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Abstract

Over the last few years, Software Defined Networking (SDN) paradigm has become an emerging architecture to design future
networks and to meet new application demands. SDN provides resources for improving network control and management by
separating control and data plane, and the logical control is centralized in a controller. However, the centralized control logic
can be an ideal target for malicious attacks, mainly Distributed Denial of Service (DDoS) attacks. Recently, Deep Learning has
become a powerful technique applied in cybersecurity, and many Network Intrusion Detection (NIDS) have been proposed in recent
researches. Some studies have indicated that deep neural networks are sensitive in detecting adversarial attacks. Adversarial attacks
are instances with certain perturbations that cause deep neural networks to misclassify. In this paper, we proposed a detection and
defense system based on Adversarial training in SDN , which uses Generative Adversarial Network (GAN) framework for detecting
DDoS attacks and applies adversarial training to make the system less sensitive to adversarial attacks. The proposed system includes
well-defined modules that enable continuous traffic monitoring using IP flow analysis, enabling the anomaly detection system to
act in near-real-time. We conducted the experiments on two distinct scenarios, with emulated data and the public dataset CICDDoS
2019. Experimental results demonstrated that the system efficiently detected up-to-date common types of DDoS attacks compared
to other approaches.
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1. Introduction

Nowadays, computer network systems have become com-
plex structures for management and control. The main reason
is the number of heterogeneous devices that make up the net-
work. The Software Defined Networking paradigm (SDN) in-5

troduced tools to simplify configuration and management, in
addition to enabling more significant innovation in communi-
cation networks. The SDN paradigm enables centralized net-
work management. Where the network control is dissociated
from the data forwarding plane [1, 2]. In the SDN architec-10

ture, the control plane is enhanced by centralized network con-
trol. The centralization of the control plane provides a global
view of the network topology. Moreover, it enables the net-
work traffic flow manipulation on runtime through an open and
well-defined software interface [3, 4]. However, the centralized15

control plane can be a point of vulnerability, mainly targets of
Distributed Denial of Service (DDoS) attacks [5, 6, 7, 8], which
is easily flooded by many malicious requisitions. As a result,
the controller may become unavailable to process normal user
requisitions.20

Security mechanisms are applied for detecting and prevent-
ing network systems from the actions of malicious agents. For

∗Corresponding author
Email address: jlloret@dcom.upv.es (Jaime Lloret )

this purpose, Network Intrusion Detection System (NIDS) is
a widely used technique against Internet-based attacks [9, 10].
NIDS provides a set of tools able to recognize abnormal net-25

work behaviors automatically. A NIDS can be implemented as
signature-based, anomaly-based, or hybrid. In signature-based
NIDS, a database of known attack pattern signatures is used to
recognize intrusions. This means, an intrusion is detected when
there is a match between the stored patterns and the current be-30

havior of network activity. Anomaly-based approach focuses in
generating a normal behavior profile-based historical network
data. When the predicted behavior and the current behavior
diverge from one another, an anomaly is detected. The main
advantage of this approach is the detection of zero-day and un-35

known attacks. Consequently, different techniques have been
used to detect anomalies [11]; recently, NIDS has been pro-
posed by applying deep learning techniques [12, 13].

Deep learning (DL) is a branch of Machine Learning (ML),
where its application has become a trend, mainly due to the40

abstraction and generalization capacity in the learning process
in many domains.[14, 15]. DL algorithms provide deep archi-
tectures formed by multiple layers of processing units to ex-
tract high-level abstraction from raw data. In literature, DL
models such Convolution Neural Network (CNN) [16], Deep45

Boltzmann Machine (DBM) [17], Long Short-Term Memory
(LSTM)[18], Recurrent Neural Network (RNN) [19], and Stacked
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Autoencoder (SAE) [20] have been applied in many areas [21,
22, 23, 24], it includes audio processing [25], autonomous sys-
tems [26], cybersecurity [13], image and video recognition [27],50

and natural language processing [28]. In these fields, DL al-
gorithms have shown their outperformance over classical ML
algorithms related to classification tasks, dimensionality reduc-
tion, and feature learning algorithms.

Regarding security and management issues, deep learning55

technology can easily extract and learn characteristics and pat-
terns from the network’s behavior, providing useful insights for
attack detection. Besides, with the fast increase in the num-
ber of users, network traffic becomes complex, and deep neural
networks are powerful in reducing the network traffic complex-60

ity analysis due to their ability to learn massively complex data
representations, and to handle it without human efforts [29].

Despite the extensive applications of DL algorithms in NIDS,
recent studies have claimed that deep neural networks are sen-
sitive to adversarial examples [30, 31, 32], which are performed65

by malicious agents to mislead DL algorithms in detecting at-
tacks. Adversarial examples are instances with feature pertur-
bations that are intended to cause a deep neural network to
misclassify it. According to X. Zhang et al. [33] adversarial
training can be applied to protect the system against adversarial70

example threats. In practical terms, this means adding adver-
sarial data examples into the original dataset and using it in the
model training phase. Generative Adversarial Network (GAN)
framework enables to generate adversarial examples by adver-
sarial training [34]. This GAN property can improve the NIDS75

performance in detecting adversarial attacks. By training the
generator and the discriminator simultaneously in an adversar-
ial way, the discriminator improves the detection rates using the
generated adversarial examples and updates itself against them.

Given the significance of this issue, there is a need to en-80

sure the security of network systems. The use of tools to sup-
port management and security activities is essential. Also, these
tools must operate in an automated manner to facilitate identi-
fying the occurrence of anomalous events and take countermea-
sures to minimize the effects caused by malicious agents. In this85

way, we present a novel anomaly detection system based on ad-
versarial training by applying Generative Adversarial Network
(GAN) for detecting and defending against up-to-date DDoS
attacks.

The main contributions of this paper are listed as it follows:90

• This work proposes a detection and defense system against
adversarial DDoS attacks through an Adversarial Deep
Learning approach, which provides a more accurate de-
tection rate and less sensitive to adversarial examples;

• We conduct the experiments on two scenarios through95

up-to-date common DDoS attacks, such as NTP, DNS,
LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-
Lag, WebDDoS (ARME), SYN e TFTP;

• The proposed system collects and analyzes the network
traffic every second, enabling the anomaly detection sys-100

tem to act in near-real-time, that means, response time in
up to 1 second;

• Compares the efficiency of the proposed system with dif-
ferent deep learning methods present in literature for de-
tecting DDoS in SDN.105

The remainder of this paper is organized as follows: Sec-
tion 2 presents the related works; Section 3 introduces concepts
and the structure of the proposed system; Section 4 presents
the experimental scenarios and discusses the results achieved;
Finally, Section 5 presents the conclusion and the future work.110

2. Related Work

Li et al. [35] proposed an adversarial-example attack method
to mislead the in-cloud firewall-equipped Android. The au-
thors applied a variant of GANs, called bi-objective GAN, to
generate adversarial examples. The bi-objective GAN has two115

Discriminators. The first one attempts to distinguish malicious
examples from benign examples, and the second tries to dis-
tinguish adversarial examples from normal examples. In the
experiments, it was defined benign apps come from Tecncet
Myapp and AndroZoo, and the malicious apps are from VirusShare.120

According to experimental results, over 95% of the adversarial
examples generated were detected as benign by the firewall.

Zhang et al. [33] applied a Monte Carlo tree search algo-
rithm (MCTS) to generate adversarial examples of cross-site
scripting (XSS) attacks. The authors also used a GAN frame-125

work to improve the intrusion detection model to protect against
adversarial attacks. In the experimental phase, to generate new
types of XSS attacks, the CICIDS 2017 is used. It was extracted
XSS attack traffic examples and normal traffic examples from
the dataset. The GAN detection model reached a precision rate130

above 99% to detect XSS attacks and its adversarial examples.
Grosse et al. [36] used the adversarial training technique

for malware detection against adversarial examples. First, a
Deep Neural Network (DNN) model was trained on the orig-
inal dataset, composed of benign and malicious applications.135

After that, it was applied crafted adversarial examples. With
those new samples, the DDN model was retrained to improve
the model’s generalization, and also it makes the DNN less sen-
sitive to adversarial examples. The dataset used to evaluate the
proposed model was the DREBIN dataset.140

Distributed Denial of Service is the most common attack
performed against cloud computing environments [37, 38]. Some
solutions have been developed to address this challenge [39,
40]. Velliangiri and Pandey [41] proposed an approach that
combines fuzzy and taylor-elephant herd optimization (FT-EHO)145

inspired by the Deep Belief Network (DBN) for detecting DDoS
attacks. The proposed approach taylor-elephant herd optimiza-
tion has three modules: feature extraction, feature selection,
and classification. The first module extracts features from raw
packets, and the feature selection module selects the best fea-150

tures by applying the Holoentropy method. Finally, the classifi-
cation module detects the DDoS attacks using FT-EHO. Kush-
wah and Ranga [42] also proposed a system to detecting DDoS
attacks in cloud computing environments. The proposed sys-
tem is based on a voting extreme learning machine (V-ELM),155
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in which the majority results of artificial neural networks’ out-
puts is used to get the final decision. According to the exper-
iments’ results, several ELMs can increase detection accuracy
and reduce false alarms.

Akcay et al. [43] introduced a novel anomaly detection ap-160

proach for images, using a conditional generative adversarial
network. The proposed approach can learn the generation of
high-dimensional image space and the inference of latent space.
In the generator was applied an encoder-decoder-encoder to
map the input image to a lower dimension vector. The gen-165

erated image is mapped to its latent representation by applying
an additional encoder network. The proposed approach learns
the normal samples’ data distribution, minimizing the distance
between generated images and the latent vectors. An anomaly
behavior is detected if a sample deviates a threshold from the170

distribution learned.
As mentioned before, Deep Learning algorithms have shown

enhanced results for detecting normal DDoS attacks. However,
few models are designed for detecting adversarial examples of
DDoS attacks. The adversarial DDoS attacks refer to the type175

of violation to carry out a network attack causing misclassifi-
cations, where an attack is classified as normal (false negative).
Undetected DDoS attacks can inflict damage on network re-
source availability [44]. For this purpose, we designed a system
that applies adversarial training to overcome this vulnerability180

and improve the anomaly detection event rates in SDN.

3. Proposed System

According to previous studies [45, 46], the DDoS attacks
are commonly carried out by malicious agents against network
systems. Centralization of network control on a controller in the185

SDN architecture becomes a vulnerability exploited by DDoS
attacks. In this regard, we proposed a system that acts in the
application plane to detect and mitigate this threat. In Figure
1, a flowchart depicts the proposed system architecture. The
system can be summarized in the following steps:190

1. Data Collection: Every second, the controller collects IP
flows from the tables flows of the switches that belong to
the network.

2. Data Processing: In this step, categorical IP flows fea-
tures (e.g., destination/ source IP addresses and ports num-195

bers) are casting in numerical features.
3. Adversarial Deep Learning Anomaly Detection: The mod-

ule analyzes the network’s behavior and detects the oc-
currence of DDoS attacks.

4. Mitigation: In case a DDoS is detected, the mitigation200

module takes countermeasure to minimize the damages.

3.1. Data Collection
Data collection is a fundamental step for continuous mon-

itoring of network activities. Besides, it is a prerequisite for
detecting possible anomalies. For this purpose, the proposed205

system contains a module for acquisition of traffic data. In that
module, the network information is collected from the switches

using the OpenFlow protocol. The protocol uses the flow-based
concept to identify network traffic, in which the traffic is han-
dled in terms of flows rather than individual packets. As defined210

in [47], the flows are a packets sequence passing an observation
point in the network during a specific time interval. All packets
in a flow have common properties such as transport protocol, IP
addresses, and ports from both source and destination.

Previous works in the literature collected information from215

the network data using time intervals between 1 and 5 minutes
[48, 49]. However, this analysis interval has been reduced due
to the high transmission rates reached in the current network
scenario. The new solutions present in the literature have used
intervals analysis near-real-time [50, 51]. In that way, we re-220

duce the time interval analysis to one-second. Every second,
the proposed system requests and analyzes the IP flow records
collected from each switch. This interval enables the system to
react fast against anomaly events by reducing the time response.

For all time t, the controller sends requests to collect IP flow225

records for switches belonging to the network through Open-
Flow’s Read-State messages. After each switch receives this
message, they send a response containing each flow record stored
in their forwarding table. This process is represented in Figure
2. The collected data can be defined as a set βt = {α1, α2, . . . , αn},230

where each αi is a flow record that is composed by the following
features presented in Table 1:

Table 1: Collected flow features.

Flow Feature Description

xbits
∈αi

The amount of bits belongs to the flow αi

xpackets
∈αi

The amount of packets belongs to the flow αi

xsrcIP
∈αi

Source IP address
xsrcPort
∈αi

Source port number
xdstIP
∈αi

Destination IP address
xdstPort
∈αi

Destination port number

The collected flow features can be classified as quantitative
(bits and packets) and qualitative (source IP address, destina-
tion IP address, source, and destination ports). The quantitative235

flow features provide information about traffic volume, which
is essential to understand the amount of traffic transported on
the network. On the other hand, the qualitative flow features
allow us to understand which devices communicate and which
applications are being accessed.240

3.2. Data Processing

The previous module’s IP flow records need to be processed
to extract specific characteristics that assist in the anomaly de-
tection approach. The data processing module is responsible
for grouping the flow attributes in each analysis interval. Every245

second, the following attributes are processed:

• bits/s

• packets/s

• Source IP Entropy

3
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Data Collection

Data Processing

Mitigation

Network SDN Controller

Figure 1: Proposed system architecture using Generative Adversarial Network (GAN) framework.

Request

Response

OpenFlow
Message

OpenFlow Switches

IP Flow Records

Bits Packets Src IP Src Port Dst IP Dst Port

Data Colletion

SDN Controller

Figure 2: Collecting Flow-Features from OpenFlow Switches.

• Source Port Entropy250

• Destination IP Entropy

• Destination Port Entropy

These flow features were extensively analyzed and employed
in previous works present in the literature [52]. They have been
used in network traffic characterization of high speed, and the255

outcomes achieved for anomaly detection have been effective.
The rate of bits and packets per second, the quantitative fea-

tures, are processed by:

bits/s =

|βt |∑
j=1

xbits
j (1)

packets/s =

|βt |∑
j=1

xpackets
j (2)

IP addresses and port numbers are categorical features. How-
ever, the detection module applies a deep neural network to de-
tect anomalies events. The deep neural approaches require that
input variables are numbers. Thus, the qualitative features, IP260

and ports, must be casting to numerical type. A simple trans-
formation is to group these data by calculating the entropy. In
this module, we applied the Shannon Entropy [53], which high-
lights the concentration or dispersion degree of the traffic fea-
tures during an analyzed time interval. Given a set of a qual-265

itative feature, such as xsrcIP = {x1, x2, . . . , xn}, in which a xi

represents the occurrences number of source IP address i at a
given time interval t. The Shannon Entropy H(·) for the flow
feature xsrcIP is defined as:

H(xsrcIP) = −

n∑
i=1

( xi

S

)
log2

( xi

S

)
, (3)

in which S =
∑n

i=1 xi is the sum of all occurrences of the el-270

ements present on the analyzed time interval t. The entropy
calculation for the other qualitative attributes (like H(xsrcPort),

4



H(xdstIP), and H(xdstPort) ) is calculated in the same manner as
presented in the Eq. (3).

Information on the degree of concentration or dispersion275

of a given flow feature can help during the anomaly detection
phase. For instance, under a DDoS attack occurrence, the desti-
nation IP address and destination Port number distribution may
become concentrated due to the high number of connections re-
quested by the attackers. The concentration and dispersion of280

the flow attributes affected during the occurrence of a DDoS
attack is illustrated in Figure 3. This figure presents the analy-
sis results of Source IP Entropy, Destination IP Entropy, Source
Port Entropy, and Destination Port Entropy for a day of network
traffic used to evaluate our approach. The blue intervals repre-285

sent the entropy measured during the normal behavior of the
network. As can be seen, the entropy value remains continu-
ous, without significant variations in the normal ranges. On the
contrary, the intervals in red represent the occurrence of DDoS
attacks. There is a concentration in these intervals of the source290

and destination IP addresses and the destination port, as shown.
On the other hand, there is a dispersion of the source port’s en-
tropy because multiple attackers use random source ports.

3.3. Adversarial Deep Learning Anomaly Detection

The Adversarial Deep Learning Anomaly Detection step295

aims to detect and identify malicious agents’ activities that can
cause anomalous behavior. In this module, it is necessary to use
techniques capable of differentiating the normal traffic opera-
tion from possible attacks against the network. Recently deep
neural networks (DNN) have been applied in anomaly detection300

systems [9, 13]. These systems have outperformed all the other
classical machine learning systems. Though DNN approaches
suffer against adversarial examples. To address this problem,
we apply adversarial training through Generative Adversarial
Network (GAN) framework.305

GAN is a framework proposed by Goodfellow et al. [34],
which simultaneously trains two models through an adversarial
process. The GAN framework comprises two neural networks
models, a generative model (G) and a discriminative model (D).
Both models compete against each other in an adversarial way.310

Considering that, this competition consists of a minimax two-
player game according to the game theory scenario. The G
model generates fakes samples from a noise distribution sim-
ilar to the original dataset. On the other hand, the D model de-
termines the probability that the samples belong to the original315

dataset.
The G model builds a mapping from a prior noise pz to a

data space G(z) and learns a generative distribution pg over the
data x. In order to increase the error rate of D, the fake samples
must be as similar as possible to the real distribution pdata. The
Eq. (4) represents the objective function of G model:

min
1
2
Ez∼pz log(1 − D(G(z))) (4)

where z∼pz is data from the distribution generated by G and
D(G(z)) indicates the probability of D determining the data gen-
erated by G. The G model achieves its training minimizing Eq.

(4), which means that the D model predicts the generated data320

G(z) with a high probability. The D model aims to classify
whether a sample is a real data or a generated data. Thus, the
objective function of D is defined in Eq. (5):

Max
1
2
Ex∼pdata logD(x) +

1
2
Ez log(1 − D(G(z))) (5)

where D(x) determines the probability of the real data and x∼pdata

is the data from the original distribution. The D model effec-
tiveness is achieved maximizing the Eq. (5). So that, consider-
ing the conflict between the two models, the GAN framework
can be defined as minimax game. Both models continuously
improve their effectiveness until an equilibrium is reached. Eq.
(6) formalized the minimax game:

minMax
1
2
Ex∼pdata logD(x) +

1
2
Ez log(1 − D(G(z))) (6)

As previously identified, the GAN framework includes the
generator model (G) and the discriminator model (D). Both325

models implemented in our approach are Deep Neural Net-
works (DNNs) structure. Neural networks with multiple hidden
layers are qualified as Deep Neural Networks [36]. DNNs en-
able hierarchically extracting knowledge abstraction and learn-
ing characteristics and patterns from the raw network data. Be-330

sides, DNNs give more representation of input data to improve
the rate detection of complex attacks in a high-speed network
environment, mainly DDoS attacks [54, 55].

The generator (G) was implemented with multiple fully-
connected layers (Dense) and a linear output layer. Table 2335

shows the G model structure. We also implemented multiple
fully-connected layers for the discriminator (D), but we imple-
mented a sigmoid layer for the output layer, in which output
is the classification of the network’s behavior in that analysis
interval. In that manner, our approach classifies the network340

traffic as normal or DDoS attack. Besides, the discriminator
(D) during the adversarial training learns the network’s normal
behavior, which is advantageous for detecting zero-day attacks.
Table 3 details the D model’s layers.

Table 2: Structure of the Generator (G) model.

# Layer Neurons Activation

1 Fully-connected (Dense) 6 ReLU
2 Fully-connected (Dense) 10 ReLU
3 Fully-connected (Dense) 8 ReLU
4 Fully connected (Dense) 6 Linear

Table 3: Structure of the Discriminator (D) model.

# Layer Neurons Activation

1 Fully-connected (Dense) 12 ReLU
2 Fully-connected (Dense) 10 ReLU
3 Fully-connected (Dense) 6 ReLU
4 Fully connected (Dense) 1 Sigmoid
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Figure 3: Flow features entropy analysis during DDoS attacks.

The flowchart present in Figure 4 illustrated the adversarial345

training process used in our approach. The first step is training
the D model for depoch. During this step, a minibatch of m sam-
ples from the training dataset are randomly sampled. The train-
ing dataset is composed of normal traffic and DDoS attacks.
Then, the G model generates adversarial a examples from z ran-350

dom noise. Both m and a sets are used to training the D model.
The weights of the D and G models are updated according to its
stochastic gradient. The stochastic gradients of D and G models
are defined in Eq. (7) and Eq. (8), respectively.

∇θD

1
m

m∑
i=1

[
logD

(
m(i)

)
+ log

(
1 − D(G(z(i))

)]
(7)

∇θG

1
z

z∑
i=1

log
(
1 − D(G(z(i))

)
(8)

The adversarial training process of generating and training355

is repeated until the D model can detect the fake samples or a
number max of training iterations t. This process is illustrated
as follows in Algorithm 1:

Algorithm 1 GAN Adversarial training steps
Require: Generator model G; Discriminator model D; Train-

ing dataset

1: while t iterations training or stop condition not met do
2: for depoch do
3: Sample minibatch of m from the training dataset
4: Generates a adversarial examples from G
5: Update the discriminator by ascending its stochastic

gradient by Eq. (7)
6: end for
7: Sample minibatch of z samples from noise prior z∼pz

8: Update the generator by descending its stochastic gra-
dient by Eq. (8)

9: end while

10: return G and D;

3.4. Mitigation

The mitigation module is triggered after a DDoS attack is360

detected by the Adversarial Deep Learning Anomaly Detec-
tion. This module aims to take countermeasures to minimize
the damages caused during an attack. In previous work [56],
we have proposed a mitigation anomaly approach that achieved
efficient outcomes. In this manner, we extended the proposed365

mitigation approach to this module.
Basically, the approach described in [56] is Event-Condition-

Action (ECA) model-based, in which the Event refers to a
specific anomaly associated with a set of rules. The Condi-
tion describes the rules where a specific anomaly event took370

place. Lastly, the Action is a countermeasure taking against an
anomaly event.

Some network anomalies (e.g., Flash crowd) have charac-
teristics similar to an attack DDoS attack, but they are requests
from legitimate users. To overcome this vulnerability, a Safe375

List mechanism was implemented, which maintains a list of
flow features from legitimate users.

The mitigation process is summarized as follow in Algo-
rithm 2.

Algorithm 2 Mitigation Process.
Require: Suspect flows βt

1: Identify the suspect flows based on IP addresses and ports
that make the analysis interval anomalous

2: Identify the destination IP address which receives the most
flows

3: Identify in those flows the attackers’ IP address which have
the same destination port

4: if IPs e ports are on the Safe List then
5: Forward packets
6: else
7: Drop packets
8: end if

6
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Figure 4: GAN training structure.

4. Experimental Results and Discussion380

To evaluate the performance of the proposed system, we
applied tests in different scenarios and compared it with some
other systems present in literature. We used the Python lan-
guage with development libraries for Deep Learning applica-
tion Keras [57] and TensorFlow [58]. During the training step385

the parameters were set as, Dropout with rate of 0.2 to prevent
overfitting [59]; the loss function Binary Crossentropy that is
a classical loss function used in binary classification tasks; the
default learning rate equals to 0.001 defined in Keras [57], and
optimizer was set as Adam [60], which is an adaptive learning390

rate optimization algorithm for training deep neural networks.
The experiments were made in an environment with the follow-
ing configuration: Intel Core i5 2.21 GHz, 8 GB RAM, Win-
dows 10 system.

The first test scenario contains data from the emulation of395

an SDN network with a high transmission rate and many de-
vices connected, totaling 128 hosts. In this scenario, it has
two periods of UDP DDoS attacks with different intensities. In
the second scenario, we applied the public dataset CICDDoS
2019 [61] from the Canadian Institute for Cybersecurity. This400

dataset contains 28 normal profile network behavior and up-to-
date types of DDoS attacks.

4.1. Evaluation Metric
To analyze the proposed system’s performance, we adopted

the following classic metrics: Accuracy, Precision, Recall, and405

F1 Score. Accuracy metric indicates the percentage of intervals
correctly classified. Precision presents the percentage of inter-
vals classified as DDoS, which are DDoS. Recall shows how
effective the model is in identifying DDoS intervals related to
all the intervals. The definition of these metrics can be given410

by:

Accuracy =
T P + T N

T P + FP + T N + FN
× 100% (9)

Precision =
T P

T P + FP
× 100% (10)

Recall =
T P

T P + FN
× 100% (11)

where TP, TN, FP, and FN mean True Positive, True Nega-
tive, False Positive, and False Negative, respectively.

Finally, F1 Score is the harmonic mean between recall and
precision, providing an appropriate score to the system perfor-415

mance. Its statistical formulation is given by Eq. (12):

F1 = 2 ×
Precision × Recall
Precision + Recall

(12)

4.2. Parameters Evaluation

During the GAN framework training phase we evaluated
some parameters, such as minibatch size and the number of
depoch for training the discriminator before updating the gen-420

erator. These parameter were evaluated to finding a point of
equilibrium between the generator and discriminator.

To evaluate the minibatch size, we used 32, 64, 128, 256,
512, and 1024 samples. The number of epochs and accuracy
rate were evaluated to obtain the convergence value. Figure 5425

illustrates the results of this test. A minibatch size of 32 reached
better accuracy rate first, but it decreased after 257 epochs. As
observed, the best result reached was using a minibatch size of
64, in which the number of epochs required for convergence
was 157.430

The next parameter evaluated was the number of depoch for
alternating and updating the generator and the discriminator.
This test is detailed in Figure 6. According to the information
presented in [33], small values can reach better results. In that
manner, the estimation of the referred parameter depoch was ap-435

plied between 1 to 3. The number of epochs and accuracy rate
were evaluated to obtain the appropriate value of depoch. As the
results achieved in Figure 6, the number of depoch that reached
the appropriate convergence was equal to 2, in which the num-
ber of epochs required for training were 157. The other values440

of depoch 1 and 3 are unstable and do not converge.
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157

Figure 5: Minibatch size parameter evaluation.

Figure 6: Estimation of the parameter depoch.

4.3. Scenario 1: SDN Emulated Environment

In this scenario, we emulated a network topology through
the Mininet [62] network emulator. The Mininet emulator is
widely applied in developing SDN solutions due to the facil-445

ity for implementing realistic virtual SDN environments com-
posed of controllers, hosts, links, and switches on one virtual
machine. The network arrangement emulated is a star topology
in which six switches are connected to a central switch. Every
subnetwork contains 20 hosts, totaling 120 hosts, as described450

in Figure 7. Besides, we used the SDN controller Floodlight
[63], a controller based on Java that has been utilized in many
SDN applications as a network controller.

We emulated the behavior of a network with high transmis-
sion rates for 24 hours. To inject traffic in the emulated network,455

we used a tool called Scapy [64], a packet manipulation tool for
computer networks. This tool provides an emulated network
that can be similar to a real network scenario.

Two UDP DDoS flood attacks were carried out during the
emulation stage with different intensities and duration time. This460

type of attack is the common DDoS method used by attackers
against network services [8]. The parameters used in the attacks
are shown in detail in Table 4. This dataset is available online

20 Hosts 20 Hosts

20 Hosts

20 Hosts

20 Hosts

20 Hosts

Floodlight SDN Controller 

Secure Channel Physical Link

Figure 7: Emulated SDN network on scenario one.

1.

Table 4: UDP DDoS flood parameters.

Type of Attack Attack Parameters

DDoS #1

Attackers: 15
Attacking IPs: 10.0.0.21 - 10.0.0.35
Victim IP address: 10.0.0.92:2000
Time: 10:10 - 11:20

DDoS #2
Attacking IPs: 10.0.0.45 - 10.0.0.60
Victim IP address: 10.0.0.33:8080
Time: 14:45 - 16:00

We evaluated the GAN framework performance and com-465

pared it with other neural networks-based methods present in
literature that were also applied to detect DDoS attacks in SDN
environments. The methods are the Convolutional Neural Net-
work (CNN) [65], the Long Short-Term Memory (LSTM) [66];
and finally, the classical neural network Multilayer Perceptron470

(MLP) [54]. These methods have reached accurate outcomes in
detecting attacks in SDN, and we compared our system perfor-
mance with them.

Figure 8 shows the outcomes achieved by each one of the
compared methods through the evaluated metrics. Regarding475

the metrics, the methods GAN, CNN, LSTM, MLP presented
values greater than 95%. For Accuracy, GAN and CNN ob-
tained similar results, with values of 99.78 and 99.69, respec-
tively. The LSTM reached an accuracy rate of 97.21%, and
the MLP reached 95.91%, which means these last two methods480

were less accurate in classifying the analysis intervals.
The next evaluated metric was the Precision rate. GAN

achieved a Precision rate of 99.76%, an improvement in 2.19%,

1http://www.uel.br/grupos/orion/datasets.html
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Figure 8: Comparison outcomes between GAN and the compared methods through the evaluated metrics on first scenario.

2.38%, and 4.26% higher than CNN, LSTM, and MLP, respec-
tively. In the following, we evaluated the Recall metric. GAN485

framework also fared better, with a rate of 99.99% for this met-
ric, followed by CNN, LSTM, and MLP methods, reaching
rates of 99.91%, 96.90%, and 95.69%, respectively.

Finally, we further examined the robustness of all compared
methods using the F1 score. GAN reached the best result, with490

a rate of 99.87%, the remaining ones were CNN, LSTM, and
MLP, reaching rates of 98.73%, 97.13%, and 95.74%, respec-
tively.

According to the results achieved for all evaluated metrics,
the proposed GAN framework presented an adequate perfor-495

mance in detecting DDoS attacks. Figure 9 presents a radar
chart that summarizes all compared methods’ performance met-
rics previously addressed in a single chart. The GAN is closer to
the outer circle, which means that closer to 100% the analyzed
method fared better for the four evaluated metrics, followed by500

CNN, LSTM, and MLP.
The analysis intervals detected as attacks by the detection

module are reported to the mitigation module. In these inter-
vals, mitigation policies are applied. Figure 10 presents the be-
havior of the six attributes flow analyzed before and after the505

mitigation process. The blue bar plot and the green line plot il-
lustrate network traffic before and after applying the mitigation
policy. An increase in the bits and packets rates can be noticed
before applying the mitigation. After the mitigation, the net-
work traffic behavior tends to go back to its normality due to510

anomalous packets’ discards.

4.4. Scenario 2: CICDDoS 2019 dataset
In this second test scenario, we evaluated the proposed sys-

tem’s performance for detecting different types of DDoS at-
tacks. In order to do so, we applied the public dataset called CI-515

CDDoS 2019. This dataset contains 28 normal profile network
behaviors and the most up-to-date common types of DDoS at-
tacks. The dataset has been organized by day, one for train-

ing and another for testing. The training dataset comprises
12 different modern DDoS attacks such as NTP, DNS, LDAP,520

MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-Lag, WebDDoS
(ARME), SYN, and TFTP. The testing day contains 6 types
of DDoS attacks, including NetBIOS, LDAP, MSSQL, UDP,
UDP-Lag, and SYN. In that manner, the DDoS types explored
in this scenario are summarized as follow:525

• Network Time Protocol (NTP) server functionality are
used to overwhelm a targeted network by sending UDP
packets with spoofed IP addresses;

• Domain Name System (DNS) is an attack that the at-
tacker overwhelms a particular server in order to disrupt530

that domain which can be carried out using either TCP or
UDP packets;

• Lightweight Directory Access (LDAP) is a protocol used
for directory services on corporate networks. The at-
tacker sends small requests to a vulnerable LDAP server535

to produce amplified replies, which floods the victim;

• Microsoft Structured Query Language (MSSQL) is an
attack that makes it possible to execute malicious SQL
queries;

• NetBios is an attack that sends many spoofed “Name Re-540

lease” or “Name Conflict” messages, forcing the machine
to remove its own name from its name table and becom-
ing unable to other NetBIOS;

• Simple Network Management Protocol (SNMP) attack
is a type of DDoS in which the attacker sends a large545

number of requests with spoofed IP address to several
devices;

• Simple Service Discovery Protocol (SSDP) attack is a
type of DDoS that uses Universal Plug and Play (UPnP)
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Figure 9: Radar chart results for the evaluated methods on first scenario.

Mitigatigation-Enabled  Mitigatigation-Disabled  DDoS-Mitigated

Figure 10: Flow features behavior before and after the mitigation process on scenario one

networking protocols to send a massive amount of traffic550

to a targeted victim;

• User Datagram Protocol (UDP) packets are sent by an
attacker to overwhelm the target’s ability to process and
respond to it;

• UDP-lag is a type of attack that interrupts the connection555

between the target client and the server;

• WebDDoS (ARME) attack is a DDoS to crash the web-
site or slow it by flooding the network with multiple fake
requests to the target;

• SYN attack is a DDoS in which packets with spoofed IP560

addresses are sent to overwhelm all available ports to a
targeted server;

• Trivial File Transfer Protocol (TFTP) attack occurs when
an attacker overflows the buffer server.

GAN efficiency measurements were performed using the565

same classical metrics as carried out in the first scenario. We
also compared the results achieved with the methods CNN [65],
LSTM [66], and MLP [54]. Figure 11 illustrates the measure-
ment results of the metrics obtained for each of them.

As it can be noticed from Figure 11, the methods GAN and570

CNN reached similar results for the Accuracy metric, with rates
of around 94% (GAN reached 0.3% greater than CNN). The
other two methods, LSTM and MLP, reached Accuracy rates of
90.29% and 92.12%, respectively.

Regarding the Precision metric, the CNN method fared rel-575

atively better than the other compared methods, reaching a rate
of 96.32%, followed by GAN, MLP, and LSTM with rates of
94.08%, 92.12%, and 90.12%, respectively. For the Recall met-
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Figure 11: Comparison outcomes between GAN and the compared methods through the evaluated metrics on second scenario.

CNN GAN LSTM MLP

Figure 12: Radar chart results for the evaluated methods on second scenario.

ric, the GAN obtained superior performance, achieving a rate of
97.89% for this metric, a rate improvement of 8.46%, 11.6%,580

and 13.21% higher than LSTM, CNN, and MLP, respectively.
As mentioned in the previous scenario, we also used the

F1 score to determine how precise and robust the methods are
in detecting different types of DDoS attacks. Regarding the
F1 score, it is clear that the GAN framework yielded better585

outcomes than the other methods, with a rate of 95.54%. The
methods CNN, LSTM, MLP fared similar rates, with 91.02%,
89.77%, and 88.80%, respectively.

We summarized all outcomes measurements achieved by
the tested methods in a radar chart. These outcomes are illus-590

trated in Figure 12. The methods compared in this scenario
obtained significantly lower results compared to the first sce-
nario. The main reason for this difference is the number of
attacks evaluated, making the detection process difficult. How-
ever, GAN achieved superior results due to its training process595

that used an adversary training approach, making it less sensi-

tive to different attacks. As the results gained in the first sce-
nario, the GAN framework also reached the best outcomes on
average. The proposed system provides an efficient approach
capable of detecting different kinds of DDoS attacks.600

In this scenario, we also evaluated the mitigation perfor-
mance against several DDoS attacks. The anomaly detection
module triggered the anomalous intervals to the mitigation mod-
ule, in which the module automatically applied the DDoS coun-
termeasure. Figure 13 shows the network traffic behavior for605

each flow feature. The traffic before the mitigation is repre-
sented in the blue area, and the green line shows the traffic af-
ter applying the mitigation policy. As it can be seen in Figure
13 the flow features variations were inhibited after the mitiga-
tion module is triggered. Through this analysis, the mitigation610

module could mitigate the DDoS attacks successfully, and the
normal traffic has been maintained.
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Mitigatigation-Enabled  Mitigatigation-Disabled  DDoS-Mitigated

Figure 13: Flow features behavior before and after the mitigation process on CICDDoS 2019 dataset.

5. Conclusion

In this work, we proposed a system detection and defense
against DDoS attacks in SDN environments. This system com-615

prises four integrated modules that provide tools for collect-
ing, processing, detecting, and mitigating attacks. We used the
Generative Adversarial Network (GAN) and applied adversar-
ial training to make the system less sensitive to adversarial at-
tacks.620

We compared the proposed system’s outcomes with differ-
ent neural network methods present in literature for detecting
DDoS in SDN, such as CNN, LSTM, and MLP. During the
test stage, the methods were submitted to two test scenarios.
The first scenario emulated a real SDN environment with many625

hosts and high transmission rates, using the Mininet emulator
and the Floodlight controller. In the second scenario, we eval-
uated the system through the recent public dataset CICDDoS
2019, which contains the most 12 up-to-date common types of
DDoS attacks such as NTP, DNS, LDAP, MSSQL, NetBIOS,630

SNMP, SSDP, UDP, UDP-Lag, WebDDoS (ARME), SYN, and
TFTP.

In the first scenario, we evaluated the proposed system for
detecting UDP flood attacks in an SDN network environment
with high transmission rates. The network traffic was analyzed635

near-real-time, which was performed in one-second time inter-
vals. The results gained by the prosed system have fared better
than the other compared methods in that test environment. Ac-
cording to the evaluated metrics, the system was able to detect
and defend against almost DDoS performed.640

In the second scenario, we tested the system performance
for detecting DDoS attacks against different applications. In
that scenario, the compared methods were less accurate in de-
tecting these attacks. On the other side, we optimized our sys-
tem using the GAN framework through adversarial training that645

provided adversarial examples to enhance its ability to defend

against them, making the system more accurate in identifying
the different DDoS attacks. In both scenarios, the proposed sys-
tem obtained results superior to the other compared methods,
allowing its application against several DDoS attacks on SDN650

environment.
The GAN framework has shown its potential for use in en-

vironments susceptible to different threats due to its adversarial
training that makes the system less sensitive to adversarial at-
tacks. In conclusion, the GAN framework improved the perfor-655

mance indicators evaluated in this work and showed the power-
ful capacity to detect novel attacks.

In our future work, we intend to explore the impact of other
deep neural methods (e.g., Gated-Recurrent Unit, Stacked Auto-
Encoder) on the General and Discriminator. We can consider660

applying tests, increasing the number of hosts and switches on
the emulated scenario. Besides, we will pay efforts to detect and
classify other attacks in a multiclass classification approach.
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