.
If the manager itself is faulty, a three–phase algorithm is run so to recover agreement.
The node that initiates the reconfiguration must first interrogate the others about their
local view and any submitted update not yet committed by the old manager. After
collecting the answers, the initiator decides what is the update to be submitted.

Although Isis’ original membership service was not partitionable, its successor,
Horus [34], employed a variation of this algorithm in which partitions were allowed to
occur. Nevertheless, a majority group was supposed to exist, so that if the group split
in minority groups, the majority could not be recovered.
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Transis. The membership service designed for Transis communication system [35]
was the first partitionable one. The system assumes a finite set of processes, which
communicate by asynchronous multicast, so that every message is broadcast to the
whole universe of machines. The failure model is crash/recovery, and the network can
partition and remerge. In absence of partitions, the transport is assumed to be reliable.
The membership service operates on top of the communication layer, which provides
causally ordered multicast and notification of failure suspicions, behaving in practice
as a �S failure detector.

Every node starts in a membership singleton containing only itself. The specifica-
tion includes virtual synchrony, thus the membership algorithm takes charge also of
delivering regular messages to the application level, relatively ordered with respect to
views.

The protocol is completely symmetric. When a node suspects a failure or it detects
the presence of a new node, it broadcasts a message containing its current idea of
failed and live nodes. All nodes receiving this message merge the information with
their own and broadcast their own knowledge about failures and correct nodes. When
an identical message has been received from all the nodes that are believed to be alive,
the membership view can be delivered to the application, after any causally preceding
message. If failures occur during this exchange of messages, agreement on the proposed
view may be impossible. In that case, if the surviving nodes had broadcast identical
information, the view is notified as a failed intermediate proposal when a subsequent
agreement is reached.

Totem. Totem [9] is a partitionable group communication system which provides
totally ordered broadcast in a LAN. The membership protocol is based on that of
Transis, described above, and is also partitionable. Totem constructs a logical ring
along which a token circulates. Total order is ensured by only allowing the token holder
to broadcast messages, with a monotonically increasing sequence number carried by
the token.

The system consists of a finite set of processes, each of them with a unique identifier
and some stable storage. Different to the protocols above, the underlying transport is
not assumed to be reliable, and retransmission of messages under request is thus part
of Totem protocols.

The membership protocol is invoked whenever a failure, partition, or token loss is
detected or when a message from a foreign process is received. This protocol, similar to
the former one, runs a gather phase in which messages containing the estimated failed
and live sets are exchanged by all processes. When identical sets are received from
all live members, a new ring is established, and an elected representative reconstructs
and sends the token, which carries the commit order for the members of the formed
configuration.
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The guarantees provided by Totem include extended virtual synchrony, so that when
a view change occurs, before the agreed view a transitional configuration is delivered to
surviving nodes, to allow delivery of their pending messages, followed by the definitive
view.

A more recent variant of Totem [36] employed multiple rings to guarantee totally or-
dered broadcast over a number of LANs interconnected by gateways. The membership
of each individual LAN is maintained by the single–ring protocol, which triggers the
higher level topology maintenance when configuration changes. Gateways are in charge
of forwarding messages across local networks, and also of transmitting configuration
changes while ensuring the total order of delivered messages.

Relacs. The Relacs project [37] specified the membership and multicast services for
partitionable asynchronous environments. Remarkably enough, the specification of
both services was completely decoupled.

The system is composed of a fixed set of processes holding unique and invariant
identifiers. The assumed failure model is crash/no recovery. A failure detector that
behaves as the partitionable version of �P is assumed. The system is also assumed to
satisfy an eventual symmetry property of the reachability relationship. The communi-
cation layer implements a reliable multisend primitive, and guarantees FIFO order. It
also notifies suspects to the membership service.

The membership service, PGMS [10], is asymmetric. A node starts in a singleton
view containing only itself. When a change occurs, the protocol is activated. Then a
synchronisation phase takes place in which every process sends a sequence number to
the set of members it believes to be reachable and waits until it has an answer from
every non–suspected member. Then the estimation exchange is initiated, in which
every process multisends its own estimate to all the members as many times as the
composition varies. A coordinator is also elected and after observing agreement in the
estimate messages, it sends a message with the new identifier and composition. Upon
its reception some members may not install the complete view but only a partial view
that ensures members come from the same or disjoint views.

Once the protocol is running the agreement phase, the view estimate cannot add
new members, so that if a join occurs, the protocol will have to be run again after
completing.

2.2.2 Large Scale Systems, WAN Networks

With the development of network technology and the availability of lower cost
computers, distributed computations over large scale systems have acquired growing
importance. The distributed protocols that support coordination and consistency have
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to satisfy new requirements as distributed applications have to be deployed in more de-
manding scenarios. If the original distributed systems were designed for small number
of nodes, interconnected over a local area network, nowadays systems have to run on
more dynamical settings, typically involving connections over WANs and much large
number of nodes.

The increasing size of distributed systems makes scalability a central aspect of the
design of distributed services. On the other hand, wide area networks also pose some
specific challenges to the deployment of distributed protocols.

• High loss rates and latency, as compared to LANs. This works against the im-
plementation of efficient reliability mechanisms, much easier to achieve on a local
area network.

• Unpredictability of such characteristic parameters, as they may greatly vary
across the network.

• Dynamism of the composition of the system, as connectivity changes may occur
with relatively high probability, and lead to frequent failure suspicions.

A high number of attempts have been made to design specific protocols for these envi-
ronments in the area of group communication, including membership services, facing
one or more of their specific problems.

Phoenix. The goal of Phoenix environment [7] was to implement the virtual syn-
chrony abstraction over a large, partitionable area network.

The system consists of a finite number of nodes, and the failure model is
crash/recovery, but after a failure each node uses a different incarnation number. Par-
titions are allowed to occur, and a primary partition is ensured to exist and progress,
whenever that is theoretically possible. The communication is assumed to be reliable
and a local failure suspecter exists at every node. Suspicions may initially be revoked,
if evidence of their incorrectness is received, but become stable at the second phase
of the algorithm. The properties of the failure detector must be those of �W for the
protocol to achieve progress.

Phoenix membership service is integrated with the virtual synchrony guarantees.
The problem is faced as an agreement problem about the membership of the group and
the set of messages to be delivered. The solution is therefore based on consensus. The
protocol has two phases. During the first one, an estimation is calculated to be used
as input for the second one, in which a consensus protocol, based on that of Chandra
and Toueg [28], is run.

When one or more processes are suspected, every member multicasts its set of
delivered messages in the previous view and waits until it has received the corresponding
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set from every non–suspected member. At that point, the union of the received sets
and the group of non–suspected process are used as initial value for a consensus run.

Join requests are treated as messages delivered with virtual synchrony guarantees.
Upon reception of such request, the view change protocol is launched and a temporary
view is decided among the surviving nodes. After that, each of them applies the join
operations to construct the definitely installed view.

Lightweight groups The abstraction of lightweight groups (LWG) was introduced
by Glade et al. [12] in the context of the Isis successor system, Horus, for tackling the
scalability problem.

The underlying idea is the mapping of a large number of light groups onto a single
heavyweight core group (HWG), so that LWGs share group state data with their maps.
The HWG is used as communication transport for multicasts within its mapped LWGs.
Since a membership change to the core group directly affects all mapped LWGs, the
cost of reconfiguring them is much lower than in case they were maintained as entirely
independent groups. A much larger number of groups can thus be supported.

The modular structure of Horus includes as its most basic components a multi-
cast transport service and the VSync kernel, providing order guarantees to message
delivery and virtual synchrony. On top of them, at the user–space level, resides the
LWG subsystem, which dynamically manages the mapping between both levels, cre-
ating, changing and deleting core groups as necessary. A garbage collection process is
needed to dispose HWG that are not serving any LWG. The mapping policy can be
determined by the application or use the default setting in which a LWG is mapped to
the smallest core group containing all of its members with a threshold for maximum
extra participants.

A more recent design of a lightweight group service is described by Rodrigues et
al. in [13]. Different to the original approach, a LWG does not need to specify its
composition upon creation, but offers to the application the same interface of HWG
and semantics of virtual synchrony. This design, also implemented in Horus, allows
LWGs to be dynamically remapped to a different HWG as their necessities change.
The service defines the policies for mapping and switching heavy groups. An external
name service is used to keep track of the mapping.

To join a LWG, a process obtains the HWG mapping from the name service (if
it did not exist, it is created) and sends a join message to all members of the HWG.
The coordinator of the LWG triggers a flush protocol, in which all applications refrain
from sending messages until the new view has been delivered. A similar procedure is
followed when a process leaves the LWG.
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Spread. Spread [14] is an open source group communication system providing Ex-
tended Virtual Synchrony [32] semantics over wide area networks. Spread uses a hier-
archical structure in which user applications register as clients of long–living daemons
running on each host. A group of daemons on a broadcast domain, typically intercon-
nected by a LAN constitute a site, one of them acting as a gateway.

An overlay virtual network is constructed with links between all sites with active
daemons. The membership service maintains information about the daemons and the
link weights, in order to calculate shortest paths. Links between pairs of nodes are
eventually reliable, and the failure model is crash/recovery.

Spread supports multiple groups, and uses the heavyweight group–lightweight group
paradigm to maintain daemon and process membership, respectively, by means of
a two layer structure executed at the daemon level [38]. The lower layer, daemon
membership, copes with network partitions and merges, as well as with individual
daemons failures and incorporations, and provides Extended Virtual Synchrony. The
second layer manages lightweight group events, caused by joins or leaves of individual
clients. Those are simply handled as notification messages, sent and delivered by
daemons.

Moshe. Another approach to group membership on a WAN is that of Moshe [16], a
membership service specifically designed for wide area networks. Moshe is characterised
by a client–server architecture, in which servers are in charge of maintaining client
membership, but do not participate of the group themselves.

Moshe relies on a network event mechanism specific for a WAN, which keeps servers
informed about changes to the group and performs as an eventually perfect failure de-
tector. This is realised by Congress [15], which provides approximate membership
information. Congress assumes reliable FIFO channels and a strong complete fail-
ure detector. Its architecture is also client–server and it takes charge of diffusing
membership changes among servers, without guarantees on the relative order of the
notifications.

The specification of the membership problem solved by Moshe relaxes the require-
ments of the agreement to cases in which the networks stabilises and the notification
service informs consistently. It does not prevent the delivery of certain views only
to part of the servers, in periods of instability in which changes happen too fast. In
particular, Moshe avoids the delivery of obsolete views, if it is known that the group
has already changed.

When a server receives a network event notification, a fast agreement algorithm
is launched, designed to terminate within a single round in benign cases. Each server
multicasts a proposal to the others and when a consistent information has been received
from all of them, each server notifies its clients about the installation of a view. In
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some cases the fast algorithm may block. Then a slow agreement algorithm is triggered
by the block detector, and servers must exchange extra messages to synchronise their
proposals.

Moshe notifies clients not only about view installation, but also about the beginning
of a membership change. Congress and Moshe are integrated in the group communi-
cation system for wide area networks Xpand [39].

InterGroup. Another group communication system devised for scalability in wide
area networks is provided by InterGroup [17], a partitionable and modular group com-
munication system. The particularity of InterGroup consists in allowing each process
to select the desired message delivery guarantees.

Reliability of underlying channels is not assumed, but InterGroup includes a module
for reliable multicast.

The processes in the group are classified according to their activity into active
senders and receivers. Only active nodes participate in the membership agreement,
which is maintained with virtual synchrony guarantees by protocols based on those of
Transis. Such protocol is launched when an active sender detects a failure of another
member of its view or a non–active member starts sending messages. The receivers
that are requiring total order run a lighter protocol. They receive information on the
beginning and completion of the view change from some active sender to ensure virtual
synchrony is respected.

A process may enter the receiver group by only contacting an active sender to learn
about the current view. To become a member of the sender group, an active sender
must also be contacted. This will broadcast a message to the group which, when
delivered, completes the addition.

Weak Consistency Membership. An alternative approach to large–scale mem-
bership was presented by Golding and Taylor [40, 41]. The central idea of their speci-
fication was to relax the consistency requirements, allowing temporary inconsistencies,
so to reduce latency and communication overheads. The specification guarantees only
that after changes cease, processes will eventually converge to a single consistent view.
Name services are cited as an example of applications that can tolerate the inconsis-
tencies and make use of this service.

The system model assumes unreliable communication channels and the model of
crash/no recovery for processes, although partitions may happen and remerge.

Each process maintains a view, formed by a list of processes, together with their
status and a timestamp indicating when they entered it. The protocol is based on
epidemic communication. In particular, it makes use of the specific time–stamped
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antientropy communication protocol, to ensure eventual consistency (all updates are
eventually seen) and detectable consistency (a process can know when all the others
have either observed a given update or failed).

Each process keeps vectors with the latest updates it has received from each other
member, and with the most recent update each member has observed. Periodically
a member of the view is selected to reliably exchange this information by means of
an antientropy session. When a process wishes to join the group, it must first obtain
sponsorship from a big enough number of members, in order to ensure failure resiliency.
To leave voluntarily, a process sets its own status to failed and runs antientropy with
some member. If a failure is detected, the status of the failed node is set to failed with
infinity timestamp, so to reject outdated messages. This information is spread through
the group by subsequent antientropy sessions.

2.2.3 Systems with Specific Needs

As technology develops, different models of distributed systems become available,
for which distributed applications are developed. Distributed protocols have to fulfil
specific requirements depending on the new environments and applications. To mention
a few, we may name wireless networks and peer-to-peer systems, as examples of envi-
ronments, and collaborative work as an example of new applications. Wireless networks
have particular limitations, not shared by wired communications, which may hinder
the guarantees of distributed protocols. The particular case of ad hoc networks is yet
more demanding in that sense. Peer-to-peer systems, on the other hand, have goals
related to eventual dissemination of information, and thus require relaxed guarantees
from underlying services. Collaborative applications may show diverse requirements,
between those of cluster–like systems and the relaxed semantics of eventual guarantees,
and middleware for reliability support must cope with such a wide range.

Different approaches have been taken when developing membership solutions for
these and other systems. Even new paradigms have been proposed, at least in theory,
as fuzzy membership [42], as an approach to provide useful membership semantics
for novel systems and applications. Here we review some of the membership services
that have been developed for such systems in response to their particular features and
necessities.

Collaborative Work

In collaborative environments, a number of computer systems participate of some
form of cooperative work. Frameworks for collaborative computing typically provide
an assortment of communication protocols. The applications that can benefit from
these systems go from distributed databases or on–line discussions, to conferencing
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tools or video servers. Their requirements are also very different, including a variety
of Quality of Services, and different levels of consistency for replicated data and dis-
tributed applications. Support systems should cope with such a variety of necessities.
Their requirements from a membership service may thus differ from the most strict
specifications.

Collaborative Group Membership. Pascoe et al. [43] propose a Collaborative
Group Membership (CGM) approach, in the framework of the Collaborative Comput-
ing Frameworks (CCF) environment. The lowest layer of this framework provides a
number of communication protocols. It also offers support for sessions, maintained
as heavyweight groups, and channels which support different QoS. Failure detectin
is done by the reliable multicast facility and a specific channel is devoted to reliable
failure notifications and election protocols.

The basic idea of CGM is to take into account the possibility of partial failures in
which a node does not fail completely but only in a subset of its systems. This is solved
by running two levels of election. The first one, for membership removal, is launched
when a failure is detected. The master then asks for votes and if a majority agrees
on the failure, a new view is multicast. If not enough favourable votes are collected,
a session election is performed, in which consensus is sought with respect to partial
failures and a complex session image is built, with the failure report regarding every
node and channel.

Caelum. Caelum [44] is a toolkit for the development of highly available groupware
and collaborative applications, which includes a multimedia multicast service, a mem-
bership service and a module for session services, such as secure multicast or support
for replication.

The membership service is hierarchical, based on Congress [15] and its incremental
updates of membership composition. Therefore it does not guarantee that views are
delivered in consistent order at every member. If an application requires such stronger
consistency, it must implement the extra agreement on top of the service.

P2P Environments

Peer to peer systems have gained increasing importance as an alternative to client–
server applications. They are constituted by a large number of loosely coupled nodes
which form a totally decentralised entity. Data and control are completely symmetrical,
and try to offer easy scalability and management, with an interest on self–organisation.

Typical tasks covered by P2P systems include content–based searching, service
location, aggregation and efficient dissemination of information. Whatever the final
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applications, these systems include a basic layer in charge of group communication and
membership, which provides the required guarantees to upper components implement-
ing particular functionalities. Such requirements are however much less demanding
than in cluster–like scenarios.

PeerCast. PeerCast [45] is a Peer-to-Peer system providing multicast dissemination
of information with the model of End System Multicast (ESM). Each peer is equipped
with PeerCast middleware, including layers for P2P network management and ESM
management. PeerCast reliability is limited to continuation of the ESM service when
some of the intermediate nodes fails. No guarantee is provided if the source of infor-
mation crashes.

PeerCast does not employ a standard membership service with strict guarantees
regarding view changes. A P2P membership protocol is employed to establish an
overlay network, organised according to proximity of end-system nodes. The network
is a distributed hash table of peers, with their identifiers and properties associated
to a routing table and a list of neighbours, but peers do not have global knowledge
about the composition of the network. At the level of ESM management, creation and
subscription of multicast groups is handled. Continuity of the service in front of a
failure is achieved by replicating the multicast service information across neighbours.

Newscast. Newscast [46, 47] is a peer-to-peer protocol for maintaining, disseminat-
ing and aggregating information in very large and dynamic networks. The system is
supposed to consist of a very large number of nodes, each one with a series of at-
tributes. Each node is running an agent which may generate news items that are to
be disseminated across the whole network.

The protocol is epidemic and completely symmetric. Periodically nodes exchange
information. Each peer knows only a fraction of other members, among which randomly
selects one to exchange cached information. This includes membership information, as
the addresses of agents, and application specific information. Joins are disseminated
as correspondent addresses get exchanged together with other information posted by
them. When a member fails, it stops sending news, and after a certain time, all
references to it are removed from the system because of ageing. Thus, membership
information provided to each peer is only partial, changes continuously and it is pro-
vided with no consistency guarantees. The macroscopic behaviour of the protocol is
given by its statistical properties.

Astrolabe. Astrolabe [48] is a distributed information management service devised
for large scale networks. Its goal is to monitor a set distributed resources that change
dynamically, and to support the calculation of information aggregates that are required
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by higher level applications. It uses a relaxed consistency model, called eventual con-
sistency, that guarantees only that if updates cease, aggregates will eventually be the
same at the different agents.

For higher scalability, Astrolabe organises nodes in a hierarchy based on domains.
The responsibility for the organisation corresponds to system administrators which
assign names to zones. Its structure is a tree, whose leaves are nodes. Each host runs an
Astrolabe agent. A gossip protocol causes pairs of agents to exchange state information,
including membership. Failures are detected by excessive ageing of information from
the representative of a certain zone. Since the network can partition or the tree can split
due to wrong suspicions, each tree periodically multicasts probe messages to contact
isolated trees.

Scamp. Scamp (Scalable Membership Protocol) [49, 50] is a probabilistic member-
ship service designed for supporting gossip–based multicast algorithms. It does not
provide the consistency guarantees of traditional membership services. Each node is
provided with a partial view, which contains potential destinations of its gossipping
and changes dynamically. Nodes also maintain a list of members from which they can
receive gossips.

Scamp is a decentralised, peer-to-peer protocol. When a new node joins the group,
by contacting a former member, a fixed number of nodes include it in their partial
views. To do so, the contact forwards the information on the new member to nodes
in its partial view, which depending on the size of their own views include the new
member or forward the information again. To abandon the group voluntarily, a node
must instruct the nodes that kept its identifier in their partial views to substitute it
by nodes in its own partial view. After a given time without news of a certain node,
it is removed from all partial views. This failure detection mechanism may conduct to
isolation of nodes. To prevent this, periodic heartbeats are sent by every member.

Nor global view, neither consistency guarantees are provided by Scamp. Its goal is
to support reliable multicast by gossip algorithms, in which each node gossips to its
partial view. Its robustness features arise purely from its statistical properties.

Wireless, Ad Hoc Networks

Wireless communication technology has boosted the development of mobile com-
puting. The support of distributed applications for these environments requires taking
into account different aspects, including possible message losses due to unreliability
of wireless links, change of location of mobile nodes, and disconnected operation. In
typical systems, a certain fraction of mobile nodes connect to some wired or stationary
hosts, that can be used to deploy centralised solutions or at least to make use of the
more benign features of traditional networks.
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Ad hoc networks constitute a particular case of wireless systems, in which no fixed
node exists and the topology of the networks is unknown. Few approaches exist to
developing specific membership services for ad hoc networks.

Localised GMS. Briesemeister proposes a Localised Group Membership Ser-
vice [51], for maintaining membership information in a system composed of an un-
bound number of wireless nodes that can move freely. The system is modelled as
asynchronous, the model of crash/no recovery is assumed for failures and the network
may be subject to partitions and message losses, but not to delays. Each process is
given an identifier and is characterised by a space–time location, which may change
during the execution.

The goal of LGMS is not to provide members with consistent global views, but
maintaining at each host information about its neighbourhood membership. To do so,
LGMS is deployed on top of a Neighbourhood Service, in charge of keeping an up-to-
date list of adjacent hosts, by means of periodic heartbeats emitted by each process.
A process becomes a member of a group when the application on top of LGMS invokes
its join method. Views installed by LGMS at each host are formed only by members
and neighbours of that particular host.

Safe Distance. Huang et al. [52] have proposed a strong partitionable membership
service for ad hoc networks. The service provides each host with consistent membership
information and message delivery guarantees in front of mobility induced changes of
connectivity. The assumed system model is partially synchronous, with reliable network
channels and bounded delays. No messages are ever lost due to network congestion.
Also, crash failures are not tolerated, and the only communication failures are caused
by nodes moving out of each other’s range.

The service specification includes a strong requirement regarding membership de-
livery, namely Sending View Delivery, which must hold even in the occurrence of par-
titions. To ensure such guarantee, the protocol relies on the concept of safe distance,
which is the maximum distance between a pair of nodes such that any communication
task can certainly terminate, assuming the nodes move randomly with maximum speed
v. This notion is used to predict disconnections in a timely manner and consequently
decide whether a host may or not be included in the group in order to ensure the
desired guarantees. Moreover, every node is supposed to have a localisation service,
providing it with information about its physical position.

The protocol is centralised and makes use of an underlying discovery protocol.
There is a leader, deterministically elected per group. Each node periodically reports
its position to the leader, and also any discoveries of potential merge candidates. The
leader decides on configuration changes, leading a merge protocol if neighbour safe
groups are discovered or issuing a splitting order if movement of group members causes
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the configuration to stop being safe. To exclude part of the group, a message is broad-
cast to all members, containing the new membership information. Then each of them
stops sending messages, broadcasts a flush message and waits for identical messages
from its fellow members, at which moment the new configuration is installed and mes-
sage sending is resumed. Merging is performed in a similar way, but it is preceded by a
negotiation between both group leaders to reach an agreement about the participants
and the coordinator.

2.3 The Formal Specification of the Problem

As discussed above, none of the proposed specifications for the group membership
problem is universally adopted. The variety of proposed algorithms responds to the
diverse requirements of their potential application systems, as there is no universal
semantics that helps all of them. Moreover, most of the originally defined membership
services were designed for different group communication systems, and their specifica-
tion was joint with that of group communication guarantees.

An important unification effort was done by Chockler, Keidar and Vitenberg in [22],
a comprehensive survey on Group Communication Specifications. In that work, a
number of existing systems are reviewed and their properties are enumerated in a
unified formalism. Membership properties are separated from those of multicast, and
a set of basic properties is identified that are common to every analysed membership
service. Differences between primary component and partitionable specifications are
also enhanced. The fulfilling or not of additional properties confers each system its
particular characteristics. Some recent works, as [53], take the set of basic properties
of [22] as the basis for membership specification.

An alternative specification of a partitionable group membership problem, com-
pletely independent of multicast guarantees, is given by Babaoglu et al. in [54, 10]. In
this one, special emphasis is placed in the differences that the partitionable character
imposes to both the specification of the membership problem and the system model,
including the properties of the failure detector.

A more recent work by Schiper and Toueg [55] proposes a different approach to
the specification of the group membership problem. In there, the primary component
group membership problem is specified as a particularisation of a more fundamental
problem, the set membership problem. These problems regard the agreement among a
group of processes about the members of a set, which in the case of group membership
is a subset of the process group itself, but they completely decouple the specification
from the determination of correct processes, as that is another problem, to be solved by
the failure detector. Their specification, therefore, does not include terms as correct or
failed, but relates changes of view to orders issued by member processes, regardless of
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their reason. To our knowledge, no similar attempt exists to specify the partitionable
membership problem.

It is important to notice that all formalisations above correspond to the strictly
consistent group membership. For more relaxed membership semantics as the ones
described in the previous section, neither a unified formalisation nor a compilation of
properties as the one in [22] exists. On the contrary, most services are usually specified
in a non–rigorous way, or at most use specific notations.
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Chapter 3

The Group Membership
Architecture

In the rest of this work, we will specify different membership services and their
implementations for various scenarios. The cornerstone and reference for every kind
of membership semantics discussed here will be the strongly consistent semantics pro-
vided by traditional membership services. This will be referred as basic membership
service. As discussed in the previous chapter, the specification of the group member-
ship problem is not unique. Nevertheless, for the traditional membership services, a
set of fundamental properties were identified in [22]. In this chapter we discuss these
properties in the context of the system model they apply to, and we compile from them
the basic specification to be used as reference.

Although the multiple existing specifications and realisations of membership ser-
vices provide their information with particular formats, we postulate that any existing
membership service, including those that correspond to extended or relaxed seman-
tics, can adapt to a common generic interface. This chapter describes in detail such
interface, and also the modular membership architecture that characterises this work.

3.1 The Basic Membership Problem

3.1.1 System Model

We will be assuming a partitionable system formed by N processes that communi-
cate by message passing. Since the system is asynchronous, there is no known upper
bound on message transmission time. Neither there is a global system clock, nor syn-
chronised local clocks at the various processors.

39
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The process failure model is crash/recovery, i.e. a process fails by simply stop
executing actions, but this failure is not detectable for the others. After a crash the
process may recover and then rejoin the group. Every process is equipped with a local
unreliable failure detector module, which behaves as eventually perfect.

Network channels may cause message loss, disorder and duplication, but they re-
spect the integrity of messages, and they provide the semantics of eventually reliable
channels. If a process p sends a message to a process q and both the sender and the
receiver remain correct, then the latter eventually receives the message.

The consideration of crash/recovery model has certain implications on some ele-
ments of the model, as discussed in [25] in the context of solving consensus in this
model. Regarding failure detection, the strong completeness property FD.1 would re-
quire the safe distinction between process that fail and recover, no longer crashing,
and those that crash infinitely often and thus cannot contribute to the algorithm. To
overcome such difficulty an alternative completeness property is enunciated.

Property FD.6 (Recurrent Strong Completeness.). Every bad process1 is infinitely
often suspected by every correct process.

Failure detectors satisfying this property and eventually weak accuracy define the
class �Sr, which allows consensus to be solved in the crash/recovery model. In practice
they can be implemented by periodic heartbeat plus alive messages sent by recovered
processes. A class �Pr can be analogously defined, by combining eventually strong
accuracy with property FD.6. We will thus consider the processors in our system to
be equipped with a failure detector behaving as �Sr or �Pr.

In order to recover its state after a crash, processes should have some stable storage.
It is possible to solve consensus without that facility, provided that a minimum number
of processes never crash (more than the number of failed processes). Since we consider
every process capable of failing, we also assume that each of them is equipped with
stable storage.

The network may partition due to link failures. Virtual partitions may also occur
due to wrong failure suspicions. We want the algorithms to make progress in each
partition, regardless of their majority character. Also, the persistence of a majority
partition along the whole execution cannot be guaranteed. On the contrary, the net-
work may split into small disjoint groups. After failures are repaired, disjoint partitions
can remerge and the majority character be recovered.

1Bad processes are those that either fail and never recover or crash infinitely often.
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3.1.2 Basic Specification of the Group Membership Problem

For the rest of this work, we adopt as the basic specification of the partitionable
group membership problem that results from the basic set of membership properties
in [22]. This is the approach adopted also by more recent works, as in [53]. For a
specification that is completely independent of group communication guarantees, an
agreement requirement must be added. For this property, we adopt the enunciate given
in [10].

Regarding more relaxed semantics, appropriate specifications will be introduced for
other membership problems later in this work, by relating them as much as possible
to the basic specification.

The specification of the basic partitionable GMP is contained in a set of four safety
properties and one liveness property, as follows.

Safety Properties

Property GM.1 (Self Inclusion). A process is member of each view it installs.

Property GM.2 (Initial View Event). Each event occurs in some view context.

Property GM.3 (Local Monotonicity). Two committed views are never installed in
different order by two different nodes.

Property GM.4 (View Agreement). (i) A process does not install a view unless
the immediately previous one has been installed by all other processes contained
in both views.

(ii) If some node contained in a committed view does not install it, or installs a differ-
ent view as its immediate successor, all nodes in the former view will eventually
install a new view as the immediate successor to the first one.

The property of View Agreement requires that there is agreement among members
of a partition about the composition of the view. In particular it states that, if it is
not possible for all correct members of a view to install it, or if some of them sees
another change, all the remaining ones will also see a change. The basic specification
in [22], not being completely decoupled from the multicast specification, does not
contain this property, as it can be derived from the basic multicast properties. Since
we need a stand-alone specification of the group membership problem, we include the
property GM.4 explicitly, as enunciated in [10].
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Liveness Properties

Property GM.5 (Membership Precision). If there are stable components in the sys-
tem, i.e. subset of processes that remain correct and connected, the same correct view
is installed as the last one in every process of the same stable component.

This property tries to guarantee that the system reflects the real system state, as
much as possible, and to preclude trivial solutions in which the membership views
split arbitrarily. In the considered model, the liveness properties of the membership
information depend on the eventually perfect execution of the failure detector, and
on some assumptions on the system dynamics. The term stable component denotes
a subset of processes that remain correct and mutually connected, whereas they are
unreachable from any other nodes that are not in the same subset. Thus the liveness
property GM.5 is conditioned to the fact that such components survive long enough
for the failure detection picture to stabilise and the membership protocol to complete
the view installation.

3.2 Generic Interface

We express the interface between the membership service and other components
with a client–server structure, in which any component making use of membership
information acts as a client of the membership service. This architecture allows multiple
system components or user applications to make use of membership information, and
corresponds with some of the most recently developed membership services [16, 14]. We
postulate that every existing membership service can be adapted to the same generic
interface, contained in figs. 3.1, 3.2.

public interface IMembershipMonitor {

void joinGroup ();

void leaveGroup ();

void registerListener (int type, IMembershipListener listener);

void unregisterListener (int type, IMembershipListener listener);

}

Figure 3.1: Generic interface of an arbitrary Membership Service.

The basic semantics of the interface of IMembershipMonitor is the following.

• joinGroup; the first time this method is invoked, the membership monitor run-
ning in the local host should try to contact other members in order to be accepted
by the group, if it exists, or to promote the formation of a new one;
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public interface IMembershipListener {

void notify(MembershipEvent evt);

}

Figure 3.2: Generic interface of a Membership Listener.

• leaveGroup forces the node to leave the group; it is invoked by a node to volun-
tarily leave the cluster, for instance when it is about to switch off;

• registerListener lets the membership service know about a new component
interested on a particular type of membership event so that from this invocation
on the component will be correspondingly notified each time a MembershipEvent

of the specified type occurs. This method must be invoked once per component
and type of event;

• unregisterListener announces that a previously registered component is no
longer interested on a particular type of MembershipEvent and thus it causes the
monitor to stop notifying that type of event to the particular client.

Such structure allows various components to be served by the membership service,
thus receiving consistent membership information.

Client applications, on the other hand, should be registered as
IMembershipListener, implementing a callback that will be used to notify them
about membership information, and specifying at registration time the type of event
they are interested in. Membership views are delivered to registered applications as
MembershipEvents by means of the callback notify.

The interface is completely general, as it allows the membership service to deliver
different types of membership information, by defining types of MembershipEvents.
Although the basic specification of the group membership service regards only the
installation of views, and thus would fit a single type of Event, there exist services and
specifications that deliver additional information. E.g. Moshe [16] notifies clients not
only about installed views, but also about the beginning of membership changes, which
may be not followed by the corresponding view installation if successive changes occur.
The Optimistic Virtual Synchrony model [33] employs the installation of optimistic
views with a tentative set of members once the need for a view change is detected.
This is used by applications to avoid blocking and do some progress until the definite
view is installed. These features nicely fit in the above interface by defining extra types
of MembershipEvent for optimistic or tentative views.
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3.3 Modular Architecture

A common characteristic of all the services described in this work is their modular
architecture. This is not a new approach. On the contrary, recent works in the field
of group communication systems [56] point out the convenience of a modular archi-
tecture, where each service is devised as an autonomous, self-contained entity. In [56]
the system includes independent services for group membership, failure detection and
various communication guarantees. Moreover, each service offers standard interfaces
to the others, and to the application. Such a scheme allows the easy integration or
replacement of individual components and contributes to the usability of the system
by the application developer.

Some of the most recent implementations of group communication services already
adopt a modular structure. It is the case of Jgroups [57], Appia [58] and Cactus [59].
In those services, nevertheless, the different components are not designed to be used
independently.

Our aim is to provide generic membership services that are usable by any compo-
nent or application. Moreover, the designed membership services are decoupled from
other services, including group communication and failure detection. In our scheme,
communication among these interacting parts happens only through general interfaces,
by means of Event notifications.

Specialised Events are produced by the different components and notified to their
registered listeners. As an example, a failure detection component should produce
FailureEvents. The membership service should be registered as a proper Listener

to receive and use this information.

Fig. 3.3 shows the proposed architecture for our basic membership service. Contrary
to other approaches, the membership service does not hide the information from failure
detection from other components. As noticed in [60], some applications may progress
with only information about unreliable failure suspicions, and may thus use direct
input from the failure detector component. Moreover, this architecture gives us more
flexibility to employ a different mechanism for failure detection depending on the system
characteristics and conditions, without varying the implementation of the membership
service itself.

The bottommost layer in the proposed architecture corresponds to the
UnreliableTransport. since we do not make reliability assumptions on the trans-
port, our membership service makes direct use of this layer, which abstracts the real
network from any other component in our system, providing the very simple interface
in 3.4.

To illustrate the usage of this structure, we also show in fig. 3.5 a possible architec-
ture for a system providing various services to the potential applications.
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Figure 3.3: Architecture for the basic membership service.

public interface ITransport {

void send (IDestination dest, Message msg);

void registerMessageHandler (int type, IMessageHandler handlr);

void unregisterMessageHandler (int type, IMessageHandler handlr);

}

Figure 3.4: Interface of the bottommost transport.

The picture shows explicitly the interfaces offered by every component to applica-
tions and higher layers. Communication with components below also occurs through
the generic interfaces, which are not shown in the figure.

In this example system, a reliable transport protocol, a group communication sys-
tem and a certain user application, B, will be using membership services. All of them
then implement the IMembershipListener interface. On the other hand, the Member-
ship Service, and user application A act as listeners of the Failure Detector, whereas
the Group Communication System, the Reliable Transport, the Membership Service
and the Failure Detector itself, together with user application D, make direct use of the
Unreliable Transport, and must then implement the interface of IMessageHandler.

The generic interfaces and the modular architecture of the membership and other
services are part of the more general structure of HAMS system. HAMS, which stands
for Highly Available Middleware Systems, is a middleware architecture devised to pro-
vide high availability support to legacy systems, by means of a configurable set of
services and protocols which can be chosen upon configuration so to implement the
necessary guarantees. This support is now being used in several projects [61, 19, 18].
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Figure 3.5: Possible architecture for different services and applications.

A detailed description of the whole architeture escapes the scope of this work and can
be found in [20].



Chapter 4

The HMS Protocol

In this chapter we present the design of HMS (HAMS Membership Service) [62, 63],
a partitionable group membership protocol that implements the basic specification of
the problem 3.1.2. As an extra feature, HMS provides also the property of majority
view uniform agreement, that will be discussed in detail later. HMS constitutes the
basic building block for some of the other membership services discussed in this thesis.
The following sections discuss in detail the main aspects of the HMS protocol, including
its state, specific messages and operation.

4.1 The System Model

The HMS protocol is designed to maintain the membership of a cluster with the
strongest consistency guarantees and full partitionability. The protocol aims to monitor
a group of nodes of well–known identities, thus in the rest of this chapter the term node
will substitute that of process when referring to group members.

As the rest of protocols in this work, it assumes an asynchronous system, formed
by a set of nodes that communicate over unreliable network channels. The nodes are
assumed to be part of a well–defined, preconfigured set, of a maximum size of several
tens of nodes. Each node has a unique identifier, which is assigned in advance and
known a priori by every other member of the system.

Cluster nodes are typically connected over a LAN, and they remain correct and
connected most of the time. Nevertheless, they are allowed to fail by crashing, and
to recover afterwards. The network is also unreliable, so that messages may be lost,
disordered or arbitrarily delayed. The protocol thus handles these situations however
frequent they are.

Each node is equipped with a local failure detection module, providing unreliable
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suspicions information to the membership protocol. We assume that the failure detec-
tor behaves as �Pr. Despite the theoretical impossibility of the liveness properties in
the purely asynchronous model, in practical systems such a component can be imple-
mented [10] provided the system exhibits a reasonable behaviour. Therefore our system
model includes an assumption on the dynamics, namely that there exist failure-free in-
tervals of time long enough for the failure detector to stabilise and a full reconfiguration
to take place. This is, many nodes may happen to fail during a certain period of time,
and these failures can be completely arbitrary, but such a situation cannot last forever.
At a certain moment the correct nodes will stay alive for a long enough interval of time,
so that the membership monitor can reach a stable configuration. In the considered
scenario this is a natural assumption, enough to make a live service implementable.

4.2 Basic Elements

This section describes some of the main elements for the HMS protocol. These
include the view identifiers and the state maintained at each member node. Since the
failure model is crash/recovery, the usage of stable storage is also required.

HMS is an asymmetric protocol, in which a master leads the proposal and installa-
tion of every view, as well as the procedures for partition merging.

From another point of view, being partitionable, HMS includes two modes of oper-
ation, for majority and minority, respectively. The particular operation mode decides
the view identifier, and the part of the state that is to be used.

4.2.1 View Identifiers

Each installed membership view is given a unique identifier. They are used to label
messages that depend on view context and also play a crucial role for ensuring the
property of local monotonicity GM.3.

The view identifiers of HMS are chosen from the set

V ≡ {(a, b, c) | a ∈ N and b, c ∈ N ∪ {−1}} .

The three integers a, b, c that form the identifier are defined by the following rules.

• The first component, a, is a non-negative integer which plays the role of the
majority view identifier. When the group is a majority, i.e. it contains more than
one half of the preconfigured set, the view identifier is of the form (a,−1,−1).
Thus during majority operation a is the only significant part of the view identifier.
The Master increases its value each time a new majority view is proposed.
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• The second component in a view identifier of the form (a, b, c), identifies the
Master of a minority partition originated from version a of the majority group.
When the group loses the majority condition, a can be no longer changed. The
minority Master will construct new view identifiers maintaining the last installed
value of a, setting b to its own identifier.

• The third component, c, serves as the identifier of minority views with common
majority root and minority Master. It is set to 0 every time b changes, and then
it increases monotonically with every new proposal of the same minority Master.

• The criteria explained above do not suffice to generate unique view identifiers.
Within the minority group, repeated partitions may arise and the minority master
can be repeatedly substituted. If the node acting as minority master fails and
is substituted, and then it recovers, each time it happens to recover mastership,
it would generate an identical view identifier. To avoid this problem, the second
component, b, of the view identifier keeps track not only of the identity of minority
master, but also of the incarnation number of its mastership, k, i.e. the number
of times the current minority master has assumed mastership since the partition
occurred. Thus, when a certain node of identifier m substitutes the minority
master for the k-th time with the same majority root a, it constructs a new view
identifier by setting c = 0 and b = m+k×N , being N the preconfigured number
of nodes in the system.

The partial order relation within the set of view identifiers allowing the implemen-
tation of property GM.3 is defined as follows.

Definition (Partial Order of View Identifiers). Let V1 and V2 be two different views,
with respective identifiers (a1, b1, c1) and (a2, b2, c2), such that b1 = m1 + k1 × N and
b2 = m2+k2×N .1 We will say that V1’s identifier is lower than V2’s, and write V1 < V2

if any of the following conditions is fulfilled.

1. a1 < a2 and b1 = −1. In case b2 = −1, this is the straightforward comparison of
two majority identifiers. If b2 6= −1, then V2 is a minority view originating from
a majority view that followed V1.

2. a1 < a2, b1, b2 > 0 and m1 = m2. In this case, V1 and V2 are minority views pro-
posed by the same master in completely different partitions, so that the majority
was recovered in between.

3. a1 = a2, b1 = c1 = −1, while b2 > 0. In this case, V2 reflects a minority partition
originating from V1.

1Notice that m and k can be easily calculated from b as m = b mod N and k = b−m

N
.
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4. a1 = a2, b1 = b2 and c1 < c2. This case corresponds to two views of the same
minority partition, and proposed by the same master in the same mastership
incarnation.

5. a1 = a2, m1 = m2 and k1 < k2. This case corresponds to two views of the same
minority partition, proposed by the same master in different incarnations.

Any pair of view identifiers satisfying none of these conditions can be considered
concurrent, as direct comparison is not possible between them. Sometimes, there may
be causal relations between views with concurrent identifiers. This may happen when
the information about the history of installed views kept by a node and the whole view
composition allow the deduction of such relations, which are not contained in the view
identifiers.

If we were only concerned with majority views, the first condition would suffice to
implement the monotonicity property. Since the protocol must also handle minority
partitions, however, the monotonicity must be guaranteed by the algorithm itself. The
partial order relationship between view identifiers allows also the partial comparison
of minority views, and results useful to discard obsolete messages.

4.2.2 State

Although the specification of the full state maintained by the HMS protocol at each
node rather corresponds to the formal description of the algorithm, there are a number
of fundamental data structures that will be extensively used in the informal description
of the protocol operation. This section details the most relevant elements of the state
required by HMS.

Memory

The most of the state is maintained in main memory, hence it is volatile. In
particular, each node maintains two lists of views.

• The strong list is a list of majority views in the different stages of confirmation.
Each list entry consists of a view and its confirmation status. The status can be
prepared if the view has just been proposed or received from the master, and
its confirmation is pending. If agreement has already been reached, so that the
view has been installed, its status is committed. After each node has confirmed
the commitment, the view can be promoted to the released status.

The list keeps views sorted according to the total order of their identifiers. New
views are added to the end of the list, satisfying the following conditions. There
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cannot be more than one view in the prepared or the committed status in the
list. If there is a prepared view, then it is the last one of the list, and released

views cannot be preceded by views in any different status. A view cannot get the
committed status unless it was the last prepared one.

Every committed view eventually reaches the released status. At this point we
may choose to leave the view in the list with a definitive released flag, or to
remove it from the list to save resources. This is irrelevant from the point of view
of the algorithm, so we will just refer to this stage of confirmation saying the
view is released.

• The weak list is a different, alternative list used in a completely analogous way
to the previous one when the node is in a minority partition, since the strong list
is only used during majority operation. In the weak list, the same conditions are
fulfilled, regarding the placement of views, with the only difference that in this
case the sorting does not fulfil a total order relation of view identifiers, as this
does not exist for minority views. Instead, views are sorted according to their
causal relations.

Stable Storage: The Majority History

Since the failure model that is to be supported by HMS is that of crash/recovery, and
given that HMS is meant to tolerate up to N failures of nodes, it becomes necessary to
employ some stable storage that enables part of the state to be reread after a crash and
a subsequent recovery. In the HMS protocol this is achieved by the majority history, a
consecutive list of committed majority views, kept in stable storage to allow recovery of
majority after partitions merge. Every majority view is saved to the majority history
when it becomes committed in the strong list.

When a node starts, it checks whether its local majority history is non–empty, as
will happen when the node is recovering after a crash or a stop. In such case the node
can recover the latest information about the majority before starting the protocol.

If the protocol works for an indefinitely long time, the size of the history may
become extremely large. To keep the size of this list finite, there must be a subprotocol
taking charge of eventually cutting away the oldest, needless part of the list. This can
be safely done after all preconfigured nodes get simultaneously connected and confirm
a common majority view.

Besides the majority history, the stable storage is also used to keep track of how
many times a given node has assumed mastership after a partition from the last in-
stalled majority view.
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4.2.3 Messages

The protocol defines a set of dedicated messages that are exchanged by nodes in
the different stages of operation of HMS. Each protocol message is labelled with the
identifier of its originating view, and carries the node identifier of its sender. The
precedence order relation defined in the set of view identifiers is used for recognising
and discarding obsolete messages. Besides, different types of messages carry specific
arguments as detailed below.

• Setmem(V , . . . ) is sent by the master to propose the installation of a view
V , and must be received by all the nodes in the group. It contains the proposed
view together with some information on previously proposed views.

• Step(nstep) is sent by the master of the group to all members, in order to conduct
the protocol of view confirmation. It must contain the number of the current step,
nstep ≥ 1.

• Ends(nstep) is sent by the members to the master, as acknowledgement and reply
to Setmem and Step messages. It contains as argument the number of the Step
message being answered, or nstep = 0 if replying to a Setmem message.

• ChangeM(Vlast) is sent to all nodes in the group by the master’s substitute, once
it has detected a failure of the previous master, in order to collect information
on the last view installed or proposed by the old master. It should include some
information on the status and composition of the last view the substitute received
from the old Master, Vlast.

• View(Vlast, . . . ) is sent by each of the members of the group to the self-proposed
master’s substitute, as a reply to the previous message. Each View message
contains information on the last view or views received from the old master by
the sending node.

• Join(V , VM) is periodically broadcast by the master of a minority group, in
order to locate and join possibly disjoint partitions. The mesage contains the
composition of the group which proposes the joining, V , together with the last
majority view it has known about, VM.

• Joined(V idV, V idVmin
, . . . ) is sent by a majority master when it receives a

Join request from a minority group, Vmin. It is addressed to all the nodes in the
minority partition, in order to get them joining the larger group, and contains the
identifier of the majority group, V idV. It also carries the minority view identifier
and, if required, information about majority views that the smaller group is
missing.
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• Ready(V idV) is sent by nodes in a minority partition to a majority master, in
reply to the previous message. It includes the view identifier received with a
Joined message.

• Update(views) is sent to minority groups in order to bring their majority history
up to date. It carries as argument a list of views, views, containing all the
information of the majority history missed by the minority group.

4.2.4 Membership Events

Membership services are devoted to notify changes to other components. Therefore
they must produce some kind of output to the user components or applications. This is
what we will call membership events. In the architecture described in the previous chap-
ter, they correspond to the information communicated to every IMembershipListener

by means of MembershipEvents.

The fundamental event in a classical membership service is obviously that of view
installation. All classical services produce such output. For some of them it is the only
produced output. Others, on the contrary, produce also notifications about tentative
views.

The HMS service produces these, but also other kinds of membership information.
We distinguish the following membership events. According to the generic architec-
ture in which our implementation is to be deployed, we have assigned each of them a
particular type of MembershipEvent.

• prepare. Occurs when a view is added to one of the lists with state prepared. In
the scheme of our generic interfaces, it should be notified by means of a specific
type of MembershipEvent, namely MBSHIP CHANGE, having as argument the
just prepared view. It can be interpreted by external components as a tentative
or in–progress view installation.

• commit. Occurs when a view status is set to committed in the corresponding list.
It corresponds to the classical notion of view installation at the local process. The
notification to higher level components takes place by means of a MBSHIP VIEW
event, necessarily containing as argument the composition of the view.

• release. Occurs when a view is labelled released in the corresponding list. It
can be notified to higher level applications by means of an event of type MB-
SHIP RUNNING, which should be interpreted by the receiving component as a
signal that the last committed view has been confirmed by all its participants.

• upcommit. This is a special type of event, related with the management of the
majority history by the HMS protocol. This guarantees the uniformity of con-
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firmed majority views across the whole system, which imposes the necessity to
update one node’s information about the majority history of the whole system.
During this process, old majority views that were confirmed by the group are
saved to the local stable storage, and may be communicated to higher level
IMembershipListeners by means of a specific type of MembershipEvent, MB-
SHIP UPCOMMIT.

4.2.5 Underlying Services

The operation of the HMS relies on the existence of a few underlying services which
provide a certain input to the protocol. Some of them have already been mentioned
when describing the system model. Here we focus on their interaction with the protocol,
i.e. the information they provide to HMS and the interface they offer.

• Unreliable transport. This component offers the basic transport interface of
fig. 3.4, with a send method that allows any registered component to address
messages to particular destinations. It also allows the HMS component to regis-
ter as handler of its specific messages, so that when one such message is received
by this transport, it will be handed to the HMS component by means of a receive
event. Notice that no reliability is ensured by the underlying transport, so that
any protocol message can be lost. In order to avoid the algorithm blocking, re-
liable point–to–point delivery can be explicitly implemented for each message
whose loss can prevent the protocol completion. In order to ease the descrip-
tion and realisation of the protocol, however, more general primitives rsend and
rmcast are implemented as support for our protocols. The rsend primitive guar-
antees reliable point–to–point delivery by periodically resending messages until
they are acknowledged by the destination or the latter is excluded from the mem-
bership group. The rmcast primitive does the same for multiple destinations.
These primitives are used in the fllowing description of protocols together with
the basic send, multicast and broadcast, that offer no reliability guarantee.

• Unreliable failure detector. This component, the local module of a distributed
�Pr failure detector, will notify the HMS protocol about suspected nodes in the
system.

• Exclusion mechanism. Since the component above is not reliable and can make
mistakes, it is possible that the HMS protocol at some node excludes a certain
member based on the failure detector fake suspicions. Nevertheless, the guaran-
tees of the failure detector do not include symmetry, i.e. the excluded member
is not guaranteed to detect its excluder as failed. In some situations, this might
lead wrongly excluded nodes to stay indefinitely in an obsolete view from which
they had already been removed by the others, thus blocking the HMS progress.
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To avoid this situation a symmetrisation mechanism must be added, that noti-
fies a node when it has been excluded from a view. This can be implemented by
various mechanisms, which can be very simple (based on periodic beaconing) or
more complicated (to reduce the risk of false exclusions due to message losses).
Such component could be part of the HMS protocol or even part of the failure
detector, enriching it with a symmetry property, but for simplicity, we opt for a
decoupled component, that we will call exclusion mechanism, since we are not
interested in the implementation details. In any case, we will consider that our
failure detector is complemented by this type of module, so that our membership
protocol receives failure notifications from the basic unreliable failure suspecter
but also from this component, which runs only as an auxiliary service of HMS.
The only guarantee required from this service is the following.

Property EM. (Exclusion Mechanism). If a process p excludes another process
q from its view and q is operating, then eventually q will receive a notification
about the failure of p.

Notice that this property is easy to achieve in most systems. It would be enough
to piggyback the failure detector messages with the current view. Then, from
the received information, a node can exclude itself if it detects that a newer view
not including it has been installed by (part of) its former group.

4.3 The Protocol

Our most formal specification of the HMS protocol was made in the formalism of
I/O Automata [64, 65]. Such specification is presented in and appendix B.1 (a previous
version can also be found in [66]). Nevertheless, for a better understanding of the
protocol, we include in this section the specification in terms of states and transitions.

Figure 4.1 illustrates the states in which the protocol may be divided, and the
transitions among them, driven by the messages enumerated above, as well as by events
from the failure detector. In this section we describe the role of each state while the
next two sections detail in an informal way the algorithms run in each state to ensure
the guarantees of HMS. A more formal description is shown in the figures 4.2-4.11. For
these algorithms, local variables are to be understood as static variables in C, i.e.
their value is saved in between invocations. Their initialisation is carried by the init
block in each algorithm.

4.3.1 States

• single: In this state a node is the master and only member of a singleton view.
It is the initial state, as the node is alone at startup.
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• majmstr: In this state the node is the master of a majority group, in charge
of leading the installation of new views, as other nodes fail, and the merging of
minority partitions if they try to join.

• majmbr: It is the state of all non–master members of any majority group during
regular operation, i.e. not running the protocol for master substitution.

• subst: In this state, a node that detects the failure of the former master and
decides that it has to substitute it, according to deterministic rules, tries to lead
the master changing phase among the survivors.

• mstrchg: Those nodes that are not to take the master’s place during the change
stay in the mstrchg state while the substitute collects the necessary information
to compose a new view.

• minmstr: When the group is formed by less than one half of the preconfigured
nodes, the master stays in the minmstr state to lead minority view changes and
try to probe for disjoint partitions to merge with.

• minmbr: Non–master members of a minority partition stay in the minmbr state
until the group starts merging with a larger partition or a minority master change
takes place.

• merge: It is the state adopted by all members of a minority partition after they
have contacted the master of a larger group and are attempting to join it.

• updat: A minority master enters this state when, as a consequence of its probing
for larger groups, it receives a piece of the majority history that this partition is
missing. In this state, the master suspends any attempt to merge other groups,
neither it accepts such merging from other masters, until all its subordinate
members have applied the set of updates to their majority history.
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1: algorithm HMS

2: type
3: state t = {SINGLE, minMSTR, minMBR,

4: majMSTR, majMBR, SUBST,

5: mstrCHG, UPDAT, MERGE }
6: view t = (view id, master, mbrs)

7: view st t = { PREPARED, COMMITTED,

8: RELEASED }
9: var
10: state : state t

11: strong : list of (view t,view st t)

12: weak : list of (view t,view st t)

13: current : view t

14: lastPrep : view t

15: majHist : list of view t

16: next : view t

17: substit : node

18: failed : list of nodes

19: begin
20: strong := empty;

21: weak := empty;
22: state := SINGLE;
23: next:=null;
24: substit:= null;
25: failed:= empty;
26: majHist, lastPrep initialize

27: from file;
28: while true do

29: case state of

30: SINGLE: single;
31: minMSTR: minmstr;
32: minMBR: minmbr;
33: majMSTR: majmstr;
34: majMBR: majmbr;
35: SUBST: subst;
36: mstrCHG: mstrchg;
37: UPDAT: updat;
38: MERGE: merge;
39: esac

40: end;

Figure 4.2: Basic algorithm of HMS.
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1: algorithm SINGLE

2: var
3: tjoin : timer

4: single id : view id

5: joined : list of nodes

6: joining : list of nodes

7: tmerge : timer

8: begin
9: tjoin := 0;
10: tmerge := -1;
11: if first startup then

12: single id := zero id;
13: else

14: single id := singleton view id

from majority reference;
15: fi;
16: if current.size()!=1 then

17: current := (single id,

thisNode, thisNode);
18: weak.add((current,COMMITTED));
19: commit(current);
20: joined := empty;
21: next := null;
22: fi;
23: wait for event

24: case event of

25: recv Join(V):

26: if thisNode leads then

27: joining.add(V.mbrs);
28: multicast( Joined(current.id,

V.id, majHist-V, lastPrep) )

to V.mbrs;

29: else if lastPrep>V or

30: majHistory>V then

31: send( Update(majHist-V,

lastPrep) ) to sender;
32: fi;
33: recv Update(views, Vmaj):

34: for V in views-majHistory do

35: upcommit(V);
36: done;
37: lastPrep := Vmaj;
38: recv Ready:

39: joined.add(sender);
40: joining.remove(sender);
41: if joining is empty then

42: tmerge:=0;
43: fi;
44: recv Joined(V,current.id):

45: send(Ready(V)) to sender;
46: state:=MERGE;
47: tjoin timeout:

48: broadcast(Join(current,majHistory.

last(),lastPrep));
49: tjoin:=TJOIN;
50: tmerge timeout:

51: next := (next id, thisNode,

current U joined);
52: if next is majority then

53: state:=majMSTR;
54: else if joined not empty then

55: state:=minMSTR;
56: fi;
57: esac

58: end

Figure 4.3: Algorithm for the single state of HMS.
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1: algorithm majMSTR

2: var
3: step : integer

4: pending : list of nodes

5: joining : list of nodes

6: joined : list of nodes

7: tmerge : timer

8: init
9: step := 0

10: pending := empty

11: joining := empty

12: joined := empty

13: tmerge := -1

14: begin
15: if next!=null and

16: pending is empty then

17: next.setid(next majority id);
18: if strong.lastprepared() not

committed then

19: current := strong.

lastprepared();
20: strong.set(current,COMMITTED);
21: commit(current);
22: fi;
23: strong.add((next,PREPARED));
24: prepare(next);
25: failed := empty;
26: pending := next.mbrs;
27: rmcast(Setmem(next, strong.

lastcommitted())) to next.mbrs;
28: step := 0;
29: joining := empty;
30: joined := empty;
31: tmerge := -1;
32: fi;
33: wait for event

34: case event of

35: recv Ends(V,n):

36: if n<2 then

37: pending.remove(sender);
38: if pending is empty then

39: step := step+1;

40: if step==1 then

41: strong.set(V,COMMITTED);
42: commit(V);
43: maHistory.add(V);
44: current := V;
45: next := null;
46: pending := current.mbrs;
47: else if step==2 then

48: strong.release(current);
49: release(current);
50: fi;
51: rmcast(Step(current,step))

to current.mbrs;
52: fi;
53: fi;
54: recv Join(V, lastV):

55: if step>=2 then

56: joining.add(V.mbrs);
57: multicast(Joined(curent.id,V.id

majHistory-lastV)) to V.mbrs;
58: tmerge := TMERGE;
59: fi;
60: recv Ready(current):

61: joined.add(sender);
62: joining.remove(sender);
63: if joining is empty then

64: tmerge := 0;
65: fail(mbrs):

66: failed.add(mbrs);
67: discard(strong.lastprepared());
68: strong.remove(lastprepared());
69: next := current.mbrs U

70: joined.mbrs \ failed;
71: joining := joined := empty;
72: pending := null;
73: tmerge timeout:

74: next := current.mbrs U

joined.mbrs;
75: joined := empty;
76: tmerge := -1;
77: esac;
78: end

Figure 4.4: Algorithm for the majmstr state.
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1: algorithm majMBR

2: var
3: step : integer

4: init
5: step := 0

6: begin
7: if next!=null then

8: step := 0;
9: if nextC!=null then

10: strong.confirm(nextC);
11: fi;
12: strong.add((next,PREPARED));
13: rsend(Ends(next.id, 0))

to next.master;
14: next := nextC := null;
15: failed := empty;
16: substit := null;
17: fi;
18: wait for event

19: case event of

20: recv Setmem(V,Vc):

21: if V is majority then

22: step = 0;
23: strong.commit(Vc);
24: strong.add((V,PREPARED));
25: failed := empty;
26: majHistory.add(Vc);
27: lastPrep := V;
28: rsend(Ends(V.id, 0))

to V.master;
29: else

30: next := V;

31: state := minMBR;
32: fi;
33: recv Step(V.id,1):

34: step := 1;
35: current := strong.last();
36: strong.commit(current);
37: rsend(Ends(V.id, 1))

to V.master;
38: recv Step(V.id,2):

39: step := 2;
40: strong.release(current);
41: release(current);
42: recv ChangeM(V):

43: if V.master==current.master then

44: failed.add(current.master);
45: rsend(View(strong.lastprepared(),

strong.lastcommitted())

to sender;
46: if !(V<last committed) then

47: substit := sender;
48: fi;
49: state := mstrCHG;
50: fi;
51: fail(mbrs):

52: failed.add(mbrs);
53: if thisNode is master of

current.mbrs \ mbrs then

54: next := next.remove(mbrs);
55: state := SUBST;
56: fi;
57: esac
58: end

Figure 4.5: Algorithm for the majmbr state.
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1: algorithm minMSTR

2: var
3: step : integer

4: pending : list of nodes

5: joining : list of nodes

6: joined : list of nodes

7: tmerge : timer

8: tjoin : timer

9: init
10: step := 0

11: pending := empty

12: joining := empty

13: joined := empty

14: tmerge := -1

15: tjoin := -1

16: begin
17: if next!=null and

18: pending is empty then

19: next.setid(next minority id);
20: if weak.lastprepared() not

committed then

21: current := weak.

lastprepared();
22: weak.set(current,COMMITTED);
23: commit(current);
24: fi;
25: weak.add((next,PREPARED));
26: prepare(next);
27: failed := empty;
28: pending := next.mbrs;
29: rmcast(Setmem(next, weak.

lastcommitted(), lastPrep))

to next.mbrs;
30: step := 0;
31: joining := joined := empty;
32: tmerge := -1;
33: tjoin := -1;
34: fi;
35: wait for event

36: case event of

37: recv Ends(V,n):

38: as in majMSTR with strong -> weak
39: if pending is empty and

step==2 then tjoin := 0;
40: recv Join(V,lastV):

41: if step>=2 then

42: if thisNode leads then

43: joining.add(V.mbrs);
44: multicast(Joined(curent.id,

V.id,majHistory-lastV))

to V.mbrs;
45: tmerge := TMERGE;
46: else if lastPrep>V or

47: majHistory>V then

48: send(Update(majHist-V,

lastPrep)) to sender;
49: fi;
50: fi;
51: recv Ready(current):

52: fail(mbrs):

53: tmerge timeout:

54: as in majMSTR with strong -> weak
and explicit checking of majority
histories freshness for merging

55: recv Joined(V):

56: send(Ready(V)) to sender;
57: state := MERGE;
58: recv Update(views, lastP):

59: if step==2 then

60: rmcast(Update(views,

lastP)) to current.mbrs;
61: pending := current.mbrs;
62: state := UPDAT;
63: fi;
64: tjoin timeout:

65: broadcast(Join(current,majHist.

last(),lastPrep));
66: tjoin := TJOIN;
67: esac;
68: end

Figure 4.6: Algorithm for the minmstr state.
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1: algorithm minMBR

2: var
3: step : integer

4: init
5: step := 0

6: begin
7: if next!=null then

8: step := 0;
9: weak.add((next, PREPARED));
10: rsend(Ends(next.id, 0))

to next.master;
11: next := null;
12: fi;
13: wait for event

14: case event of

15: recv Setmem(V, Vc):

16: if V is majority then

17: update majHistory with Vc;
18: next := V;
19: state := majMBR;
20: else

21: step := 0;

22: weak.commit(Vc);
23: weak.add((V, PREPARED));
24: failed := empty;
25: rsend(Ends(V.id, 0))

to V.master;
26: fi;
27: recv Step(V.id, n):

28: recv ChangeM(V):

29: as in majMBR with strong -> weak and
checking consistency of majHistory for
ChangeM

30: recv Joined(V,Vid):

31: if Vid=current.id and

step>=1 then

32: send(Ready(V.id)) to sender;
33: state := MERGE;
34: recv Update(views, lastP):

35: update majHistory with views;
36: strong.add((lastP, PREPARED));
37: lastPrep := lastP;
38: rsend(Ends(4)) to mstr;
39: end

Figure 4.7: Algorithm for the minmbr state of HMS.
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1: algorithm SUBST

2: var
3: tsubst : timer

4: answers : list of View msgs

5: failed : list of nodes

6: init
7: tsubst := -1

8: answers := empty

9: failed := empty

10: begin
11: substit := thisNode;
12: tsubst := TSUBST;
13: pending := current.mbrs U

next.mbrs \ failed;
14: if current is minority

15: then

16: multicast(ChangeM(next, last

committed)) to pending;
17: else

18: multicast(ChangeM(next, last

committed, lastPrep))

to pending;
19: fi;
20: tsubst := TSUBST;

21: answers := View(next, last

committed) from thisNode;
22: failed := empty;
23: wait for event

24: case event of

25: recv View(Vp, Vc):

26: if Vc>next or (next==null and

Vc>last committed) then

27: pending := null;
28: state := SINGLE;
29: fi;
30: answers.add(msg);
31: pending.remove(sender);
32: if pending is empty then

33: analyse(answers, failed)a;
34: fi;
35: fail(mbrs):

36: pending.remove(mbrs);
37: failed.add(mbrs);
38: if pending is empty then

39: analyse(answers, failed);
40: fi;
41: tsubst timeout:

42: analyse(answers, failed);
43: esac
44: end

aSee Fig. 4.9

Figure 4.8: Algorithm for the subst state.
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45: procedure ANALYSE(answers,failed)

46:
process all received answers to decide on confirmation of views (and preparation of last
majority view, in case of minority operation)

47: if thisNode is excluded then

48: state := SINGLE;
49: else

50: if answers contains (next,COMMITTED) then

51: set(next,COMMITTED) in strong or weak;
52: commit(next);
53: fi;
54: next:=answers.senders() \ failed;
55: if next is majority then

56: state := majMSTR;
57: else

58: set lastPrep if required;
59: state := minMSTR;
60: fi;
61: fi;

Figure 4.9: Procedure for analysing answers to master change proposal.
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1: algorithm mstrCHG

2: var
3: tchg : timer

4: init
5: tchg := -1

6: begin
7: if thisNode is next substitute them

8: tchg :=TCHG;
9: fi;
10: wait for event

11: case event of

12: recv ChangeM(V):

13: if V.master==(current.master or

substit) and sender is a
valid substitute then

14: if !(V<last committed) then

15: failed.add(substitutes until;
sender);

16: substit := sender;
17: send(View(last committed,

18: last prepared)) to sender;
19: fi;
20: fi;
21: recv Setmem(V,Vc,lastP):

22: next := V;
23: if Vc minority then

24: weak.set(Vc,COMMITTED);
25: commit(Vc);
26: current := Vc;
27: else if msg contains

28: (Vc,COMMITTED) then

29: strong.set(Vc,COMMITTED);
30: commit(Vc);

31: current := Vc;
32: else;
33: upcommit(Vc);
34: fi;
35: confirm Vc if required;
36: if V is minority then

37: if weak contains V’<V prepared

then

38: weak.remove(V’);
39: discard(V’);
40: fi;
41: strong.add((lastP,PREPARED));
42: lastPrep := lastP;
43: state := minMBR;
44: else

45: if strong contains V’<V

prepared then

46: strong.remove(V’);
47: discard(V’);
48: fi;
49: state := majMBR;
50: fi;
51: fail(mbrs):

52: failed.add(mbrs);
53: if failed contains all
54: substitutes then

55: state := SUBST;
56: fi;
57: tchg timeout:

58: failed.add(substit);
59: state := SUBST;
60: esac

61: end

Figure 4.10: Algorithm for the mstrchg state.
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1: algorithm UPDAT

2: begin
3: wait for event

4: case event of

5: recv Ends(4):

6: pending.remove(sender);
7: if pending is empty then

8: state := minMSTR;
9: fi;
10: fail(mbrs):

11: pending.remove(mbrs);
12: if next==null then

13: next := current.mbrs \ mbrs;
14: else

15: next := next \ mbrs;
16: fi;
17: if pending is empty then

18: state := minMSTR;
19: fi;
20: esac

21: end

1: algorithm MERGE

2: begin
3: twait := TWAIT;
4: wait for event

5: case event of

6: recv Setmem(V,Vc,lastP):

7: lastPrep := lastP;
8: if Vc is majority then

9: majHistory.add(Vc);
10: upcommit(Vc);
11: fi;
12: next := V;
13: if V is majority then

14: state := majMBR;
15: else

16: state := minMBR;
17: fi;
18: fail(M):

19: state := SINGLE;
20: twait timeout:

21: state := SINGLE;
22: esac

23: end

Figure 4.11: Algorithms of updat and merge states.
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4.3.2 Basic Operation

The basic algorithm for view proposal and confirmation is similar to the S-GMP
protocol proposed in [8] for the Isis system, that was described in sect. 2.2.1. The S-
GMP protocol was basically a two–phase commit led by a manager, and a three–phase
algorithm in case of manager failure. The HMS algorithm includes an extra phase
and the management of stable storage to ensure full recoverability in case of multiple
failures. Besides, HMS ensures operation also in minority partitions, even when the
majority is lost, and the remerging of groups to recover the majority.

Initial View

HMS uses individual startup. Each node starts in the single state of fig. 4.3,
installing a predefined zero configuration, where it is the master and the only member.
The identifier of the zero view is V id(V0) = (0, Nm, 0), being Nm the static identifier
of the node, and the composition of the group is {Nm}.

If the node is not starting for the first time, but recovering after a crash, then the
stable storage keeps the last installed majority view, if it exists, (M,−1,−1), and the
last number of mastership incarnation used by Nm, k. In that case, the node composes
and installs a view with the same composition of the zero view and a new identifier
(M, Nm + (k + 1)×N, 0), and it correspondingly increases the stored value k.

Being in minority, the master Nm immediately starts broadcasting Join messages
trying to locate and merge with other existing partitions. If the master of an existing
external group receives Join from Nm, the Partition Joining Protocol described below
will allow merging of both parts.

View Proposal and Confirmation

The master node takes charge of proposing new views, deciding whether they must
be confirmed or discarded, and announcing these decissions to the rest of nodes. At
some point after the master has proposed a view, and if no more failures occur for a
long enough period of time, the configuration that is being installed can be promoted to
the definitive category, saved to stable storage and notified to higher level applications
that may be making use of membership services. Our protocol ensures that once this
step has been taken by any single node, all the living members of the group will also
perform it. The basic operation of the protocol, described in this section, guarantees
that consistency is kept among view histories, regardless of message losses or delays,
provided the majority character of the partition is preserved by changes.2 The required

2The special case of master failure will be separately dealt with in section 4.3.2.
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operations correspond to the states majmstr and majmbr, described in figs. 4.4, 4.5
respectively.
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Figure 4.12: Proposal and confirmation of a view in the HMS protocol, with one failure.

To achieve the desired guarantees, the confirmation of a view is carried out as a
three-phase commit, as depicted in fig. 4.12.

1. When the master is aware of a change in the membership set, it composes a new
view Vp to be proposed, by adding or removing members from the last entry in
its strong list. Then Vp is added to the strong list in the following way.

(a) The list is checked backward to identify the last committed view, Vc.

(b) Any view in the list with status prepared is discarded.

(c) The pair (Vp, prepared) is appended to the end of the list.

Next the master broadcasts the message Setmem(Vp,(Vc, confirm)) to all mem-
bers in Vp.

2. When another node receives that message, it processes its contents and updates
its own strong list accordingly.

(a) If Vc was prepared in the list, it is now promoted to committed.

(b) If the list contained any previous view in the committed state, that is now
promoted to released.3

(c) (Vp, prepared) is appended to the list, after discarding any previously
prepared view.

3The same checking for older committed views on the list is performed each time a node promotes
a view to this status.
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After processing the Setmem message, the node will acknowledge the reception
of the view by sending an Ends(0) message to the master. The integer argument
of the message (0 in this case) indicates the number of the completed phase.

3. The master may start the next phase of the protocol when it has received all the
Ends messages for phase 0. It then locally installs Vp, labelling it as committed
in the strong list and broadcasts a Step(1) message, which represents an order to
install the view for the remaining nodes. Locally labelling a view as committed
implies that the view has been confirmed. Therefore at this point higher level
applications that make use of the membership service are informed about the
irrevocable installation of Vp. At the same time, information on this view is
saved to the majority history. If, before the master has received all the Ends(0)
messages, some change is detected (e.g. from a suspect of the failure detector),
the master will not install Vp, but go back to the first stage of the protocol,
to compose a new view V ′

p and start over. Conversely, if joining of some node
has been noticed in the meanwhile, the master does not restart the protocol
immediately to propose an enlarged view, but it waits until Vc is ready to be
committed (unless a failure occurs), so that the Setmem message will serve to
spread confirmation of Vp.

4. When another node receives the Step(1) message, the configuration is saved,
and also labelled as committed. Once the Step message has been processed in
such way, the node replies with an Ends(1) message to the master.

5. After receiving all the Ends(1) messages, the phase 1 is concluded. Then the
Master labels Vp as released and broadcasts Step(2). After receiving the last
message the rest of nodes can also promote the view to released, since no later
reconfiguration due to master change will need this information.

Since committed views are automatically released when confirming later views, the
extra release phase is not required when changes follow one another with short inter-
val. This extra phase then has no cost during periods of unstability, in which it is not
advisable to inject extra messages in the system. When a view becomes stable, instead,
it allows each node to release their resources, as the information on the released view
will not be needed by subsequent operations, and to inform upper components that
the installation has been completed at all nodes.

Master Change

When the master fails, some other node has to take its role. The identity of the sub-
stitute is deterministically decided, as that of the master. In our implementation [20]
the survivor with the lowest identifier is assumed to take the master’s place, but other
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Figure 4.13: Master changing in the HMS protocol.

criteria (such as the longest living node) would be equally suitable, as long as the same
deterministic criterion is used by all nodes.

The failure will be eventually detected by the failure detector, since it satisfies
the property of strong completeness (FD.1) and notified to every correct node. In
particular, then, the substitute will notice the failure of the master node, move to
the subst state and initiate the master changing procedure described in fig. 4.10 and
illustrated in fig. 4.13.

An additional protocol phase is required to overcome the master’s failure. When
the substitute master, NPM, notices the failure it must collect some information from
the rest of nodes in the group before proposing a view that excludes the old master.
The would–be master enters the subst state. It will then check its own strong list
to figure out whether there was a view in process of being installed. Next it sends a
ChangeM message including the last entry of the list, say V`, to all the nodes that may
be part of the group. This includes all nodes in V` and nodes from the last committed
view, if different from V`, as they could have been unfoundedly excluded.

When a node receives the message ChangeM(V`), it moves to the mstrchg state
described in fig. 4.10, and composes a View message in answer, according to the
following rules.

1. First, the local strong list is checked, and the last locally committed and
prepared views, respectively Vc and Vp, are identified. If the strong list does
not contain any committed view, as might be the case if the last one was already
released or if the node did just join the majority group, then the last element
of the majority history is sent instead.

2. If (Vc > V`), then NPM does not longer belong to the group, as it was excluded



72 4. The HMS Protocol

from the already committed Vc. Then the ChangeM message from NPM is
not acceptable, as a different substitute will propose itself as master within the
confirmed group. Anyway, a View(Vc, committed) may be sent in answer to
NPM to notify it about its exclusion.

3. If (Vc = V`) and (Vp > V`), then this node has received a proposal later than V`.
If (NPM ∈ Vp), View(V`, committed)) is sent to NPM . Otherwise, View((V`,
committed), (Vp, prepared)) is sent.

4. If (Vc < V`) the answer to NPM is View(Vp, prepared).

The would–be master NPM waits until either all the replies from live destinations
have been received or a proper timeout has expired (to account for the possible dismissal
of the ChangeM message by nodes in a confirmed view) and analyses all answers.

1. If any committed Vc > V` has been reported, then necessarily NPM /∈ Vc, so that
NPM excludes itself from the group, enters state single and installs a singleton
view using as reference the first component of the last confirmed majority view
identifier.

2. If a prepared Vp > V` is noticed, such that NPM /∈ Vp, but it is not explicitly
declared as committed by any node, then NPM will only be excluded if all nodes in
Vp ∩ V` report Vp as prepared. This is so because if all the surviving participants
have prepared Vp, it is possible that the old master received all answers and
committed the view before failing. In that case, uniformity requires that the view
is also confirmed by the surviving nodes. Since it is not possible to know whether
the old Master did commit or not Vp, the surviving group must always confirm
it if the possibility of commitment exists. Instead, if some node participating in
such Vp did not prepare it at all, the former master could not possibly confirm
the view. It is then safe to discard Vp, so that NPM prepares the new view to
be proposed, Vn and sends a Setmem(Vn) message to its members. If some
other node had locally committed V` (information that can be deduced from the
received View messages), the Setmem message will also contain the order to
confirm it. Otherwise V` must also be discarded, since the old Master proposed
a later view without confirming it.

3. Finally, if none of the above conditions holds, then either all views reported
by the rest of nodes are lower or equal to V`, or any reported Vp > V` is such
that NPM ∈ Vp. such a Vp can be safely discarded, since at least one member
of the view, NPM , did not receive the proposal and could not confirm it. In
such case, when NPM prepares the new view Vn and sends the corresponding
Setmem(Vn) message, if all nodes in both views have reported V` as prepared
then the message includes the confirmation of V` with a special label to indicate
it has to be upcommitted (as it is not a real installation).
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An acceptable ChangeM message (i.e. one coming from a member of the last
known group, that has not been confirmedly excluded before the master’s failure) has
the effect to block reception of further messages from the old master. When the rest
of nodes receive an acceptable Setmem message from the substitute, they will enter
normal operation in majmbr state. Nevertheless, a timeout should be established, so
that a second node is able to enter the subst state and assume the mastership in case
the first candidate ends up by excluding itself.

If the resulting group Vn is the majority, confirmation of the last view V` has a
definitive character, and any failed (or partitioned) node that is contained in the view
will have to be notified about this configuration whenever it tries to join again the
majority group. In minority operation, some additional considerations are required,
which we describe in sect. 4.3.3.

4.3.3 Minority Operation

One distinguishing feature of the HMS protocol is its partitionable character, that
allows full operation in minority mode and guarantees the consistency of the majority
history when partitions are merged. This section describes in detail all those actions
and special considerations involved by operation in the minority mode. The majority
condition may be lost when the cardinality of the group is reduced by failures or parti-
tions. The minority operation affects view proposal and master changing procedures,
but also merging of partitions which always involves at least one minority group. A
particular situation arises when two minority partitions are to be merged. This case
deserves specific attention and will be separately discussed later in this section.

Minority View Proposal and Confirmation

Since in an asynchronous system node failures are indistinguishable from network
partitions, when an exclusion causes the group to lose the majority condition, confir-
mation or discarding of previous prepared majority views must be postponed, as there
might exist a disjoint majority group which has taken a different resolution on such
views. Thus the algorithm described in sect. 4.3.2 for proposing and confirming views
must be slightly modified in case the group is in minority. Such differences are made
explicit in the algorithms for minmstr and minmbr states, pictured in figs. 4.6, 4.7.

If the master has prepared a view Vn which turns out to be in minority, before
sending the Setmem message, it switches the view list. The strong list is set aside
without modification, and the weak list is initialised with the entry (Vn, prepared).
From that moment, the master will handle the weak list instead of the strong one,
until the majority status is restored. The Setmem message in this case will contain
not only the just prepared minority view but also the latest confirmed and prepared
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majority views, in order to ensure a uniform knowledge about the majority across the
group for easing a future merging with a majority. When another node receives the
minority proposal from the Master, it will perform the update of the strong list and
then an identical switch to the weak list. Proposal, confirmation or discarding of views
in the minority condition, using the weak list, is done in the regular way described in
sect. 4.3.2, but committed minority views do not have the same definitive character as
majority ones, and are not stored in the stable history.

Moreover, higher level applications that make use of HMS membership service are
informed about the fact that the group is not the majority, so that their actions derived
from these membership changes respect whatever application–dependent restrictions
may be required for minority operation.

Master Change

The master changing protocol must also take into account the fact that the group
stops being a majority in order to guarantee the desired behaviour.

Once the master of a majority group fails and its substitute NPM initiates the
master changing protocol, it can realise that the left group is no longer a majority, or
that it turns out to be excluded by answers of the remaining members thus becoming
a singleton. The latter case is easily solved by installing a singleton view. The former
case, instead, requires that all participants enter the minority mode while preserving
the consistency properties of the majority history. Therefore, once the substitute NPM ,
has checked that none of the exclusion conditions holds (so that it does not have to
exclude itself), some care has to be taken when analysing the answers of surviving
nodes and proposing the new view.

1. The confirmation of V` (by including (V`, confirm) in the Setmem message) is
possible only if it appears explicitly as committed in some list of the surviving
nodes. However, if it is simply prepared in all its surviving participants, no
upcommit takes place.

2. A (Vp, prepared) view found in View messages such that Vp > V` cannot be
discarded even if not every node in Vp has reported it as prepared, regardless of
whether NPM ∈ Vp or NPM /∈ Vp. It might be the case that a majority partition
existed in which all Vp participants had it prepared, so that the majority master
took the decision to confirm it.

3. Nevertheless, a prepared view Vp can be discarded if a later prepared view V ′

p

has been reported. If Vp had been confirmed by the majority master, any node
receiving a later view V ′

p should have it confirmed, either in its strong list or
in the majority history. But if that were the case NPM would have seen that
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confirmation in the arguments of the View messages. Therefore the new master
will identify the most recent among all the prepared majority views, say VP , and
include the pair (VP , prepare) in the Setmem message.

When processing the Setmem message each node will install the new proposed view
in the weak list and update its strong list as the infomation in the message indicates. If
the node held a prepared view, it will now label it committed and produce a commit

event only if the Master included the corresponding confirm instruction in the message.
Otherwise, the view will be discarded and substituted by the more recent view the
master announces now as prepared. If no prepared view was present in the list, it
may now add one according to the master’s instructions. Afterwards, the node will
operate on the weak list while the strong one is left pending until the node tries to join
a majority group.

The above description applies to the start of minority operation, when the majority
character is lost but the operation of master change within minority is basically the
same.

Partition Merging

The process of partition merging is fundamental for partitionable operation. It
includes those actions required to reincorporate a minority group to the majority, but
also to unite two minority groups into a larger, still minority view in a consistent way,
and to compose a majority by merging several minority groups whenever the majority
has disappeared from the system. This section deals with the first case, while the
second and the third require some specific actions that will be described in detail in
the next sections.

In HMS, this process is the same employed by new nodes that wish to join the
group for the first time, since a new node will install a singleton view at startup and
will thus necessarily be in a minority group at the beginning.

Any minority master, NB, in a released view, VB, will periodically broadcast a
Join message to probe for a larger group. Join messages include the composition of
the current view and the identifier of the last majority view it knows about, say VM.
Such a message can be attended by a majority master, NA, leading a stable configu-
ration VA (i.e. a released view, such that all the participants have acknowledged its
confirmation), that may start the partition merging protocol and allow nodes in the
smaller group to enter the majority partition.

Merging is only allowed between partitions with a common majority history prefix,
except for the last prepared view in each strong list. Thus when a majority Master gets
a Join(VB, VM) message, it will check which part of the majority history is missing in
the minority group, by comparing the last majority view reported by the Join message
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with its own history. Then it will send a Joined(V id(VA), V id(VB), VM−VA) message
to each member in the minority group. The first argument of the message, V id(VA),
contains its own view identifier, whereas VM − VA represents the part of the majority
history unknown to the join proposer.

When receiving the Joined message, each node in the minority group, if it is in
a stable state (not in process of view preparation), will check whether the reference
minority view identifier in the message, V id(VB), agrees with its current view. If that is
the case, the node will enter the merge state of fig. 4.11, individually update its strong
list if possible, and reply to the majority Master with a Ready message containing the
received majority view identifier so to allow NA to discard obsolete answers.

The majority master will collect Ready messages and add their senders to the new
view proposal. The wait ends when all the expected Ready have been received, or
a failure occurs within VA forcing a new view, or a certain time period elapses. The
latter condition is intended to avoid NA blocking in an indefinite wait in case there
have been changes to the minority group that prevent nodes from continuing with the
partition merging protocol. When the wait finishes the majority master proposes the
enlarged view with a Setmem message.

If changes have happened to the majority group between the sending of Joined
and the arrival of Ready messages, the majority view identifier will have changed and
the reference used by the minority nodes will not longer be valid. In this case, joining
has to be delayed until both groups share the same knowledge about majority history.
Therefore, a new Joined message may be sent with the last changes and the new
reference identifier, and the joining can be retried.

When receiving the Joined message from NA each minority member abandons the
group led by NB, so that consistency is kept among majority histories of nodes belong-
ing to the same view, and waits for a view proposal from the majority master. After
the exchange of the corresponding Ready messages and the arrival of the Setmem
from NA these nodes will enter the majmbr state, take the message sender as their
new master, and join the majority group. A timeout is also established so to end this
wait after a certain period, in order to avoid a blocking if a certain node got excluded
from the new view to be formed. The wait will also be interrupted if NA is detected to
have failed. In such cases, having abandoned the group VB, each node will install the
corresponding singleton view and restart sending periodic Join messages.

This procedure applies to the case in which the Join request from the minority
reaches a majority partition. But merging is also possible between two minority groups
in order to form a larger one, if several minority groups exist. In particular, such
merging will be definitely needed if the system has split and lost the majority at all,
to recover it. In the case of merging two minority partitions, the largest group, is in
charge of leading the partition merging protocol, acting as the majority master in the
procedure described above. If both minority partitions have the same cardinality, the
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one that holds the would–be master of the joint set, according to the deterministic
master selecting rule, will lead the merging. The rest of participants will enter the
minmbr state when receiving a Setmem message that contains the proposal of a
minority view.

View History Matching

When two minority partitions exist, they may get in touch and attempt joining.
Unlike in the case of merging led by the majority, the resulting master of the joint
group from two minorities does not necessarily have the most up to date information
on the majority history. This raises the need for a special procedure to share that
information between both parts before running the partition merging protocol. That
goal is achieved by the view history matching subprotocol described in this section.

When a minority master Nm1 gets a Join message carrying an outdated version of
the majority history, and provided it is not in the situation to assume the leadership
to merge both partitions, it will reply to the sender with a special Update message
containing the part of the majority history the other group is missing. This includes also
the last prepared majority view that may have been left pending after the partition.4

The minority Master receiving such Update message will refresh its majority history
and propagate this information to the rest of its group. The updating group will not
accept other Join messages until all strong lists agree (see algorithm of the updat state
in fig. 4.11). When updating their histories, nodes may find that some prepared view
they had suspended in the strong list has been confirmed by the majority. Therefore,
they will proceed accordingly, labelling it committed and then released. Conversely,
if the prepared view is not present in the majority history updates, they will discard
the view.

A special situation arises when joining of two minority partitions adds up to a
majority group. The subprotocol for view history matching and the partition merging
procedure ensure that, at the point of sending the majority Setmem, the master
knows that all participating members have a common, up-to-date knowledge of the
majority history, including all confirmed majority views and perhaps a last prepared
view. Among the possibly multiple prepared majority views that can be left pending
in different minority partitions when the majority is lost, all merging protocols ensure
that only the most recent one is kept while the others are either confirmed, if evidence
exist for their installation, or discarded. Such latest prepared majority view, say Vp

must now be confirmed. Thus the master will propose the new majority view Vn by
sending a Setmem(Vn,(Vp,confirm)) message.

Nodes accepting the Setmem will process their remaining strong list according to

4Such prepared view must also be included in the Joined message in case the most up-to-date
partition is leading the merging process.
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the information on Vp sent by the new Master, and then append Vn to that list as
prepared, while the weak list is discarded.

4.4 Performance of HMS

The HMS protocol has been fully implemented in Java as a membership monitor
that provides the generic interface in 3.1. The protocol makes use of a external fail-
ure detector, and a basic layer providing unreliable transport. All components are
implemented in the context of HAMS project, so that communication among them
takes place by means of events, and they fulfil the generic interfaces of notifiers and
listeners defined therein. We have run a series of tests to check the correctness of the
implementation and also to characterise the protocol performance.

The behaviour of the protocol depends on a large number of parameters. Besides,
the uncountable scenarios and situations that may arise during the execution multiplies
the observable quantities capable to be used as performance measurements. This is
probably the reason why no standard metrics exists for membership protocols.

In order to characterise the performance of HMS, then, the following time quantities
have been defined.

• Tjoin is the time elapsed from the moment the master receives a Join message
until a new view is installed.

• Tfail is the time from the reception of a failure notification from the failure detector
until a new view is installed.

• Tcomm is the time elapsed from the installation of the initial zero view when a
node starts up until it installs the next view, i.e. it is integrated in the group.

These quantities give an idea of the time cost of the fundamental protocol opera-
tions. In particular, Tjoin and Tcomm measure the time of reaction to the incorporation
of new members, the former from the point of view of the already existing group and
the latter from the point of view of the new node. Conversely, Tfail measures the time
cost of excluding a node that has been judged failed by the failure detector.

The absence of a global time in asynchronous distributed systems forces these quan-
tities to be defined in terms of local clocks. Therefore, each of them is defined as a
difference between the value of a node’s local clock when the installation of a view
takes place minus the corresponding value when the former event (reception of Join,
failure notification or installation of zero view) took place. In our experimental setting,
all nodes are launched in identical processors, and thus we may safely assume that all
clocks have a comparable speed, and thus we average the measured quantities over all
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nodes in the system. This implies no loss of generality, since in case of different clock
drifts, the measurements could equally be performed locally and the speed of the clocks
compared to an external reference so that the results can be expressed in terms of a
single time unit.

Given the large number of parameters involved in the protocol, and the multitude
of possible situations, a reduced set of scenarios was selected in order to perform the
characterising measurements. In particular, we measured the quantities defined above
in situations when the change in the group involved just one node.

Since one of the major distinguishing features of HMS is the different handling
of majority and minority groups, it is necessary to measure the time costs in both
operation modes. Besides, changing between both modes requires specific actions to
be taken, so that the time cost of joining or leaving the group may be different if the
group change implies a change in the mode of operation. To evaluate the impact of HMS
majority handling on the time cost of joining and leaving the group, the measurements
were also performed on scenarios in which each connection or disconnection implied
moving from minority to majority and vice versa.
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Figure 4.14: Mean value of Tjoin as a function of the group size.

For each experiment, a size N was chosen for the preconfigured cluster, and a total
number of nodes, m ≤ N , was launched. Then join and leave operations were forced
by successively disconnecting and connecting a single node, by turns. For each size of
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Figure 4.15: Mean value of Tcomm as a function of the group size.
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Figure 4.16: Mean value of Tfail as a function of the group size.
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the cluster, various values of m were tested, in order to reproduce the different settings
discussed above.

• m = N
2
−1 is a strictly minority. Successive disconnection and rejoining of a single

node makes the size of the group vary between N
2
− 2 and N

2
− 1, so that the

majority is never reached and the cost of the fundamental operations in minority
can be evaluated.

• m = N
2

+ 1 represents a majority group, but a single disconnection makes the
size vary between N

2
and N

2
+ 1, so that each change implies a change of mode

to or from minority. This setting thus allows us evaluate the cost of operation
mode changes.

• m = N
2

+ 2, m = N define groups in strictly majority, also after a single node
disconnects, so that the observables can be measured in majority operation.

A first set of experiments was carried on a cluster of 8 PCs (Intel R© Pentium R© 4,
CPU 2.80 GHz). The processors were running the Linux kernel (version 2.4.22) and
JDK 1.4. We chose a total size of the system N ∈ {2, 4, 6, 8}. With such realistic
setting, tests were carried for strict majority, m = N

2
+ 2, for the maximal group,

m = N , and for majority–minority alternation m = N
2

+ 1. The strict minority,
m = N

2
− 1, rendered a singleton group for N ≤ 4, so that experimental points could

not be taken. The results for the mean values of the three observables are shown in
figs. 4.14-4.16. Those plots show rather good scaling for these moderate sizes of the
system, with all the observables exhibiting a linear behaviour and small slope.

Fig. 4.14 represents the time cost Tjoin as a function of the total number of nodes in
the final group. Tjoin measures the time from the detection of a Join attempt until the
installation of the following view, and thus includes the cost of forming, proposing and
confirming a new view from the addition of a single node. Fig. 4.15 shows a related
measurement: that of Tcomm, the time it takes for the new node to become aware
that it is included in the collective view. This quantity is necessarily larger than the
former, since the time starts counting when the isolated node installs its zero view and
stops after the node has received the confirmation of the collective view, and thus the
measured period includes the time Tjoin, but also the cost of composing, sending and
processing all the required information to update the history of the joining node. The
extra time accounts for the cost of spreading the Join request and getting it accepted
by the master of the formed group. Finally, fig. 4.16 shows the dependence of T ′

fail with
the size of the group. This represents the average cost of proposing and confirming a
view due to the exclusion on a single member. In the case the excluded member was
the master of the group, Tfail includes the cost of the master changing procedure.

In order to test the protocol in larger systems, multiple nodes had to be launched on
each available machine. The physical cluster available for most of our tests consisted
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on four PCs (Intel R© Pentium R© 4, CPU 2.80 GHz), so that N was chosen as a
multiplicity of 4, N ∈ {20, 40, 60, 80}. For each size, tests were run with m = N

2
− 1,

m = N
2

+ 1, m = N
2

+ 2 and m = N . The last two values correspond to strict majority
and appear as a single series on the plots. The experimental results are contained in
figs. 4.17-4.19.
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Figure 4.17: Mean value of Tjoin as obtained by execution on 4 PCs.

These plots show the increasing of the time cost of operations with the number
of nodes that form the view. The scaling is faster for these larger system sizes as
compared to the realistic settings described above, which are also shown in the graphs.

An important factor that must be taken into account when analysing this incre-
ment is the fact that the experiments were run on a test of only four physical nodes.
Therefore, for system sizes of 10 nodes and beyond, several nodes were running on the
same machine. The number of nodes launched per physical host does obviously affect
the time cost of any operation. This was explicitly checked by using eight identical
PCs to launch a system of N = 8 nodes and measure the three observables Tcomm, Tjoin

and Tfail, and then repeating the experiment using only 1, 2 and 4 physical hosts. The
results are pictured in fig. 4.20, which shows a linear scaling of our observables with
the number of nodes running in the same physical machine.
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Figure 4.18: Mean value of Tcomm as obtained by execution on 4 PCs.
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Figure 4.19: Mean value of Tfail as obtained by execution on 4 PCs.
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Figure 4.20: Scaling of time costs with the number of simulated nodes per physical
host, for a cluster of N = 8 nodes.
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4.5 Properties of HMS: Additional Uniform View

Agreement

The HMS protocol fulfils the basic specification of the GMP in 3.1.2.

The major contributions of HMS, different to most existing specifications of mem-
bership services, are the following.

• Specific treatment of majority and minority operations, explicitly described in
the specification of the protocol.

• Capability of losing and recovering the majority due to partition and remerging
of the network, and to resume normal operation.

Besides the basic properties in 3.1.2, HMS provides an additional property related
to the latter feature. This property can be enunciated as follows.

Property GM.6 (Uniform Agreement on Majority Views). A majority view is never
installed in a node if there exists a previously committed majority view whose commit-
ment is not known to this node.

This means that the group majority history — the only one that is unique, being the
group partitionable — is maintained by all the nodes in the system, as they take part
of the majority. A single node may have an outdated information on the trajectory of
the majority group while it is disconnected from such majority, but it will be brought
up to date before installing a fresh majority view. Such guarantee is achieved thanks
to the use of stable storage to keep the information on installed majority views, and
to the subprotocols of partition merging and view history matching.

The usefulness of this property is clear when the group losses the majority due to
failures or partitions, so that all the surviving nodes are left in minority operation.
When the failed nodes or channels are repaired, and a new majority group is formed,
the Uniform Agreement property ensures that each participant will be able to decide
whether it missed some installed majority view, and to identify which members were
present in the latest majority group without additional communication rounds. For an
application that needs to take special actions upon recovery of failed nodes and which
distinguishes the majority situation, this feature implies a great simplification in the
logic of the recovery operation, as illustrated by the following example.

4.5.1 Example Case of Use

In this section we describe a case of use to illustrate the usefulness of the prop-
erty GM.6 for a real application that makes use of the membership services.
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A typical example might be given by a distributed database replication system.
Let us consider a set of database servers in which the database is fully replicated,
and picture an update–everywhere replication scheme [67] in which any node may
receive and serve client requests. Thus a client may connect to any server to initiate a
transaction, which will in general be composed of a series of read and write operations,
and will be terminated by a commit or abort decision. Coordination is required among
the replicas in order to ensure atomicity regarding the last decision: either all or none
of the replicas must commit a given transaction. Moreover, synchronisation among
servers is also required to guarantee serialisability of different transactions.

Replication protocols are easier to implement on top of group oriented services [68].
Detection of replica failures or virtual synchrony support from group communication
services is helpful to provide the desired guarantees in case of failure. With access
to membership information, the database application can react to the various failure
patterns and recover to continue providing its service.

Let us consider then a particular replication protocol in which client requests may
be received by any server. Let us also assume that this application runs on top of a
partitionable membership service (which may be part of a group communication suit).
In order to ensure consistency, progress is allowed as long as the group is in majority.
Thus, when a node is partitioned from the group, it must stop serving client requests,
so that only the majority group continues to operate and make changes to the database.
When the node rejoins, it must be brought to the most up-to-date state before being
able to resume normal operation, i.e. to receive and serve client requests normally, and
the application must include the necessary recovery protocol to allow the restoration
after failures.

Generally speaking, if we are dealing with a partitionable system, in which recovery
after failures is supported, when a node rejoins the majority group after being parti-
tioned or failed it must receive the latest updates applied by the majority group since
its decoupling.

A special situation arises, however, when the network partitioning or the combina-
tion of failures destroys the majority, so that the surviving nodes are left in minority
groups and the application blocks. After some of the failed nodes recover, or when the
partition disappears, the majority can be recomposed. Then it is necessary to recon-
struct the history preceding the majority loss, so that the most up-to-date server can
be identified and instructed to update the others.

In principle, the replication protocol would receive a notice from the membership
service about a majority view being installed. Every member of such group would
then be aware that it is joining a majority group and that majority updates may be
missing. However, none of the nodes has stayed in the majority group across the
transition, neither knows whether any of the others took part in a later majority view
than itself. Then at least one dedicated communication round is required in order to
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figure out which of them has the most up-to-date information and is responsible for
updating the rest.

The property GM.6 of HMS avoids such a round, as each node will know, at the
moment of installing the new majority view, all the previously confirmed majority
groups. With this guarantee, every member will have access to the identities of all
surviving participants of the latest majority group. This allows the updating phase to
be initiated immediately, without need for additional communication.

Other more sophisticated examples might include role inheritance (either for repli-
cation management, or for other purposes) and role recovery after failures are repaired.
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Chapter 5

Halo Membership Service

This chapter presents a different membership service for large scale systems, in-
tended in particular for the very common scenario of client–server architectures. The
system setting of our interest consists of a reduced, preconfigured group of nodes serving
requests from a set of external clients whose identities and number are not predeter-
mined, and which will typically connect over a WAN. From a practical point of view,
this is the typical scenario that appears on the interaction between clusters devoted to
offer highly available services and clients that connect to access to those services.

The problem involves thus the interaction between two node sets with very different
properties. The lifetime of client–server connections is generally much shorter than
that of server–server connections, which are expected to last for long periods of time in
order to implement the required services. Moreover, the failure rate that affect clients
— i.e. client node failures and failed communications between clients and servers — is
expected to be at least one order of magnitude larger than the failure rate observed in
the group of servers.

Here an extended specification of the membership problem is proposed for this kind
of environment. It takes into account the different consistency properties that each type
of node requires from membership information in such scenarios. We also present a
practical service, HaloMS [62, 69, 70], that fulfils the specification and provides the
required guarantees.

5.1 Large Scale Client–Server Scenario

The client–server scenario is a commonly occurring one in distributed systems, and
in particular in the context of highly available services. Fault tolerant services are
usually built over a reduced set of stable computers interconnected over high speed
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and highly reliable networks. Even though failures have to be addressed, they are
expected to be infrequent. In contrast, clients that access those servers tend to do
so through much less reliable and much slower networks (e.g. the Internet, wireless
networks, etc.), running over much less stable hardware and system software. Besides
the different speed and stability properties, the number of clients accessing services
tends to be much bigger than the number of servers cooperating to provide them, and
additionally, the duration of client–server interactions is usually very short compared
to the duration of inter–server connections. From the point of view of simplifying
the development of highly available applications or components, the deployment of a
group membership service that provided strict semantics to all nodes would be the most
favourable scenario. Nevertheless, such an attempt will necessarily face the difficulties
inherent to a large scale, highly dynamic environment.

In spite of being a most useful tool for providing high availability, the usage of group
oriented services in practice is usually constrained to small environments, formed by
a reduced group of elements. Most of the existing classical group support systems
described in section 2.2.1 are devoted to environments with low change rate, being
the group members connected over a LAN, or at most over several interconnected
LANs [36]). The reason for these limitation lies in the difficulties mentioned in 2.2.2 to
develop scalable group membership and group communication protocols for the large
scale or wide area networks.

Despite these difficulties, the availability of the group services (membership, group
communication, consensus) is highly desirable also in large scale systems, as prove the
different attempts that have tried to achieve scalable groups, described in section 2.2.2.

One of the first conceptual approach to large–scale group support, proposed by
Babaoğlu and Schiper in [21], relied precisely on the differentiation of node roles, dis-
tinguishing servers, clients and sinks.

Regarding practical implementations, although various approaches exist to provide
group support in the large–scale, as described in section 2.2.2, none of them would be
suitable for client–server architectures. Just to mention a few, Spread [14] is aimed to
provide strong guarantees regarding group changes and message delivery to all mem-
bers in the system, and although addressed to WAN environments, it can only cope
with a limited number of nodes; InterGroup [17] addresses the issue of scalability by
distinguishing between active sender and receiver nodes, and membership agreement is
run only among the former; Xpand [39] improves the performance over large groups by
relaxing the consistency guarantees, but this is done as a function of the application
requirements, and the same guarantees are provided to all system members.

Whereas from the point of view of the applications developer it would be desirable to
have an homogeneous membership service providing accurate membership information
to every single node, the associated cost is clearly excessive when dealing with big
enough groups. On the other hand, client–server interactions that occur in a setup as
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the one we envision do not generally require precise information about membership.
On the contrary, the consistency requirements of client nodes differ from those of
servers [71]. As argued in [72], the model that best fits client–service interaction when
the set of clients is large and dynamical is that of open groups, where clients are
external to the group of servers. For some applications, it could more appropriate for
the servers to maintain consistent views about the client set.

5.2 The System Model

Consistently with our general considerations in Chapter 3, the system is modelled
as asynchronous and partitionable. It will be composed by a number of processes (or
nodes) that communicate by means of message passing. Failures may happen to nodes
(as crashes) or to network channels, and partitions may also occur. After crashing, a
core process is allowed to recover and rejoin the group. However, for client nodes we
consider the model of crash/no recovery, since client connections are typically short–
lived. The system is equipped with a local failure detector module at every node.

As already mentioned, we focus on a particular scenario, in which two different sets
of nodes interact. On one hand, there is a reduced preconfigured group of servers, which
can be modelled as in section 4.1, and that will be referred to as core. On the other,
there is a group of external clients that we call halo, whose identities and number are
not predetermined, that request some service from the core. The connection of clients
to the group of servers takes place over a WAN. All these observations are common
when facing the design of fault tolerant systems, and can be considered as the common
pattern that appears in cluster–like systems offering services through a WAN. In our
model, we also assume that clients do not need to access other clients, so that the only
relevant interactions are server–server activity and client–server accesses.

Although failures may happen to every node and connection in the system, the
scenario under study allows us to assume that client–server connections are subject to
more frequent failures than those internal to the group of servers.

As in section 4.1, the model includes an assumption regarding the dynamics of the
core group, namely that within the server group there exist failure-free intervals of
time long enough for the failure detector to stabilise and a full reconfiguration to take
place. Such an assumption is not required for the group of clients, as their membership
information is not required to satisfy the same strict liveness guarantees.

The large scale scenario we have depicted implies that a special effort is required to
efficiently handle a large amount of unstable clients accessing a reduced set of servers.
Efficiency is specially relevant when no failure affects the group of servers. When
failures occur, servers have to reconfigure fast, even if a large amount of clients were
connected to the faulty servers. Additionally, client connections, disconnections and
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failures also have to be treated efficiently within the group of servers, so that the
remaining clients can be served with no significant loss of performance.

5.3 The Client Membership Service Specification

This work closely follows the idea of using different roles as proposed by [73], but
applying them to group membership, independently of group communication. This is
to be consistent with the modular architecture described in section 3.3.

The goal is to define a service responsible for managing the most typical information
needed by clients in order to access servers, and the most frequent information that
servers need about clients. Throughout the following sections we will assume that
servers require strictly consistent membership information about themselves, and that
is provided by a classical membership service fulfilling the basic specification.

The only information clients are assumed to know is the network address of at
least one of the servers. Given this starting hint, clients will be provided with regular
information about the server group composition. Such information will be delivered to
each client as view change notifications in a similar way to the delivery of view change
notifications within the server group. The only distinction will be liveness.

As a remarkable feature, in this approach the client group membership information
is explicitly addressed, instead of being considered as part of the common shared state
that has to be handled by upper software placed at the servers. In a certain sense, this
work can be considered as a practical realisation of the ideas of maintaining distinct
roles for servers and clients to support groups in the large scale in [73], while following
the modular approach that separates group membership from group communication.
With such a component based architecture, a group membership service for large envi-
ronments should be available as a convenient building block to further develop either
virtually synchronous group communication primitives or any other kind of recovery
protocols.

Our approach relies on providing similar group membership interfaces to clients
and servers. This interface, which was shown in figure 3.1, is general enough to allow
the development of a variety of membership services, as already discussed, while being
powerful enough to enable the development of upper components. The asymmetry of
the problem regarding core and halo members implies that the concept of membership
group notifications carries different meaning for servers and clients, and that those
notifications are delivered with different semantics. The core group, i.e. that of servers,
requires a group membership service satisfying the classical GMP, as enunciated in
sect. 3.1.2. This can be provided by the HMS protocol described in the previous
chapter or by any other classical membership service that fulfils such specification. In
this chapter we are interested in the information related to client membership, which
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will not be provided as conventional views, but will require the definition of specific
membership events.

Observations about client–server interactions and client–server software architec-
tures, provide the means to relax the strict and classical membership semantics for
client membership information, what constitutes the basis for the specification of a
client membership service. Specifically, clients do not need to be aware about the
presence of other clients, but rather some notion about the server group configuration
that enables them to contact server nodes as needed. In contrast, server nodes need
precise information about the rest of the servers, and accurate but possibly delayed in-
formation about clients. In this way, server applications with fault tolerant capabilities
which are common for cluster setups will be enabled.

Fig. 5.1 illustrates these concepts by showing an example of the different knowledge
each member holds about halo membership at a given moment. As depicted, while all
core nodes share a consistent view of the core group, their local information about
clients may vary. On the other hand, each client must only know about core nodes
that already know about the client.

5.3.1 Notation

In the remaining of this chapter we will be referring to two different types of mem-
bership information. Regarding the membership of the group of servers, since it con-
forms to the classical specification of the GMP, we will use the traditional terminology
in the context of membership services, already introduced in 2.1.3 and extensively used
in the previous chapter.

The term view will thus refer to an image of the core group membership held by a
particular core node. Since the group of servers is modelled as partitionable, an explicit
distinction may be done between majority and minority views.

As discussed above, in the particular scenario we are concerned about two sets of
nodes are defined: the core, or central group of servers, and the halo, i.e. the unbounded
and dynamically changing set of client nodes. Each group requires different membership
information regarding the other. In that sense, we introduce the concepts of halo view,
to denote the group of clients a given server node knows about, and that of membership
horizon, to denote the knowledge a client has about the group of servers.

5.3.2 Formal Specification

In order to specify the halo membership problem, we need to state which series of
guarantees we require regarding the information delivered to and about the connected
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clients. These requirements should be less restrictive than those of the core membership
service, but enabling the membership service to serve as basis for the construction of
upper highly available components.

The requirements can be expressed as the following list of properties, that acts as
the problem specification.

Property HM.1 (Unicity). A client receives a different unique identifier each time it
joins the group.

Whenever a new client connects, the core group must reach agreement on the join-
ing, and this client must receive information on which core nodes are capable to be
contacted for its requests. Thus, we want that a client receives a different unique iden-
tifier each time it joins the group, that can be used to identify it within the group for
the time the connection lasts.

Property HM.2 (Validity). A client node does not include a core member in its
horizon unless the core node included the client in its halo view.

A client node should not be able to communicate with a core member that has not
yet known about this client’s connection. Therefore, property HM.2 requires that a
client’s horizon includes only core members that already contain the client in their halo
views.

Property HM.3 (Halo Consistency). Two different core members do not disagree on
the identifier of a particular client.

This property prevents the client from receiving a double identifier in case it dis-
connects and tries to connect again before all core members have properly released the
first identifier.

Property HM.4 (Halo Liveness). If a client fails or disconnects, its identifier will
eventually be invalidated.

Client identifiers are assigned dynamically as clients connect to the group, and they
are used to identify the client for the duration of its connection. Therefore, once the
client disappears from the group, its identifier is no longer in use and should be removed
from all halo views of core members. This is to guarantee that if the client fails or
disconnects, the core group will eventually stop trying any communication with it. Any
client related information may be safely removed from the system from this point on.

Property HM.5 (Horizon Liveness). (i) If a core member included in a client’s
horizon fails, the client will eventually update its horizon to exclude the node.
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(ii) Conversely, if a core member joins the group and both the client and the new
member stay connected, the client will eventually include the core node in its
horizon.

Finally, we specify some degree of liveness in halo membership information, enough
to ensure the progress of the system after changes occur to the core group that agreed
on the joining of a certain client. The first liveness condition to be satisfied ensures that
clients will not indefinitely try to contact a failed core member. This does not suffice
to guarantee that in case that a core node disconnects from the group it does not keep
communicating with its known clients. Thus in case of partition in the core group, two
different partitions may know about the client’s identifier and the client may receive
messages coming from both. The membership protocol running on core nodes cannot
be aware of this circumstance in neither of the groups. Hence, the client side of the
protocol will be responsible to discriminate between such messages and remain joined
to one of them while discarding the other. The decision will depend on the policy
about partitions of the particular protocol that implements this specification.

Conversely, the second part of property HM.5 ensures that new core members get
to be known by connected clients, to maintain a client’s connection after a number of
changes happen to the core group. After a client has been granted an identifier, all
core nodes knowing about it might fail, so that the client would exclude them from
its horizon and this could be reduced to an empty set. The property HM.5 guarantees
that if new members were added to the core group, they will be updated with respect
to the client’s connection and the latter will not be lost.

5.3.3 Scenario of Applicability

To illustrate the usability of such an approach, let us picture a particular scenario
of client–server interactions, as shown in fig. 5.2. There a certain client, C1, is issuing
a number of invocations to the group of servers. Such invocations do not need to be
served by a single core member, but different servers can be involved in interactions
with C1. Moreover, during the process of serving each invocation, a core node could
launch one or more invocations to other servers, as depicted in the figure.

In case of failure of the client, there may be a number of pending invocations that
servers should manage. In a scenario as the one shown, the tasks needed to monitor
the client’s connection and react in case it is lost have to be repeated by all involved
servers. With a client membership service, instead, the client connection is managed
by the group at the membership level, therefore allowing a unified treatment of the
fault and simplifying the logic of the application.

Moreover, if the service has to tolerate server failures, the information on the client’s
connection will have to be replicated by the servers. In case of failure of the server
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that received an invocation, this allows other servers to either continue attending it or
at least recognise redundant invocations. The replication of the client’s connection can
also be handled at a lower level by the client membership service, what makes it more
transparent for the application.

5.4 HaloMS

This section describes HaloMS (Halo Membership Service), a particular membership
service designed to fulfil the above specification of a client membership service. The
HaloMS is devised as a component to be laid on top of an existing partitionable core
membership service that provides the basic membership guarantees specified in 3.1.2.

5.4.1 Architecture

The specification of the client membership service is independent of the particular
classical membership service that maintains the information on the core. Thus, the
HaloMS service could be deployed on top of different classical membership services.
But in any case, it will make use of the information provided by them in the form of
views.

According to the general approach of a modular architecture, with well–defined
interfaces to ease the interaction among components, the HaloMS should offer the
generic interface of an IMembershipMonitor (see fig. 3.1) to upper components, and the
interface of IMembershipListener (see fig. 3.2) to the underlying classical membership
service.

Contrary to a core membership service, the HaloMS involves interaction among
servers and clients, and must be running on both types of nodes. Servers will be
informed by the HaloMS about clients joining or leaving the group, and conversely
clients will be notified about changes to the group of correct servers that know about
them. This means the HaloMS will have modules running on each type of node.
From the point of view of the design, both types will offer the same interface of
IMembershipMonitor. The decision of unifying server and client group changes under
a similar group membership interface allows an easier development of upper software
components that need to react to group changes.

Having the same interface, however, servers and clients require different implemen-
tations of the group membership service. Core nodes, as shown in figure 5.3, will include
a traditional membership service (Core Membership Service), and a specific HaloMS
component to maintain client group membership. The Halo Membership Service will
use the information provided by the Core Membership Service — conforming to the
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general interface of IMembershipMonitor — and will register as IMembershipListener
to be notified about committed core views. Correspondingly, it will inform higher level
components about changes to the halo view by defining specific membership events. As
shown in the figure, in the most general case higher level applications will have access
to both types (core and halo) membership information through the same interface, but
exchanging specific event types for each of them.

On the other hand, on client nodes no classical membership service is required. The
only membership information will come from the corresponding module of HaloMS. As
shown in the figure 5.4, such information will be equally provided through the generic
interface.

5.4.2 Basic Elements

The HaloMS protocol is based on the circulating token algorithm for mutual ex-
clusion [74]. In its basic version, the token is generated by a majority core group and
circulates along a logical ring formed by the view members. In this section we describe
in detail the operation of this membership service.

Node Identifiers

Within the core set (see 4.1), every node has a predefined identifier, known in
advance by the whole group. On the contrary, the identities of halo nodes are not
predetermined. Therefore the halo identifiers cannot be assigned a priori.

A unique integer identifier is thus assigned dynamically to each halo node as it joins
the group. Thereafter the client node is referred to by such identifier for as long as it is
connected to the group. Moreover, no client request may be served until the identifier
has been granted. After the node leaves the group, its identifier has to be invalidated.
In any case, the halo identifiers have to satisfy the condition not to collide with core
preassigned identifiers. Since the latter are known beforehand, HaloMS chooses client
identifiers from the set of integers larger than the highest core identifier. The first
client identifier is chosen as an integer far enough from the reserved core set, and the
following integers are subsequently used.

The continuous increasing of the identifier is not a problem in a practical situation,1

but it is also possible to recycle halo identifiers after they are invalidated, if the rank
of identifiers is limited for saving space.

1Notice that a four–bytes identifier would allow a number of connections as large as ≈ Ø(232)
nodes.
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State

The HaloMS protocol, as already discussed, runs different modules on servers and
clients, and therefore different state is maintained on each type of node.

Core nodes

• Each core node maintains partial information on the connected clients, in the
form of a halo view. This consists of a set of entries, each of them corresponding
to a known client. A given entry in the halo view has the form

[Id, address, Nr, status, V, Vu] ,

where Id is the assigned client identifier, address holds the halo node’s physical
address, and Nr the identity of a core node that acts as its representative. The
field status indicates the level of confirmation of the client’s connection to the
group,

status ∈ {proposed, committed, definitive, removed} .

On the other hand V is a core view identifier whose meaning with respect to the
client connection may be different depending on the particular value of status.
As will be described in detail later, after a client status is set to committed,
its representative may decide to perform an updating round to refresh the core
group information on this entry (as required by property HM.4 of the formal
specification). The field Vu will be not empty only when an updating round is
running, and in that case it will contain a view identifier related to the updating
procedure.

When a core node starts up, its halo view is empty, and successive token passes
update it as appropriate. Since the HaloMS protocol allows integration of clients
only in a majority core group, the halo view is reset every time the node abandons
the majority.

• Moreover, each core node running the halo component keeps a copy of the last
token it received. This is needed for recovery purposes.

Halo nodes
The HaloMS needs also to maintain specific state in the client nodes. This is, how-

ever, much more limited than the state in core members. The main element in a client’s
state is its membership horizon. This holds a set of core members that are aware of
the client’s presence in the group and agree on its identifier. Besides, the client keeps
also its assigned identifier, to use it in its communications with the group.
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When a client starts up, it is only assumed to know the network address of at least
one of the servers, which will be used to try to establish a connection to the group. The
client’s membership horizon can be initialised only after the client’s connection attempt
has been answered by the core group. Such answer provides the initial membership
horizon, a snapshot of the core membership when agreement was achieved on the
identifier granted to this node. Further updates to the horizon do not necessarily
reflect all core group changes, and thus it will in general not coincide with an installed
core view.

Messages

As the rest of protocols described in this work, the operation of HaloMS is also
regulated by specific messages. The client may send the following types of messages.

• JoinReq(address,ref) is sent by the client in order to establish a connection
with the core group. The message contains as first argument the physical address
of the client, to allow its identification by core members. This message is sent in
two occasions to establish the connection. First the client addresses a JoinReq
with empty ref field to some core node known in advance as the first contact
point. Before admitting the client, the contacted core node will try to assess
the freshness of the joining request providing an integer reference that will be
included by the client as the ref argument of a second JoinReq message.

• LeaveReq(Id) is sent by a client in order to announce its voluntary leave. It
contains as the only argument the assigned identifier Id by which it is recognised
within the core group.

Besides the client’s messages to ask for and dismiss a connection, the core nodes
send the following types of messages.

• JoinQst(ref) is sent by a core node in reply to an initial JoinReq from a certain
client. It includes an integer reference ref that is used to verify the currentness
of the client’s request.

• Horizon(Id, list) is used to notify a client about the core members it may
contact, when it finally has been accepted by the core group. It contains the
assigned identifier, Id, and a list of nodes, list containing the composition of the
core group that agreed on it. The same type of message is used to notify to the
client an update on the set of core members it is allowed to contact, as this set
gets modified by failures or new incorporations within the core group. In such
case, the list will not be equivalent to a core view, but only to a subset of the
currently installed view.
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• Token(T id, Cid, . . . ) circulates along the ring of core members that form a
stable view. It holds an identifier of its own, T id, which consists of an integer
counter, and the node identifier of the core member that generated the token.
The counter is increased every round and whenever the token is regenerated. It
also carries the first available identifier for clients, Cid, which is increased as
members of the ring use it for new clients. Then, a series of entries follows, each
of them indicating an action to be taken on a particular client. Any member may
introduce an entry in the token, thus acting as initiator of the round correspond-
ing to that particular entry. Entries thus carry the identifier of the initiator of
the round, Nini, the client’s assigned identifier Id and optionally some specific
information for that action, as listed below.

– ProposeTE(Nini, Id, address, Nrep) is used to ask the core to admit a new
client, proposing an identifier for it, and carries the physical address of the
client and its representative identifier, Nrep.

– ConfirmTE(Nini, Id) is used to notify the definitiveness of the addition.

– UpdateTE(Nini, Id, address, Nrep, Vfrom,Vto) is basically used to let newly
joined core nodes about already connected clients. It carries the same in-
formation as ProposeTE entries plus the identifier of the last view that
committed the client, Vfrom, and the current core view identifier, Vto, indi-
cating the view to which the client is being updated.2

– RemoveTE(Nini, Id) is used to announce the leave or failure of a connected
client to the core.

– DefinitiveTE(Nini, Id) is used to notify the end of a confirmation or re-
moval round. In the second case, it instructs the core to release the identifier
of a left client.

The token is first generated by the Master of the core group when the majority is
attained, and has to be regenerated by a specific recovery subprotocol each time
the majority core group goes under a reconfiguration.

• RToken(N , lastToken) is a recovery token used after a reconfiguration of the
core group in order to regenerate the token with the most up-to-date informa-
tion. It circulates along the remains of the former majority view in the opposed
direction to the regular token, and contains as arguments the identifier of the
sending member and the last regular token received by that node.

Membership Events

The HaloMS service must offer also the interface of generic membership services.
In particular, to higher level components in server nodes it offers the interface of

2This will be needed for regenerating the token after a view change.
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IMembershipNotifier. Notice that the IMembershipMonitor interface, with join

and leave methods as shown in fig. 5.3 is jointly offered by this and the underlying
core membership service, so that HaloMS does only need to implement the notifica-
tion of its own membership information. This is done by means of a specific event
in the algorithm which in the generic interface corresponds also to a definite type of
MembershipEvent.

• halochange event is produced by the HaloMS protocol at a core node when it
determines the confirmation or removal of a client node. In the generic interface,
the type MBSHIP HALO is specifically defined to this end. Such an event may
carry as argument the current composition of the halo view or (for better scala-
bility with the number of clients) only the added and removed clients from the
last notification.

In client nodes, on the contrary, the HaloMS service is in principle responsible of all
management of membership information. Thus it offers to client–side applications the
whole interface of IMemberhsipMonitor. It also defines a specific event to communicate
membership changes to its listeners.

• horizonevt event is produced by the protocol at client nodes whenever the node
gains knowledge about some change to its membership horizon. In the generic
scheme of common interfaces, this is notified to client IMembershipListeners by
means of the specific type MBSHIP HORIZON, which should carry as argument
the currently known composition of this client’s horizon.

Besides its own notifications, the HaloMS service interacts, via the standard in-
terfaces, with the core membership service. Thus it reacts to the membership events
defined in the previous chapter.

5.4.3 The HaloMS Protocol

As for the HMS protocol described in the previous chapter, the formal specification
of the HaloMS protocol was made in the formalism of I/O Automata. It is included as
an appendix (B.1) to this work. This section presents, nevertheless, the specification
in terms of states and transitions.

Core Members

The part of the HaloMS protocol run by core members can be specified as the
five states shown in fig. 5.5, and transitions among them are caused by membership
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events notified by the underlying core membership service and by the specific HaloMS
messages described above. These states are the following.

• off: In this state no halo view is maintained, and the Token is not circulating
along the members of the view. This happens when the node is a member of a
minority view. In particular, it is also the initial state.

• recovery: It is the state adopted after a majority view has been installed, in
which the token may be set to circulate again. This state performs the necessary
operations in order to identify the most up-to-date member and to reconstruct
the token.

• ringmbr: In this state, a node runs the basic algorithm to add or remove clients,
as the token pass allows it to do so.

• genrtr: This is the state of the node that takes charge of generating the token
and setting it to circulate after a reconfiguration of the core group. Besides in-
creasing the token identifier after each round, the basic operations are equivalent
to those run in ringmbr.

• suspend: If the core membership service, as HMS, provides notifications about
ongoing changes or tentative views, such a notice about the instability of the
current core view may be used to stop the token circulation until a view is defini-
tively installed and the ode can enter the recovery or off state depending on
the majority or minority character of the installed core view. This state, however,
may be skipped if the underlying membership service only provides notifications
about installed views. In such case, the transition from genrtr and ringmbr

states would be directly to recovery or off (see fig. 5.5).

Figures 5.7-5.11 show the pseudo-code for the various states, while a detailed but
informal description of the different algorithms is present in the following sections.



108 5. Halo Membership Service

1: algorithm HaloMS

2: type
3: state t = {OFF, RECOVERY, GENRTR,

RINGMBR, SUSPEND}
4: entry st t = {PROPOSED, COMMITTED,

DEFINITIVE, REMOVED}
5: halo entry t = (client id, address,

entry st t, rep id, view, viewU)

6: token entry t = {ProposeTE,
ConfirmTE, DefinitiveTE,

UpdateTE, RemoveTE}
7: token t = (Tid, Cid, list of

token entry t)

8: ring t = (generator,sorted list

of nodes)

9: var
10: state : state t

11: lastV : view t

12: view : view t

13: haloV : list of halo entry t

14: lastT : token t

15: recoT : token t

16: ring : ring t

17: toProcess, toRegen : boolean

18: begin
19: view := null;
20: lastV := null;
21: haloV := empty;
22: lastT := recoT := null;
23: state := OFF;
24: toProcess:=toregen:=false;
25: while true do

26: case state of

27: OFF: off;
28: RECOVERY: recovery;
29: GENRTR: genrtr;
30: RINGMBR: ringmbr;
31: SUSPEND: suspend;
32: esac

33: end

Figure 5.7: Basic algorithm of HaloMS.

1: algorithm off

2: begin
3: lastT := recoT := null;
4: ring := null;
5: haloV := null;
6: wait for event

7: case event of

8: MBSHIP VIEW(V):

9: lastV := view;
10: view := V;
11: if V is majority then

12: state := RECOVERY;
13: fi;
14: esac

15: end

1: algorithm suspend

2: begin
3: recoT := null;
4: wait for event

5: case event of

6: MBSHIP VIEW(V):

7: lastV := view;
8: view := V;
9: if V is majority then

10: state := RECOVERY;
11: else

12: state := OFF;
13: fi;
14: recv(RToken()):

15: recoT := msg;
16: state := RECOVERY;
17: esac

18: end

Figure 5.8: Algorithms for the off and suspend states.
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1: algorithm recovery

2: type
3: var
4: pred : node

5: init
6: pred := null

7: begin
8: inherit representatives;
9: if recoT!=null then

10: if lastT=null then

11: if recoT.token=null then

12: state := GENRTR;
13: ring := (thisNode,

view.members);
14: toRegen := true;
15: fi;
16: else if lastT.Tid>recoT.Tid then

17: state := GENRTR;
18: ring := (thisNode,

view.members);
19: toRegen := true;
20: fi;
21: fi;
22: if state= RECOVERY then

23: if lastT!=null then

24: pred := immediate predecessor from
ring ∩ view.members;

25: send RToken(thisNode,lastT)

to pred;
26: else if thisNode is the lowest from
27: view then

28: pred := immediate predecessor
from ring.members;

29: send RToken(thisNode,null);
to pred;

30: fi;
31: wait for event

32: case event of

33: recv(RToken()):

34: recoT := msg;
35: recv(Token()):

36: lastT := msg;
37: ring := (lastT.generator,

view.members);
38: toProcess := true;
39: state := RINGMBR;
40: MBSHIP CHANGE:

41: state := SUSPEND;
42: esac

43: fi;
44: end

Figure 5.9: Algorithm of the recovery state of HaloMS.
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1: algorithm ringmbr

2: type
3: halo changes t = (client, action)

4: var
5: haloChg : list of halo changes t

6: nextT : token t

7: nextCid : integer identifier

8: joining : list of (address,ref)

9: toAdd : list of addresses

10: toRemove : list of client

identifiers

11: toUpdate : list of client

identifiers

12: init
13: haloChg := null

14: nextT := null

15: joining := null

16: toAdd := null

17: toRemove := null

18: toUpdate := null

19: begin
20: recoT := null;
21: nextCid := lastT.Cid;
22: toUpdate built from heuristic

algorithm run on haloV;
23: haloChg := null;
24: if toProcess then

25: nextT, haloChg <-

haloV.process(lastT);
26: for Cli in toAdd

27: haloV.add(nextCid, Cli.address,

PROPOSED, thisNode, view,

null);
28: nextT.add(ProposeTE(nextCid,

thisNode, Cli.address,

thisNode));
29: nextCid := nextCid+1;
30: done;
31: for Cj in toRemove

32: nextT.add(RemoveTE(Cj,thisNode));
33: haloChg.add(Cj,remove);
34: done;

35: for Ck in toUpdate

36: nextT.add(UpdateTE(Ck,

thisNode, Ck.address, Ck.rep,

Ck.view, view));
37: done;
38: toAdd := toRemove :=

toUpdate := empty;
39: nextT.setCid(nextCid);
40: send Token(nextT) to

ring.nextTo(thisNode);
41: nextT := null;
42: nextCid := null;
43: halochange(haloChg);
44: haloChg := null;
45: toProcess := false;
46: fi;
47: wait for event

48: case event of

49: recv(Token()):

50: lastT := msg;
51: toProcess := true;
52: MBSHIP CHANGE:

53: state := SUSPEND;
54: failed(Cli):

55: if haloV.getEntry(Cli) has

rep=thisNode then

56: toRemove.add(Cli.id);
57: fi;
58: recv(JoinReq(C,ref)):

59: if ref=null then

60: ref := new reference;
61: joining.add(C.address, ref,

timer);
62: send JoinQst(tisNode, ref)

to C;
63: else if joining contains (C,

ref) then

64: toAdd.add(C);
65: joining.remove(C);
66: fi;
67: joining.mbr timeout:

68: joining.remove(mbr);
69: esac

70: end

Figure 5.10: Algorithm of the ringmbr state.
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1: algorithm genrtr

2: type
3: halo changes t = (client, action)

4: var
5: haloChg : list of halo changes t

6: nextT : token t

7: nextCid : integer identifier

8: joining : list of (address,ref)

9: toAdd : list of addresses

10: toRemove : list of client

identifiers

11: toUpdate : list of client

identifiers

12: begin
13: if toRegen then

14: nextT <- recovery(haloV, recoT);
15: nextT.setTid(lastT.Tid+1);
16: nextCid:=1+max(lastT.Cid,

C proposed in haloV);
17: for Cli in toAdd

18: haloV.add(nextCid,

Cli.address, PROPOSED,

thisNode, view, null);
19: nextT.add(ProposeTE(nextCid,

thisNode, Cli.address,

thisNode));
20: nextCid := nextCid+1;
21: done;
22: for Cj in toRemove

23: nextT.add(RemoveTE(Cj,

thisNode));
24: haloChg.add(Cj,remove);
25: done;

26: for Ck in toUpdate

27: nextT.add(UpdateTE(Ck,

thisNode, Ck.address, Ck.rep,

Ck.view, view));
28: done;
29: toAdd := toRemove :=

toUpdate := empty;
30: nextT.setCid(nextCid);
31: send Token(nextT) to

ring.nextTo(thisNode);
32: nextT := null;
33: nextCid := null;
34: haochange(haloChg);
35: haloChg := null;
36: toProcess := toRegen := false;
37: fi;
38: recoT := null;
39: if toProcess then

40: proceed as RINGMBR, but before
41: sending nextT, increase nextT.Tid;
42: fi;
43: wait for event

44: case event of

45: recv(Token()):

46: MBSHIP CHANGE:

47: failed(Cli):

48: recv(JoinReq(C,ref)):

49: joining.mbr timeout:

50: Proceed as in RINGMBR;
51: esac

52: end

Figure 5.11: Algorithm of the genrtr state.
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Clients

The part of the HaloMS protocol run by clients is much simpler, as they do not
need to coordinate among themselves, but every client does simply interact with the
core group requesting its admission and receiving information about core members. In
our approach, clients use a reliable point-to-point communication channel to connect
to one of their already known set of servers. Whenever a client detects that its server
endpoint fails, it will try to connect through a different server.

Figure 5.6 shows the corresponding states and transitions which specify the client
part of the protocol. In particular, there are three different client states.

• off: This is the initial state, before anyone invokes the method joinGroup of the
HaloMS. In this state the client does not have any contact with the core group.

• reqst: After joinGroup has been invoked, the client starts the process to enter
the halo view of core members by requesting an identifier. It cannot be considered
part of the group until it has received one from the core representative.

• mbr: It is the state of an accepted client node, which has already received an
identifier assigned to it by the core group. The client says in this state until
some higher application invokes the method leaveGroup and forces it to exit the
group, or the representative core node notifies an empty Horizon, meaning that
the client has been excluded, typically because of a loss of majority by the core
group.

The informal description of client operation can be found in the following sections,
while figs. 5.12-5.14 contain the pseudocode for this part of the HaloMS protocol.

1: algorithm HaloMS(Cli)

2: type
3: state t={OFF, REQST, MBR}
4: link t=(core node, link quality)

5: var
6: state: state t

7: localId: integer identifier

8: horizon: list of link t

9: startup : list of initial core

contact(s)

10: idx : integer

11: endpoint : (node, ref)

12: begin

13: startup initialised from

configuration;
14: state := OFF;
15: endpoint := (null, null);
16: idx := 0;
17: localId := null;
18: horizon := null;
19: while true do

20: case state of

21: OFF: off;
22: REQST: reqst;
23: MBR: mbr;
24: esac

25: end

Figure 5.12: Basic algorithm of the client part of HaloMS.
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1: algorithm off

2: begin
3: rep := null;
4: localId := null;
5: horizon := null;
6: idx := 0;
7: horizonevt(null);
8: wait for event

9: case event of

10: joinGroup:

11: endpoint := (startup.get(idx),

null);
12: send JoinReq(thisNode) to

endpoint.node;
13: state := REQST;
14: esac

15: end

1: algorithm mbr

2: begin
3: wait for event

4: case event of

5: recv Horizon(null):

6: state := off;
7: recv Horizon(rep,Id,mbrs):

8: endpoint.node := rep;
9: horizon.update(mbrs);
10: horizonevt(horizon);
11: failed(node):

12: decrease node.quality in

horizon;
13: leaveGroup:

14: state := off;
15: esac

16: end

Figure 5.13: Algorithm of the off and reqst states of the client side of HaloMS.

17: algorithm reqst

18: var
19: tref : timer

20: begin
21: localId := null;
22: horizon := null;
23: start tref;
24: wait for event

25: case event of

26: recv JoinQst(node,ref):

27: if node=endpoint.node then

28: endpoint := (node, ref);
29: send JoinReq(thisNode, ref)

to node;
30: fi;
31: recv Horizon(node,Id,mbrs):

32: localId := Id;
33: endpoint := (node, mbrs);

34: horizon := mbrs;
35: horizonevt(horizon);
36: state := MBR;
37: failed(core):

38: if core=endpoint.node then

39: idx := idx+1;
40: endpoint := (startup.get(idx),

null);
41: send JoinReq(thisNode, null)

to endpoint.node;
42: fi;
43: tref timeout:

44: idx := idx+1;
45: endpoint := (startup.get(idx),

null);
46: send JoinReq(thisNode, null)

to endpoint.node;
47: esac

48: end

Figure 5.14: Algorithm of the reqst state of the client sede of HaloMs.
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5.4.4 Basic Operation

In core nodes, the Halo Membership Service lies on top of the corresponding core
component and makes use of the guarantees this provides. In a system as the one under
consideration, the core group is formed by a reduced number of preconfigured nodes.
The basic HaloMS protocol described here is designed so that client additions are
allowed only when the underlying core membership service has delivered a majority
view. As already mentioned, an agile treatment of client failures, connections and
disconnections during regular operation of the core group is essential, since changes to
the group of servers will be much less frequent. This subsection thus deals with the
regular operation of HaloMS when no changes occur to the core, but it is in a stable
view. The reaction of HaloMS to core failures and the recovery subsequent protocol
will be described in detail in later sections.

The algorithm progresses as the token circulates along the logical ring of core mem-
bers. The ring is composed by all confirmed members of the view, starting from the
node that set the token to circulation. The generator role is played by a determinis-
tically elected node (e.g. the master of the view), when the protocol is first started,
and by the node that regenerates the token, after a reconfiguration. Within the ring,
nodes are ordered according to their fixed node identifiers. In principle, other criteria
can be used to compose the logical ring with the view members, but we choose this
one for simplicity. When a node receives the token, it processes its contents, modifies
them if appropriate, and passes it on, keeping a copy of the last received token, to
allow recovery in case of reconfigurations.

Client Addition

A client trying to join the group will get in touch with one or several core nodes
about which it should know in advance by configuration. To establish this contact it
sends a JoinReq message to one such core node, including its physical address and
waits for a response. If, after a certain time, the answer is missing,the client may retry
to contact the same core member or another one, if known.

A core member receiving such request will construct an integer reference, ref , and
interrogate the client about the validity of the request with a JoinQst message that
includes ref as argument. While waiting for the answer, the core node locally saves
the client’s physical identity and the sent reference for later checking. When the client
receives the core question, and provided it has not been already accepted by other
member, it replies with a second JoinReq that includes the received reference, ref .
This message, when received by the core member that was trying to validate the client’s
intentions, signals the start of the addition protocol within the core group, as up to
this moment, all interactions have taken place in a one-to-one basis between the client
and a core node.
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When a core node that has validated the client JoinReq receives the token, it will
act as the client’s representative within the core group and propose its joining with the
first available client identifier, carried by the token.3 This node, say Nrep, will also be in
charge of sending Horizon messages to the client once the identifier has been accepted
by the group or whenever the set of core nodes known to the client has suffered some
change.

When Nrep gets the token it processes it to check whether some other node had
already proposed the addition of this client. Then, if that is not the case, and the
client is not yet present in its halo view, Nrep will take the following actions.

1. First Nrep decides the identifier that is to be assigned to the client, by retrieving
the first available client identifier from the token, so that Id = Cid. The available
identifier that will be included in the token when it is passed on is increased,
Cid = Cid + 1.

2. A new local entry is created and inserted into the halo view with contents

[Id, address, Nrep, proposed, V ],

where V is the current view identifier.

3. An entry ProposeTE(Nrep,Id,address, Nrep ) is added to the token, where the
last Nrep stands for the initiator of the proposal round.

4. Finally, the modified token is passed on along the ring.

Subsequent core nodes will add the same ProposeTE local entry to their halo
views as they process the token. Then, when Nrep gets the token back, it will set the
local status of Id in its own halo view to committed, it will answer to the client with
a HorizonTE(Id, V.members) message containing the list of core members in V , and
substitute the ProposeTE entry in the token by ConfirmTE(Nrep, Id).

During the next token round, the local status at the rest of core nodes is also
changed to committed. When the round is completed, Nrep will set this status to
definitive and promote the token entry to DefinitiveTE(Nrep, Id). Finally, after the
third round, the client will be labelled as definitive at all core members, and Nrep will
delete the entry from the token.

The addition of a client to the halo views must be performed in three steps, cor-
responding to the different token rounds just described, to enable the recovery and
update of information in case the protocol is stopped due to a reconfiguration of the
core group, as will be described later on.

3Depending on the politics used by the client to retry the JoinReq, several core nodes could be
in the situation to start proposing the client addition. In that case, only the first one to get the token
will act as representative whereas the others will dismiss their pending JoinReq when they check the
physical address of the client is already being proposed.
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Client Disconnection

The procedure to remove a client is similar but it only needs two token rounds.
When the client voluntarily disconnects from the group, or fails, its representative Nrep

appends an entry RemoveTE(Nrep, Id) to the token. Nodes which knew about the
client’s Id will set its status to removed in their respective halo views when the token
passes them by. After the first round is completed, i.e. when Nrep gets the token back,
the token entry is substituted by DefinitiveTE(Nrep, Id), and each node removes the
client from its halo view. After the end of the second round, Nrep will remove the entry
from the token, and the identifier Id definitely disappears from the group.

After the client is connected to the group, changes may happen to the core. In order
to guarantee the liveness property HM.5, the representative will eventually decide to
refresh its client’s membership horizon so that it includes all members of the current
view, say V . To this end, and assuming the client’s entry has reached the committed
status in a view Vold, Nrep will add an entry UpdateTE(Nrep, Id, address, Nrep, Vold,
V ) to the token. When the remaining core nodes receive the token, those that did not
know about this client will add an entry

[Id, address, Nrep, proposed, V, Vold]

to their halo view. In such entry, the updating field is set to Vold, the identifier of the last
view where the client was confirmed, i.e. the view from which the client information is
now being updated. Nodes whose halo view already contained an entry for Id will now
set the corresponding updating field to the current view identifier, so that the local
entry reads

[Id, address, Nrep, committed, Vold, V ].

Hence in this case, the updating field contains the view to which the information
is being updated. Some extra modifications may be needed in case the local entry
for Id was already definitive, or the confirmation round for Id was interrupted by
a reconfiguration of the core group. Such cases will be separately described in the
following sections.

When the updating round is completed, Nrep sets the client’s local status to
committed in view V , sends Horizon(Id, V.members) to the client and substitutes
the token entry by ConfirmTE(Nrep, Id). When processing this entry, the remaining
nodes will set their corresponding local entries for Id to committed in V .

5.4.5 Core Failures and Token Recovery

The basic description of the previous section assumes that no reconfiguration of
the core group takes place during a given token round. In the most general case,
nevertheless, such changes may occur, although they will be rare compared to the rate



5.4. HaloMS 117

of client additions and disconnections. Token processing must be suspended whenever
a change happens to the core view, as the HaloMS protocol may only run within a
committed majority view. Thus all core nodes will stop the HaloMS protocol as soon
as they have evidence of a change in the group, while keeping a record of the ring
composition to be used during recovery phase. If the underlying core membership
service is the HMS protocol, described in Chapter 4 or any other membership service
that notifies temptative view installations, the HaloMs protocol may be stopped as
soon as a membership event notifies a new view trying to be installed.

The pause implies that the token will no longer be sent until a new majority view
is confirmed, in which the token must be regenerated. If conversely a minority group
arises after reconfiguration, each involved member will clear its halo view. In order to
maintain the consistency of the information about clients, such regeneration can only
be carried on by the surviving node that was the last to receive the token before the
change occurred and has therefore the most recent information.

When the HaloMS module at a core member receives the notification of an installed
majority view, VM, from its underlying core membership service, it sends a message
to each of its represented clients informing them about those failed core members
they have to exclude now from their respective membership horizons. If some core
node has failed, its represented clients are inherited by the survivors. The substitute
representatives are calculated deterministically by applying some predetermined rules,
and are then in charge of notifying clients about their representative failure — and the
others.

If the underlying membership service notifies also about the completion of view
confirmation (as HMS may notify the release of a view), HaloMS may wait for such
an event before entering the recovery phase, since at that moment all the participants of
the new ring will have installed VM. Otherwise, a core member may start the recovery
when the confirmation of a majority view is perceived, although retransmissions or
storage of the recovery token will be required as not all nodes will perform the view
installation simultaneously.

When the node enters the recovery phase, it sends a RToken message to its most
immediate predecessor from the former ring that survives in the currently installed
view. The RToken contains the identifier of the sending node and a copy of its last
received regular token.

The receiver compares the identifier of this recovery token, Trec, with that of its
own last received token, Tlast. Then one and only one of the following scenarios occur.

• For exactly one node, Nb, the received identifier is older than the local copy,
Trec < Tlast.

• For one single node, Nb, Trec = Tlast and Nb follows (in the former ring order)
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the node that has sent the recovery token Trec. This would happen in case the
generator, i.e. node that increases the token identifier, has failed and the new
token has not reached any of the surviving nodes.

In any of these cases, Nb can be identified as the boundary of the token advance
prior to the reconfiguration. This node will thus be in charge of regenerating the token
and its identifier, so that the counter is increased and Nb appears as the initial node
of this incarnation and takes the role of token generator. Once the regular token is
regenerated, Nb will send it again along the new ring. To regenerate the token, Nb

must examine its own halo view and proceed according to the following rules.

1. For each client Id which is locally proposed with field V = Vold, information on
the corresponding entry must be sought in the recovery token received from the
next node.

• If the recovery token contained the ProposeTE(Id) entry, 4 then the pro-
posal round can be taken as complete, as all surviving nodes from the view
in which the addition was proposed have seen this entry. A confirmation
round may start now, but the round will also be used for updating. This is
achieved by adding to the token an entry

UpdateTE(Nb, Id, address, Nrep, Vold, VM),

where the representative Nrep is the one stored in Nb’s local entry for Id,
if still alive, or its substitute otherwise. Before sending the token along the
ring, Nb will also change its local entry to

[Id, address, Nrep, committed, Vold, VM],

where the current view identifier, V M, is stored in the Vu field (see
sect. 5.4.2).

• If no entry for Id was present in the recovery token, then the proposal round
did not finish, so that a new proposal must be now launched. Nb will thus
add the entry

ProposeTE(Nb, Id, address, Nrep)

to the token, with Nrep calculated as in the previous case.

2. If a client is locally proposed in V = Vold, but with a non-null value for the
Vu field, say Vold2 (necessarily Vold2 < Vold), different cases may be found when
examining the recovery token.

4For clarity, only the entry fields that are relevant for the discussion are explicitly shown in this
section.
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• If the UpdateTE(ID, address, N ′

rep, Vold2 , Vold) entry was present in the
recovery token, this means that the updating round is complete, and confir-
mation in Vold is due. Nevertheless, it will be performed by a new updating
round, with

UpdateTE(Nb, Id, address, Nrep, Vold, VM)

in the token. This indicates to the remaining nodes that Id was included
by all nodes in view Vold, from which it is now being updated to VM. Before
passing on the token, Nb will also modify the local entry to

[Id, address, Nrep, committed, Vold, VM],

being VM the current view, to which the client’s horizon is to be updated.

• In any other case, i.e. if the recovery token contained no entry about Id, or
if it contained a ProposeTE, ConfirmTE or DefinitiveTE entry regard-
ing this client, 5 or an UpdateTE referring a previously confirmed view
different from Vold, then

UpdateTE(Nb, Id, address, Nrep, Vold2 , VM)

is included in the token.

3. For each committed client with V = Vold for which the Vu field is not set, the
recovery token is searched for an Id entry.

• If the recovery token contains ConfirmTE(Id), the confirmation round was
completed and then

DefinitiveTE(Nb, Id)

is included in the new token.

• Otherwise, conclusion of the confirmation round must be ensured, using also
the round for updating. So

UpdateTE(Nb, Id, address, Nrep, Vold, VM)

is added to the token.

4. If a client Id was locally committed in V = Vold with the corresponding Vu field
value set to V ′, that means that an UpdateTE round confirming the client in
Vold and updating to V ′ was in progress. Thus necessarily V ′ > Vold, and the
interruption happened as the client, whose identity was confirmed in Vold, was
being updated to V ′. Whether the round completed or not must be figured out
from the recovery token received from the next ring member.

5This would mean that the recovery token corresponded to a round regarding confirmation of Id

in view Vold2
, before the updating started.
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• If the recovery token contained UpdateTE(Id, address, N ′

rep, Vold, V ′),
then the round finished, and confirmation regarding V ′ is due. As in the
previous cases, it will be carried out by a new updating round. So,

UpdateTE(Nb, Id, address, N ′

r, V ′, VM)

is included in the new token.

• In any other case, the updating round did not finish, so

UpdateTE(Nb, Id, address, N ′

rep, Vold, VM)

is included in the token to retry it, directly updating halo views from Vold

to VM.

5. If the client Id is locally removed, then Id’s representative had started its elim-
ination.

• If the recovery token contains RemoveTE(Id), the round was closed, so
Nb will now include DefinitiveTE(Nb, Id).

• Otherwise, the removal order is included again, as entry RemoveTE(Nb,
Id).

After composing the token in the way described above, Nb must set the next avail-
able client identifier and the new token identifier. The field Cid of the regenerated
token is set to

max(Cid′, {Idi ∈ halo view/status(Idi) = proposed}) + 1,

being Cid′ the corresponding field of the last token received by Nb. The identifier of
the new token will be obtained by increasing the one in the last received token and
replacing the old token generator by by Nb.

For as long as the core view VM remains unchanged, Nb will hold the role of token
generator. Each time it gets back the token, it will increase its identifier, indicating a
new round was completed.

5.4.6 Token Processing

To complete the description of the protocol operation, we must now analyse in
detail the operations performed by each core node every time it processes a new token,
in order to maintain and update its halo view with the circulating information.

When a core node N receives the token from the precedent ring member, it saves
a copy for recovery purposes and processes its contents before passing it on. For each
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token entry it is checked whether this node was the initiator of the corresponding
round, in which case the token entry must be promoted to the next action. Otherwise,
the information in the token entry is used to update the local halo view and the same
entry is passed on to the following node in the ring.

The following rules describe how individual token entries are processed by a node
N .

1. ProposeTE(Nini, Id, address, Nrep)

• If N 6= Nini, the following entry is created and inserted in the halo view,

[Id, address, Nrep, proposed, V ],

where V is the current view identifier.

• If N = Nini, then the local entry status is changed from proposed to
committed, and the token entry is replaced by ConfirmTE(N , Id). More-
over, if N = Nrep, Horizon(Id, V.members) will be sent to the client upon
local commit.

2. ConfirmTE(Nini, Id)

• If N 6= Nini, the local value of status for client Id is changed from proposed
to committed. If N is the representative for Id, as recorded by the local
halo view entry, then Horizon(Id, V.members) is sent to the client. If the
local entry held a non-empty Vu field, it is now cleared.

• If N = Nini, as the round initiator N changes the local status for Id to
definitive, clearing the Vu field, if any. The token entry is also substituted
by DefinitiveTE(N , Id).

3. UpdateTE(Nini, id, address, Nrep, Vold, V )

• If N ’s halo view does not contain an entry for Id, the following is now
created and inserted,

[Id, address, Nrep, proposed, V, Vold].

• If an entry for Id already existed, and N 6= Nini, two cases must be distin-
guished.

(a) If the local entry of Id is of the form

[Id, address, Nrep, definitive, Vold, Vu],

with or without a value of the updating field Vu , then it is now changed
to

[Id, address, Nr, definitive, Vold, V ],

thus indicating that the addition was confirmed in Vold and its update
to the current view V is now being proposed.
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(b) In any other case the local entry is changed to

[Id, address, Nrep, committed, Vold, V ].

• Finally, if N = Nini, the local entry is changed to

[Id, address, Nrep, committed, V ],

and the token entry is replaced by ConfirmTE(N , Id).

4. RemoveTE(Nini, Id)

• If N 6= Nini, then the local status value for the corresponding entry is
changed to removed, provided N knew about Id. The entry is ignored if N
had no local entry for client Id.

• If N = Nini, the local entry, whose status was already removed, is deleted
from the halo view, and the token entry is promoted to DefinitiveTE(N ,
Id).

5. DefinitiveTE(Nini, Id)

• If N 6= Nini, and there was no Id entry in the local halo view, this entry is
ignored. If the client was known, then

– if status = committed, then it is changed to definitive, and the corre-
sponding Vu field is reset.

– if status = removed, then entry Id is deleted from the halo view.

• If N = Nini, then this entry is eliminated from the token. If there is no entry
for Id in the local halo view, this DefinitiveTE is signalling the end of the
removal phase. The identifier Id is thus invalidated and will not appear any
longer in the group.

After processing the information carried by the token, N will compose and add to
the token any new entries that may need to be included. These entries can be of two
types.

1. Proposals for new detected clients that N is ready to accept, by means of the
procedure described in sect. 5.4.4.

2. Updates of N ’s represented clients. The decision about whether to launch an
UpdateTE round regarding a certain client can be forced by the recovery pro-
cedure described in the previous section. That procedure does not affect client
entries whose status is already committed along the whole ring, but only ongoing
rounds at the moment of the view change. Nevertheless, if may be convenient to
launch an update on some client if it has been connected for long enough across
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several core changes. An heuristic algorithm can be used to decide on launching
such rounds, taking into account the activity of the system, the frequency of core
changes and the mean life of client connections. In any case, when such algorithm
decides an update is due on a given client, an UpdateTE entry will be composed
and inserted in the token by N .

If any ProposeTE entry is added, the Cid field in the token will be conveniently
increased, as described in 5.4.2. Then the token can be passed on to the next ring
member.

After finishing the token processing, with the corresponding update of the halo
view the HaloMS protocol will notify upper components that have registered as
IMembershipListeners about membership events regarding the changes occurred to
the local view of the halo group. In particular, client additions (when they are con-
firmed) and client removals (when labelled removed) will be notified after each token
pass.

5.4.7 Majority Recovery

In the previous sections the operation of HaloMS has been described regarding basic
operation and recovery after a change of the core group. In the latter situation it was
assumed that a majority core view survived through view changes, so that there was
a token to recover from the immediately preceding view.

Nevertheless, a singular situation may arise when the underlying core group is
partitionable and the majority temporarily disappears due to partitions or failures. In
such case, the token will eventually disappear from the group, as the HaloMS protocol
stops in minority groups, and at the moment of installing a new majority view, all
members will have an empty halo view and no last token no initiate the recovery
phase. In this situation, the usual procedure for determining the boundary of token
advance described in 5.4.5 will not work, and some specific actions are required in order
to name a new token generator that restarts the HaloMS protocol. In fact, a particular
case of this situation will happen at startup, when the majority group is constituted
for the first time and the initial token must be launched. Moreover, for a node that was
in a minority group, the situation of lost majority is not distinguishable from joining a
running majority group, so that the same procedure must be tried every time a node
enters a majority group.

To solve this problem, the token recovery procedure must be slightly modified.
Thus, when a node Nmin installs a majority core view, if it had no previous knowledge
of a halo view (for it came from a minority partition), and only if it is the member with
the lowest node identifier in the group,6 it will send a special empty RToken to its

6Any other deterministic criterion can be used, of course, to choose a single sender among the
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immediate predecesor in the logical ring that corresponds to the current view. When
a node receives such empty RToken,

1. if it came from a majority and had information about a last token, and a halo
view, it will simply ignore the empty recovery token;

2. if it comes also from a minority, it sends an empty RToken to its own predecessor.

If the initial sender of the empty RToken, Nmin, receives it back, then all members
are coming from a minority, and none of them had information to recover the token.
Thus Nmin becomes the token generator for the current view, and restarts the HaloMS
operation by constructing and sending a fresh token with identifier T id = 1.

Notice that if the underlying core membership service provides notification of all
majority views in the group history, as granted by the Uniform Majority View Agree-
ment property (GM.6) discussed in 4.5, every node is able to know at the moment of
confirming a majority view, whether they were part of the last existing majority, say
VM. Only those that were members of VM need to be involved in the recovery.

In such situation, the HaloMS protocol might register as IMembershipListener of
the corresponding events, and the basic recovery procedure described in 5.4.5 suffices
to recover the token when a majority persisted.

members of the current view.



Chapter 6

Membership On–Demand

This chapter presents a specification of the group membership service for a different
dynamic scenario, inspired by ad hoc networks. The On Demand membership service
presented here [75, 76] is nevertheless applicable to more general environments. In
particular it will be useful when reducing the load of reconfigurations is necessary, while
strong membership semantics is required. We also present a detailed protocol, called
MODUS, that implements the specification based on any existing basic membership
service. MODUS performance characterisation is also described.

6.1 Mobile Ad Hoc Networks

One of the most outstanding cases among dynamic distributed systems is that
of mobile ad hoc networks or MANETs. MANETs are dynamically changing systems
formed by wireless nodes, whose nature may vary from very small sensors, as intelligent
dust, to handheld devices, like PDAs or laptops, or diverse vehicle equipment. The
connectivity graph of the network ay change with time as nodes move, thus conforming
an ad hoc topology.

The spreading of wireless technology, together with a broad range of potential
applications have conferred increasing importance to ad hoc networks. This trend
is patent in the ongoing efforts to develop specific services for these systems, such as
efficient routing, in the concerns about security issues, and in the number of specialised
publications on the subject appeared during the last years.

The Internet Engineering Task Force (IETF) MANET Working Group [77] mentions
the following distinguishing features of MANETs.

1. The topology changes dynamically. Since the nodes may move, the network
topology is not fixed, but will, in general, change over time. Moreover, links can
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be either unidirectional or bidirectional.

2. Links have variable capacity and constrained bandwidth. The characteristics
of wireless communications, such as fading, noise or interference, contribute to
reduce the transmission rate. As a consequence of the reduced capacity of wireless
links, congestion occurs frequently.

3. Energy–constrained operation. Since mobile nodes are usually powered by bat-
teries, their energy supply is finite, and energy conservation becomes the crucial
aspect in system design.

4. Physical security is limited. Mobile wireless communications are more vulnerable
to a number of security threats than wired networks. Eavesdropping, spoofing
and denial–of–service attacks are more likely and have to be taken into account.
On the other hand, the decentralised character of ad hoc networks also contribute
to make them more robust against single points of failure.

These features make the behaviour of ad hoc networks different to that of wired
systems, and must thus be taken into account when designing efficient protocols for
this kind of systems. Together with the above–mentioned properties, scalability may
also pose a challenge to the development of certain systems over MANETs.

The potential uses of MANETs include military, industrial and commercial ap-
plications, ranging from providing connectivity when conventional networks are not
available, in emergency situations or rough terrains, to the support of cooperative
work. Further applications may involve hybrid networks that include both fixed and
mobile members. The field is under very active development, and new uses are likely
to arise that may become more important than the ones envisioned at present.

In any case, applications for ad hoc networks will require the development of specific
services that support them. The fundamental service on which other components may
be built is routing. At present, many different routing protocols have been proposed [78]
and studied, and their specifications are now standardised. More recent work on the
field is centred on security issues.

Group communication services are also among the most useful tools for the develop-
ment of distributed applications. In wireless environments, research activity concern-
ing group communication is mainly devoted to providing efficient broadcast of data
through the whole network. The guarantees attained by the proposed services are far
from being as strict as their counterparts in wired systems.

If distributed applications with strong semantics, such as replicated services, are to
be deployed in MANETs, stronger support will probably be required from the group
communication services or other distributed components.
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The inherent difficulties related to the achievement of strong guarantees in a dis-
tributed system, of which the impossibility of reaching consensus in an asynchronous
system is paradigmatic, may become even harder in a MANET. In practical settings
for fixed–topology systems those difficulties are usually overcome by making appropri-
ate assumptions, based on knowledge about the system behaviour or configuration. In
a MANET, however, higher unpredictability and dynamism may render such kind of
assumptions not applicable at all. Some of the traditional distributed problems may
not even be well–defined in the system conformed by an ad hoc network.

Here we are mainly concerned about the definition and solution of the membership
problem. Having a membership service that provides well–defined semantics in the con-
text of an ad hoc network is basic, as in any distributed system, for other components
to achieve their required guarantees. Thus the development of group communication
systems, fault tolerant distributed object support systems, highly available database
middleware components and, in general, of any higher level application can benefit
from the information and the semantics provided by a membership service.

Just like in wired systems, where the traditional specification of the membership
service is not equally suitable for all types of systems and applications, the distin-
guishing features and requirements of MANETs raise the need for specific service and
protocol designs. Moreover, the term MANET applies to a huge variety of configura-
tions, depending on the scale of the network, the rate of changes, the mobility of nodes
and other parameters. Depending on the particular scenario under consideration, the
guarantees provided by potential applications, and thus the semantics they will require
from the underlying services may differ.

6.2 The System Model

Many distributed applications designed for ad hoc networks are not extremely de-
manding regarding consistency and can do without a strict membership service. It is
the case of best-effort or probabilistic flooding of data, or some components designed
for peer–to–peer architectures. We aim to support the deployment of distributed ap-
plications with strong consistency requirements, as any replicated service. Thus our
goal is to provide the strongest membership semantics, so to enable the support for
high availability and fault tolerance also in the framework of ad hoc networks. Not all
settings among the variety of MANET configurations are capable to or interested in
running such applications.

One typical working setting for us would be a set of users, holding laptop comput-
ers or PDAs, that run a collaborative work application for which data consistency is
necessary at least during certain periods of time. Therefore, we will focus on systems
composed of up to few hundreds of nodes, so that the size of the network is reduced
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enough to allow some collaboration among all the participants. Besides, the identities
and number of the network members may or may be not known in advance.1

The network topology is allowed to change dynamically, due to several factors.

1. Crashes will occur when a host suffers a power cut or fails due to any other
reason.

2. Announced disconnections may also take place when some node voluntarily
leaves.

3. Finally, the network may grow as a consequence of the appearance of new mem-
bers or the recovery of failed ones.

This kind of changes will be relatively frequent, their absolute rate depending on
the system size. We consider that a reasonable order of magnitude will be of 10− 50
changes per hour in environments of O(10− 100) nodes.

Mobility is indeed possible in a collaborative scenario as the one we are picturing.
Nevertheless it will not play a decisive role in our problem, since we focus on a situation
where collaborating nodes, i.e. those that take part of the group at a certain point,
will mostly stay still as the collaboration takes place.

Failures may occur both to nodes and to communication channels. For nodes we
consider the crash model. On the other hand, wireless communications are sensitive
to shading, collisions, etc. This may produce link failures, as well as message losses,
duplications or disordering.

The underlying transport service is assumed to be equipped with a routing service,
that enables messages to be individually addressed to any member of the network. As
discussed in the previous section, this is a reasonable assumption, as several standards
and implementations of routing services exist for ad hoc networks. Neither reliability
nor any particular order guarantees are assumed to be provided by the transport. The
transport might also provide a broadcast primitive, that only ensures best–effort to
make the message arrive to all members without atomicity guaranties, although that
is not required. If such a service is not available, the membership component can
implement it by itself, if required.

A typical occurrence of the described scenario will be the group of attendants to
a conference or a similar event, that wish to execute some distributed application for
collaborative work, and at a given point require agreement among a subset of nodes
whose membership is maintained with the classical consistency guarantees.

1This point will be made clearer later.
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6.3 On–Demand Membership Service

The maintenance of membership information with consistency guarantees within a
dynamically changing group forcefully involves a sustained flow of messages among all
the nodes in the network. Whether the membership service relies on a failure detector
or not, if a minimum liveness of membership information is to be guaranteed, mes-
sages must be exchanged among members with certain periodicity in order to monitor
possible failures or disconnections. Some group communication services, on the con-
trary, rely on messages exchanged by other components in order to avoid such forced
flow of messages. Even in such cases, the appearance of new nodes (or reconnections
of previously failed nodes), if occurring at an appreciable rate, will force frequent re-
configurations. Given the limited power of portable devices, this may turn out to be
prohibitively costly for ad hoc networks.

Notice also that regular membership services require several message rounds in or-
der to commit a view. In particular, it has been shown that membership can be solved
in ≈ 3 communication rounds, if a solution based on consensus is adopted.2 If joins
happen very often, changes may happen faster than stabilisation of the membership
set, so that depending on the dynamism of the network, running a standard mem-
bership monitor could become even unfeasible. In such cases, the strict consistency
guarantees provided by a membership service may be impossible to achieve. Our inter-
est is focused on an intermediate case, where the dynamism of changes is high enough
to turn continuous running of membership support impractical, but not so high that
consensus becomes impossible. In that situation, an application that makes use of the
strong membership guarantees only for well–defined periods of time would benefit from
a specific membership service.

With this in mind, we propose a specification of a membership service for ad hoc
networks, and, in general, for any energy or bandwidth–aware environment. The main
feature of the service is being on–demand, i.e., it can be turned on only when the inter-
ested applications require it, providing the strongest semantics for as long as required
and avoiding unnecessary energy consumption when no upper component is asking for
such consistency on any of the participant nodes.

6.3.1 Specification of the On–Demand Membership Service

The set of properties that specify a traditional membership service [22] ensure
strict consistency of the membership information. Such consistency properties are
most useful for higher components to implement their own semantics and reason about
their correctness. We aim to control energy consumption without losing this advantage,
therefore our approach is to provide equally consistent membership information, but

2See [60] and references therein.
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only when some client application running on some of the participant nodes demands
those guarantees. This will allow nodes to save energy and bandwidth consumption
when no one is requesting membership services.

The On–Demand membership service is assumed to satisfy the general interfaces
in figs. 3.1, 3.2 [79], corresponding to a client–server architecture for the membership
service and its relationship with other components of the system.

The On–Demand Membership Service proposed here is specified as follows.

Property OD.1 (Consistent Membership). Any registered membership client will be
provided with membership information with the strict consistency properties that define
a regular membership service according to [22, 10], as explained in Sect. 3.1.2.

The previous properties implies that, when the membership service is operating, it
must fulfil the four safety properties.

1. Self Inclusion;

2. Initial View Event;

3. Local Monotonicity;

4. View Agreement.

The basic specification of a partitionable membership service requires also a live-
ness property, namely Membership Precision, which requires that, if there are stable
components in the system, the same (correct) view is installed as the last one in every
node of the same component. Nevertheless, in the case of a service On–Demand, even
if a stable component exists, which is in any case unlikely in a dynamical environment,
some members of the component might be not requiring membership services. In such
case, the previous property would never be satisfiable. To solve this problem, we may
substitute the term stable component in the enunciate of Membership Precision by
stable active component, denoting a subset of clients (processes) that remain registered
as membership listeners to correct, connected nodes.

Property OD.2 (Active Membership Precision). If there are stable active components
in the system, the same (correct) view is installed as the last one in every process of
the same component.

As in the case of a traditional membership service (RMS), this property is condi-
tioned to the survival of such components for a long enough time.

Finally, the property that allows the On–Demand service to save energy is enunci-
ated as.

Property OD.3 (Eventual Stop). If all membership clients unregister, every node will
eventually stop its local membership protocol.
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6.4 MODUS

In this section, a group membership protocol named MODUS is presented, which is
designed to provide the semantics of the specification in the last section from a regular
membership service (RMS). MODUS can thus be implemented on top of any existing
membership protocol, provided the latter conforms to the generic interface in 3.1.

6.4.1 Architecture

IMembershipListener

IMembershipMonitor

Distributed Components
User Applications

MODUS
IMembershipListener

IMembershipMonitor

RMS

Figure 6.1: Basic architecture of MODUS service.

The architecture of this service is shown in fig. 6.1. Each potential member of the
group is assumed to operate an instance of certain RMS protocol, which must ensure
the properties of the standard specification of the membership problem through the
generic interface IMembershipMonitor. No more assumptions are done on the RMS.
Thus, MODUS does not face the question of whether the identities and number of nodes
must be known in advance, neither it imposes the partitionable or non–partitionable
character of RMS or the collective or individual startup.

On every node, MODUS will act as the only IMembershipListener of the RMS. It
will also hold, in exclusive, the capability to turn the RMS on and off, by appropriately
calling the joinGroup and leaveGroup methods. Any other component or application
interested in membership events should register as listener of MODUS. Since this offers
the generic interface of IMembershipMonitor, the application can make use of MODUS
as if it was a regular membership service. Nevertheless, for the On–Demand policy to
be advantageous, any membership listener must take care of registering right before
and unregistering immediately after each period in which membership information is
required.
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The specification of MODUS as an Input/Output Automata is included in ap-
pendix B.1. Nevertheless, for a better understanding of the protocol operation, a less
formal description in terms of states and transitions is presented in the following sec-
tions.

6.4.2 Basic Ingredients

The protocol is specified as a set of subalgorithms for the different states of MODUS.
Transitions among them are driven by invocations from external membership listeners,
by membership events generated by RMS, and by dedicated MODUS messages that
allow the different participants to operate their local RMSs consistently. MODUS
makes use of the distributed registration and unregistration of listeners to decide about
the start and stop of the underlying RMS, so that when there is no registered user in
the system listening to membership information, the regular membership protocol is
stopped on all nodes.

Local State

The state maintained by MODUS at each node consists of the following.

• localClients: a list of references to all locally registered membership clients;

• activeNodes: a list of participant nodes which currently hold registered listeners.

The first one is local, whereas the second one plays the role of a distributed list of
references holding the set of active nodes. Based on the information on this list,
MODUS will decide when there are no registered membership listeners in the system
and thus the underlying RMS must be stopped.

States

MODUS has four possible states, depicted in fig. 6.2.

• unavailable: In this state, the underlying RMS is switched off, and the node
is invisible to the membership group, i.e. it is not allowed to take part in any
membership agreement.

• available: In this state, the node has no locally registered client and its RMS
is switched off, but upon request of some other member the node can be forced
to start it and take part of membership rounds.



6.4. MODUS 133

• passive: The local RMS is running, but no client is registered, so that operation
of the RMS, with its consequent energy consumption is enterely in benefit of
other nodes.

• active: There are locally registered membership clients, and the RMS is running
and providing them with membership information.

Messages

The distributed operation of MODUS is allowed by the set of dedicated messages
described below. Each of them carries specific arguments, as detailed in the list, and
is also labelled, when required, with the view identifier of the RMS view.

• ServiceReq() is broadcast by any node that transitions from the available to
the active state due to the registration of a local client. It is used to require
participation of other available nodes in the membership agreement that is to
be achieved.

• ActiveMsg(N , V id, V idold) is sent by the active node N either to anounce its
entering this state to all members of the group, or to update their information,
after a change of view has occurred, maybe preventing the completion of a previ-
ous difussion of state. Only in the second case, V id contains the view identifier
of the current view, and V idold that of the former view.

• PassiveMsg(N , V id, V idold) is used in the same way, to indicate transitions to
passive state (or to update the same information).

• ActiveList(N , V id, V idold, list) is sent to all members of a just formed view,
V id, by just one of the survivors, N , of the former one, and only in case there
are new joined nodes that where not present in the older view, V idold.

As already mentioned, no reliability is ensured by the underlying transport. Any
message can then be lost, thus preventing the completion of the algorithm. This can
be avoided by reliable point–to–point delivery, which can be explicitly implemented
for each message. In order to ease the description and realisation of the protocol,
however, a more general rmcast primitive is implemented as support for MODUS, as
for other protocols in this thesis. The rmcast primitive guarantees reliable point–to–
point delivery within a given RMS view by periodically resending messages until they
are acknowledged or a membership change occurs.

That is the semantics of rmcast in the following description, whereas
broadcast(m) will denote an attempt to flood the network with the message m, as
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best provided by the underlying transport.3

6.4.3 Protocol Operation

The subalgorithms for the different states of MODUS are shown in figs. 6.3-6.6.
Here we present an overall description of the protocol operation.

MODUS starts in the unavailable state, with the RMS switched off, and it cannot
be forced to take part in resource–consuming membership rounds. Applications are also
not allowed to register as membership listeners in this state. Before this is possible,
MODUS.joinGroup must be invoked.

The node becomes then available, but the RMS is not immediately started. A
client application Ca may register now as IMembershipListener by an invocation to
MODUS.registerListener(evt, Ca) for some type of membership event evt in the set
of events notified by the RMS. MODUS will then add the application to localClients,
invoke RMS.joinGroup to start its local RMS, move to active state and request other
nodes to participate in the membership agreement by broadcasting a ServiceReq
message. Other available nodes that receive such message will also switch on their
local RMSs and move to the passive state, whereas unavailable nodes will simply
ignore the message.

The node N that is transitioning to the active state will also add its own identifier
to the list of active nodes and send a message ActiveMsg(N) to all members of its
current view. This message contains the node identifier, but no view information.
Any active or passive members that receive the ActiveMsg will update their own
versions of the list and include N in them, provided they are in a view that contains
N .

For as long as a client application Ca is registered as listener of MODUS,
the protocol will notify it of membership events whose type matches the one in
Ca registration. The reference to Ca is kept in the localClients list until the
unregisterListener(evt, C) method has been called for all the evt values for which
registerListener was previously invoked. When the last unregistration takes place,
the reference to Ca is removed from the local list. Once the localClients list of a
node N which was in the active state is empty, N removes its own identifier from the
local instance of the activeNodes list, it rmcasts a message PassiveMsg(N) to all
members of the current RMS view and moves to passive state. The receivers of the
message will also eliminate N from its local list activeNodes.

A node in the passive state has no locally registered client, but runs its local RMS
for the benefit of other requesting members. It will stay in this state until a local listener

3If no such facility is provided by the transport, the flood can be substituted by a single emission
within the radio range.
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Figure 6.2: States of MODUS protocol, with events and messages driving transitions.

registers, promoting the state to active, or until the list of active nodes is empty, in
which case it may turn off its RMS and go back to the available state. This transition
does not take place immediately, but a timeout is established to allow information on
active nodes to reach passive members of a just formed view. Otherwise, a single
requesting node would, with high probability, end up receiving simply a membership
view with itself as the only member.

By invoking MODUS.leaveGroup any node with no registered clients, in the passive

or available state, is forced to leave any membership group it took part of, irrespective
of the presence of other active members, and enters the unavailable state.

Interaction with RMS View Changes

MODUS intercepts all membership notifications of RMS, in order to pass them to
the proper clients and to make use of RMS semantics to simplify its own operation. In
particular, MODUS itself is only sensitive to installation of new views.

After RMS.joinGroup() has been called, the Initial view event property of RMS
ensures that MODUS will see the installation of a membership view. Depending of the
characteristics of RMS (individual or collective startup) such view may be a singleton
initial view, or a real image of the group. In any case, that provides MODUS with the
destination set for the rmcast of its initial ActiveMsg. From that point on, when
RMS notifies a view change, two situations may occur.

If some nodes are missing from the new view, with respect to the former one,
MODUS removes failed nodes from the activeNodes list.
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If the new view, V2, contains new nodes, not present in the former one, V1, they
have to be updated about the state of older members. To this end, one of the survivors,
Ns, is chosen to broadcast the active list to all members in a message ActiveList(Ns,
V2, V1, activeNodes). The deterministic election of the sender is trivial given the RMS
view guarantees. Other V1 survivors wait for the message. If the received list does not
reflect correctly the status of a given node Nr, as may happen if changes take place
during activation or deactivation of the node, it will rmcast an ActiveMsg(Nr, V1,
V2) or PassiveMsg(Nr, V1, V2) referring both the current view and the view from
which the node is a survivor.

Since the underlying transport offers no guarantee with regards the order in which
messages are delivered to their destinations, ActiveMsg and PassiveMsg may be
received before the ActiveList they follow. MODUS exploits the guarantees regarding
consistency and order of RMS views to label and process some messages in the proper
order.

In order to minimise the need to resend messages that are received before they can
be processed, instead of dismissing them, early ActiveMsg or PassiveMsg received
with reference to a view V1 are stored until V1 has been installed and the active list
corresponding to V2 has been processed, or until the installation of a subsequent view
discards them.4

1: algorithm MODUS

2: type
3: state t = { UNAVAILABLE,

4: AVAILABLE, PASSIVE,

5: ACTIVE };
6: var
7: state : state t;
8: activeNodes : list of

9: nodes;
10: localClients : list of

listeners;
11: view : RMS mbship group;

12: begin
13: state := INACTIVE;
14: activeNodes := null;
15: localClients := null;
16: view := null;
17: while true do

18: case state of

19: UNAVAILABLE: unavailable;
20: AVAILABLE: available;
21: PASSIVE: passive;
22: ACTIVE: active;
23: esac

24: end

Figure 6.3: Basic algorithm for MODUS.

4For simplicity, these procedures are not explicit in the schematic algorithms of figs. 6.3-6.6.
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1: algorithm unavailable

2: begin
3: wait for event

4: case event of

5: joinGroup:

6: state := AVAILABLE;
7: esac

8: end

1: algorithm available

2: var
3: begin
4: wait for event

5: case event of

6: recv(ServiceReq):

7: RMS.joinGroup();
8: state := PASSIVE;
9: registerListener:

10: localClients.add(listener);
11: activeNodes.add(thisNode);
12: broadcast(ServiceReq);
13: RMS.joinGroup();
14: state := ACTIVE;
15: leaveGroup:

16: state := UNAVAILABLE;
17: esac

18: end

Figure 6.4: Algorithms for the unavailable and available states.

1: algorithm passive

2: var
3: timer : integer;
4: view p : RMS mbship group;
5: init
6: timer := -1;
7: view p := null;
8: begin
9: if activeNodes is empty

10: timer=WAIT FOR ACTIVE;
11: wait for event

12: case event of

13: recv(ActiveMsg):

14: activeNodes.update(ActiveMsg);
15: if (msg(view,view p) and

outdated info on thisNode)

16: rmcast current status as
ActiveMsg/PassiveMsg

wrt (view,view p);
17: if activeNodes not empty

18: timer := -1;
19: recv(PassiveMsg):

20: activeNodes.remove(sender);
21: if activeNodes is empty

22: timer=WAIT FOR ACTIVE;

23: notify(view event):

24: view p := view;
25: view := view event;
26: activeNodes.remove(failed);
27: elect leader among

view p survivors;
28: if (joined nodes and

29: leader=thisNode)

30: rmcast(ActiveMsg)

with activeNodes

wrt (view,view p);
31: if activeNodes is empty

32: timer=WAIT FOR ACTIVE;
33: registerListener(listener):

34: localClients.add(listener);
35: activeNodes.add(thisNode);
36: state := ACTIVE;
37: timer timeout:

38: RMS.leaveGroup();
39: state := AVAILABLE;
40: leaveGroup:

41: RMS.leaveGroup();
42: state := UNAVAILABLE;
43: esac

44: end

Figure 6.5: Algorithm for the passive state.
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1: algorithm active

2: var
3: view p : RMS mbship group;
4: init
5: view p := null;
6: begin
7: rmcast(ActiveMsg);
8: wait for event

9: case event of

10: recv(ActiveMsg):

11: activeNodes.update(ActiveMsg);
12: if (msg(view,view p) and

13: outdated info on thisNode)

14: rmcast ActiveMsg

wrt (view,view p);
15: recv(PassiveMsg):

16: activeNodes.remove(sender);
17: notify(event):

18: if event is a view event

19: view p := view;

20: view := view event;
21: activeNodes.remove(failed);
22: elect leader among

view p survivors;
23: if (joined nodes and

24: leader=thisNode)

25: rmcast(ActiveMsg)

with activeNodes

wrt (view,view p);
26: localClients.notify(event);
27: registerListener(listener):

28: localClients.add(listener);
29: unregisterListener(listener):

30: localClients.remove(listener);
31: if localClients is empty

32: activeNodes.remove(thisNode);
33: rmcast(PassiveMsg);
34: state := PASSIVE;
35: esac

36: end

Figure 6.6: Algorithm for the active state.
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6.4.4 Analysis and Performance

The main advantage of the on–demand approach with respect to a RMS is the
potential energy saving when the membership information is not in use for significant
periods of time.

If membership information is required in a continuous way, running MODUS on
top of a RMS implies an overhead in terms of computing power and number of sent
messages, and thus an extra cost in energy and bandwidth. The implementation of
MODUS starts being worthwhile when the time RMS is disconnected compensates
the overhead during periods of activity. This circumstance depends on the multiple
parameters that control the performance of the algorithms.

The evaluation of distributed algorithms is currently an open question [80]. The
complexity of distributed protocols and their dependence on the particularities of the
system on which they are deployed, make it difficult to characterise their performance
in an absolute manner.

In this section we are interested in a comparison of the energy spent by MODUS
and RMS in terms that are as general as possible. The absolute energy consumption
of either protocol depends on the features of the physical devices that conform the net-
work, such as their characteristic sending, receiving and computational powers. It also
depends on the particular configuration of the network, which affects how messages are
routed, retransmitted, etc. The state of the network at a given instant will determine
the occurrence of collisions, interferences, and message losses, and will thus have also
an impact on consumption. These network factors are variable, specially in the case of
an ad hoc network.

Therefore, we focus on a magnitude that is mostly protocol–dependent, namely
the minimum number of messages sent per node and unit time required by each pro-
tocol’s operation. Every sent message implies a certain power consumption. Energy
will also be spent in reception, but the number of received messages is proportional to
that of messages sent, so that both quantities are not independent. Thus there will
be an unavoidable rate of energy consumption associated with MODUS or RMS, and
proportional to the rate of sent messages. Notice also that we are not taking into ac-
count the energy consumption due to overhearing, which may be significant in wireless
environments.

Although not determining the absolute energy consumption of the protocols, the
comparison of the analysed quantities may give us a hint of the relation between the
energy spent by each of them as a function of the multiple problem variables. We may
use this sent message rate to characterise the behaviour of MODUS under different
scenarios and then validate the model by comparing it to measurements.
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Relevant Parameters

Among the large number of parameters that affect MODUS performance, we are
mainly interested in studying the effect of varying the following.

• Size of the system, measured by the maximum number of nodes that conform the
cluster, N .

• Patterns of registration/unregistration of clients. Since the number of clients
registered as membership listeners in one node is only local, the only relevant
information is the time of the first registration and the last unregistration, thus
we may consider a single client application per node. We will call τr (τu) the
average frequency of registration (unregistration) of the client.

• Percentage of active nodes. The application may be only running on a fraction
of nodes in the system, represented by the parameter F ∈ [0, 1].

• Pattern of failures/rejoins. If nodes fail and reconnect at a high enough rate, the
number of potential members in the group will be variable, and affect the cost of
the protocol. We define τf (τj) to model the number of failures (reappearances)
per node and unit time.

There is a number of additional parameters whose value determines the sending
rates of MODUS, but are not included as variables in our model. Instead they are
considered as external parameters.

• Average time required to complete a rmcast in the network, trc. Since no primitive
is available, this can be estimated as the cost of sending a broadcast/multicast
to all members and receiving all answers.

• Average time required by RMS to install a membership view, tview. This is a
parameter that depends on the particular RMS being used and on the character-
istics of the network. If its value is not available, it can be estimated from the
number of communication rounds required by the RMS in order to install a view.

Analysis

A typical client application could work according to the following pattern.

1. Most of the time, the application does not need agreement among the members
of the network, and membership services are not required.
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2. In order to perform some particular operations, certain level of agreement is
required. Thus the application makes use of the information delivered by the
membership service for the time such operations are being carried.

For the time no application, on any of the nodes, is requiring membership informa-
tion, MODUS takes charge of switching off the RMS, and the message consumption
is reduced in exactly the rate of RMS. This includes possible control messages forced
by the RMS or a failure detector in order to keep liveness of the membership informa-
tion, but also the necessary rounds to change views as new members join the group.
The former flow of messages may be not present in the case of a membership service
that does not rely on its own control messages to ensure liveness, but reacts to other
components. The latter, on the contrary, can only be avoided if the RMS is switched
off.

During the time of membership agreement, MODUS imposes an overhead in the
number of exchanged messages. Therefore, after a time of operation the total con-
sumption will depend on the ratio of membership activity to membership rest time.
Let τMODUS be the average sending rate per node of MODUS for the periods of mem-
bership activity, τRMS the average sending rate of RMS along all its execution, and γact

the time for which membership information is required. Then after a total running
time T , MODUS will have exchanged less messages, and thus enabled some energy and
resources saving, if

τMODUSγactT ≤ τRMST ⇔ γact ≤
τRMS

τMODUS

. (6.1)

The message consumtpion of RMS is determined by the particular membership ser-
vice in use. Even if the particular RMS does not involve specific monitoring messages,
changes to the composition of the group due to appearances and disappearances will
imply installation of views with the subsequent message rounds. Every appearance or
disappearance of a node will imply a change of view. Since the cost of a view installa-
tion is lower–bounded by the cost of consensus plus one communication round [60], if
the system suffers napp (ndisapp) node appearances (disappearances) per unit time, we
may write

τRMS = τmonitor + (napp + ndisapp)
3Cround(N)

N
. (6.2)

Eq. 6.1 gives us an upper bound to the fraction of time of membership activity
if MODUS is to produce some saving. The value of that ratio will vary depending
on the activity pattern of the network and the client applications during the time of
membership agreement.

Let us consider a client application which registers as a membership listener, stays
connected for a short period of time, as it performs some definite operations and
unregisters again. We model the patterns of registration and unregistration at each
individual node with normal distributions of means µr (mean registration time) and µu
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(unregistration time) and standard deviations σr and σu respectively. Then for the rate
of connections and disconnections we have τr = τu = 1

µr+µu
. Moreover, the asymptotic

probability of a given node to be registered at any instant of time is Preg = µr

µr+µu
.

If no simultaneous unregistration of all nodes occur, during activity periods we have
the basic RMS sending rate plus an extra rmcast each time a new node gets active or
passive.

τMODUS = τRMS + (τr + τu)FCrc, (6.3)

being Crc the cost, in terms of number of messages, of completing a rmcast. Such
cost will depend on the size of the group which, with no full unregistration, is kept
by MODUS to the maximum, N . Besides sending the message to all nodes, rmcast
implies receiving an answer from everyone. Thus we may estimate Crc ∝ 2N .5 The
overhead of MODUS is then proportional to N , and governed by the frequency of
listener registration–unregistration per node.

The rate τRMS depends on the particular RMS. If the RMS does not force monitoring
messages, as we are only considering a situation in which no “hard” changes occur to
the group, this rate will be null. Otherwise, its value will depend on the liveness
imposed by RMS.

As registration periods become shorter and sparse, there may be a non-negligible
probability that, even within activity times, all clients unregister at once, and MODUS
forces RMS disconnection. In that case, the total number of messages sent by MODUS
is reduced in the amount that corresponds to periods of deactivation, but in change
there is an overhead due to the cost of reconfiguring the group from scratch. The exact
number of messages exchanged when reforming the group and during disconnection
are highly variable and may depend on a number of factors, such as the time RMS
takes to install a new view, the succession of group views until the total membership is
established, or the average time a rmcast operation takes to complete in the network.

Instead of trying to characterise exhaustively these costs, we make an analysis based
on a worst and best case to set bounds to the sending rates.

We focus our analysis on the activity times, during which MODUS is at least avail-

able on every node. During such periods, we may schematically write the sending rate
of MODUS as

τMODUS = τcont

(

1−
Tdisconn

T

)

+ (θconn + θdisconn)
νdisconn

N
, (6.4)

being τcont the sending rate of MODUS (including the RMS component) as calculated
above, Tdisconn

T
the fraction of the total time T for which there is no client connected

on any of the nodes, θconn(disconn) the overhead due to reconnecting (disconnecting) the

5In case we take into account possible message loss and resending, this cost may include an extra
term which is a higher power of N .
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whole group, and νdisconn the frequency at which a simultaneous unregistration occurs.
If the individual behaviour of the listeners is determined by µr(u), σr(u), their effect on
the sending rate will be included in the global parameters, νdisconn and Tdisconn.

The fraction of connection time depends heavily on the pattern of registration and
unregistration of the client application. Even for our simple model it is not possible to
deduce an analytical expression for νdisconn and Tdisconn in terms of µr(u), σr(u), N and F .
Nevertheless, a Monte Carlo simulation can be easily done so to estimate the relevant
parameters in all the interesting cases.

The overhead θconn of composing the whole group after a global disconnection, once
the first client registers again, depends on the operation of RMS. We may distinguish
two components, one due to the extra messages exchanged by MODUS itself and the
other due to RMS regular operation when forming a new group.

θconn ≡ θ(RMS)

conn + θ(MODUS)

conn

The first node becoming active will broadcast a ServiceReq to all reachable nodes.
Since no group was already formed, the receivers will then start joining a membership
view, according to the particular RMS. The pattern of reconnection may vary from
all nodes entering the same final view immediately, to a succession of views, each
containing one more node, that will be installed if RMS lets nodes join one by one.

Each view that includes new nodes means an ActiveList message to update joined
nodes about the state of the older ones. This implies at least two rmcast from the
previously disjoint subgroups. Besides, if the view change took place while some node
was rmcasting a change of state, and this operation had not finish, it is possible that
such node needs to repeat the rmcast within the whole new group, after the first
ActiveList message. The occurrence or not of such repetition will depend on different
parameters, such as tbc (the average time cost of a rmcast operation) and tview (the
average time it takes for RMS to install a new view), but also on non-deterministic
factors, as the pattern of reconnection or the number of views the group goes through
before reaching the full membership again, which are harder to quantify.

In order to analyse the behaviour of MODUS, we focus on two extreme cases, for
which the minimum number of sent messages can be estimated.

• In the best possible case, all nodes will join at once. If the RMS uses collective
startup, there will be only one view installed, whereas if individual startup is
used, each member will first be in a singleton view and then enter the definitive,
global view. The RMS will thus impose at least an overhead equivalent to the
cost of installing a view. Thus the RMS overhead per reconnection will be

(θ(RMS)

conn )best ≥ 3Cround(N) ≈ 6Cbc ≈ 6N.

In this situation, MODUS will not need extra messages besides the continuum
rate to update joined members, as no former view exists. (θ(MODUS)

conn )best ≈ 0.
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• In the worst case, the RMS may force nodes to join the group one by one. In
such situation, the RMS installs N−1 views of monotonically increasing size and
thus

(θ(RMS)

conn )worst ≥
N

∑

k=2

3Cround(k) ≈ 3(N 2 + N − 2).

The overhead imposed by MODUS during the succession of views installed every
time the group recomposes can be calculated as follows. Each view implies two
new ActiveList messages among the members, plus the rmcast operations for
each registration or unregistration of one of its participants, but also the repeti-
tion of the ones that did not finish before the view change. Assuming tview & trc,
we may estimate that those changes that take place within tview − trc/2 from the
installation of the view have time to complete their rmcast, whereas the ones
started during the last trc/2 will not finish. They will impose an overhead of only
a fraction of the total cost Crc and then a full new rmcast in the following view.
All in all, the overhead per view of cardinality k, with 1 < k < N can be written
as

4k +

(

tview −
trc
2

)

(τr + τu)F 2k2 +
trc
2

(τr + τu)F (3k2 − 2k).

Thus, after summing over all views, and taking into account that the last one
imposes only the overhead of completing delayed notifications, plus the pair of
ActiveList messages, and including also the cost of the initial ServiceReq
broadcast, we may write

(θ(MODUS)

conn )worst ≈ 2N2 + 3N − 2

+2

(

tview −
trc
2

)

(τr + τu)F

(

N3

3
+

N2

2
−

5N

6
− 1

)

+
trc
2

(τr + τu)F

(

N3 −
5N2

2
+

3N

2
− 1

)

. (6.5)

Besides, in this situation, the time of recomposing the group, ≈ (N − 2)tview,
is not negligible, and thus the contribution of the continuum rate during such
reconfiguration will be different from that of the full group situation. To ac-
count for this effect we may substitute Tdisconn by an effective quantity T̃disconn ≡
Tdisconn − νdisconntview (N − 1) and add a contribution

τ (RMS)

cont

νdisconn

N
tview

(

N2 −N − 2
)

,

which would be the contribution to the continuum rate of RMS of those nodes that
are already (remain) connected as the group gets reconstructed (decomposed).

The overhead of breaking up the group, once a global disconnection occurs, depends
on the simultaneousness of all nodes noticing the absence of active members, and
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also on the operation of RMS. The pattern of disconnection may vary from all nodes
switching off their RMS at once, with basically no overhead due to installation of
intermediate views, i.e.

(

θ(RMS)

disconn

)

best
≈ 0 to a succession of views, each one containing

one less node, that are installed as nodes switch off their RMS one by one, in which
case

(

θ(RMS)

disconn

)

worst
& 3(N2 + N − 2). Nevertheless, if these views do not include new

nodes, but are monotonically decreasing, they will not impose diffusion of ActiveList
messages, and thus the disconnection overhead due to MODUS is negligible in our
approximation. An important exception, however, is the case when the succession of
views that are installed as nodes notice the global disconnection does not finish before a
new client registers, as this would hinder the switching off of all RMSs. In our model we
account for this fact by reducing the effective inactivity time in an amount proportional
to the average time cost of a rmcast operation, trc.

6 Otherwise, we neglect θdisconn.

Experiments

The experimental evaluation of MODUS performance should include in principle
different patterns of registration-unregistration of membership listeners (i.e., different
percentages of active nodes and different rates of connection–disconnection), different
patterns of appearance–disappearance of nodes, and different sizes of the system. In
order to validate the model and extract some conclusions about the performance of
MODUS in a practical setting, we have measured the average sending rates in a set of
test scenarios where the parameters are varied over a certain range of values, defined
as follows.

1. The size of the system is chosen as N ∈ {20, 40, 60, 80} nodes.

2. The percentage of nodes which hold membership clients capable to register as
membership listeners F ∈ {30, 60, 100}%.

3. The pattern of registration–unregistration of clients is varied over a finite set of
patterns, defined as follows. The time a client stays registered at one node is
modelled by a normal distribution of mean µr ∈ {10, 30, 60} s and σr = 1 s.
For each value, the corresponding distribution for unregistration time is given by
µu ∈ {µr, 2µr, 3µr} and σu = 1 s.

4. Since we are trying to characterise the overhead imposed by MODUS during
periods of activity, during this tests no appearance or disappearance of nodes is
considered.

Tests were carried using as RMS the implementation of HMS, which yields a sending
rate of τHMS ≈ 3 s−1 per node, which is practically constant over the whole set of tests.

6If the resulting disconnection time was negative, we would consider that no global disconnection
takes place.
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The experiments were performed on a cluster of four 2.80 GHz Pentium IV Linux PCs,
ever which we distributed the N nodes of each simulation. In each case, we measured
the number of sent messages per node and from that the instant sending rate, as a
function of time, for the various scenarios.

The figures show the measured sending rates in the different experiments, as a
function of the number of nodes. For each individual case we also show the rates
predicted by the semi–analytical model discussed above. For each experiment we show
the prediction dismissing simultaneous unregistration of all clients, and those that
evaluate the overhead of expected unregistrations when view changes are respectively
minimal and maximal.
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Figure 6.12: Sending rate obtained with µr = 30 s, µu = 2µr and F = 100 %.
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Figure 6.14: Sending rate obtained with µr = 30 s, µu = 3µr and F = 100 %.
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Figure 6.16: Sending rate obtained with µr = µu = 10 s and F = 60 %.
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Figure 6.17: Sending rate obtained with µr = µu = 30 s and F = 60 %.
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Figure 6.18: Sending rate obtained with µr = µu = 60 s and F = 60 %.
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Figure 6.19: Sending rate obtained with µr = 10 s, µu = 2µr and F = 60 %.
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Figure 6.20: Sending rate obtained with µr = 30 s, µu = 2µr and F = 60 %.
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Figure 6.21: Sending rate obtained with µr = 60 s, µu = 2µr and F = 60 %.
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Figure 6.22: Sending rate obtained with µr = 10 s, µu = 3µr and F = 60 %.
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Figure 6.23: Sending rate obtained with µr = 30 s, µu = 3µr and F = 60 %.
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Figure 6.24: Sending rate obtained with µr = 60 s, µu = 3µr and F = 60 %.
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Figure 6.25: Sending rate obtained with µr = µu = 10 s and F = 30 %.
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Figure 6.26: Sending rate obtained with µr = µu = 30 s and F = 30 %.
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Figure 6.27: Sending rate obtained with µr = µu = 60 s and F = 30 %.
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Figure 6.28: Sending rate obtained with µr = 10 s, µu = 2µr and F = 30 %.
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Figure 6.29: Sending rate obtained with µr = 30 s, µu = 2µr and F = 30 %.
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Figure 6.30: Sending rate obtained with µr = 60 s, µu = 2µr and F = 30 %.
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Figure 6.31: Sending rate obtained with µr = 10 s, µu = 3µr and F = 30 %.
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Figure 6.32: Sending rate obtained with µr = 30 s, µu = 3µr and F = 30 %.
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Figure 6.33: Sending rate obtained with µr = 60 s, µu = 3µr and F = 30 %.
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The first nine plots, figs. 6.7-6.33, correspond to the experiments with the largest
proportion of connection time, µu = µr, and to situations in which all nodes in the
system hold membership clients. The plots show how, as the frequency of individual
registrations decreases, the potential contribution of the unregistration and reconfigura-
tion overhead (whose boundaries are shown as dashed lines) becomes more important,
so that the obtained rates deviate from the linear behaviour predicted for continuous
operation. On the other hand, if such frequency is too high, other factors may appear
that are not included in the model, such as repeated sending of messages as they may
be lost due to flow peaks, which may cause the continuous rate to be non linear.

If the percentage of active nodes decreases to only 60 % of the system nodes (see
figs. 6.16-6.24), the occurrence of overlapped unregistration of all clients becomes more
likely, and the results deviate from the continuum prediction, but are still far from the
maximum rates predicted by the most pessimistic reconfiguration pattern, except for
the longest mean unregistration times, for µr = 60 s (see figs. 6.22, 6.23, 6.24).

In figs. 6.25-6.33, analogous experiments with only F = 30 % of active nodes are
depicted. In these cases, the overhead of full unregistration becomes more important,
and the experimental results get close to the worst prediction for µr = 60 s.

Generally speaking, MODUS represents an overhead with respect to the message
consumption imposed by a RMS that is running continuously. During periods in which
membership services are not required, however, such overhead my be compensated by
the sustained consumption of RMS. The critical fraction of time γact under which
MODUS turns out to be the most efficient option, depends on the particular RMS
considered. The following plots show the results obtained for 1/γact in our experiments.

From the previous experimental results we may predict a range of operation regimes
for which an application will benefit from the use of MODUS instead of a given con-
ventional RMS, such as HMS. In particular, we observe that the overhead of MODUS
will in most cases be compensated if membership services are only required for less
that 30 % of the time.

A reasonable alternative to the execution of RMS on all nodes, which might be more
efficient than MODUS from the point of bandwidth consumption could be running RMS
alone, but enabling every node to switch off its individual membership service when
no local client exists for membership information. With nodes joining and leaving the
cluster as their local applications require and release membership services, the RMS
would be forced to install new views with every change, thus generating a number of
message broadcasts. The number of changes RMS would undergo would then be deter-
mined by the shortest from tview and the mean time between registration/unregistration
events. If changes were faster than view installation, the number of views in a total
period T would be determined by their average duration, nviews = T/tview. Otherwise,
the number of installed views would be given by the number of registrations and un-
registrations, nviews = 2T/(µr + µu). Since only nodes with active clients would be
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Figure 6.34: Ratio between the sending rate of MODUS and that of RMS running
continuously on all nodes, for F = 30 % of active nodes.
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Figure 6.35: Ratio between the sending rate of MODUS and that of RMS running
continuously on all nodes, for F = 60 % of active nodes.
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Figure 6.36: Ratio between the sending rate of MODUS and that of RMS running
continuously on all nodes, for F = 100 % of active nodes.

participating of the membership protocol, the group views formed in such way would
contain in average F N Preg members, which may be not enough for the requirements of
the user applications. For instance, a group key agreement protocol might be requiring
a minimum group size in order to proceed.

The higher flexibility of MODUS with respect to RMS run with such configura-
tion lies in the possibility of a distributed switching off without damaging the service
offered to user applications. The size of the group in the case of MODUS will be de-
termined by the fraction of available nodes, if message losses are neglected. Thus, in
our experiments, the average size will approach the maximum N , i.e. it will be 100

FPreg

times larger than the average RMS group, except for periods of global unregistration.
This is illustrated by figs. 6.37, 6.38, which show the extreme cases with the maximum
and minimum frequency of registration–unregistration for the maximum and minimum
fraction of active nodes, respectively.

From the results above we conclude that MODUS will be an advantageous alter-
native to a conventional RMS when the applications require membership information
only for finite periods, but can do without this service for the most of their running
time, and when their operation has also requirements on the size of the group.
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Figure 6.37: Comparison of the average group size with MODUS and RMS alone, when
the latter is run only during local activity times, for µr = µu = 10 s and F = 100 % of
active nodes.
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Figure 6.38: Comparison of the average group size with MODUS and RMS alone, when
the latter is run only during local activity times, for µr = µu/3 = 60 s and F = 30 %
of active nodes.
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6.5 A Practical Case of Use

In this section we describe an example application that could benefit from the use
of membership services in an On–Demand fashion.

Let us picture a meeting among a relatively high number of participants (up to a
hundred) that join a conference session and are supposed to carry some collaborative
work. As the example application, we may consider a distributed agenda with secure
key exchange. Each participant is equipped with either a laptop or a PDA, all of them
connected to the wireless network and running the agenda. The application should be
completely distributed, and thus any participant is entitled to read and make changes
to the schedule.

A typical session would begin by establishing a shared private key for the group
to enable efficient communications security. This will require consensus among at
least a subset of the initial participants, and thus the application will demand the
membership agreement for the duration of this phase. Depending on the application,
a minimal number of participants can be required in order to establish a key, so that
if no such group can be formed, the application can not proceed. After a key has been
established, the participants will mostly consult the agenda in a read–only manner.
The distribution of the secure key to new members does not necessarily need the
participation of all the group, but can be done in a one-to-one basis. The duration of
the agreement requirement is then finite, and the membership services can be turned
off.

Whenever a member decides to write to the agenda, changes must arrive to all
participants with total order guarantees, to avoid inconsistencies caused by concurrent
write operations. Therefore write operations should be performed within the consensus
provided by membership guarantees.

Some of the participants in the meeting may have their laptops connected to the
AC supply, and thus be more willing to play the most energy–consuming roles in the
application. It is important to notice that this decision should not be taken a priori, as
would be the case in a (partially) wired network, where some nodes might play the role
of servers while the others act as clients. On the contrary, the application should respect
the symmetry among all participants inherent to ad hoc networks, so that any node
can disconnect or reduce its participation due to power shortage without affecting the
overall correct operation of the application. In the case of our agenda, some plugged-on
participants could invoke MODUS.joinGroup at the beginning of the session and stay
available as membership participants, whereas the lightest participants should only
make themselves available when they are interested in agreement. The application
may use the membership information it receives to enforce its own guarantees, e.g.
the minimum number of participants required to establish a secure key or to allow a
certain change to the data.
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Other applications, as distributed file sharing, could exploit On–Demand member-
ship semantics to achieve their particular goal. Leader election is also trivial taking
advantage of MODUS semantics.

These and other distributed applications could obviously be implemented without
the support of membership semantics. However, that would imply much more com-
plicated and failure prone implementations, as the effort of achieving and maintaining
the required agreement would fall on the applications developer. That cost would be
replicated if various components exist with the need for membership information.



Chapter 7

Membership Estimation for
Dynamic Networks

7.1 Specific Membership Service for Ad Hoc Net-

works

The MODUS protocol, described in the previous chapter, is a useful alternative in
order to provide the On–Demand semantics when a conventional membership service
is available. As shown in the previous section, the On–Demand approach alone al-
ready allows significant saving in bandwidth and energy consumption. Nevertheless, in
particular scenarios it may be more convenient the usage of specific protocols, better
adapted to the characteristics of each environment.

In the case of ad hoc networks the special features of the system can render im-
practical the usage of a conventional protocol as the RMS required by MODUS. For
instance, if HMS is to be used, an initial knowledge is required about the identities
of all possible members of the system. In an ad hoc network such information may
not be available, since members are not in general preconfigured and the topology is
a priori unknown. The same limitation applies to conventional membership services
which require only a partial knowledge of possible members to start up, or in general
to any protocol that needs some information about the composition of the system.

On the other hand, the absence of fixed hosts advises against the use of centralised
protocols. Even the usage of a master, as in the case of HMS, which leads changes
through several views during its life will affect negatively the performance of the proto-
col, since the extra work that has to be done by the master node will probably impose
a higher energy consumption on this particular node, and thus make it more prone to
failures.

167
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For all these reasons it is convenient to deploy a specific protocol that better con-
forms to such distinguishing features of an ad hoc network. In particular, no a priori
knowledge of the node identities should be assumed, and maximally decentralised pro-
tocols should be chosen.

7.1.1 An Alternative Membership Architecture

A suitable alternative to deploy a membership service that provides the On–Demand
service is to base it on a service that provides an estimation of the current membership,
without strict guarantees, on top of which agreement rounds are launched according to
the On–Demand semantics, as in [7] the conventional membership service is achieved
with an estimation phase followed by a consensus run. Thus we propose a two-folded
membership service (see Fig. 7.1) where both components offer to higher level appli-
cations the most general interface of a membership monitor 3.1.

Membership Monitor Interface

APPLICATIONS...

TRANSPORT LAYER

MEMBERSHIP
ESTIMATION

MEMBERSHIP
SERVICE

Figure 7.1: Architecture of a specific On-Demand Membership Service.

The lowest component provides only an estimation of the group composition. This
supplies the initial information that in a conventional system may be a priori available
about the network addresses of the members. The estimation component tends to keep
each node’s information up to date, but since it does not provide consistency guaran-
tees, a stronger protocol is required when the conventional membership semantics is to
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be provided. The upper membership component will take charge of this task, providing
its client applications with the conventional guarantees of a membership service [22].
Some of its distinguishing features are the following.

• The strict component does not run continuously, but implements the On–Demand
semantics discussed in the previous sections.

• The design of the membership service should not rely on the existence of a master
that starts the agreement rounds, since the rate of failures is high and that would
force extra (maybe costly) recovery protocols to be run often, as the master
changes. It is thus desirable that the proposed service is completely distributed,
and that the protocol can be simultaneously launched by different nodes.

• Each run cannot rely on the results of a previously reached agreement, since
operation is not continuous and the latest confirmed view does not need to be
valid any longer. Thus, each time an agreement is demanded, the protocol will
proceed in identical way, retrieving an initial set from the estimated membership
component and trying to reach an agreement about that composition.

The interaction between both components must respect the inherent system lim-
itations. In particular, the requirements on the liveness of the protocols should be
relaxed as far as this does not break the desired consistency properties. These consid-
erations lead to an approach where addition of new nodes to the confirmed group can
be delayed, if detected while an agreement is being forced. Those new nodes will not
take part of the current agreement, but will only participate in further rounds, if re-
quired. Conversely, the failure of a node while the membership service is running must
be promptly notified, as a missing member is sensitive information to any application
that is listening to membership changes (e.g. if it is trying to complete a transaction
within the confirmed group).

7.2 Membership Estimation Service

The estimation component was introduced in the former section as a basis for the
operation of a strong membership service. Nevertheless, it is a more general service
whose information will be useful for other distributed components. For instance, a
consensus algorithm could need a set of processors to be used as the agreement set.

In other words, the membership estimation service provides an approximate infor-
mation about the group composition that can be useful to any other component which
does not require strong consistency (see [60]). Therefore, it can be made directly
available to higher level applications, as it offers the public membership interface.
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The rest of this chapter is devoted to a study of an efficient approach to provide this
estimation service in an ad hoc network. Different to existing studies about the optimi-
sation of protocols for ad hoc networks, our analysis takes into account the necessary
presence of other services, in particular routing. Given the particular characteristics
of this kind of network, the energy consumption is to be minimised by any protocol.
However, this clashes with the aim to provide as live as possible information about the
group composition. Moreover, the routing and estimation services do not need to be
isolated, but can be combined in a single component.

Thus, the fact that both services have to be simultaneously provided affects the
architectural decisions, as well as the energy saving policies. Here we compare two
possible architectures that provide both services and analyse their performances in
terms of power consumption and quality of the membership estimation [81].

7.3 Interaction of Routing and Membership Esti-

mation

Several approaches may be chosen for the estimation component. Its operation
may be based on gossip, so that when a particular node detects an addition or an
announced disconnection, such information is spread across the group. There is however
an interesting consideration to be made here. Our system model (see sect. 6.2) is
assuming the existence of an underlying routing service which enables all our protocols
to address messages to individual nodes in the system. Such routing protocol will
maintain at least partial information about the composition of the system, and will
also impose a certain energy consumption. Therefore it involves two fundamental
aspects the estimation service is concerned about.

Moreover, there exist routing protocols that keep the global composition of the
system at every node, e.g. OLSR, and can provide membership information by them-
selves. It is then reasonable to perform a joint study of the energetic efficiency and the
quality of the membership estimation of a gossip–based membership estimation and a
routing service, and compare the results to the estimation obtained by using only a
routing service that holds full information about the system.

7.3.1 Routing Protocols

The multiple existing proposals for routing protocols in ad hoc networks can be
classified in two groups, namely reactive (also called ”on-demand”) and proactive.

Reactive algorithms, as DSR [82], AODV [83] and TORA [84], only operate when
a new packet is to be sent and no calculated valid route exists from the sender to
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the receiver. The route search process introduces some delay in the delivery, but the
overload due to network maintenance messages is very low. On the contrary proactive
algorithms, as OLSR [85] and DSDV [86], periodically exchange data about routes and
system state in order to refresh the system topology. They imply a constant energy
consumption by all nodes, and introduce a higher overload in the network.

A number of studies have been carried in order to characterise the performance of
both approaches with respect to different parameters and in various working scenar-
ios [77, 87, 88, 89].

Here we focus on the joint study of the energy consumption and the quality of
the provided global information about the group membership. For our study we have
selected two routing protocols, representative of each type and for which stable imple-
mentations exist for different platforms, namely DSR, as reactive protocol, and OLSR,
as proactive protocol which maintains global information about the system composition
at every node.

OLSR OLSR (Optimised Link State Routing Protocol) [90, 85] is a proactive routing
algorithm built as an optimisation of link state algorithms by reducing flooding overload
only to a set of nodes called MPR (Multipoint Relays). To our knowledge, it is also
the only one to maintain global information on the composition of the system at every
node. Its proactive nature ensures that routes are available at any moment.

From an operational point of view, OLSR handles two types of messages.

• Hello messages are used to discover links and to test their unidirectional or
bidirectional character. They are exchanged periodically between neighbours
to probe the state and directionality of links and to verify the responsiveness of
nodes.

• TC messages are used to build the overall network topology. Each node selects
its set of MPR nodes from the senders of received Hello messages and periodi-
cally broadcasts a TC message to the entire network with part of the received
information. This message is only forwarded by MPR nodes and it is used by
every node to update the global composition of the system.

The information received by a given node through Hello and TC messages is kept
for a certain period of time. If it is not refreshed by new messages, however, the
corresponding links will be considered to have failed and will be removed from the
locally maintained image of the system composition.

The behaviour of OLSR is determined by a number of parameters, among which
the most relevant for our comparison are the following.
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• Hi represents the time interval between consecutive Hello messages;

• TCi is the corresponding interval between TC messages;

• Ht is the time of validity of the last Hello message (typically Ht ∝ Hi); and

• TCt, the time of validity of the last TC message (with TCt ∝ TCi).

The last two parameters determine when the information held by one node is considered
obsolete and discarded, thus they determine the liveness of the protocol regarding the
detection of failed nodes or links.

DSR DSR (Dynamic Source Routing) [82] is one of the most widely used reactive
algorithms. Its reactive nature implies that every node maintains only those routes
that have been previously demanded (or parts of such routes, if they have taken part
on their calculation) and have not yet been discarded due to broken links.

In a very condensed way, the operation of DSR is as follows. When a packet is to
be sent to an individual node, and if no pre-calculated route to the receiver exists, the
sender produces and broadcasts a Route Request message, containing its identity and
that of the destination, a unique message identifier and a path list initially holding the
sender alone. The neighbouring nodes that receive the Request add their identifier to
the route path list and broadcast the modified message. After receiving it, the target
replies to the source with a Route Reply message that contains the whole path followed
by the message from the sender to the destination.

Since Route Requests are only issued when there are messages to be sent, no constant
overhead is imposed by DSR, at the price of a certain delay when delivering a message
to a node for which no route is yet known. On the other hand, as a node Ni only holds
information on nodes for which a route including Ni exists, there is no guarantee that
the global composition of the system is locally available.

Liveness is ensured by requiring the confirmation of data packets reception at each
hop. If a node misses such confirmation from the next node, it can retry the sending
for a number of times. After a certain number of failed retransmissions, however, it
generates a Route Error message to notify the original source about a broken link in
the route.

7.3.2 Epidemic Style Membership Estimation

To our knowledge no reactive routing protocol provides every node with information
about the global composition of the system. Thus, if such approach is used for routing,
an extra service should be implemented to perform the membership estimation. A good
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strategy to achieve this in a wireless ad hoc network is to build a gossip–style protocol,
that will indeed impose some extra energy cost, but which can be tuned independently
of routing requirements.

Epidemic or gossip protocols were first introduced in [91] and are widely used for
spreading information in large distributed systems [92] without strict guarantees but
high probability of success. Their use is typical for providing group communication ser-
vices in wireless networks [48, 93, 50, 94, 95], and has also been proposed for achieving
computational tasks in large groups [96].

As a membership estimation service, its use was first proposed in [41], whereas [97]
defined a gossip–like failure detection system in charge of monitoring changes to the
network in a wired environment. Scalable versions of the latter made use of the hier-
archy of the network.

Epidemic algorithms are characterised by their robustness against process or link
failures and their easy implementation [92]. The basic operation of a general epidemic
protocol is as follows. Each process in the distributed system forwards the received
information to a randomly chosen subset of peers. The dynamics mimics the spreading
of an infectious disease. The parameters that govern these protocols, i.e. the quantity
of information every node can maintain, the number of times the same message can be
forwarded and the number of infected peers at each step allow a wide adaptivity and
the existence of range of variated gossip algorithms.

The use of gossip protocols for routing in ad hoc networks was analysed in [98].
In that work several gossip variants are proposed and studied for ad hoc networks.
We use one of them to adapt the classic gossip–style failure detection in [97], so that
instead of selecting a random destination for the gossipped message, each receiver
probabilistically decides whether to forward data. This yields a gossip–like protocol
which provides each node with an estimation of the changes to the composition of the
global network.

In particular, the gossip protocol we use maintains at every node a table of con-
nected nodes, mbship est. Each entry is of the form

(N, state, hb, Thb) ,

where N is the node’s identity; the second field holds the state of the node within the
group, as state ∈ {CONNECTED, FAILED}; hb is an integer value, or heartbeat;
and Thb is the time at which the value hb was last updated.

The protocol makes use of a single type of messages, namely Gossip(table), contain-
ing as argument the local mbship est table of the sending node. The basic operation is
described in this section, and the schematic pseudocode can be found in fig. 7.2, where
the protocol has been divided in two states or phases, namely startup and normal.

At startup, the single entry contained in a node’s table is the local one, with
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hb(localNode) = 0 and Thb = 0. In order to reduce the message overload, the node
waits to receive an extended table from an existing member during a fixed time Ts. This
is the activity corresponding to the startup state. If the expected reception does not
happen, the node broadcasts its own mbship est table and enters the normal state.

In the normal operation mode, each node periodically increases its heartbeat, with
periodicity Tg, and, with probability Phb, it broadcasts its local table. The probability
factor Phb plays the role of fan out parameter that decides, in a gossip algorithm for
wired networks, the number of peers to be infected (only one in the original gossip–style
failure detector of [97]). Such approach is not suitable for ad hoc, or in general wireless
networks, since in them each communication attempt will reach only neighbours that
are within communication range. Trying to reach randomly chosen peers would imply
extra communication steps, and would not take advantage of the basic broadcast facility
provided by wireless networks.

When another member receives the node’s broadcast table, it merges the incoming
information with its local table, updating entries for which higher heartbeat values
have arrived, and setting Thb of such entries to the current time. If the state of some
node was FAILED in the received table, the local entry would also be set to the failed
state, and the Thb value would be updated too. After processing this information, the
receiver node will, with probability Ps, rebroadcast the updated table.

When the heartbeat of a certain node is older than a predefined time Tf , the node
is considered to have failed, its state is changed to FAILED in the local table and
after a longer period Tcleanup, it is definitely removed from the table.

A particular case occurs when a node has been incorrectly declared as FAILED
by some other node. In that case it may happen that a received Gossip message
contains an entry declaring the receiver itself as FAILED. Such entry is discarded
when processing the incoming table, as the most up-to-date information regarding a
node lies on the node itself. On the other hand, an entry declaring the local node as
CONNECTED but containing a hb value which is lower than the current value by
more than a certain threshold ∆hb will force the sending of a Gossip after process-
ing the incoming table. This is to avoid the wrong declaration of the local node as
FAILED by the rest of the group due to an excessive ageing of the corresponding
information. The threshold value is configurable, but in order to be useful it must
satisfy ∆hbTg < Tf .

The main parameters controlling the gossip algorithm are the following.

• Tg is the time period between consecutive increments of the heartbeat at a given
node.

• Tf is the maximum allowed age of the information about a particular node before
setting its state to failed. The value of this parameter is chosen so that, if a



7.4. Experimental Study 175

member is alive, there is a high probability that a fresh heartbeat from it has
arrived to any other node (from a practical point of view, Tf ≥ 2Tg is generally
chosen).

• Ts is the maximal duration of the startup phase, i.e. the time a foreign Gossip
message is expected for before broadcasting the node’s own singleton table and
entering normal operation.

• Ps is the probability that a node resends the received information (merged with
its own local table) after being infected, i.e. after receiving a Gossip message.

• Phb is the probability that a node starts spreading its local table after increasing
its own heartbeat, i.e. after each Tg period.

7.4 Experimental Study

7.4.1 Observable Quantities

As already mentioned, our study focuses simultaneously on two aspects, namely
the energy consumption and the quality of the membership estimation. Therefore, we
need the definition of observable quantities that can be experimentally determined and
yield a basis for the comparison of the various approaches.

In order to quantify the liveness of global membership information we measure
the time it takes for all nodes in the system to reach a common knowledge about
the connected members after a change has happened. Following previous work on
characterisation of gossip algorithms in wired networks [99], this is done in two different
scenarios.

• In the first one, one joins, the N -th node joins the group when the remaining
N − 1 are in a stable state (all of them having the same correct knowledge about
present members). We measure the time elapsed from this join until the last

node knows the full group composition, T
(j)
agr.

• In the second scenario, one leaves, one node is switched off when all N nodes were
in the stable state, and we measure the time it takes for the remaining members
to notice the failure, T

(f)
agr.

To quantify the consumption of energy, the following observable is constructed. In
each execution we measure the total energy consumed by each node as a function of
time. This is found to be fitted by a straight line, whose slope determines the consumed
power, dE/dt, and remains approximately constant during an execution. We average
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this quantity over all the nodes in the network, to obtain a quantitative measure of the
energetic performance of the protocols.

7.4.2 Experiments

We have performed the evaluation on two possible architectures. On one hand
OLSR alone and on the other the gossip–style failure detection service described above
with the support of DSR as the basic routing protocol. In the following they will be
referred to as OLSR and GDSR (Gossip + DSR).

Our simulations were done using the Network Simulator ns2, version 2.27 [100]. The
release contains a number of protocols for wireless networks, including DSR. Although
the employed version of the simulator does not include an implementation of the OLSR
protocol, there exist realisations developed by third parties for their use with ns2. We
have used the freely downloadable one from NRL Protean Group [101]. The gossip
protocol described earlier in this section was explicitly implemented to be included in
the simulator.

We performed a series of experiments to measure the observables defined above, T
(j)
agr,

T
(f)
agr and dE/dt, as a function of the relevant protocol parameters. Each experiment

consisted of a set of 20 simulations with varying network topology, whose results were
later averaged.

Topologies were constructed by randomly locating the N nodes on a square grid of
variable dimension, in order to test single–hop and multihop scenarios. Therefore, a
grid of dimensions 200 m×200 m was used for building single–hop scenarios and of size
600 m×600 m for multihop scenarios. Since the range of radio signal assumed by ns2 is
250 m, in order to ensure connectivity the maximum allowed distance between a node
and its nearest neighbour was 60 m for single–hop, and 225 m for multihop settings.

Each simulation was run for the one joins scenario to determine T
(j)
agr and dE/dt

and for the one failures scenario to determine T
(f)
agr. The experiments were repeated

for different values of the total number of nodes, ranging from N = 4 to N = 40, for
both proposed architectures, GDSR and OLSR. The simulation time was ∼ 300 s for
single–hop scenarios and ∼ 1000 s for multihop networks, after the state of the nodes
had stabilised and they shared the correct knowledge about the initial composition of
the network. The parameters of ns2 determining the power consumption in reception
and transmission were both fixed to 0.2 mW.

The basic factors that determine the power consumption and the liveness of global
information in each case are the periodicity of information broadcasting and the life-
time of local information. The performance of both proposed approaches can only be
compared when those factors are comparable.
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In the case of GDSR, the relevant parameters are the gossip interval Tg, the time
to detect a failure, Tf and the probabilities of forwarding local or received information,
Phb and Ps. In our simulations we considered Phb = Ps, so that we had only three free
parameters. In OLSR, the periodicity of information refreshing is determined by Hi

and TCi, whereas the time to detect a failure is governed by Ht and TCt. We took
Hi = TCi and Ht = TCt in our experiments, so that only two independent parameters
remained. The role of Hi and TCi in OLSR is equivalent to that of Tg/Pg in the
gossip failure detection, namely the period between local broadcasts from each node.
Equivalently we may say that in OLSR each node broadcasts its information 1/Hi times
per unit time, whereas in the gossip algorithm it does so Pg/Tg times per unit time.
On the other hand, Ht and TCt determine the expiry of information, as Tf does in the
case of the gossip algorithm. This consideration allowed us to establish comparable
sets of parameters for both protocols.

The value of Tf cannot be completely independent of that of Tg. The probability that
a given node has remained silent for a time T can be upper bounded by the probability
that the basic mechanism of spontaneous gossip has not caused the sending of any
Gossip message (i.e. ignoring the effect of foreign Gossip messages it receives), which
can be approximately calculated as

Psil ≤
∏

1,... T/Tg

(1− Pg) = (1− Pg)
T

Tg .

If wrong failure detections are to be avoided, it is convenient to choose a value of Tf

that ensures the probability of having a real failure is high if we have not received any
message from a certain node during Tg, i.e.

Tf ≤ Tg
log Psil

log(1− Pg)
,

for a high value of Psil. If Pg � 1 and Psil ' 1, the above expression can be approxi-
mated by

Tf ≤
Tg

Pg
(1− Psil) .

We performed a group of experiments with fixed Ps = 0.06 and Tg between 1 and
5 s in GDSR, and with the corresponding values Hi = Tg/Pg in OLSR. In the one
joins scenario we fixed Tf = 2 Tg and Ht = 6 Hi. In one leaves a more realistic
Tf = 0.7 Tg/Pg was chosen, as this upper–bounds the probability of detecting a fake
failure due to missing gossip messages, and Ht = 1.5 Tg/Pg (since the implementation
of OLSR requires Ht > Hi).
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7.4.3 Results

Fig. 7.3 shows in a logarithmic scale the dependence of T
(j)
agr with Tg for both ap-

proaches in single and multi–hop scenarios. Notice that the value of Tg determines that

used for Hi, the relevant OLSR parameter, through Hi = Tg/Ps. In the plots T
(j)
agr shows

a linear dependence with broadcast periodicity, less pronounced in the case of GDSR,
and with little sensitivity to the number of nodes in the network, N , specially in the
case of OLSR. As expected, the best time to reach agreement when a new member
joins is found for GDSR, with T

(j)
agr at least one order of magnitude lower than in the

case of OLSR.

GDSR shows better behaviour regarding the agreement time, since its operation
is optimised to react when new nodes appear. It is highly probable that a new node
receives the composition of the network during its initial waiting time Ts and it takes
only one flood to spread the complete information to the entire network. Receiving
such initial message is more likely for larger N , specially in the case of a single hop. In
multi–hop scenarios, higher agreement times are obtained (although still far lower than
those for OLSR) as the information needs to go through a number of hops, and for
constant N the probability of having a gossip within one transmission range is lower.

The time to reach agreement in the one leaves scenario, in fig. 7.4, shows in most
cases a linear dependence with Tg. For GDSR it is directly governed by the time
of validity of local information, given by Tf . It would thus be possible to tune the
reaction time, at the expense of tolerating some spurious failure. In the single–hop
scenario OLSR manages to reduce T

(f)
agr even under the value for GDSR. This is due to

its capability of monitoring link quality, discarding links that do not show activity for
long enough periods. The effect shows up when the periodicity is low enough, but it is
not relevant in the multi–hop scenario.

Different results are found for energy consumption. Fig. 7.5 shows in a logarithmic
scale the average consumed power with fixed Tg = 1 s, as a function of the number of
nodes in single and multi–hop scenarios. Contrary to what happens with liveness, the
energetic performance of OLSR exceeds that of GDSR when comparable parameters
are used for both protocols (starred and circle data series). The average consumption
rate is lower and scales better with the number of nodes for the OLSR approach both
in the case of single and multi–hop scenarios.

Summarising the results above, GDSR yields much better liveness for changes detec-
tion, whereas OLSR energy consumption is lower. Yet, the magnitude of the difference
in the values obtained for T

(j)
agr is such that one may try to trade–off some liveness for

energy saving. Thus, we performed a second set of experiments with GDSR, in which
we limited the liveness by taking Ps = 0.03 while keeping the remaining parameters
unchanged. The results of such tests appear also in the figures above. In fig. 7.3 the
effect of lowering Ps in the liveness of information about joined nodes is shown (series
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with cross-shaped marker). We see that the result is worse than the one obtained with
Ps = 0.06, as expected, but it is still much better than the one obtained with OLSR.
In 7.5 we observe the effect of this change in energy consumption. In the single hop
scenario, the OLSR approach is still more efficient, except for the lowest values of N .
However, in the case of multi–hop scenario, GDSR with Ps = 0.03 yields a better result
for all system sizes, between 4 and 40 nodes. A similar improvement is achieved in the
single hop experiments by further reducing the liveness to Ps = 0.01, whereas the time
of agreement is still better than for OLSR.

7.5 Discussion

We have simulated both considered approaches with comparable configurations.
Our results show that depending on the characteristics of the system (size, single or
multi–hop character), and on the requirements on the composition information (degree
of liveness), either alternative may be preferable.

In particular, it is clear that GDSR may be easily tuned to provide very fast de-
tection of joined nodes, whereas OLSR is more efficient regarding the consumption of
energy. In order to get a competitive energy result with GDSR, liveness must then
be relaxed. In multi–hop scenarios the balance is more easily achievable, and GDSR
may provide better results in both time of agreement and consumed power. The per-
formance of this approach could be further optimised if an on–demand approach is
also adopted for the gossip service, so to compose the global estimation of the system
composition only when necessary.

Furthermore, we have also run additional tests in which a constant bit rate applica-
tion (i.e. one that imposes a message traffic with constant rate) is run on top of either
routing service, randomly sending messages to all known members of the network at
a total rate of 10 msg/s. The results indicate that the difference between OLSR and
GDSR consumption reduces, but it is still possible to get better energetic results from
GDSR with lower values of Ps.

It is important to notice here that our experimental results use a simple energy
model (that included by the ns2 simulator) which does not reflect properly all the
complexity of physical networks. Nevertheless, this preliminary study serves us to
demonstrate the fact that both analysed services should not be separately studied
if energy consumption and quality of service are concerned. On the contrary, the
interaction of components is made evident.

Previous works studied the performance of routing protocols from the point of
view of throughput or energy consumption, but to our knowledge no analysis was
done of how other services could affect such results. We have explicitly shown that
if DSR is chosen as a more energy–efficient routing protocol, and some estimation
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of the network global composition is required by user applications, the component
added to provide such information may neutralise the presumed saving, and even result
in a more consuming system. Thus it is not enough to study the performance of
some individual component to characterise the overall performance of the system or to
optimise its energy consumption. In our opinion, it is more sound to carry out a study
of the performance of the set of support services that are to be deployed, in order to
understand their interaction and to reach a trade–off between consumption and quality
of service in a global manner.

Moreover, although our experiments have used DSR and OLSR, some of the ar-
guments apply to reactive and proactive algorithms in a more general way. Reactive
algorithms offer the advantage of not forcing a constant traffic overload, whereas proac-
tive algorithms offer lower delays. However, when combining a routing protocol with
other distributed service, we may find situations in which either approach exceeds
the other’s performance depending on the required QoS of the added component. If
additional services are required by the applications, more components will affect the
energetic performance and must be taken into account in a similar analysis.

Although the energy model employed in the study is limited (we have used the one
included in ns2), the results already allow some qualitative conclusions. For quantita-
tive results, it is advisable to make use of more realistic energy models. Our analysis
has been done for static scenarios since, as discussed above, these suit better our po-
tential applications. Nevertheless, for a more complete study, it will be interesting to
understand the effect of some mobility on our results.
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1: algorithm gossip

2: type
3: state t : STARTUP, NORMAL

4: entry st t : CONNECTED, FAILED

5: mbship entry t : (N, st, hb, Thb)

6: var
7: state : state t

8: mbship est : list of mbship entry t

9: time : local time counter

10: gossip : boolean

11: begin
12: state := STARTUP;
13: time := 0;
14: mbship est := (thisNode,

CONNECTED, 0, time);
15: gossip := false;
16: while true do

17: case state of

18: STARTUP : startup

19: NORMAL : normal

20: esac;
21: done;
22: end

1: algorithm startup

2: var
3: ts : timer

4: begin
5: ts := Ts;
6: wait for event

7: case event of

8: ts timeout:

9: bcast Gossip(mbship est);
10: state := NORMAL;
11: recv Gossip(table):

12: mbship est.merge(table);
13: state := NORMAL;
14: esac;
15: end

1: algorithm normal

2: var
3: local entry : mbship entry t

4: begin
5: local entry := mbship est.

getEntry(thisNode);
6: if gossip then

7: bcast Gossip(mbship est);
8: gossip := false;
9: fi;
10: wait for event

11: case event of

12: recv Gossip(table):

13: if table contains localNode then

14: tmp entry := table.

getEntry(thisNode);
15: if local entry.hb-tmp.hb>∆hb

then

16: gossip := true;
17: fi;
18: fi;
19: mbship est.merge(table);
20: with probability Ps set

gossip := true;
21: tg timeout:

22: local entry.hb :=

local entry.hb+1;
23: with probability Phb set

gossip := true;
24: for entry in mbship est

25: if entry.st=CONNECTED then

26: if (time-entry.Thb)>Tfail

then

27: entry.st := FAILED;
28: entry.Thb := time;
29: gossip := true;
30: fi;
31: else

32: if (time-entry.Thb)>Tcleanup

then

33: mbship est.remove(entry);
34: fi;
35: fi;
36: done;
37: tg := Tg

38: esac;
39: end

Figure 7.2: Basic algorithm of the gossip style membership estimation.
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Chapter 8

Conclusions

In this work we have faced the group membership problem in a broad sense. As
it has been discussed, the GMP offers a fundamental support for the development
of a large number of distributed services and components, hence its importance and
interest. Here we have proposed a range of versions of the GMP for different distributed
scenarios of great practical application nowadays. Not only specifications and usage of
such services have been described, but we have also presented protocols that implement
the defined services. All the proposed algorithms have been implemented, and we have
executed a large number of test cases and performance measurements.

The specification of the group membership problem is not unique, but there exists
a range of possible enunciates, defining variated properties to be granted by such ser-
vice. Corresponding to such an assortment, there exists also a multitude of practical
realisations of membership services, adapted to various environments or systems to a
different degree.

The close relation between membership and group communication, due to the fun-
damental use of the former to support the development of the latter, have produced
interdependent specifications for both services. The higher level components deployed
on top of such services can base their semantics on the joint guarantees provided by
the underlying services. It is the case of replication protocols of different kinds, which
obtain their desired properties by making use of delivery guarantees and membership
information. It is also the case of any application taking advantage of virtual synchrony
or any similar semantics. However, this interrelation is not fundamental for the GMP
itself. On the contrary, it can obscure its semantics to components that do not need
the guarantees of group communication.

Our work is supported on two fundamental aspects.

• The theoretical cornerstone is an independent specification of the membership
service, decoupled from multicast properties. Such specification is based on recent
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works by Chockler et al [22] and Babaoglu et al [10].

• From a practical point of view, we have opted for a modular architecture, with
well–defined interfaces that regulate the interaction among different components.
In particular, all the presented membership services offer a unique interface to
user applications and other distributed services. This is also in agreement with
recent works in the field of practical realisations of distributed services [56].

With this kind of approach, every service can be independently implemented, and
exchange between different protocols is possible without the need to modify the rest of
components or client applications.

Moreover, this type of architecture offers great flexibility to user applications. De-
pending on the requirements of a particular system, it may be decided to launch only
a set of services. Even if all services are present, several applications may coexist that
make use of different subsets of them.

The first part of this thesis deals with the most classical membership problem,
stated for partitionable networks. We have presented the design and implementation
of a new partitionable membership service for WAN–wide clusters, the HMS protocol.
Despite the existence of classical membership services implementing a partitionable
specification, most of them are limited in the way majority losses are handled. Some
specifications do not allow the majority to completely disappear from the system, al-
though this is a possible scenario in a real partitionable network. Even those that allow
majority to be lost and recovered, leave each user application in charge of obtaining
the required information regarding the last majority groups, that may be needed for
the recovery tasks. Besides implementing the basic specification decoupled from group
communication services (so that it can serve as basis to the development of this kind
of protocols), HMS provides a new guarantee ensuring the uniformity of the majority
history which as has been argued may ease the recovery phase of various user compo-
nents. Although HMS is defined for monitoring the membership of a predefined set
of nodes, it can be easily adapted to allow some changes to the preconfigured group.
We are currently working on the definition of such an extension. This will be useful to
support maintenance operations, as definitively removing a crashed node, or adding a
new server to the initial group, without damaging the availability of the HMS and of
services depending on it.

In the second part, more dynamical scenarios have been considered for which the
classical specification of the problem is not equally suitable. We have focused in partic-
ular in the very commonly occurring environment of a large number of clients requesting
services from a reduced, well–defined and interconnected group of servers. In such a
system, which corresponds to common deployment scenarios for replicated services,
the way clients connect to servers and the way these maintain information regarding
connected clients may vary. We have specified a particular client membership service
capable to maintain the most relevant information regarding connected clients to ease
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the development of such replicated services. Correspondingly, the client membership
service also specifies the information to be delivered to clients regarding contactable
servers.

We have also presented the design of the HaloMS protocol, which fulfils this speci-
fication. The protocol conforms to the modular approach of all this work, by operating
on top of a basic membership service that fulfils the basic specification. In particu-
lar, we have implemented and tested it on top of the HMS protocol itself. Moreover,
our implementation also conforms to the most general membership interfaces, so that
information about client membership can be provided to user services with the same
interface of usual view notifications. Even more, clients themselves are notified about
(partial) membership of the servers group with the general interface of a membership
service. Our HaloMS protocol allows client connections to be handled only by a ma-
jority server group. As a possible extension, we may consider a variation of HaloMS
in which client representation is kept by minority groups after a core view change. In
such case, depending on the network topology, one client might be contacted by two
different partitions after core changes, and some decision should be taken by the client
side of the algorithm in order to leave one of them.

The last part of this thesis approaches another type of distributed system where
highly available applications may require the use of membership services. We have
studied the difficulties posed by ad hoc wireless networks and come to an On–Demand
specification of the membership service that suits not only this kind of networks, but
also any system with a concern about bandwidth consumption. The On Demand
specification of the membership service has also been realised in a definite protocol,
MODUS. This provides the semantics defined by the specification based on any existing
basic membership service. It has served as a basis to carry out an analysis of the On–
Demand approach in terms of sent messages, i.e. communication cost of the protocol,
but also for a semi–analytical analysis of the allowed message saving. The performance
characterisation has been limited to the amount of sent messages, and therefore the
results have to be understood as bounds to the potential saving or to the minimal
membership inactivity time. In order to extract more significant measurements, the on
demand approach should be specifically implemented for the scenario of interest (e.g.
ad hoc networks), instead of using an off-the-shelf membership service such as HMS.

Finally, we have studied the problem of providing a membership estimation service
in the context of ad hoc networks. In conjunction with a basic routing service, such a
component can serve as basis for building other distributed protocols, including strictly
consistent membership services or distributed consensus. We have compared two possi-
ble architectures for providing both routing and membership estimation services, from
the point of view of their energy consumption and quality of the provided informa-
tion on the system composition. Our simulations show that both services should be
jointly analysed when optimising the consumed power and the performance, in order
to reach a trade-off between QoS and energy consumption, that will always depend



on the scenario and the requirements of the user applications. On top of this service,
more demanding distributed services can be implemented. For instance, we can de-
velop a specific On–Demand membership service for ad hoc networks, which improves
the bounds obtained with MODUS.

The variated membership semantics presented in this thesis effectively suit the
different necessities of highly available applications to be deployed on different en-
vironments. The corresponding protocols then favour and ease the development of
distributed components on the various analysed scenarios. The general interfaces used
for defining the interaction have shown broad enough to enclose the different seman-
tics, while simplifying the deployment of applications that make use of the proposed
protocols.
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[66] M.C. Bañuls and P. Galdámez. Technical Report ITI-ITE-03/01, In-
stituto Tecnológico de Informática, Univ. Politécnica Valencia, 2003.
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A.A. Shvartsman, H. Weatherspoon, and B.Y. Zhao, editors, Future Directions
in Distributed Computing, volume 2584 of LNCS, page 40. Springer-Verlag, 2003.
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Appendix A

Proof of Correctness of the
Presented Protocols

Each one of the three main protocols presented in this work is designed to fulfil a
particular formal specification expressed as a list of properties. In this appendix we
sketch, for each of the three main algorithms presented, the proof of some of those
properties, and give a pseudo-formal proof for the non-trivial ones.

A.1 HMS Protocol

The formal specification the HMS protocol satisfies was presented in sect. 3.1.2 as
the basic GMP.

A.1.1 Notation

The system model we consider is formed by a set of processes with static identifiers
that communicate by exchanging messages. The communication network implements
send and receive primitives, and the system is asynchronous, since no bound exists
on network delays or processors relative speed. Each process can be modelled as a
finite state automaton.

We use the notation a ≺p b to indicate that event a causally precedes event b in
processor p. The precedence shown by ≺ is immediate, while closure of this relation

will be denoted by
∗

≺. The ≺ symbol with no subindex will be used to denote causal
precedence between events that occur in different nodes.

The relevant events for the correctness proof are those related to the different stages

199



of view confirmation. Some of them correspond also to the delivery of information, in
the form of membership events, to external observers, i.e. higher level applications
or components that act as membership listeners. The following table describes them
and summarises the used notation. For each entry, the subindex indicates the process
where the event takes place.

event description
sendp(msg) Sending of message msg by processor p.
receivep(msg) Reception of message msg at processor p.
preparep(Vi) View Vi is added to the view list with flag prepared. When

the service is implemented according to the generic interfaces,
a MBSHIP CHANGE event is produced.

discardp(Vi) View Vi is discarded and removed from the list.
commitp(Vi) View Vi is flagged committed. A MBSHIP VIEW event is

produced and notified if the corresponding listeners exist.
releasep(Vi) View Vi is flagged released. A MBSHIP RUNNING event

is produced for membership listeners.
upcommitp(Vi) Majority view Vi is saved to the majority history. A MB-

SHIP UPVIEW event is produced and notified if the corre-
sponding listeners exist.

Besides the precedence relation for events, we also introduce a higher level prece-
dence, that of views. Thus we will say that view Vj is the immediate successor of view

Vi in processor Np, and write Vi

(1)
<p Vj, if

commitp(Vi)
∗

≺ commitp(Vj)

and
/∃ Vk s.t. commitp(Vi)

∗

≺ commitp(Vk)
∗

≺ commitp(Vj).

If the precedence is not immediate, we will write Vi

∗

<p Vj.

For majority views, a total order relation is defined. Therefore we will write Vi

(1)
< Vj

when Vj is the view that immediately follows Vi in the (global) majority history.

A.1.2 Safety Properties

Self Inclusion (Property GM.1)

This property requires a process to be member of each view it installs and is trivially
satisfied by our algorithm. The node is present in the initial zero view installed at



startup (see sect. 4.3.2). When the node is alive, it can only receive and process
proposals which contain it. Notice that Setmem and Step messages are only addressed
to members of the corresponding view, and the master which issues such messages is
always contained in its own proposal. Therefore the node must be present in any view
it knows about, capable to be installed.

Initial View Event (Property GM.2)

The requirement that any node starts in a stable zero configuration with itself as the
only member also ensures than any later event such as message reception or sending
will take place within a well-defined view. This obviously applies to view oriented
systems only, where the membership service is necessarily launched at startup. Fos
such systems, the zero configuration of HMS would play the role of the required initial
view.

Local Monotonicity (Property GM.3)

The Local Monotonicity property requires that the order of installation of common
views is respected among nodes that share them. Since our protocol is not implemented
on top of any group communication service, it takes advantage of no guarantee on
the order of delivery of messages. Therefore this property must be enforced by the
algorithm itself.

Proposition 1. (Previous result) Given a node Np and two views Vi and Vj committed
in this order by Np, then the commit action for the first one precedes the prepare

action for the second.

commitp(Vi)
∗

≺p commitp(Vj)⇒ commitp(Vi)
∗

≺p preparep(Vj). (A.1)

Proof. Since in a given node, Np, local prepare action always precedes local commit
of the corresponding view, we may write

preparep(Vi)
∗

≺p commitp(Vj).

We will now show that
preparep(Vi)

∗

≺p preparep(Vj). (A.2)

To see this, let us assume that the opposite is true, i.e. that

preparep(Vj)
∗

≺p preparep(Vi).

In that case, either

discardp(Vj)
∗

≺p preparep(Vi)



or
commitp(Vj)

∗

≺p preparep(Vi)

hold, since Vj view would enter the view list before Vi and would then be processed
according to the algorithm in sect. 4.3.2. Notice that the list cannot hold two pre-
pared views, as the algorithm ensures that when adding a prepared view, any older
prepared one is discarded, unless the addition is preceded by the commit of the previ-
ously prepared one (e.g. if the Setmem message contained the confirmation). Both
statements contradict our hypothesis, the first one because it implies no commitp(Vj)
event will occur in Np, the second because directly violates the hypothesis in (A.1).
Then (A.2) must hold.

By a similar argument, if preparep(Vj)
∗

≺p commitp(Vi), and taking into account
(A.2), Vi would be discarded before executing preparep(Vj). So

commitp(Vi)
∗

≺p preparep(Vj).

Proposition 2. (Property GM.3) Given two views Vi, Vj that contain a common node,
Np, and satisfy

commitp(Vi)
∗

≺p commitp(Vj), (A.3)

then
commitq(Vi)

∗

≺q commitq(Vj) (A.4)

holds for any other node Nq, contained in Vi, Vj that installs both views, i.e. that
executes both commit events.

Proof. (Property GM.3)

Let us consider the case when neither Np nor Nq does leave the group between Vi

and Vj, i.e. no Partition Merging procedure is run in between (no Joined or Update
messages are received by Nq). In such case, the following arguments apply both to
majority and minority views. Let Ni and Nj be the masters of Vi and Vj respectively.
Then, the following relations hold ∀Ns ∈ Vi such that Ns remains alive in Vj:

preparei(Vi)
∗

≺ prepares(Vi); (A.5)

prepares(Vi)
∗

≺ commiti(Vi); (A.6)

commiti(Vi)
∗

≺ commits(Vi). (A.7)

In an analogous way, ∀Ns ∈ Vj such that Ns remains alive in Vj:

preparej(Vj)
∗

≺ prepares(Vj); (A.8)

prepares(Vj)
∗

≺ commitj(Vj); (A.9)

commitj(Vj)
∗

≺ commits(Vj). (A.10)



On the other hand, both Np and Nq remain correct (we are assuming they stay in
the group), and by proposition 1 we have

commitp(Vi)
∗

≺p preparep(Vj).

Therefore, by combining (A.5), (A.6) and (A.10) applied to Nq and (A.7), (A.1)
and (A.9) applied to Np we get

prepareq(Vi)
∗

≺q commitq(Vj). (A.11)

We will see now that the thesis

commitq(Vi)
∗

≺q commitq(Vj)

must hold.

Let us assume that the opposite is true, i.e.

commitq(Vj)
∗

≺q commitq(Vi).

Then, by the same reasoning we would conclude that

preparep(Vj)
∗

≺p commitp(Vi),

which contradicts (A.1). Therefore, the thesis (A.4) must be true.

Let us now consider the case, contrary to our initial assumption, when the Partition
Merging protocol is executed between both views. Since this protocol does not spread
information on minority views, the only way for both Np and Nq to commit a given
minority view is that they take part of the same group simultaneously. In that case
the order of the commit events will be necessarily the same in both nodes.

Therefore we are only left to consider here the case in which both views are in
majority and a partition and merging happens in between. Let us assume then that
Nq fails or abandons the group between Vi and Vj. Since by hypothesis Nq executes
the commit(Vi) event, and that is only possible as a response to the master’s Step
message (or to an Ends message if Nq itself was the master), then the commit event
in Nq clearly precedes any other commit occurred while in the minority, and thus also
precedes the commitq(Vj) event.

View Agreement (Property GM.4)

Proposition 3. (Property GM.4 (i)) Let Np be a node that installs a view Vj as the

immediate successor of Vi, i.e. Vi

(1)
<p Vj . Then

∀Nq ∈ Vi ∩ Vj, commitq(Vi)
∗

≺ commitp(Vj).



Proof. Let us consider Np such that Vi

(1)
<p Vj, and let Ni and Nj be the masters of Vi

and Vj, respectively.

1. If Ni ≡ Nj, i.e. no master change has taken place, then

commiti(Vi)
∗

≺i preparei(Vj)
∗

≺i commiti(Vj)
∗

≺ commitp(Vj),

and the proposal of Vj by Nj contains also the confirmation of Vi. Then

commitq(Vi)
∗

≺q prepareq(Vj)
∗

≺ commiti(Vj), ∀Nq ∈ Vi ∩ Vj.

The Setmem message does not contain the confirmation of Vi only if it was
already released,

releasei(Vi)
∗

≺i preparei(Vj),

in which case commitq(Vi)
∗

≺ commitp(Vj) is trivially deduced, since commit in
members precedes release in the master.

2. If masters differ then there are two possibilities.

• There has been a partition merging between both views, such that Vi was a
minority and now Np has been accepted by a larger group, so that the next
view, Vj is a different one. Since Ni has executed the installation of Vj in Vi

(there has been no committed view in between),

receivep(Joined(VM, Vi))
∗

≺p sendp(Ready(VM))
∗

≺p commitp(Vj).

Since Nq ∈ Vi ∩ Vj,

receiveq(Joined(VM, Vi))
∗

≺q sendq(Ready(VM))
∗

≺q prepareq(Vj)
∗

≺ commitp(Vj).

But the Joined message carries the reference of the minority view it pre-
tends to accept, Vi, and Nq will not process it unless it agrees with its current
view, then

commitq(Vi)
∗

≺q receiveq(Joined(VM, Vi)).

If Ni had been in the (relatively) majority partition, a master changing
procedure must necessarily be run for a different master to lead the next
view. Since the new master is including merged nodes, this means that the
failed one (the master of the majority group) had already sent its extended
proposal, and the same reasoning applies before the failure.

• There has been no merging between the proposals of Vi and Vj. Then a
master change must have taken place. If Np has executed the commit(Vi)
event before the change, Nj will have collected that information during



the master change subprotocol, from the View message. Otherwise, the
confirmation order has been sent by Nj itself, after collecting all the answers
to Change and determining that Vi was committed already by some of the
survivors. In any case, the Setmem message containing the confirmation of
Vi and the proposal of Vj will be addressed, in particular to all Nq ∈ Vi ∩ Vj,
and

commitq(Vi)
∗

≺q prepareq(Vj)
∗

≺ commitj(Vj)
∗

≺ commitp(Vj).

It might also happen that another master change takes place before Np

commits Vj. In such case it is also easy to argue that later confirmation of
Vj is only possible if all its (surviving) members had already executed the
prepare action, and thus committed Vi.

Proposition 4. (Previous result) Let Np execute a prepare action for some view,
preparep(V1). Then it eventually performs a commit action, i.e.

∃Vk s.t. preparep(V1)
∗

≺p commitp(Vk).

Proof. Let N1 be the master of view V1. Then, according to A.5 it has executed its own
prepare action before Np’s. The basic algorithm of view proposal and confirmation,
together with reliable multisending and the failure detector ensure that either N1 fin-
ishes the confirmation of V1 until the release action or a failure is detected and a new
view, V2, is proposed by either N1 or by a new master. In the first case, commitp(V1)
occurs. In the second, we may have two possibilities.

1. Np ∈ V2, in which case the same reasoning applies again;

2. Np /∈ V2, and eventually Np will confirm that view (or a subsequent one). The
exclusion mechanism (see sect. 4.2.5) ensures that Np will receive a notification
allowing it to exclude N1 and all other nodes excluding itself. If Np is not the
only excluded node, the corresponding substitute master for the excluded group
will be in charge of reacting to such notification, propose a new view and act as
the master thereon, thus granting the eventual confirmation of a view with or
without Np. If Np is excluded by every possible substitute master, then it is left
on itself and will react to the failure notifications of the exclusion mechanism by
installing a singleton view, thus executing commitp.

Proposition 5. (Property GM.4 (ii)) Let Vi be a committed view, and let Nq ∈ Vi

such that q never installs Vi or q installs Vk as an immediate successor to Vi, Vi

(1)
<q Vk.

Then p installs a different view Vj immediately succeeding Vi, i.e. Vi

(1)
<p Vj.



Proof. If Ni is the master of Vi

commiti(Vi)
∗

≺ sendi(Step(1))
∗

≺ commitp(Vi),

then the master has sent the confirmation to all members, in particular to Nq. Since
the sending is retried by the mechanism that makes point–to–point messages reliable,
if Nq does not commit the view, one of the following must be true.

(i) It has really crashed, in which case the failure detector guarantees that it will be
eventually suspected by Ni, which will thus propose a new view.

(ii) It has installed a different view and thus it is not accepting the old master’s
proposals. In such case, the exclusion mechanism described in sect. 4.2.5 will
also notify a failure of Nq, causing Ni or its successor to propose a different view
excluding Nq.

If Nq installs Vi, i.e. performs the commitq(Vi) event, but installs another view, Vk,
as immediate successor of Vi, then one of the following is true.

(i) p ∈ Vk, in which case

preparep(Vk)
∗

≺ commitq(Vk),

so that Np has entered a later view change which will eventually end with the
installation of a view (see Proposition 4); or

(ii) p /∈ Vk, so that the exclusion mechanism will eventually notify Np about all nodes
in Vi that are now excluding it from their views, in particular Nq. That will lead
to a new view proposal led by the corresponding master of the subgroup where
Np belongs.

A.1.3 Liveness Properties

Membership Precission (Property GM.5)

Proposition 6. (Property GM.5) Let S be a stable component. Then there is a com-
mitted view Vf such that N ∈ Vf ∀N ∈ S, and Vf is installed as the last view by all
N ∈ S.



Proof. Let Ni ∈ S and N ′ /∈ S. Since S is a stable component, any N ′ is not connected
to Ni. Assuming a reasonable behaviour of the system, the failure detector can behave
as �Pr. Then it will eventually suspect from any such N ′, so that it will be excluded
from the group. As there are no more messages coming from N ′ and eventually no de-
layed message will remain in the network channels, either, we may state that eventually
all nodes which do not belong to S will be excluded from any view to be installed.

On the other hand, let us consider two nodes in the stable component, Ni, Nj ∈ S,
and let us assume they have installed different views Vi and Vj, respectively. We may
assume that Vi, Vj ⊆ S, according to the discussion above. If Vi ∩ Vj 6= ∅, i.e. they are
not disjoint, then ∃Np ∈ S such that Np ∈ Vi ∩ Vj, so that we can establish an order

between both views. Let us assume (without loss of generality) that Vi

∗

<p Vj. Then, if
Ni ∈ Vj, since commitj(Vj) happened, Ni has executed preparei(Vj). As there are no
more failures, it will eventually commit Vj (see proposition 4). If, conversely, Ni /∈ Vj,
then the exclusion mechanism ensures that Ni will eventually install a different view,
such that it is disjoint with respect to Vj.

Then if Ni and Nj stay in disjoint views, since at least one of them is in minority,
it will send Join messages probing for a group to join, and, being S stable, those
messages will eventually reach the other group thus launching the Partition Merging
protocol, and allowing Ni and Nj to install the same view.

Hence, eventually all nodes in S will install the same view Vf , not including any
N ′ /∈ S. Since all nodes in S remain correct and connected, no more failures will be
ever suspected, so that Vf becomes the definitive view.

A.1.4 Additional Uniform Majority Agreement

Besides the basic specification of the GMP from sect. 3.1.2, the HMS protocol also
satisfies an additional property regarding the uniform maintenance of the majority
history by the whole system.

Uniform Majority View Agreement (Property GM.6)

This Agreement property ensures that no confirmed majority views are missed by
any participating node, if this is to take part in a later majority group.

In order to show how the HMS membership service satisfies this property, we start
proving a few intermediate results.

Proposition 7. The protocol of View History Matching discards only non committed

views.

Let NA, NB be two nodes undergoing a Partition Merging process, such that their



majority histories are synchronised up to the last confirmed view, but hold different
prepared majority views.1 Let VA and VB be their respective prepared majority
views. We take, without loss of generality, VA < VB. We will show that VA can safely
be discarded, i.e. it has never been committed by another node.

Proof. (Proposition 7)

If one group is in majority (this may only be true for the group with the most up
to date history), since VA is not contained in the majority history, it has certainly been
discarded by the majority group, and NA must now do the same.

Therefore the only non-trivial situation is that when both NA and NB are in mi-
nority partitions, and they hold information about majority views that were in the
process of being installed when they separated from the majority history.

If NB ∈ VA, given that NB has not confirmed VA (for it is not in its majority
history), but has prepared a later view VB, then the majority has already discarded VA

before preparing VB.

On the other hand, if NA ∈ VB, VA may also be safely discarded, since if it had been
committed by the majority, the (VA,commit) pair would have accompanied the prepa-
ration of any subsequent majority view, such as VB in the corresponding Setmem.

So we are left with the case where NA /∈ VB and NB /∈ VA. Nevertheless, since both
VA and VB are majority views, they must contain common nodes. The only reason why
VA must not be discarded is that ∃Nk ∈ VA such that commitk(VA) has been executed.

Let us assume that is the case. Then, since confirmation of majority views can
only be ordered by the majority master, if this does not fail, commitment of VA is
communicated to all the surviving nodes before or while proposing a new view. So,
any prepare event of a higher view will causally follow commit(VA) or upcommit(VA)
in any node of the group, in particular in those which are common to VA and VB,
which will then contain that confirmation in their majority history, regardless of how
many majority views are proposed afterwards. Being not in VA, NB can only enter to a
new proposed view VB after joining the majority group. In such process, however, NB

receives the updates of the majority history, including confirmation of VA before the
Setmem(VB) is sent. Therefore, VA must be in NB’s majority history and NA will also
have confirmed it during the view matching process, what contradicts our hypothesis.

The only way for this not to happen is that the master of VA fails before the commit
order has reached all nodes in VA. Nevertheless, in that case, the master changing
protocol ensures that, if the majority character is conserved, as all surviving nodes
had at least prepared VA, the new master will also broadcast VA confirmation with its

1Otherwise the problem of what to do with the oldest prepared view is trivial, since explicit
information exists in the most up to date history.



new proposal, with the special label to upcommit it, so that it will equally enter the
majority history with the corresponding upcommit event at each node.

If majority was lost between VA and VB, before VB could be proposed by a Set-
mem message, an identical merging process should have taken place to match majority
histories and recover majority, so that no previous VA would remain pending.

Proposition 8. (Previous result) If ∃Nk, Vj such that commitk(Vj) occurs, being Vj a
majority view, then

commitq(Vj)
∗

≺q prepareq(Vs), (A.12)

or

upcommitq(Vj)
∗

≺q prepareq(Vs),

∀Nq, Vs such that Vs > Vj is in majority and Nq ∈ Vs ∩ Vj.

Proof. (Proposition 8) Let us assume that Vs is the majority proposal that immediately

follows Vj, i.e. Vj

(1)
< Vs. Since both views are in majority, the order relation of their

identifiers is well-defined.

If neither a master change, nor a majority loss happens between Vj and Vs, the ba-
sic three-phase commit ensures that the proposition holds, since Nq will only perform
prepareq(Vs) after receiving a Setmem message also containing the commit instruc-
tion. If M is the Master of both Vj and Vs, applying relations (A.7) and (A.1),

commitM(Vj)
∗

≺ commitp(Vj),

and

commitM(Vj)
∗

≺M prepareM(Vs)
∗

≺M sendM(Setmem).

If Nq had not yet confirmed the commission of Vj, the Setmem message necessarily
includes the confirm instruction and

recvp(Setmem)
∗

≺q commitq(Vj)
∗

≺q prepareq(Vs).

If the majority Master fails after committing Vj, its substitute will collect informa-
tion from the rest of nodes and if some node saw the explicit confirmation of Vj it will
be confirmed and included in every majority history. Two situations may arise then.

• The resulting group may keep the majority condition. Then, since Vj was (at
least) prepared in each node (and no later view was proposed afterwards), the
new Master will confirm it, by including (Vj,commit) or (Vj,upcommit) in the
Setmem(Vs) message, so that each Vs participant will confirm Vj before prepar-
ing the next view. If SM is the substitute Master, since Vj was committed by the



old Master (M) and Nq did not see the confirmation (otherwise the proposition
holds trivially), by applying (A.6) we get,

preparek(Vj)
∗

≺ Master Change
∗

≺ sendSM(Setmem)

∗

≺ recvq(Setmem)
∗

≺q (up)commitq(Vj)
∗

≺q prepareq(Vs).

• The resulting group may be in minority. Then, since Vj is the last prepared
majority view, it is kept by every node. When the majority is to be recovered, this
view will be confirmed. More formally, if Nq did not receive even the Setmem(Vj)
but some other surviving node, Nr, did,

preparer(Vj)
∗

≺ Master Change
∗

≺ sendSM(Setmem) ⊃ (Vj, prepare)

∗

≺ upprepareq(Vj)
∗

≺ send(Join/Joined/Update) ⊃ Vj

∗

≺ sendSM(Setmem(Vs)) ⊃ (Vj, upcommit)
∗

≺ recvq(Setmem)
∗

≺q upcommitq(Vj)
∗

≺q prepareq(Vs).

If Nq had already received the prepare instruction, the first line of the last
inequality may be left out.

If the majority Master fails before locally committing Vj and the majority is lost
due to this failure, but some of the participants had already received the Setmem(Vj),
the result is the same as in the second case, so that a possibly committed view is never
discarded by the majority.

If Vs does not immediately follow Vj but other majority views are proposed in
between, but the majority is not lost, the same argument may be applied in each node
to the first majority view, V ′, that is locally prepared after Vj, regardless of whether
V ′ is committed or discarded afterwards. On the other hand, if the majority is lost
and then recovered, proposition 7 ensures that no possibly committed view will be
discarded.

These propositions ensure that committed majority views are never dismissed, but
enter the majority history of any node that takes part of a later view also in majority.

Proposition 9. (Property GM.6) If ∃Np ∈ Vk such that commitp(Vk) is executed, then
∀Nq ∈ Vk and ∀Vj > Vk such that Nq commits Vj,

commitq(Vk)
∗

≺q commitq(Vj),

or
upcommitq(Vk)

∗

≺q commitq(Vj),

as long as Vk and Vj are both in majority.



Proof. (Property GM.6)

We have Np ∈ Vk such that commitp(Vk) and Nq ∈ Vk ∩ Vj such that commitq(Vj)
and Vk < Vj.

Since local prepare precedes the corresponding commit,

prepareq(Vj)
∗

≺ commitq(Vj),

the prepare event for Vj does happen in Nq. Then, applying proposition 8, we must
conclude that the older view Vk is included in the majority history of Nq, and

(up)commitq(Vk)
∗

≺ prepareq(Vj).

So the thesis trivially follows.

A.2 HaloMS Protocol

The HaloMS membership service satisfies the formal properties specified in
sect. 5.3.2. Here we sketch the proof for every property.

A.2.1 Safety Properties

Unicity (Property HM.1)

The unicity property is guaranteed by the token algorithm, since it solves the mutual
exclusion problem, and thus ensures that clients will be added by only one core node
at a time.

To avoid the possibility of an obsolete message launching a duplicate joining at-
tempt, maybe even after the client is abandoning the group, any core node receiving a
client’s joining request asks for confirmation by means of a JoinQst message, before
trying to add the corresponding proposal to the token.

Validity (Property HM.2)

This is trivially satisfied by the proposed algorithm, since a client can only include
a core node in its horizon if it has received its identity as an argument in a Horizon
message. Such message can only be issued by the client’s representative after complet-
ing a token round within a single core view, Therefore every member of the view gets
to know the client’s identity and to include it in its halo view. The Horizon message
thus contains only nodes that have processed the right token entry.



Consistency (Property HM.3)

The consistency property requires that two different core nodes do not disagree on
the identifier of a given client.

Proof. Let us assume that the opposite happens, i.e. there exist two core nodes, Nr

and Ns holding local entries in their respective halo views assigning a different identifier
to the same client, C. Let us assume, without loss of generality, that Nr started the
addition of C in the first place. Before adding an entry for a new client, a core node
must process the token and analyse its own halo to check that the client is neither being
added by another node, nor already confirmed as definitive. Therefore, addition and
removal of C must have been completed by Nr before Ns receives the joining request.
Otherwise, an entry for C is still present in the token, and Ns will dismiss the client’s
message. There are only two possibilities for this to happen.

• The client’s request arrives after the post-definitive round has passed by Ns, so
that it had already removed the local entry from its halo view. Then, Ns will ask
the client for confirmation, and try to add it to the group with a new identifier
when it gets the token back. But then the last token round has finished, thus
eliminating any entry for C from all core members, so that Nr does not maintain
a different identifier.

• The second possibility is that Ns was not part of the core view that granted the
identifier IDr for C, but has joined the group after the definitive confirmation of
C. Then an obsolete join request from C may reach Ns, that has no information
about C being already part of the halo. However, when receiving the client’s
request, Nr must contact C for a confirmation. Since C has already been granted
an identifier, it will not confirm the request and will not be added by Ns.

A.2.2 Liveness Properties

Halo Liveness (Property HM.4)

If a client voluntarily disconnects, it must inform its representative. When the
disconnection is due to a failure, no notification to the core group takes place. In that
case, the satisfaction of this property depends on the behaviour of the representative’s
failure detector. We are assuming that the latter will eventually suspect the client.
Thus the representative will start a Remove round and the identifier that was granted
to the client will be finally invalidated.



Horizon Liveness (Property HM.5)

(i) The requirement that if a core member fails it is eventually eliminated from all
clients’ horizon is guaranteed by the recovery procedure after a reconfiguration
of the core group. When a stable view is recovered, each original or inherited
representative informs its clients about failed nodes, so that they are removed
from membership horizons.

(ii) The eventual Update rounds guarantee the second horizon liveness requirement,
namely that if a core member joins the group and both the client and the core
node stay connected, the former will eventually include the latter in its horizon.
When the client’s representative decides to launch an updating round, the client
will be added to the halo view of every core member in the group, and finally
a new Horizon message to the client will notify it about the current group of
servers that are aware of its presence.

A.3 MODUS Protocol

A.3.1 Consistent Membership (Property OD.1)

The property of consistent Membership requires that registered membership listen-
ers receive the service of a basic group membership service satisfying the basic safety
properties in sect. 3.1.2. MODUS preserves this property, since when a membership
client registers at a given node, this enters the active state and launches its local
RMS, which in turn provides membership information with the four basic safety prop-
erties GM.1-GM.4.

There is a special consideration to be done here, nevertheless. Property GM.2, as
already mentioned earlier in this appendix, refers to view oriented systems, where each
event must occur in a certain view. Obviously in the context of an on demand service,
we are assuming that there will be components or operation modes that are independent
of membership information, whose events do not need the view context. The Initial
View property, thus, only applies to operation modes that are membership–aware. For
these situations, the property is guaranteed as long as the membership–aware operation
starts by registering as a membership listener to MODUS.

A.3.2 Active Membership Precision (Property OD.2)

This property is basically the liveness property GM.5 of the fundamental GMP
specification reduced to stable active components. Since the original enunciate of



this property referred to stable physical components, it cannot be fulfilled by an On–
Demand service that allows correct nodes not to take part of membership agreement.
The only guarantee that can be required concerns only active members. For those,
the property is trivially fulfilled, as it is granted by the RMS itself. In fact, for the
underlying RMS, one may consider connected only those nodes whose instance of RMS
is running, as the others will not take part of the protocol, neither send Join mes-
sages to enter the group. The connected nodes, then, will be provided with the basic
property GM.5.

A.3.3 Eventual Stop (Property OD.3)

This is the fundamental property that guarantees that MODUS can stop the un-
derlying RMS and thus reduce the message and energy consumption during periods of
inactivity, when membership information is not required.

Proposition 10 ((Property OD.3)). If ∃t1 such that ∀t > t1 every possible membership
client stays unregistered. Then ∃t2 ≥ t1 such that ∀t > t2, Np stays inactive ∀Np.

Proof. Let us consider a time t > t1. Since after t1 all clients stay disconnected, no
node will be in the active state, so that no ServReq message will be sent. We may
choose a t long enough so that there is no such message in the system. Thus, those
nodes that are in the unavailable or in the available state will not connect their
RMS from that point on. Then we are only concerned about nodes in the passive

state.

Let us consider a node N1 in such state. If N1 holds an empty activeNodes, MODUS
will stop its RMS, as required by this property.

If, conversely, ∃N2 ∈ activeNodes, i.e. N1 believes a second node to be active,
two cases may occur.

(i) N2 is in the available state. In this case, its own RMS has already been
stopped. Therefore it will be eventually excluded from N1 view (because of
the GM.5 property of the RMS protocol) and the latter will correspondingly
remove it from its activeNodes local list, thus enabling its own stop.

(ii) N2 is in the passive state. Then its own activeNodes must contain also some
node. It is easy to see that if there is no cycle in the relationship contained in the
activeNodes of, then all such nodes will eventually remove all the others from
their own views and stop their RMS. The only non trivial case corresponds thus
to a cycle. Let us first consider the simplest case,

N1 ∈ N2.activeNodes ∧ N2 ∈ N1.activeNodes.



In this situation, if N1 and N2 have been in common views since N2 became
passive,2 then the PassiveMsg message from N2 must eventually reach N1 (as
it is multisent until received unless N1 is excluded from N2’s view, what did not
occur). Therefore N1 will remove N2 from its activeNodes list, which will become
empty, so that N1 will stop its RMS.

If, on the contrary, N2 did exclude N1, then it would have also removed it from
its own activeNodes table. If when rejoining, N2 had received an ActiveList
message from a third node, containing N1 as active, the corresponding updating
PassiveMsg from N1 would have followed the view change. In any case, the cycle
would disappear, as N2 would have an empty activeNodes, and both nodes would
eventually stop their RMS.

It is easy to see that in case of a longer or more connected cycle, very simi-
lar reasonings can be applied to show that either members stay connected and
eventually receive PassiveMsg messages from each other, or after partition they
exclude disconnected members, so that the cycle eventually disappears.

2Notice this had to occur, since N2 had to be active to enter N1.activeNodes in the first place,
and now N2 is passive.





Appendix B

Input/Output Automata.
Formalisation of Algorithms

All the algorithms designed and analysed in this thesis were formalised as input
output automata in order to reason about their properties. This appendix describes
the scheme developed for supporting their easier implementation in Java. The last part
of the appendix contains the formal specification of the presented algorithms in this
formalism.

B.1 The Input/Output Automata Formalism

The Input/Output Automaton model (IOA) [64, 65] is one of the existing tools for
modelling distributed systems. It is suited for the modelling of concurrently executing
discrete event systems. Each system component is modelled as an Input/Output (I/O)
automaton.

An I/O automaton A is a labelled state transition system. It consists of the following
components.

• An action signature, sig(A), which is a partition of the set of actions acts(A) into
three disjoint sets (input, or in(A), output, or out(A), and internal, or int(A)).

• A set of states, states(A), possibly infinite.

• A nonempty subset of start states, start(A) ⊆ states(A).

• A transition relation steps(A) ⊆ states(A) × acts(A) × states(A) such that for
every state s ∈ states(A) and action π ∈ acts(A), there is a triplet (s, π, s′) ∈
steps(A).
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An action π is said to be enabled in state s if there exists some triplet (s, π, s′) ∈
steps(A). IOA are input enabled, so that input actions are required to be enabled in all
states. This means that the automaton cannot block its input. The transition relation
of an automaton is described by giving a precondition and an effect (or postcondition)
for each action (preconditions can be omitted if they are true). Therefore, action π
will be enabled in every state s that fulfils its precondition.

A complex system can be modelled by composing several automata that model
simpler system components. For a collection of automata, {Ai}, to be composable,
they are required to be strongly compatible, i.e. their signatures must satisfy the
following conditions.

1. out(Ai) ∩ out(Aj) = ∅, ∀i 6= j,

2. int(Ai) ∩ acts(Aj) = ∅, ∀i 6= j,

3. no action can be contained in infinitely many acts(Ai).

Then the composition of the collection is another automaton, A =
∏

i Ai defined
as follows.

• sig(A) =
∏

i sig(Ai) defined by

– in(A) = ∪iin(Ai)− ∪iout(Ai),

– out(A) = ∪iout(Ai),

– int(A) = ∪iint(Ai).

• states(A) =
∏

i states(Ai), the Cartesian product of the state sets of every au-
tomaton, and being si the ith component of the state vector ~s.

• start(A) =
∏

i start(Ai).

• steps(A) is the set of triplets (~s, π, ~s′) such that, ∀i, if π ∈ acts(Ai) then
(si, π, s′i) ∈ steps(Ai), and if π /∈ acts(Ai) then si = s′i.

When an automaton runs, it generates an execution, i.e. a sequence of alternating
states and actions s0, π1, s1, π2, . . ., such that s0 is a start state and every triplet satisfies
(si, πi+1, si+1) ∈ steps(A). A fair execution is such that each component is given the
chance to execute its locally controlled actions. For a more formal definition of fairness,
a partition part(A) of each automaton’s local actions (i.e. int ∪ out) into equivalence
classes is introduced to capture the structure of the modelled system. Each class
should represent the set of actions controlled by an elemental component of the system.
Formally, an execution is said to be fair if it satisfies the following condition.



1. If the excution is finite, then no action is enabled in the final state.

2. If the execution is infinite, then for each equivalence class C in part(A), either
the executions contains infinitely many events from C or it contains infinitely
many states in which no action from C is enabled.

In the IOA model a problem is specified as set of allowable behaviours (i.e. sequences
of input an output actions from an execution). An automaton is said to solve a problem
if for all its fair executions, the corresponding sequence of external actions is contained
in that set.

Different formalisms can be applied to model partially synchronous systems.
For real-time systems, Lynch and Vaandrager defined the formalism of timed au-
tomata [102, 103, 74]. However, for the timing algorithms presented in this work,
it is enough to consider the MMT model [74]. This is a simple variation of the I/O
automaton model in which the fairness conditions are replaced by lower and upper
time bounds. The timed MMT automaton is then an I/O automaton in which every
equivalence class in C ∈ part(A) is assigned a lower and an upper bound on time,
tinf (C) and tsup(C). The automaton execution is timed, i.e. each action in the history
is associated with a non-negative time value. These values are required to be non
decreasing and to satisfy such bounds. This means that once C is enabled in a state,

• no action of C occurs before tinf ; and

• if time passes beyond tsup(C), in the interim either an action of C occurs, or C
is disabled.

For the protocols described in this work we are mainly using timeouts. These are
controlled by the periodic decreasing of dedicated counters. The actions that have as
an effect such decreasing, then, have lower and upper bounds. For the rest of local
actions, the lower bound can be reduced to 0. Therefore every automaton needs only
two equivalence classes (or tasks).

B.2 The Implementation of IOA in Java

All our implementations have been done after the I/O automata specification of
the corresponding algorithms. In this section, we present the main ideas in the Java
implementation of the IOA model.

The scheme used for the implementation of our automata is an abstract Java
class called IOAutomaton, shown in the UML diagram of fig. B.2. To imlement an
automaton, a class must inherit IOAutomaton and implement the abstract method



checkState(), which is assumed to check the state of the automaton for enabled ac-
tions and invoke one of them, if any. This class includes an inner thread, Checker, in
charge of verifying which local actions may be enabled after any change of state. To
ensure that the proper checking is done, the actionFinished method must be invoked
after execution of any automaton action since the effect of any action may result in the
enabling of others.

Figure B.1: Fundamental classes for the implementation of Input/Output Automata
in the HAMS architecture.

For those components with timing restrictions we have extended the basic class
IOAutomaton with the abstract class TimedIOA. This includes the abstract method
timePulse(), that has to be implemented by any particular automaton with timeouts.



Such method is in charge of decreasing all the required counters maintained by the
automaton state.

The TimedIOA class ensures that this action is periodically invoked, within the
limits

All implemented TimedIOA use a basic time unit or pulse. Their counters and
timeouts are then to be defined in terms of such basic time unit of the system. A
TimeManager static entity is used to register all the created TimedIOA implementations
and periodically invoke their timePulse() methods. For a more efficient handling,
the registered timed automata are divided into bounded groups, and each of them is
notified by a Timer thread. The main classes used for the implementation of timed
automata are shown in B.2.

For all our automata we have developed a specific IOAData class which contains the
state of the corresponding automaton. This class implements all the automaton actions,
with proper synchronisation to ensure their atomicity. Besides, each automaton is
realised as a particular class implementing IOAutomaton (or TimedIOA). In each such
class, the checkState method retrieves the instant state of the automaton from the
corresponding data class. Then it calculates a vector of booleans containing the status
(enabled or not) of every local action, and randomly selects one of the enabled ones to
be executed, and invokes actionFinished() after that is done. The implementation
of each particular IOAutomaton must also include visible methods for input actions,
and explicitly call actionFinished() after their execution.

Some of our algorithms are modelled as a composition of automata. In those cases
the composition is achieved by an external class. Invoked by the external actions of
each individual automaton, this class transforms such transitions into input actions for
the concerned automata of the composition, ensuring also the proper synchronisation.



Figure B.2: Fundamental classes for the implementation of timed automata in the
HAMS architecture.



B.3 Formalisation of the Membership Protocols

B.3.1 HMS

The HMS membership service is modelled as a two-folded composite automaton
(Fig. B.3). Each component automaton takes charge of some specific task of the pro-
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Figure B.3: Schematic view of the composition of two automata that defines the HMS
membership service and its interaction with the local failure detector and the network.

tocol as follows.

• View Installer maintains the view lists (strong or weak) during view installation
and performs the required operations during the Master Changing protocol, since
this phase is closely dependent on the list contents. In the case of Master, it is
also in charge of composing new views, from the information issued by the other
component and the failure detector.

• Partition Manager maintains the majority history and takes charge of running
the Partition Merging protocol. This involves both broadcasting and answering
to Join requests. After a successful merging, an Include event must be issued,
so that the View Installer component may prepare a new view including the
freshly joined nodes.

The composition is schematically shown in the figure. Each automaton has two types
of external actions. The first group corresponds to network messages exchanged with



other nodes, which are denoted in the figure with bold typeface. The double arrows
represent both the send (output) event and the receive (input) event corresponding
to a given message. The second type corresponds to local events, in the sense that they
are visible only for other local components. Some of them correspond to input events
of the other automaton, also shown in the figure, whereas the rest will be visible for
higher level users of the membership service.

Tables B.1 and B.2 contain the specification of each automaton’s state and sig-
nature. There, every event related to the process of view installation has been made
explicit.

Each automaton’s transitions are described in deeper detail in tables B.3 and B.4.
These tables collect the essential features associated with the different transitions, but
some details (such as the management of view lists, the dismissing of obsolete or re-
peated messages and the multisending of some particular messages) have been omitted
for brevity. They must, nevertheless be taken into account in a real implementation of
the service.



View Installer Automaton (in node Ni)
Action Signature
Input Output Internal
recv(msg)

Include(N)

Exclude(N)

Update(list)

send(Setmem)

send(Step(n)), n ≥ 1
send(Ends(n)), n ≥ 0
send(ChangeM)

send(View)

prepare(V)

discard(V)

commit(V)

release(V)

store(V)

upcommit(V)

Updated

process(Setmem)

process(Step(n))
process(Ends(n))
process(ChangeM)

process(View)

composeView

timePulse1

stepTimeout

chgTimeout

State
role ∈ {master, other, subst} (initially master);
view[Vid, Master, {members}] (initially [zero, Ni, {Ni}]);
strong →list of majority views (initially empty);
weak →list of minority views (initially empty);
nextV →Composition of next view (init. null);
acceptable[Master, group] (initially null)
step →integer value (initially 0);
step done ∈ {true, false} (initially false);
prep, disc, comm, rel ∈ {true, false} (init TRUE);
toPrep, toComm →Lists of views (initially null);
answers→list of nodes (initially null);
pending→list of received messages (initially null);
changeM ∈ {true, false} (initially false);
sendChgM ∈ {true, false} (initially false);
sendV iew ∈ {true, false} (initially false);
timers = (timerstep, timerchg) →set of time counters to control timeouts;
timeouts →variables to indicate timeouts (initially false).

(Timed) Tasks
{timePulse1} with limits tinf = pulse1 −∆t, tsup = pulse1 + ∆t
local(ViewInstaller)\{timePulse1} with limits tinf = 0, tsup = pulse1 + ∆t

Table B.1: Signature and state variables of the View Installer automaton.



Partition Manager Automaton (in node Ni)
Action Signature
Input Output Internal
recv(Join)
recv(Joined(Vid))
recv(Ready)
recv(Update)
commit(V )

prepare(V )

Updated

Exclude

send(Join)
send(Joined)
send(Ready)
send(Update)
Include(N)

Update(list)

timePulse2

State
role ∈ {master, other} (initially master);
status ∈ {active, inactive} (initially active);
minority ∈ {true, false} (initially true);
joining[. . .] (init. null);
updating[. . .] (init. null);
ready[Vid] (init. null);
update→list of views for majority history (init. null);
joined→ list of joined nodes (init. empty);
localU ∈ {true, false} (init. false);
timer → time counter to control timeouts;
prepM→ used for recovering the majority (init. NULL).

(Timed) Tasks
{timePulse2} with limits tinf = pulse2 −∆t, tsup = pulse2 + ∆t
local(PartitionManager)\{timePulse2} with limits tinf = 0, tsup = pulse2 + ∆t

Table B.2: Signature and state variables of the Partition Manager automaton.



View Installer Automaton (in node Ni)
Input Transitions

Include(N)

Postcond.:
if(role = master) then

change← true

nextV ← nextV ∪N
fi

Exclude(N)

Postcond.:
if(role = master) then

change← true

nextV ← nextV \N
else if(N is Master) then

role← subst

nextV ← nextV \N
acceptable← acceptable \N
changeM, sendChgM← true

fi

recv(msg)
Postcond.:

if(msg is acceptable) then
pending← pending ∪ msg

Update(list)
Postcond.:

if(step = 3) AND
(step done = true) then

step←4
step done← false

toComm, toPrep← list
dis, prep, comm, rel← false

if(role = other) then
acceptable←list

fi
fi

Output Transitions

send(Setmem)

Precond.:
role = master

step = 0
step done = true

change = false

Postcond.:
toComm← nextV
answers← nextV.members
timerstep set

send(ChangeM)

Precond.:
role = subst

step done = true

changeM = sendChM = true

Postcond.:
sendChM← false

answers← nextV.members
nextV← Ni

timerchg set

Table B.3: Transitions for the View Installer automaton.



View Installer Automaton (in node Ni)

send(Ends(n))
Precond.:

role = other

step = n
step done = true

changeM = false

Postcond.:
timerstep set

prepare(V )

Precond.:
step done = false AND step < 4
toPrep = V
prep = false

comm = rel = true

(disc = true) OR
(/∃ V ′ < V , prepared in list)

Postcond.:
list← list∪ (V,prepared)
toPrep← null

prep, disc← true

step done← true

commit(V )

Precond.:
step done = false AND step < 4
toComm.first = V
comm = false

(V ,prepared)∈ list
(rel = true) OR

(/∃ V ′ < V , committed in list)
Postcond.:

list← list∪ (V,committed)
toComm← toComm \ V
comm, rel← true

if((step = 1) then
step done← true

fi

send(Step(n))
Precond.:

role = master

step = n
step done = true

change = false

Postcond.:
answers← nextV.members
timerstep set

discard(V )

Precond.:
step done = false AND step < 4
prep = disc = false

(V ,prepared)∈ list
((rel = comm = true) AND

(toPrep = V ′ > V ))
OR (toComm.first = V ′ > V )

Postcond.:
list← list \ V
disc← true

release(V )

Precond.:
step done = false AND step < 4
rel = false

(V ,committed)∈ list
(toComm.first = V ′ > V )

OR (step = 2)
Postcond.:

list← list∪ (V ,released)
rel← true

if(step = 2) then
step done← true

fi

Table B.3: Transitions for the View Installer automaton.



View Installer Automaton (in node Ni)

send(View)

Precond.:
changeM = true

step done = true

sendV iew = true

Postcond.:
sendV iew← false

timerchg set

Updated

Precond.:
((role = master)AND(step = 5))

OR
((role = other)AND(step = 4))
step done = true

Postcond.:
step← 3

store(V )

Precond.:
step done = false

toComm.first = V 6 3Ni

Postcond.:
toComm← toComm \ V

upcommit(V )

Precond.:
step done = false

toComm.first = V
step = 4 AND comm = false

Postcond.:
if(V ′,committed)∈ strong) AND

(V ′ < V ) then
set V ′ released

fi
strong← strong ∪ (V ,committed)
toComm← toComm \ V
if(toComm 6= null) then

comm← false

else
if(toPrep 6= null) then

strong← strong ∪ (V ,prepared)
toPrep←null

fi
step done← true

fi

Internal Transitions

Table B.3: Transitions for the View Installer automaton.



View Installer Automaton (in node Ni)

process(Ends(n))
Precond.:

Ends(n) msg first in pending
step done = true

Postcond.:
if(msg matches acceptable) then

if(role=master)
AND(n = step) then

answers←answers \ sender
if(answers = null) then

step←step + 1
if(step < 5) then
rel← false

step done← false

fi
if(step = 1) AND

(change=false) then
toComm← nextV
comm← false

fi
timerstep reset

fi
fi

fi

process(ChangeM)

Precond.:
ChangeM msg first in pending
step done = true

Postcond.:
if(msg matches acceptable) AND

(role 6=master) then
if(role 6= subst) then

changeM← true

timerchg started
fi
sendV iew← true

acceptable←acceptable \Master
nextV←nextV \Master
timerstep reset

fi

process(Step(n))
Precond.:

Step(n) msg first in pending
step done = true

Postcond.:
if(msg matches acceptable)AND

(n = step + 1) then
step← n
step done← false

if(n = 2) then
rel← false

fi
if(n = 1) then

rel, comm← false

toComm← nextV
fi
if(n = 4) then

toComm, toPrep←msg
disc, prep, comm, rel← false

fi
timerstep reset

fi

process(View)

Precond.:
View msg first in pending
step done = true

Postcond.:
if(role = subst) AND

(msg matches acceptable) then
answers←answers \ sender
if(Ni results excluded) then

answers← null

nextV←only Ni

fi
if(answers = null) then

role← master

changeM← false

change← true

timerchg reset
fi

fi

Table B.3: Transitions for the View Installer automaton.



View Installer Automaton (in node Ni)

process(Setmem)

Precond.:
Setmem msg first in pending
step done = true

Postcond.:
if(msg matches acceptable) then

role← other

step← 0
step done ← false

if(changeM = true) then
changeM← false

fi
toPrep ← msg.Vp

prep, disc← false

toComm ← msg.Vc

if(toComm 6= null) then
comm, rel← false

fi
timers are reset
acceptable←

[msg.sender,Vp.members]
fi

timePulse1

Precond.:
Postcond.:

for t in timers
t← t− 1

if(∃timerj = 0) then
timeoutj← true

timerj reset
fi

composeView

Precond.:
role = master

(change = true) OR
(timeoutstep = true)

step done = true

Postcond.:
if(changeM = true) then

nextV, toComm← computed
changeM← false

else
comm, rel← true

fi
if(timeoutstep = true) then

nextV← V iew \ answers
timeoutstep← false

fi
toPrep← nextV
prep, disc← false

step← 0
step done, change← false

Table B.3: Transitions for the View Installer automaton.



View Installer Automaton (in node Ni)

timePulse1

Precond.:
Postcond.:

for t in timers
t← t− 1

if(∃timerj = 0) then
timeoutj← true

timerj reset
fi

stepTimeout

Precond.:
timeoutstep = true

role = other

Postcond.:
timeoutstep←false

chgTimeout

Precond.:
timeoutchg = true

Postcond.:
timeoutchg←false

if(role = subst) then
role← master

changeM← false

change← true

else
if(Ni new subst) then

role← subst

sendChM← true

nextV← nextV \ oldSubst
fi

fi

Table B.3: Transitions for the View Installer automaton.



Partition Manager Automaton (in node Ni)
Input Transitions

recv(Join)
Postcond.:

if(role = master) AND
(status = active) then

if(more updated history) then
if(relative majority) then

joining←[sender.group,
history difference,prepM]

else
updating← [sender,
history difference,prepM]

fi
fi

fi

recv(Update)
Postcond.:

if((role = master) AND
(status = active)) AND
(minority = true)) then

update,prepM← msg.contents
status← inactive

fi

commit(V )

Postcond.:
if(localU = false) then

minority← isMinority(V )
if(V.Master = Ni) then

role← master

timer← 0
else

role← other

timer reset
fi
status← active

joined, joining← null

fi

recv(Joined(Vid))
Postcond.:

if(status = active) AND
(ready = null) AND
(msg acceptable) then

update,prepM← msg.contents
ready← Vid

if(update 6= null) then
status← inactive

fi
fi

recv(Ready)
Postcond.:

if((role = master) AND
(status = active)) then

joined← joined ∪msg.sender
fi

Updated

Postcond.:
localU← false

status← active

joining← null

prepare(V )

Postcond.:
if(localU = false) then

status← inactive

joined← null

timer reset
if(V majority) then

prepM← V
fi

fi

Table B.4: Transitions for the Partition Manager au-
tomaton.



Partition Manager Automaton (in node Ni)

Exclude(Nj)

Postcond.:
status←inactive

joined ← null

timer reset

Output Transitions

send(Join)
Precond.:

role = master

status = active

minority = true

timer = 0
Postcond.:

timer← reset

send(Update)
Precond.:

role = master

status = active

updating 6= null

Postcond.:
updating← null

Include(Nj)

Precond.:
status = active

role = master

joined = Nj

Postcond.:
joined← null

send(Joined)
Precond.:

role = master

status = active

joining 6= null

Postcond.:
joining← null

send(Ready)
Precond.:

ready 6= null

update = null

status = active

Postcond.:
ready← null

Update(list)
Precond.:

update = list
Postcond.:

update← null

localU← true

Internal Transitions

Table B.4: Transitions for the Partition Manager au-
tomaton.



Partition Manager Automaton (in node Ni)

timePulse2

Precond.:
Postcond.:

if(timer set) then
timer← timer − 1

fi

Table B.4: Transitions for the Partition Manager au-
tomaton.

B.3.2 HaloMS

The HaloMS membership service runs differently in server and client nodes. In
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Figure B.4: Automaton that models the HaloMS membership component running in
each core node, and its interaction with the Regular Membership Service and the
network.

the former, it is modelled as an automaton, Halo Maintainer, that interacts with the
Regular Membership Service component, the network and the local failure detector
in charge of monitoring client connections. The automaton signature is schematically
shown in fig. B.4 for the particular case of HMS. In client nodes, on the contrary, the
whole membership service consists only of the HaloMS component, so that this interacts
only with the network and the local failure detection component (see fig. B.5).

The signature of the automaton for the HaloMS membership component in server



Halo Maintainer Automaton (in server node Ni)
Action Signature
Input Output Internal
recv(Token)
recv(Recovery)
recv(JoinReq)
recv(LeaveReq)
prepare(V )

commit(V )

release(V )

failed()

send(JoinQst)
send(Token)
send(Recovery)
send(Horizon)

processToken

checkInit

recoverToken

State
status ∈ {on, recovery, off} (initially off);
mode ∈ {wait, comp, send} (initially wait);
role ∈ {init, other} (initially other);
V iew (initially null);
haloV iew (initially empty);
token ∈ {true, false} (initially false);
joining→list of (client, ref) pairs (init. null);
toAdd→list of clients to add (init. null);
toRemove→list of clients to be removed (init. null);
toClient →Horizon messages to be sent to clients (init. null);
toQst →JoinQst messages to be sent to clients (init. null);
nextToken (initially null);
recoveryToken (initially null);
lastToken (initially null);
initiator→node that heads the ring (init. null).

Table B.5: Signature and state variables of the automaton that describes the behaviour
of the HaloMS Service on the core side.
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Figure B.5: Automaton that models the HaloMS membership component running in
each client node, interacting with the network.

nodes, named Halo Maintainer, is schematically shown in table B.5.

The main aspects of the transitions are detailed in table B.6, which shows the
dependence of the HaloMS component on the information coming from the regular
membership service, in the case of HMS or a similar service that provides the events
prepare, commit and release. We have chosen this type of support because the variety
of membership events notified by HMS allows the HaloMS component to be simpler
and to react more efficiently to changes in the core group. If the underlying RMS
did only provide notification about installed views, the automata should be slightly
modified, so that the token stop and recovery were launched by view events, as already
discussed in the text.

The description of the automaton is schematically shown in the following tables.
Details about token processing and updating of the halo view, have been deliberately
left out for the sake of clarity. Such actions take place at every node whenever it is in
turn of token processing, i.e. atomically with the processToken action. The specific
details to update the local halo view with the incoming token have already been fully
discussed in the text.



Halo Maintainer Automaton (in server node Ni)
Input Transitions

recv(Token)
Postcond.:

token← true

lastToken← msg
mode← comp

if(status = recovery) then
status← on

role← other

initiator← msg.Tid

fi

recv(Recovery)
Postcond.:

if(status = off) then
status← recovery

role← other

mode← send

token← false

nextToken← null

fi
recoveryToken← msg

recv(LeaveReq)
Postcond.:

if(status = on) then
if(client ∈ haloV iew) then

toRemove← toRemove∪ client
fi

fi

prepare(V )

Postcond.:
status← off

if(V is minority) then
reset everything

fi

recv(JoinReq)
Postcond.:

if(status = on) then
if(client /∈ haloV iew) then

if(client /∈ joining) then
if(msg.ref =null) then
joining← joining
∪(client, new reference)
toQst← toQst
∪ JoinQst(client,ref)

fi
else if(msg.ref = ref for client

in joining) then
joining← joining\ client
toAdd← toAdd∪ client

fi
fi

fi

commit(V )

Postcond.:
V iew← V

release(V )

Postcond.:
if((status = off) AND

(V is majority)) then
status← recovery

role← other

mode← send

token← false

nextToken← null

recoveryToken← null

fi

Output Transitions

Table B.6: Schematic transitions for the Halo Maintainer
automaton.



Halo Maintainer Automaton (in server node Ni)

send(Token)
Precond.:

status = on

token = true

mode = send

toClient = null

Postcond.:
token← false

nextToken← null

mode← wait

send(Horizon)
Precond.:

status = on

token = true

mode = send

toClient 6= null

Postcond.:
toClient← toClient \msg

send(Recovery)
Precond.:

status = recovery

role = other

mode = send

Postcond.:
if(recoveryToken = null) then

mode← wait

else
mode← comp

fi
token← false

nextToken← null

send(JoinQst)
Precond.:

status = on

toQst 6= null

Postcond.:
toQst← toQst \msg

Internal Transitions

processToken

Precond.:
status = on

token = true

mode = comp

Postcond.:
haloV iew← updated
toAdd← null

toRemove← null

toClient← computed
nextToken← updated
mode← send

checkInit

Precond.:
status = recovery

mode = comp

recoveryToken 6= null

Postcond.:
role← computed
recoveryToken← null

mode← wait

if(role = init) then
initiator← Ni

fi

Table B.6: Schematic transitions for the Halo Maintainer
automaton.



Halo Maintainer Automaton (in server node Ni)

recoverToken

Precond.:
status = recovery

role = init

Postcond.:
nextToken← computed
toClient← computed
token← true

status← on

mode← send

Table B.6: Schematic transitions for the Halo Maintainer
automaton.

The automaton corresponding to the client side of the HaloMS service, called Hori-
zon Maintainer, is described in tables B.7 and B.8. The first one shows the signature
of the automaton, depicted also in fig. B.5, and the latter details the main aspects
of the transitions. As before, details regarding resending of JoinReq if JoinQst or
Horizon are not received within a reasonable time are omitted to keep the description
concise. Regarding the local failure detector module in the client side, we assume for
it only the capability to detect failed links. It is possible that a client is capable to
contact some core nodes but not others, and therefore it can detect the latter have
failed. In order to fulfil the required properties of the HaloMS service, nevertheless,
a client should not be allowed to exclude a certain core node, as the responsibility
to decide about representativeness and inclusion/exclusion of clients relies on the core
group. Therefore the reaction to failed input transitions in the client side is optional,
and we do not include it explicitly in this schematic description. In practice, this re-
action can be to reduce the quality of the corresponding link in the local horizon, and
communicate a new horizon event, so that the applications using this information can
decide consequently on their operations involving that link.



Horizon Maintainer Automaton (in client node Ci)
Action Signature
Input Output Internal
recv(JoinQst)
recv(Horizon)
joinGroup

leaveGroup

send(JoinReq)
send(JoinReq(ref))
send(LeaveReq)
horizon

State
status ∈ {on, off} (initially off);
connected ∈ {true, false} (initially false);
tryJoin ∈ {true, false} (initially false);
tryLeave ∈ {true, false} (initially false);
newHorizon ∈ {true, false} (initially false);
representative server node (initially null);
reference integer (init null);
horizon list of (core,link) (initially null);

Table B.7: Signature and state variables of the automaton that describes the behaviour
of the HaloMS Automaton on the client side.



Horizon Maintainer Automaton (in client node Ci)
Input Transitions

recv(JoinQst)
Postcond.:

representative← msg.sender
reference← msg
tryJoin← false

recv(Horizon)
Postcond.:

representative← msg
horizon← msg
connected← true

newHorizon← true

joinGroup

Postcond.:
status← on

tryJoin← true

connected← false

leaveGroup

Postcond.:
status← off

tryLeave← true

Output Transitions

send(JoinReq)
Precond.:

status = on

tryJoin = true

connected = false

representative = null

Postcond.:
tryJoin←false

send(JoinReq(ref))
Precond.:

status = on

tryJoin = true

connected = false

representative 6= null

reference = ref
Postcond.:

tryJoin←false

send(LeaveReq)
Precond.:

status = off

tryLeave = true

connected = true

Postcond.:
tryLeave←false

horizon

Precond.:
connected = true

newHorizon = true

Postcond.:
newHorizon←false

if(horizon=null) then
connected=false

fi

Table B.8: Schematic transitions for the Horizon Main-
tainer automaton.



B.3.3 MODUS

The MODUS protocol has been modelled as a single automaton, MODUSAuto,
whose signature is shown in fig. B.6. Besides the network, it interacts with the Regular
Membership Service, filtering its notifications (MbshipEvent) actions, and with any
user application (or general component) capable to register membership listeners.
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Figure B.6: Automaton that models the MODUS membership service, and its interac-
tion with the Regular Membership Service, user applications and network.

The schematic signature of the automaton is shown in table B.9. The table shows
the processing of ActiveMsg and PassiveMsg messages, taking into account that
they may arrive disordered with respect to view changes and other messages. Thus, the
MODUS algorithm delays the processing of advanced messages until the proper view
has been installed. In case of partition merging, one representative of each partition
send an ActiveList with the portion of the activeNodes list before the merging. Every
survivor from the same partition waits for this message and, if necessary, sends a new
message to update its own status, as described in sect. 6.4.3. This process is shown
explicitly in the automaton. The variables waiting, delayed and toHandle take charge
of this.

Nodes from other partitions must also process the ActiveList before those indi-
vidual messages updating the state of particular nodes in response to that message. In
order to keep the clarity of this description we have deliberately excluded the details
about how ActiveMsg and PassiveMsg messages from disjoint partitions are ordered
with respect to their corresponding ActiveList. This can be achieved by including
a reference to the precedent view in the since the ActiveList and in the individual
ActiveMsg and PassiveMsg that follow it, and proceeding in a similar way as the
one described above.



MODUS Automaton (in node Ni)
Action Signature
Input Output Internal
register(client)
unregister(client)
recv(ServReq)
recv(ActiveMsg(V ))
recv(ActiveList(V ,nodes))
recv(PassiveMsg(V ))
MbshipEvent

broadcast(ServReq)
mcast(ActiveMsg)
mcast(PassiveMsg)
notify(MbshipEvent)

timePulse3

switchoff

handle(ActiveList)
handle(ActiveMsg)
handle(PassiveMsg)

State
status ∈ {on, off} (initially off);
role ∈ {active, passive} (initially passive);
view membership information (initially null);
activeNodes →list of active nodes (initially null);
localClients →list of registered clients (initially null);
toSend →list of messages to be sent (init. null);
waiting ∈ {true, false} (initially false);
toHandle →list of messages to be processed (init. null);
delayed →list of messages that have to wait to be processed (init. null);
toNotify →list of membership events to be notified (init. null);
timer →time counter to control timeouts;

(Timed) Tasks
{timePulse3} with limits tinf = pulse3 −∆t, tsup = pulse3 + ∆t
local(MODUS)\{timePulse3} with limits tinf = 0, tsup = pulse3 + ∆t

Table B.9: Signature and state variables of the automaton that describes the behaviour
of the MODUS Service.



MODUSAuto Automaton (in node Ni)
Input Transitions

register(client)
Postcond.:

localClients← localClients ∪ client
if(status=off) then

status← on

toSend← toSend∪ServReq
else if(role =passive) then

toSend← toSend∪ActiveMsg(Ni)
fi
role← active

activeNodes← activeNodes ∪Ni

unregister(client)
Postcond.:

localClients← localClients \ client
if(localClients is empty) then

role← passive

activeNodes← activeNodes \Ni

toSend← toSend∪PassiveMsg(Ni)
fi

recv(ActiveMsg(V ))
Postcond.:

if(status = on) then
if(V = view) AND

(waiting =false) then
toHandle← toHandle ∪msg

else
delayed ← delayed ∪msg

fi
fi

MbshipEvent(evt)
Postcond.:

toNotify← toNotify ∪ evt
if(evt is mbship view(V )) then

lastview← V
view← evt
toHandle← null

move from delayed to toHandle
ActiveList(V ), ActiveMsg(V )
from joined partition

activeNodes← activeNodes\ failed
if(view \ lastview 6= ∅) then

if(Ni first from lastview) then
toSend← ActiveList(V ,

activeNodes)
else

waiting←true

fi
fi

fi

recv(PassiveMsg(V ))
Postcond.:

if(status = on) then
if(V = view) AND

(waiting =false) then
toHandle← toHandle ∪msg

else
delayed ← delayed ∪msg

fi
fi

Table B.10: Schematic transitions for the MODUS au-
tomaton.



MODUSAuto Automaton (in node Ni)

recv(ActiveList(V ,nodes))
Postcond.:

if(status = on) then
if(V = view) then

toHandle← toHandle ∪msg
else

delayed ← delayed ∪msg
fi

fi

recv(ServReq)
Postcond.:

if(status=off) then
status← on

timer← reset
fi

Output Transitions

broadcast(ServReq)
Precond.:

status=on

msg ∈ toSend
Postcond.:

toSend← toSend \msg

mcast(ActiveList)
Precond.:

status=on

msg ∈ toSend
Postcond.:

toSend← toSend \msg

mcast(PassiveMsg)
Precond.:

status=on

msg ∈ toSend
Postcond.:

toSend← toSend \msg

notify(MbshipEvent)
Precond.:

status=on

MbshipEvent ∈ toNotify
localClients 6= ∅

Postcond.:
toNotify← toNotify\

MbshipEvent

mcast(ActiveMsg)
Precond.:

status=on

msg ∈ toSend
Postcond.:

toSend← toSend \msg

Internal Transitions

Table B.10: Schematic transitions for the MODUS au-
tomaton.



MODUSAuto Automaton (in node Ni)

handle(ActiveList(view,nodes))
Precond.:

status=on

msg ∈ toHandle
Postcond.:

toHandle← toHandle \msg
activeNodes←activeNodes∪ nodes
if(sender = first from lastview) then

activeNodes←activeNodes\
(lastview \ nodes)

waiting ←false

if(role disagrees with activeNodes)
then toSend←toSend∪

PassiveMsg OR ActiveMsg
fi

fi
move ActiveMsg(view),

PassiveMsg(view) msgs
from delayed to toHandle

if(activeNodes 6= ∅) then
timer ←-1

fi

timePulse3

Precond.:
Postcond.:

if(timer set) then
timer← timer − 1

fi

switchoff

Precond.:
status=on

activeNodes = ∅
toSend = toHandle =null

timer ≤ 0
Postcond.:

status ← off

delayed ← null

handle(PassiveMsg(view))
Precond.:

msg ∈ toHandle
Postcond.:

toHandle← toHandle \msg
activeNodes←activeNodes\

msg.sender
if(activeNodes = ∅) then

timer reset
fi

handle(ActiveMsg(view))
Precond.:

msg ∈ toHandle
Postcond.:

toHandle← toHandle \msg
activeNodes←activeNodes∪

msg.sender
timer ←-1

Table B.10: Schematic transitions for the MODUS au-
tomaton.


