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Abstract We investigate the factorized solution of generalized stable Sylvester
equations as those usually arising in model reduction, image restoration, and
observer design. The algorithms proposed here, based on the Newton iteration
for the matrix sign function, are highly parallel and thus provide a valuable
tool to solve large-scale problems on a variety of platforms. In this work, we
evaluate parallel implementations of these algorithms on graphics processors
showing how they can take advantage of this sort of data-parallel hardware.

Keywords Matrix sign function, Newton iteration, GPUs

1 Introduction

In this paper, we consider the (continuous-time) generalized Sylvester equation
in factored form

AXD + EXB + FG = 0, (1)

where A,E ∈ IRn×n, B,D ∈ IRm×m, F ∈ IRn×p, G ∈ IRp×m, and X ∈ IRn×m

is the sought-after solution. Equation (1) has a unique solution if and only
if α + β 6= 0 for all α ∈ Λ (A,E) and β ∈ Λ (B,D), where Λ (U, V ) denotes
the generalized eigenspectrum of the matrix pencil U −λV . In particular, this
property holds for generalized stable Sylvester equations, where both Λ (A,E)
and Λ (B,D) lie in the open left half plane. Sylvester equations have numer-
ous applications in control theory, signal processing, filtering, model reduction,
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image restoration, etc., see, e.g., [1] and the references therein. In particular,
in model reduction using cross-Gramians [2,3,4,5], image restoration [6], and
observer design [7], p� n,m and the solution X often exhibits a low (numer-
ical) rank [8]. In such cases, it is beneficial to compute the factorized solution
of the equation, both from the perspective numerical accuracy and computa-
tional cost. Thus, we aim at computing a pair of matrices Y and ZT , both with
a small number of columns, such that X = Y Z. Algorithms for the standard
case (E = In, D = Im) were first suggested in [9,1].

As the factorized solution of (1) still involves a considerable computa-
tional effort, we develop efficient realizations enhanced with high performance
computing techniques. Here, we focus on dense linear algebra, i.e., we do not
assume A,B,D,E in (1) to be sparse. In order to exploit modern computa-
tional hardware, we focus on th ematrix sign function as underlying solver
technology as it is matrix-multiplication rich and can be implemented using
mostly BLAS3-dominant operations. Specifically, the rise of graphics process-
ing units (GPUs) as powerful and ubiquitous parallel co-processors motivates
our efforts to accelerate the key matrix computations in the solver.

Previous work on parallel algorithms for solving linear matrix equations
includes implementations of algorithm using the (Hessenberg-)Schur decom-
position of the coefficient matrices. As this is usually done using (Sca)LAPACK
routines, the papers [?,?,?] concentrate on the solution of (quasi-)triangular
Sylvester equations. While [?] focuses on task-parallelism, but not not GPU
accelerators, and does not consider the generalized variant of the Sylvester
equation considered here, [?,?] study the symmetric case of Lyapunov equa-
tions. The solution algorithm there is not related to the iterative low-rank
solver approach considered here, and the parallel performance of theses solvers
is limited by that of the QZ algorithm for the initial stage of the solution pro-
cedure. In contrast to this, we avoid the QZ algorithm completely and suggest
a matrix multiplication rich method that leverages the low-rank structure of
the right-hand side for memory and computational savings. Our previous work
on parallel and GPU-accelerated Lyapunov and Sylvester solvers summarized
in [?] did not consider the generalized and factorized Sylvester case (1). More-
over, we improve our GPU-enabled routine of the factorized solver and include
two more variants, a hybrid CPU-GPU version and a dual-GPU version.

The rest of the paper is structured as follows. In Section 2, we briefly review
the classical sign function solver for the generalized Sylvester equation. In that
section, we also derive the factored iteration, and propose an initial transfor-
mation of the equation that considerably reduces the cost per iteration. Then,
in Section 3, we provide some details on how the Sylvester equation solvers are
parallelized using many-core strategies. Numerical experiments reporting the
accuracy and the high performance of the new methods on a hardware plat-
form based on GPUs are presented in Section 4. The final section summarizes
the findings n this paper and gives some concluding remarks.
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2 Iterative Schemes for Generalized Stable Sylvester Equations

Traditional solvers for generalized Sylvester equations consist of generaliza-
tions of the Bartels-Stewart (BS) method [10] and the Hessenberg-Schur method
[11,12]. A different approach is to rely on iterative schemes for the computa-
tion of the matrix sign function. We adapt the basic Newton iteration used
in this context [13] to solve the generalized equations in (1) and providing
the solution in factored form. Similar algorithms have been proposed for the
standard Sylvester equation in [1] and for the Lyapunov equation in [14,15].
We also propose an initial transformation of the equation that further reduces
the cost of both the classical and the factored iterations.

2.1 Theoretical background

Consider a matrix M ∈ IRl×l with no eigenvalues on the imaginary axis, and

let M = S
[
J−

0
0
J+

]
S−1 be its Jordan decomposition. Here, the Jordan blocks

in J− ∈ IRt×t and J+ ∈ IR(l−t)×(l−t) contain, respectively, the stable and un-
stable parts of Λ (M, Il). (Here, Il denotes the square identity matrix of order

l.) The matrix sign function of M is defined as sign (M) := S
[
−It
0

0
Il−t

]
S−1.

By applying Newton’s root-finding iteration to M2 = Il in order to compute
sign (M), with the starting point chosen as M , we obtain the Newton iteration
for the matrix sign function:

M0 := M, Mk+1 :=
1

2
(Mk +M−1k ), k = 0, 1, 2, . . . . (2)

Under the given assumptions, the sequence {Mk}∞k=0 converges to sign (M) =
limk→∞Mk [13], with an ultimately quadratic convergence rate. As the ini-
tial convergence may be slow, the use of acceleration techniques such as those
in [16,17] is recommended. If X is a solution of (1), the similarity transfor-

mation defined by
[
In
0

X
Im

]
can be used to block-diagonalize the block upper

triangular matrix

H̃ =

[
Ã C̃

0 −B̃

]
=

[
E−1A E−1CD−1

0 −BD−1
]

(3)

as follows: [
In X
0 Im

]−1 [
E−1A E−1CD−1

0 −BD−1
] [

In X
0 Im

]
=[

In −X
0 Im

] [
E−1A E−1CD−1

0 −BD−1
] [

In X
0 Im

]
=

[
A 0
0 −B

]
.

(4)

Using sign
(
H̃
)

, the relation given in (4), and the property of the sign function

sign
(
T−1H̃T

)
= T−1sign

(
H̃
)
T , we derive the following expression for the
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solution of the generalized Sylvester equation (1):

sign
(
H̃
)

=

[
−In 2X

0 Im

]
. (5)

This relation forms the basis of the numerical algorithm derived next since it
states that we can solve (1) by computing the matrix sign function of H̃ in (3).
It is more convenient to use the equivalence of H̃ − λIn+m to

H − λK :=

[
A FG
0 −B

]
− λ

[
E 0
0 D

]
, (6)

given by

H − λK = L(H̃ − λIn+m)M, where L =

[
E 0
0 Im

]
, M =

[
In 0
0 D

]
.

From (5) we know that we can compute the solution of the generalized Sylvester
equation by applying (2) to H̃. In doing so, we obtain in the first step

H̃1 = 1
2 (H̃ + H̃−1) = 1

2 (L−1HM−1 +MH−1L)

= L−1
(
1
2 (H + LMH−1LM)

)
M−1 = L−1

(
1
2 (H +KH−1K)

)
M−1.

Repeating this calculation and denoting H0 := H = LH̃M , we arrive at

Hk+1 :=
1

2
(Hk + LMH−1k LM) =

1

2
(Hk +KH−1k K), k = 1, 2, . . . , (7)

so that Hk = LH̃kM . Finally, taking limits on both sides, yields

H∞ := lim
k→∞

Hk = Lsign
(
H̃
)
M =

[
−E 2EXD
0 D

]
, (8)

and X = 1
2E
−1H12D

−1, H12 denotes the upper right n×m-block of H∞.

2.2 Solution of the generalized Sylvester equation

In [1] it is observed that exploiting the block-triangular structure of the matrix
pencil H − λK, we obtain the following classical generalized Newton iteration
for the solution of the generalized Sylvester equation (1):

A0 := A, Ak+1 := 1
2

(
Ak + EA−1k E

)
,

B0 := B, Bk+1 := 1
2

(
Bk +DB−1k D

)
,

C0 := FG, Ck+1 := 1
2

(
Ck + EA−1k CkB

−1
k D

)
,

k = 0, 1, 2, . . . . (9)

At convergence, the solution of (1) is computed by solving the linear equation

EXD =
1

2
lim
k→∞

Ck.



Factorized Solution of Generalized Stable Sylvester Equations on GPUs 5

Also, from (8) we have limk→∞Ak = −E and limk→∞Bk = −D, which
suggests the stopping criterion

max

{
‖Ak + E‖1
‖E‖1

,
‖Bk +D‖1
‖D‖1

}
≤ τ, (10)

where τ is a tolerance threshold. One might choose τ = γε for the machine
precision ε and, for instance, γ = n or γ = 10

√
n. However, as the terminal

accuracy sometimes cannot be reached, in order to avoid stagnation it is better
to choose τ =

√
ε and to perform 1 to 3 additional iterations once this crite-

rion is satisfied. Due to quadratic convergence of the method, this is usually
sufficient to reach the attainable accuracy, as already suggested and explained
in the context of sign function based matrix equation solvers in [14].

Due to the quadratic convergence of the Newton iteration (2), this is usually
enough to achieve the attainable accuracy.

2.3 Factored solution of the generalized Sylvester equation

In order to obtain a factorized solution of (1), we rewrite the iteration for Ck

as two separate iterations:

F0 := F, Fk+1 := 1√
2

[
Fk, EA

−1
k Fk

]
,

G0 := G, Gk+1 := 1√
2

[
Gk

GkB
−1
k D

]
,

k = 0, 1, 2, . . . ,

so that Ck+1 = Fk+1Gk+1. Although this iteration is cheaper during the initial
steps if p � n,m, this advantage is lost as the iteration advances since the
number of columns in Fk+1 and the number of rows in Gk+1 is doubled in
each iteration step. This can be avoided by applying a similar technique as that
employed in [14] for the factorized solution of generalized Lyapunov equations.
Let Fk ∈ IRn×pk and Gk ∈ IRpk×m. We first compute a rank-revealing QR
(RRQR) factorization [18] of Gk+1 as defined above; that is, we calculate

1√
2

[
Gk

GkB
−1
k D

]
= URΠG, R =

[
R1

0

]
,

where U is orthogonal, ΠG is a permutation matrix, and R is upper triangular
with R1 ∈ IRr×m of full row-rank. Then, we compute a RRQR factorization
of Fk+1U :

1√
2

[
Fk, EA

−1
k Fk

]
U = V TΠF , T =

[
T1
0

]
,

where V is orthogonal, ΠF is a permutation matrix, and T is upper triangular
with T1 ∈ IRt×2pk of full row-rank. Partitioning V = [V1, V2 ], with V1 ∈ IRn×t,
and computing

[T11, T12 ] := T1ΠF , T11 ∈ IRt×r,
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we then get as the new iterates

Fk+1 := V1T11, Gk+1 := R1ΠG,

which satisfy Ck+1 = Fk+1Gk+1. Setting

Y :=
1√
2
E−1 lim

k→∞
Fk, Z :=

1√
2

lim
k→∞

GkD
−1,

we obtain the solution (1) in factored form X = Y Z. If X has low numeri-
cal rank, the factors Y and Z will have a low number of columns and rows,
respectively, and the storage space and computation time needed for the fac-
tored iteration will be lower than that of the classical iteration. In such case,
r, t� m,n, and the cost of the current iteration for the factorized solution is
14
3 (n3 + m3) + O(2(n + m)2) flops, where the cubic part comes from solving

the linear systems and computing the matrix products EA−1k E and DB−1k D;
see [1, Section 4] for details of the complexity analysis.

2.4 Numerical performance

We next analyze the accuracy of the new Sylvester solvers borrowing exam-
ples from [19,20]. We use ieee double-precision floating-point arithmetic with
machine precision ε ≈ 2.2204 × 10−16. For the numerical evaluation, we im-
plemented two MATLAB functions:

– ggcsne: The classical generalized Newton iteration for the generalized
Sylvester equation in factored form as given in (9).

– ggcsnc: The factored variant of the generalized Newton iteration for the
generalized Sylvester equation in factored form.

We compare these functions with the BS method as implemented in function
lyap from the MATLAB Control Toolbox. As the BS solver in MATLAB
cannot deal with the generalized Sylvester equation, we apply it to the trans-
formed standard Sylvester equation (E−1A)X+X(BD−1)+E−1FGD−1 = 0.

Example 1. A basic test case aimed to compute the cross-Gramian matrix
Wco of a generalized linear time-invariant system of the form

Mẋ(t) = −Kx(t) +Bu(t), y(t) = Cx(t). (11)

This matrix is given by the solution of the generalized Sylvester equation

KŴcoM +MŴcoK +BC = 0, (12)

and Wco = ŴcoM . The cross-Gramian contains information of certain proper-
ties of the linear system [4] and can also be used for model reduction [2]. We
employ the solvers to compute Ŵco for a system described in [19, Example 4.2]
which comes from a model for heat control in a thin rod. The physical process
is modeled by a linear-quadratic optimal control problem for the instationary
1D heat equation. Semi-discretization in space using finite elements leads to a
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Fig. 1 Numerical performance of the generalized Sylvester equation solvers applied to Ex-
amples 1 (left) and 2 (right).

system of the form (11), where M and K are the mass matrix and stiffness ma-
trix, respectively, of the finite element approximation. Mesh refinement leads
to systems of different orders n. The other parameters in this example are set
to a = 0.01, b = 2, c = 1, β1 = 0, β2 = 0.1, γ1 = 0.9, γ2 = 1.

The left-hand side plot in Fig. 1 shows the results for various problem
dimensions. As a measure of the quality of the solutions, we report the relative
residuals

‖KŴ ∗coM +MŴ ∗coK +BC‖F
2‖K‖F ‖Ŵ ∗co‖F ‖M‖F + ‖B‖F ‖C‖F

,

where Ŵ ∗co denotes the computed solution. For thsi example, the two factored
solvers outperform the BS method by a margin that grows with the problem
dimension n.

Example 2 [20, Example 13]. In this case we choose for real a, b, d, e > 1

Â = diag
(
1, a, a2, . . . , an−1

)
, B̂ = diag

(
1, b−1, b−2, . . . , b−(n−1)

)
D̂ = diag

(
−1,−d−1,−d−2, . . . ,−d−(n−1)

)
, Ê = diag

(
−1,−e,−e2, . . . ,−en−1

)
,

Ĥ = vvT , v = [1, 2, . . . , n]T Ĉ = −ĤD̂ − ĤB̂,

where the parameters a, b, d, and e regulate the eigenvalue distribution of
the corresponding matrices. We then employ an equivalence transformation
defined as T = H2SH1, where

H1 = In − 2
nh1h

T
1 , h1 = [1, 1, . . . , 1]

T
,

H2 = In − 2
nh2h

T
2 , h2 =

[
1,−1, . . . , (−1)n−1

]T
,

S = diag
(
1, s, . . . , sn−1

)
, s > 1,

to transform the matrices of the equation into

A = T−T ÂTT , B = TB̂T−1, D = TD̂T−1, E = T−T ÊTT , C = T−T ĈT−1.
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The factorized right-hand side matrix is then given by F = −T−T v and G =
vT (D+B)T−1. In this example we set the parameters as a = 1.001, b = 1.004,
d = 1.002, e = 1.003, and s = 1.01.

The right-hand side plot in Figure 1 compares the relative errors in the

computed solution X∗, ‖X−X
∗‖F

‖X‖F , for the different methods. The errors for

all three algorithms are remarkably similar and as small as could be expected
from numerically backward stable methods.

3 Many-Core Versions

In this section we describe our GPU-accelerated realisations. Our routines off-
load the most expensive computational stages of the method to the accelerator,
leaving less-demanding and/or hardly parallelizable operations to the CPU.

Single-GPU variant, Vergpu. As we stated previously, the method proposed
for the generalized stable Sylvester equation is based on two simultaneous
matrix iterations. From the computational cost perspective, these iterations
involve two major operations: the matrix inversion (computed as a matrix
factorization and the solution of two triangular linear systems) and a matrix
update, which can be performed via a matrix multiplication (gemm). These
two operations (which are performed on both iteration matrices) represent ap-
proximately an 85% of the total cost of the method. Therefore, an important
acceleration can be expected from off-loading these operations to the GPU.
In our implementation, basic linear algebra kernels such as matrix products,
transpositions and norms, are performed using the cuBLAS GPU-accelerated
library, while more complex operations, such as LU factorizations and trian-
gular system solves rely on the cuSolverlibrary. It should be noted that both
operations occur in every iteration of the procedure. Regarding the data trans-
fers, the equation matrices A, B, D and E are sent to the device once, prior to
the beginning of the procedure. Contrarily, the factors of the solution matrix
are retrieved back to the CPU at each iteration, since the compression stage
that uses the RRQR factorization to reduce the number of columns/rows of
the factors is performed in the CPU. Without compression, the sign function
iteration duplicates the number of columns/rows of the left/right factors of the
solution at each iteration. The compression procedure leverages the low-rank
property of the factors to keep the size of the factors bounded.

Hybrid variant, Verhyb. As our method for the Sylverster equation combines
operations performed in the CPU with others performed in the GPU, it is in-
teresting to analyze how the computation on both devices can be overlapped
to maximize the utilization of the hardware. To allow this, it is necessary to
re-define the compute workflow. Concretely, we overlap the compression stage
(computed in the CPU) with the matrix factorizations and triangular solves
(computed in the GPU) corresponding to the next iteration, a strategy com-
monly referred as look-ahead [21]. This is convenient because the result of the
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linear systems in a given iteration are used to update the iteration matrices,
which are then compressed. This variant can achieve important accelerations
when the compression runtime is comparable to the cost of the matrix factor-
izations and linear system solution.

Dual GPU variant, Ver2gpus The Newton iteration involves two independent
recurrences (for {A}k and {B}k) with a third one (for {C}k) that depends on
the other two. However, in the factored variant of the method, the {C}k recur-
rence is replaced by two independent ones (for {F}k and {G}k). In turn, {F}k
depends on {A}k, while {G}k depends on Bk. This allows to completely sepa-
rate the ({A}k,{F}k)-iteration from the ({B}k,{G}k)-one, handling each in a
separate device. This approach offers two distinct benefits. On the one hand,
duplicating the computational power to solve the main stages of the algorithm
can strongly reduce the required runtime (up to 2× in the ideal case). On
the other hand, the duplication of the memory allows addressing problems of
larger scale. Although, the two recurrences are independent, the compression
of the factors requires a synchronization. Specifically, the synchronization oc-
curs before the RRQR factorization of Fk+1U , given that U is the orthogonal
matrix resulting from the RRQR factorization of Gk+1. The communication
of data between the CPU memory and the devices also occurs at this point,
where Fk+1 = [Fk, EA

−1Fk] and Gk+1 = [Gk;GkB
−1D] are transferred to

the CPU memory to be compressed. It is important to note that, if the com-
pression procedure keeps the number of columns of Fk and rows of Gk small,
the cost of these transfers and the compression itself is small compared to the
operations that involve the square matrices Ak and Bk (of dimension n and
m respectively). See the outline of the Ver2gpusvariant in Figure 2.

4 Experimental Evaluation

In this section we analyze the parallel performance of the generalized Sylvester
equation solvers based on the sign function. We used two platforms for the
experiments. The executions involving one or two GPUs were performed on
a server equipped with a Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 64GB
of RAM, and two GeForce GTX 980 Ti GPUs with 6GB of GDDR5 memory.
The multicore CPU experiments were performed in a 40-core Intel Xeon Gold
6138 CPU @ 2.00GHz, with 128 GB de RAM.

ieee double-precision floating-point arithmetic was used for all the execu-
tions, and the multicore runs were performed with Matlab R2018b on a Linux
system. The GPU executions were performed using CUDA 10.2.

Example 3. For the parallel evaluation we construct matrices Â ∈ IRn×n,
B̂ ∈ IRm×m, F ∈ IRn×p and G ∈ IRp×m with random entries uniformly
distributed in U[-1,1]. Matrix Â is then “stabilized” as Â := Â − ‖Â‖F In.
Finally, we compute the QR factorization Â = QR and set A := R and
E := QT . Matrices B and D are analogously obtained from a QR factoriza-
tion of B̂ − ‖B̂‖F In.
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Operation Kernel Device

χ = EA−1
k getrf+getrs GPU1

ξ = B−1
k D getrf+getrs GPU2

do

Ak+1 = 1
2

(Ak + χE) gemm
GPU1

Fk+1 = [Fk, χFk] memcpy

Bk+1 = 1
2

(Bk +Dξ) gemm
GPU2

Gk+1 = 1
2

[
Gk
Gkξ

]
memcpy

start transfer of Fk+1 and Gk+1 to the CPU

χ = EA−1
k+1 getrf+getrs GPU1

ξ = B−1
k+1D getrf+getrs GPU2

Gk+1 = U
[
R1
0

]
ΠG geqp3+gesvd

CPU
Fk+1U = V

[
T1
0

]
ΠF orgqr+geqp3+gesvd

[T11, T12 ] := T1ΠF lapmt
Fk+1 := V1T11 gemmm
Gk+1 := R1ΠG lapmt

until convergence

Fig. 2 Algorithmic formulation of the factorized Newton iteration for the sign function.
The steps have been re-organized so that the two sequences that compose the method can
be isolated and executed in different devices.

Problem Dim. ggcsnc ggcsnegpu ggcsncgpu ggcsnchyb ggcsnc2gpus

Example 1

256 130.6 104.9 99.7 91.0 72.9
512 666.2 445.5 340.0 322.0 219.1

1024 4790.0 2454.2 1624.9 1582.2 901.4
2048 41265.6 18156.2 10029.6 9927.6 5896.6
4096 312538.6 141689.4 73067.4 72852.3 42338.9

Example 2

256 74.6 35.2 30.2 30.3 20.15
512 653.6 146.8 106.0 105.5 72.78

1024 5028.3 951.5 608.2 605.3 386.06
2048 47479.6 9644.4 5291.0 5238.0 3210.52

Example 3

256 68.2 62.7 56.1 40.2
512 737.3 295.1 206.7 204.4 135.9

1024 4934.8 1581.1 986.9 982.0 574.9
2048 39301.3 11316.9 6087.3 6091.8 3599.8
4096 299589.3 87656.7 44863.2 44684.1 25830.4

Table 1 Execution time (in milliseconds) for the baseline and proposed variants, on the
three example problems and different problem sizes.

For the experimental evaluation we include two extra versions to serve as
the baseline. First, a CPU-based variant (ggcsnc) of the iterative solver to
compute the factorized solution of the Generalized Sylvester equation imple-
mented in Matlab1. Second, a GPU version of the Generalized Sylvester that
works with the full (non-factored) solution (ggcsnegpu). Table 1 summarizes
the runtime required by the baseline variants as well as the three GPU versions

1 The most expensive operation of this method are matrix operations, which Matlab off-
loads to external libraries (such as BLAS or LAPACK). Matlab adds a small amount of
overhead which makes this baseline slightly unfair from the runtime perspective.
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Problem
ggcsnchyb ggcsnc2gpus

Inv. & Upd. % Comp. % Theo. Achi. Theo. Achi.

Example 1 9639.5 96.1 115.0 1.2 115.0 102.0 4133.0
Example 2 5012.7 94.7 78.9 1.5 78.9 53.0 2080.5
Example 3 5998.8 96.9 8.3 0.2 8.3 -4.5 2487.5

Table 2 Runtime and percentage of the total runtime of the main stages of the solver
(left), and comparison between the theoretical and achieved acceleration (right) for the test
cases of dimension 2048. Runtime values are in milliseconds.

proposed in this work: ggcsncgpu, ggcsnchyb and ggcsnc2gpus. These imple-
mentations are employed to solve three distinct test cases of scalable size.
In our evaluation, we select the cases corresponding to the following matrix
dimensions: n = m = 256, 512, 1024, 2048 and 4096.

The results show that our proposal clearly outperforms both baseline vari-
ants. Moreover, the runtime reduction grows with the dimension of the ma-
trices, reaching 3.5× for the largest test cases. For the smallest test cases,
n = m = 256 and 512, the runtimes for the single-GPU versions are similar,
presenting differences of up to 30%. For these contexts, the use of two GPUs
does not contribute to accelerate the solution. This situation can be attributed
to the synchronizations required at each iteration of the solver. Additionally,
the hardware platform employed for the experiments employs the pciE inter-
face to communicate data between the GPUs and the CPU. In this sense,
equipment with more advanced interconnection technology, such as NVIDIA’s
NVLink, could render notable benefits. In the medium and large test cases, our
new realisations attain higher performance than their baseline counterparts. In
more detail, for the cases with matrix dimensions n = m = 1024, the new al-
gorithms are approximately 30% faster than their non-factored counterparts.
Additionally, the use of two GPUs is slightly better in some test cases and
slightly worse in others, and the ggcsnchyb variant is negligibly faster than
the ggcsncgpu ones. In the large test cases, with matrix dimensions 2048 and
4096, the important volume of computations involved allows to exploit more
efficiently the underlying hardware platform. Especially, for these test cases
the ggcsnc2gpus variant delivers remarkable runtime reductions.

In order to perform a more complete analysis, we study the maximum the-
oretical benefit achievable by our proposal. In this line, Table 2 (left) offers
the runtime and percentage of total runtime required by some of the the most
important operations, for the test cases with matrices dimension 2048. Specif-
ically, we include two main stages, the inversion and update of the iteration
matrices, and the compression of the solution matrix. As we stated previously,
the matrix inversion and update are performed on two matrices independently,
and represent the most computationally-demanding parts. The ggcsnc2gpus
variant leverages task-parallelism to off-load each inversion-update sequence
to a different GPU, which makes the major achievable runtime reduction equiv-
alent to half the total runtime of these stages. In comparison, in the ggcsnchyb
version the previous stages are concurrently computed with the matrix com-
pression, which implies that the best improvement for this case is equal to
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the runtime taken by the compression (as this operation typically requires
significantly less runtime than the other overlapped operations). In Table 2
(right) we summarize the theoretical and actual runtime reductions. For the
ggcsnchyb solver, the runtime reductions are strongly correlated with the the-
oretical values as the achieved reductions are equal to the theoretical minus
plus a small overhead. It should be remarked that the computational cost of
the compression stage depends of the number of rows and columns of the ma-
trices involved. In the three examples of Table 2, these numbers are 36, 53 and
7 respectively, which means this variant only offers benefits when n and m are
large. Regarding the ggcsnc2gpus variant, the results show that the observed
runtime reductions are close to the theoretical values. Specifically, these re-
ductions reach 70 and 80% of the maximum for the examples of Table 2, and
the benefits increase with the runtime.

5 Conclusions

We have discussed a matrix sign function-based scheme to directly obtain the
factorized solution of the generalized stable Sylvester equation. The factored
iteration allows significant savings in computation time and memory require-
ments in case the solution has low numerical rank. The novel algorithm can be
efficiently parallelized. In this work, we have designed and evaluated implemen-
tations that efficiently leverage both data- and task-parallelism on platforms
equipped with multicore processors and one or two GPUs. The experimental
results confirm the efficacy of the sign function-based solvers and report a
considerable advantage that can be realised on massively parallel hardware.

In future work, we intend to generalize our approach to harness distributed
platforms equipped with several GPUs, in order to handle large-scale problems.
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