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Abstract

The Internet of Things (IoT) paradigm brings new and promising possibili-

ties for services and products. The heterogeneity of IoT devices highlights the

inefficiency of traditional networks’ structures to support their specific require-

ments due to their lack of flexibility. Thus, Software-defined Networking (SDN)

is commonly associated with IoT since this architecture provides a more flexible

and manageable network environment. As shown by recent events, IoT devices

may be used for large scale Distributed Denial of Service (DDoS) attacks due to

their lack of security. This kind of attack is commonly detected and mitigated

at the destination-end network but, due to the massive volume of information

that IoT botnets generate, this approach is becoming impracticable. We pro-

pose in this paper a near real-time SDN security system that both prevents

DDoS attacks on the source-end network and protects the sources SDN con-

troller against traffic impairment. For this, we apply and test a Convolutional

Neural Network (CNN) for DDoS detection, and describe how the system could
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mitigate the detected attacks. The performance outcomes were performed in

two test scenarios, and the results pointed out that the proposed SDN security

system is promising against next-generation DDoS attacks.

Keywords: Software-defined Network, Internet of Things, DDoS, CNN,

Botnet, Deep Learning.

1. Introduction

Internet of Things (IoT) is a paradigm defined by [1] as an evolving tech-

nology where every device can be both connected through a network and con-

trollable from a remote station. It envisions a world where a significant amount

of everyday objects communicate through wired and wireless networks [2]. The5

amount of information traveling over the Internet has been growing exponen-

tially in past years, mainly due to the popularization of cloud computing solu-

tions and connected applications, such as video conferences, IP video surveil-

lance systems and so on. According to [3], the IoT market is rapidly growing,

starting with 2 billion devices by 2006 to a projection of 200 billion by 202010

(a 200% rise). With recent advances in communication technologies, the IoT is

gaining visibility among researchers [1, 4].

One of the main issues relating to IoT networks is its heterogeneous charac-

teristic, since different applications have specific network requirements to opti-

mize the system’s operation. In [5] the authors highlight some examples of this15

IoT characteristic: in smart vehicles applications, the information exchange

would require almost zero latency; in industrial sensor networks, besides the

low latency, a minimal packet loss would be required; in mobile video surveil-

lance network, the latency and packet loss are not critical, but would require

a higher bandwidth. According to [6], these specific network requirements are20

incompatible with the traditional networking model, which have limitations re-

garding scalability, mobility and amount of traffic. Thus, traditional networks

are inefficient to satisfy the new requirements of IoT environments.

A new paradigm that aims to provide scalability and flexibility to network’s
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management process is the Software-defined networking (SDN). SDN enables25

centralized network management, allowing efficient configuration and optimiza-

tion by transforming the traditional black-box network components into white-

box software-controlled ones. This abstraction is possible by decoupling the

control and data planes, where all control functions are implemented in a pro-

grammable central controller. This controller, in turn, sends packet forwarding30

and management policies to SDN controlled switches and routers, dynamically

coordinating their operation and, consequently, the network behavior. These

features make SDN a promising environment for the development and opera-

tion of IoT solutions [7].

Besides the advantages of the services provided by IoT, we recently wit-35

nessed its side effects relating to network security. According to [4], IoT devices

may be susceptible to malware infections, which stealthily propagates between

unsecured devices to create massive IoT botnets. The cause of this infection is

mainly due to management vulnerabilities. According to [8], in 2018 about 83%

of network devices in their partner sample were running with known vulnera-40

bilities, and IoT devices are implemented without any security planning. These

IoT botnets, in turn, are able to execute powerful Distributed Denial of Service

(DDoS) attacks. Recently, IoT devices were used on a DDoS attack against

the servers of Dyn Inc., a company that controls much of the Internet’s DNS

infrastructure [9]. This attack is considered to be one of the largest of its kind45

with a 1.2 Tbps rate.

The traditional DDoS protection approach is the detection and mitigation of

the attack at the victim’s server or network [10, 11], which are able to detect the

anomalous traffic pattern and apply mitigation policies. However, as previously

discussed, DDoS attacks are becoming more and more powerful, and the attack50

volume can be larger than the security system is able to handle. A solution for

this scenario is proposed by [12], where a system called D-WARD is proposed

to deal with DDoS attacks at the source-end network (stub networks or ISP

networks). The idea behind this solution is to “divide and conquer”, i.e., each

ISP network avoids the attack proceeding to the Internet, mitigating the DDoS55
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impact before it reaches its target. As highlighted by the authors, the major

challenge of this approach is incentive, since it directly benefits the victims

instead of the deploying ISP, for instance.

However, DDoS attacks may also impair the operation of SDN environments

since the traffic is managed by a central controller [13, 14]. In addition, DDoS60

attacks may be performed by IoT devices. Finally, SDN is a viable environment

to enable the operation of IoT solutions with customized network requirements.

We believe that these statements are a great incentive for ISP network to deploy

DDoS security systems on source-end networks, targeting the protection of its

SDN controller and indirectly mitigating the attack over the Internet.65

Thus, we propose a near real-time security system applied on SDN envi-

ronments to mitigate DDoS attacks originated from inner devices, such as IoT

botnets. The proposed system protects the SDN’s central controller against

flooding and prevents the attack from leaving the source-end network, indi-

rectly protecting the victim’s server. The system is divided into two sections,70

the Detection Module, responsible for detecting and identifying the attack oc-

currence, and the Mitigation Module, responsible for selecting drop policies to

secure the SDN controller.

On the Detection module, we applied a deep learning method using a multi-

dimensional IP flow analysis, called Convolutional Neural Network (CNN) [15].75

This method is widely applied on image recognition/classification problems, and

provides the system the ability to learn local patterns along the data set.

Although the proposal of a mitigation approach is not in the scope of this

paper, we describe how a mitigation approach operates within the presented

system.80

To measure the efficiency of the presented CNN method on the Detection

module, we used two test scenarios. On the first one, we applied SDN data, sim-

ulated through the usage of the network emulator Mininet, OpenFlow (IP flow

data) and controlled by Floodlight (SDN controller) of different architectures

and DDoS intensities. On the second scenario, we tested the CNN on the public85

DDoS database CicDDoS 2019 [16], since benchmark data sets are a good ba-
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sis to evaluate and compare the quality of different network anomaly detection

methods. Different methods are compared to the CNN on both scenarios for

results comparison and data analysis.

The fundamental commitments of this paper are:90

• A security system for SDN environments against inward DDoS attacks;

• The system indirectly protects victims servers by mitigating the DDoS at

the source-end network;

• The efficiency evaluation and comparison of distinct fast DDoS detection

techniques applied on SDNs.95

The remainder of this paper is organized as follows: Section 2 presents a

study of related works; Section 3 describes the organization of the proposed sys-

tem; Section 4 details the CNN method used for anomaly detection on the sys-

tem’s Detection Module; Section 5 discusses the performance results achieved;

Finally, section 6 presents the conclusions and future works.100

2. Related Works

Distributed Denial of Service (DDoS) attack is a critical issue in network

security that costs organizations and individuals a great deal of time, money,

and reputation. Based on this assertion/concern, various techniques for detect-

ing DDoS attacks and reducing its effects in different network environments105

have been proposed [17]. In [18], the authors used an Artificial Neural Network

(ANN) to detect DDoS attacks classifying the traffic into anomalous and gen-

uine. The implemented ANN was trained with old and up-to-date data sets,

and it successfully obtained a high detection rate of both known and unknown

attacks. Their solution was based on specific feature patterns as the source and110

destination addresses and ports. Their approach could not handle DDoS attacks

where packet headers are encrypted.

Similarly, in [19] the authors detected application-layer DDoS attacks us-

ing a Multi-Layered Perceptron (MLP) classification algorithm. The proposed
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MLP used Genetic Algorithm (GA) as a learning algorithm. A data set gen-115

erated by a real attack was used during the tests. The findings indicated that

important characteristics for attack identification include the number of HTTP

GET requests for a particular address in a 20s long time slot, the entropy of

the requests, and variance of the entropy. The results showed that the MLP

achieved high rates for accuracy and sensitivity.120

Wang et al. [20] proposed an approach where raw IP flow data are repre-

sented as an image and used Convolutional Neural Network (CNN) to classify

and identify malicious traffic. The authors achieved good outcomes on the detec-

tion of different malicious events. This representation is a promising approach

using CNN. However, by submitting raw flow data on the training process, the125

method may learn that specific IP addresses are related to malicious behavior.

Liu et al. [21] propose two payload classification approaches based on Con-

volutional Neural Network (CNN) and Recurrent Neural Network (RNN), re-

spectively. These approaches are used for attack detection, and the authors

highlight that their ability to learn feature representations without feature en-130

gineering from the original data. The authors compare the proposed methods

with different approaches, and achieved good results, with accuracy rates higher

than 99% in tests using DARPA1998 data set.

Despite such a high detection rate, mitigation of DDoS attack was not dis-

cussed in the earlier presented studies. Currently, software-defined networking135

offers network programmability, making this communication paradigm a trend

for traffic controlling [22] and, consequently, contributing to containing this

attack. In [23], the authors presented a DDoS-type attack detection and miti-

gation system suitable for cloud computing environments using SDN structure.

Named DaMask, this system is divided into two modules. The first is responsi-140

ble for detecting the attack, performing statistical analysis. It uses a graphical

structure to store the known traffic patterns and, when unusual behavior is ob-

served, this graph determines if malicious connections are occurring. The sec-

ond module, specifically targeted the dynamic network environment, performing

countermeasures, and generating logs about the detected attacks. With a simi-145
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lar purpose, in the mechanism proposed by [24], once a DDoS attack is detected,

the anomaly attenuation occurs by inserting entries in the switch table of the

first recognized switch in the propagation path of the anomaly. These entries

have rules that discard packets whose address and destination port match the

attack target.150

Joldzic et al. [25] proposed a three layers defense for SDN topology. The

outmost is located at the network gateway. This layer has an OpenFlow switch

to slice and deliver the resulting chunks of incoming traffic to the subsequent

layer. The second layer has several devices called processors, responsible for

traffic analysis and anomaly detection. The last layer contains an OpenFlow155

that aggregates the traffic forwarded by the processors and transmits it to the

inside of the network. This approach presents two disadvantages. First, it

is assumed that the computer network is free of internal anomalies. In this

case, attacks can be launched by hosts inside the network and overwhelm the

SDN controller. Second, splitting the traffic into different processors can also160

lead to the division of the attack between them. This may hinder the search

for anomalies since such a division may accidentally mask the attack. Also,

to mitigate DDoS attacks, Chen et al. [26] used specialized software boxes to

protect the control plane from overloading during the attack by enhancing the

ingress switches scalability.165

Several works employed push-back schemes to mitigate denial of service at-

tacks [24]. When an attack is detected, the push-back strategy eliminates the

attack traffic and notifies other forwarding devices about such traffic. According

to [27], the push-back scheme imposes complexity and overhead in the network

management because all forwarding devices in the attack path must be co-170

ordinated. To overcome this drawback, they proposed a collaborative DDoS

mitigation scheme leveraging SDN. The authors deployed a secure controller-

to-controller communication protocol lying in different autonomous systems to

transmit attack information with each other. The authors designed a testbed

to test three deployment approaches (linear, centralized, and mesh) for policy175

distribution to other autonomous systems. Experiments showed that mitigation
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was transferred from destination to source, saving valuable time, and network

resources.

In addition to the traditional push-back mitigation scheme, DDoS security

solutions were used at the victim-end because of the ease of deployment and180

availability of complete attack information. Behal et al. [28] argue the lack

of sufficient computational resources at the victim-end along with the massive

network traffic volume generated by DDoS attacks make security solution itself

vulnerable. The authors proposed an ISP level distributed defense system to

divide the computational complexity among the nearest point of presence (PoP)185

routers. Traffic is monitored at all the ingress points of an ISP and sent to a

central coordinator in the victim’s network.

In this paper, we propose a security system able to protect the SDN controller

against internal DDoS attacks targeting an external server. Differently from

previous works, our proposal does not require the network infrastructure to190

be modified. Also, it eliminates the use of push-back to perform mitigation,

thereby reducing the complexity of network management. By mitigating the

attack at the source-end networks, the overall DDoS attack should be mitigated

on the destination-end network, protecting both the targeted server and the

SDN controller.195

3. Proposed security system

In this section, we depict the functioning of the proposed SDN security

system. It is designed to operate within the SDN central controller of ISP net-

works, helping to protect it against DDoS attacks. Furthermore, by preventing

the DDoS attack to proceed to the Internet, the proposed system parallely mit-200

igates DDoS attacks of external targets. This occurs through a “divide and

conquer” approach, i.e., the DDoS attack is mitigated inside the source-end

network of several different ISP networks. Figure 1 summarizes this idea.
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Figure 1: (a) Representation of a DDoS attack performed by an IoT botnet using different

ISP networks. (b) Representation of the previous scenario with DDoS mitigation at the SDN

controller of each ISP network.

In Figure 1 (a) represents a DDoS attack without the proposed protection,

and (b) represents the attack after the mitigation process. The Internet in-205

terconnects several different ISP networks, which, in its turn, connects several

LANs composed by heterogeneous devices. With the popularization of IoT solu-

tions, these LANs tend to increase in size and traffic, which consequently make

them powerful sources for DDoS attacks since IoT devices may be susceptible

to malware infections [4].210

These attacks lie upon their distributed architecture to impair the operation

of the targets server. As shown in Figure 1 (a), different infected devices within

several ISP LANs may target a single server, and the traffic aggregation between

this attack and several others from different ISP networks provides a massive

resource depletion on the destination-end network. Depending on the amount215

of infected devices inside the ISP network, this situation may as well impair

the operation of its SDN central controller and, consequently, the quality of its
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provided services to final users.

By preventing these malicious packets from passing through the SDN con-

troller, the DDoS attack is mitigated before it reaches the target’s network, as220

shown in Figure 1 (b). Furthermore, through the usage of dropping policies, ma-

licious traffic will not impair the SDN controller, guaranteeing the ISP network

to operate in its normal state.

To provide this protection, the proposed system is based on the analysis of

IP flow dimensions, using distinct features to recognize a pattern relating the225

networks normal operation and to detect the existence of DDoS attacks.

To reduce the DDoS impact over legitimate users, the proposed system op-

erates in near real-time, extracting and analysing IP flow data in one-second

intervals. This time interval analysis enables fast detection and mitigation, re-

ducing the damage over both the SDN controller (and consequently its users)230

and the external attacked server.

It is important to highlight that, in order to enable the speed of the detection

and mitigation processes, the system operates autonomously. Thus, even though

the system generates an alarm to inform the network administrator when a

DDoS is detected, no human interaction is required. A flowchart representing235

the functioning of the proposed system is described by Figure 2.
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Alarm generated

bits/s packs/s src. IP dst. IP src Port dst Port
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Anomaly Detected? Normal
NoDrop policy Yes

Qualitative DimensionsQuantitative Dimensions

SDN controller

Detection
Module

Mitigation
Module

Figure 2: Overall functioning of the proposed SDN security system.

As shown, every second IP flow dimensions or features are exported from

the SDN controller through the OpenFlow protocol (6 features in this example).

These dimensions are heterogeneous data that can be classified as quantitative

(like the rate of packages and bits per second) and qualitative features (like240

source/destination ports and IP addresses). To enable the usage of this data

by the Detection Module, the qualitative dimension must be converted to a

quantitative one. Thus, the qualitative dimensions are submitted to the Shan-

non Entropy, which highlights the concentration or dispersion degree of the

analyzed time interval. Given a dimension X = {x1, x2, ..., xn} in which xi is245

the occurrence frequency of the sample i at a given time interval, the Shannon

entropy (H) for the dimension X is calculated through:
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H(X) = −
N∑
i=1

(xi

S

)
log2

(xi

S

)
, (1)

where S is the sum of all the occurrence frequencies of the elements present on

the analyzed time interval
(
S =

∑N
i=1 xi

)
.

Thus, if there is a high concentration of a specific destination IP Address,250

this dimension will be represented with a low entropy value. On the other hand,

if there is a high dispersion in the data relating to the same dimension, a higher

entropy value will be retrieved.

After this step, the quantitative data relating to the analysed dimensions are

submitted to the Detection Module, responsible for analyzing and detecting the255

occurrence of DDoS attacks. If a DDoS is detected, then the Mitigation Module

is triggered, generating a countermeasure policy that must be incorporated by

the SDN controller.

As observed by Figure 2, the proposed system is composed of modules, and

their relation is presented by Figure 3:260

SDN Defense
System

Detection
Module

Mitigation
Module

Training Anomaly
Detection

Define optimal
countermeasure

(drop rate)

Countermeasure
execution (Drop

Policy)

M
odules

Sub-M
odules

Figure 3: Modular organization of the SDN security system.

As seen, the proposed security system is separated into two main sections:

the Detection and the Mitigation modules, which are composed by complemen-

tary sub-modules that contributes to their operation.
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As the name suggests, the Detection Module has the objective of detecting

and identifying DDoS attacks. In this module, we applied the Convolutional265

Neural Network approach and compared it with other methods for a perfor-

mance comparison, which is presented in Section 5. As shown by Figure 3,

the Detection Module is divided into two sub-modules: the “training process”

and the “anomaly detection”. As CNN is a supervised learning approach, it

requires a prior step of training that will calibrate its classification outcomes.270

This process will be detailed in Section 4. The Anomaly Detection is the second

sub-module, which is in charge of detecting DDoS events on the network over

the analyzed IP flow features, as previously described.

The Mitigation Module is triggered when a DDoS event is identified by the

Detection Module, being responsible for the decision-making process that will275

provide the optimal countermeasures for the attack.

As the proposal of a novel mitigation scheme is not on the scope of this

paper, we introduce here an approach presented in [29] to illustrate this module’s

operation.

Thus, two other sub-modules compose the Mitigation one, the Game The-280

oretical countermeasure approach and the countermeasure execution. On the

first sub-module, to calculate the optimal countermeasure policy for DDoS miti-

gation, a game theory (GT) based approach, described in [29], could be applied,

where the process is implemented at an SDN border gateway device and used

on the mitigation of DDoS attacks, protecting the networks central controller285

against internal and external attacks. As previously discussed, these attacks

may not be targeting the operation of the SDN itself but, as the communication

traffic passes through its central controller, it may be also impaired. The output

of this sub-module is an optimal packet drop rate.

The GT approach is a game of two players, the attacking user and the290

security system. As the DDoS traffic passes through the SDN controller before

reaching its real target, for simplicity, we consider the attacker to be targeting

the SDN controller. Thus, the attacking user aims to maximize the DDoS

impact on the SDN controller while limiting its possibility of being identified.
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The security system, in turn, tries to limit the impact generated by the attacking295

user to guarantee the normal operation of the services made available by the

SDN (ISP). Such games are classified as zero-sum games since the loss of one

player is the gain of another, and this gain is commonly defined as payoff.

Different metrics are used for the payoff calculation, taking into account i) the

error between the analyzed time interval and the expected SDN behavior, ii) the300

cost of the attack for the attacker player, iii) the consumption of bandwidth by

legitimate users compared to attacking ones on the average, iv) and legitimate

users’ estimated packet drop after the mitigation process [29].

The variables of these metrics are stated through a set of feasible moves

executed by the players. The security system is able to:305

• Discard packets to avoid their processing;

• Authorize packets to be processed by the central controller.

The attacking user, in turn, is able to:

• Change the attack intensity (amount of packets/s transmitted by each

attacking host);310

• Change the amount of attacking hosts.

Finally, the second Mitigation sub-module, the “countermeasure execution”,

provides the SDN controller with the optimal packet dropping policy achieved

by the GT approach. In short, the first mitigation sub-module estimates the

optimal drop policy, and the second one sends it to the SDN central controller315

for operation.

4. Anomaly detection approach

We describe in this section the anomaly detection approach applied on the

proposed System’s Detection Module. A performance comparison between the

presented method and others is available on Section 5.320
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4.1. Convolutional Neural Network (CNN)

Among the different approaches applied to the detection of computer net-

work attacks and anomalies, deep learning methods are becoming increasingly

popular among researchers. Deep learning methods are a subclass of machine

learning that is capable of extracting patterns in complex data. Thus, it is325

widely applied to image recognition and pattern classification problems. As

stated by [15], the deep in deep learning stands for the idea of successive layers

of representations, as the number of layers representing a method is known as its

depth. Deep learning methods commonly use three or more layers of represen-

tation, while shallow learning methods, like Multi-Layered Perceptron (MLP),330

focus on learning through only one or two layers.

In [21], the authors highlight that the main benefit of deep learning methods

is the absence of manual feature engineering. In other words, the technique is

capable of finding patterns among massive data sets during the training process

by itself, giving more importance to features that are more relevant to the clas-335

sification process. This characteristic dramatically increases the classification

outcomes, since complex patterns, sometimes stealth for human eyes, can be

extracted from the data set.

In this paper, we apply a deep learning method known as Convolutional

Neural Network (CNN) on the detection of DDoS attacks. As described by [15],340

the fundamental difference between a fully connected layer (used by MLPs, for

instance) and a convolutional layer is that the first learns global patterns in

their input feature space, while the second is capable of learning local patterns.

As CNN’s are commonly applied to image processing environments, it can ex-

tract local patterns on the image, which significantly improves the accuracy of345

classification problems.

This precision is possible through the convolutional operations that compose

CNN. A convolution is an operation between two functions that produces a third

one, which expresses how the shape of one is modified by the other. As described

by [15], convolutions operate over 3D tensors called feature maps. On image350

classification problems, for instance, they stand for two spatial axes (width and
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height) and a channel axis (for RGB images, the channel is 3, wherein black-

and-white images, it is 1). To convolve this input, a filter is applied through

dot products to extract local patterns. The filter operates like a sliding window,

performing a dot product with all the unique positions where it can be put355

on the image, encoding specific characteristics of the input. In other words, a

convolution works by sliding these filters of fixed size over the 3D input feature

map, stopping at every possible location, and extracting the 3D patches, which

are processed via dot products into 1D dimension outputs. These outputs, in

turn, are reassembled into a 3D output map, as described in Figure 4.360

Figure 4: Operation of the convolution process. [15]

On CNN networks, Convolutional layers are commonly followed by Pooling

layers, whose objectives are to reduce the spatial size of the representation.

Thus, the pooling process reduces the number of parameters and computation

in the CNN, i.e., downsample feature maps. The most common approach used

in this layer is the Max pooling, which consists of extracting windows from the365

input feature maps and outputting the max value of each channel [15], due to
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its efficiency.

However, IP flow traffic data are represented as a time series, not an image.

Thus, a variation of the traditional 2D convolutional operation is used in this

paper, the 1D-CNN [15]. In a straightforward comparison, it operates with the370

same structures and functions, but through 1-dimensional data (time series),

like show by Figure 5.

Figure 5: Convolution in one dimension. [15]

1D-Convolutional layers also receive 3D tensors as input: the first one rep-

resenting the number of samples, the second standing for the time, and the

third for the features [15]. In this paper, as the system is operating with one-375

second data, the input tensor is configured as (samples, features, channels). The

architecture of the CNN implemented in this paper is described by Figure 6.

17



Conv1D

Conv1D

MaxPooling1D

MaxPooling1D

Flatten

Dropout

Fully-Connected

Dense

Input (X0 to XN)

Output

Figure 6: CNN architecture.

As observed, the architecture of the CNN is composed of a stack of two

Conv1D and MaxPooling1D layers. They are followed by a Flatten layer, re-

sponsible for transforming the 3D output of the previous layers into 2D inputs380

for the following layers, a Dropout layer, aiming to avoid over-fitting as CNN’s

tend to converge very fast to a solution, and a Dense or Fully-Connected layer,

to perform a global model classification. The output is a single neuron with a

sigmoid activation function for binary classification, i.e., which classifies data

as normal or DDoS.385

5. Performance outcomes

We examine in this section the performance results relating to the proposed

detection module for the security system. For this, we tested the system over
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two different scenarios and compared the CNN approach with different methods

for performance evaluation. These methods are: the Multi-Layered Perceptron390

(MLP) Network, a machine learning method with one hidden layer composed of

10 neurons; the Deep Neural Network (DNN) or Dense MLP (D-MLP) [15, 30],

the deep learning version of the MLP, containing 3 hidden layers with 10 neurons

on each one; and the Logistic Regression [13], which is a statistical model used

to predict values taken by a categorical variable from a series of continuous or395

binary explanatory variables. All detection methods were implemented using

Python and Keras on a computer using Windows 10 64bit, Intel Core i7 2.8GHz,

and 8GB of RAM.

5.1. Scenario 1 - SDN simulated data

In this scenario, we applied simulated IP flows, generated through the net-400

work emulator Mininet, to perform the tests. Mininet is a lightweight software

that enables the generation of realistic emulated SDN environments composed

by hosts, links, switches, and controllers. One of its main advantages is the ease

of the production of customized network topologies through a virtual machine.

To control the simulated network switches, we used the Open vSwitch, which is405

compatible with the Mininet environment. Together with Mininet, we applied

the Floodlight, an SDN controller extensively utilized in literature, where the

proposed security system is implemented. The OpenFlow protocol performs

data collection.

Six switches compose the SDN environment used for the system’s analysis.410

As one central device interconnects the others, all the five remaining switches

control from 24 to 40 hosts, totaling 120 to 200 connected hosts, respectively.

One of these switches stands for a boundary gateway device, containing the

external (Internet) hosts and the attacked server. Figure 7 describes the network

topology.415

Seven days of SDN traffic (168 hours) were generated and used for both

training and testing. Each day interval emulates the normal behavior of an ISP

network, with higher data traffic on working hours and by the evening, while
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Figure 7: Simulated SDN topology.

lower data traffic occurs early in the morning and by dawn.

Two distinct-intensity occurrences of DDoS attacks were injected on the420

data of the first generated day (Day 1), which was utilized for training and

adjustment of the methods anomaly detection procedures.

The following six generated days (Days 2 to 7) were applied to test the

performance of the presented DDoS detection methods. A summary of each

one of the training and test days is shown in Table 1. As observed, the testing425

days have different characteristics in comparison to the training day, all of them

with a higher number of hosts, which should make the attacks stealthier, i.e.,

harder to detect. Days 2 and 3 have an increased number of attacking hosts

on different periods of the day. On days 3 and 4, we applied 150 hosts on the

network, where 15 and 20 of them are malicious ones, respectively. Finally, Days430

6 and 7 use 150 hosts on the architecture, in which 10 of them are malicious

nodes. These are stealthier scenarios, in which their only difference is the attack

duration: while the attack on Day 6 lasts for 3638 time intervals, the same attack

lasts for 618 time intervals on Day 7.
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Table 1: Summary of training (Day 1) and test days (Days 2 to 7) on the first scenario.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Switches 6 6 6 6 6 6 6

Hosts 120 200 200 150 150 150 150

# of DDoS attacks 2 1 1 1 1 1 1 (short)

# of attacking hosts 15 20 20 15 20 10 10

In this first scenario, we exported six IP flow dimensions from the SDN435

controller, which are: Bits and Packets per second, Source and Destination IP

addresses and Ports. With this amount of analyzed features, the number of

computed parameters is low. So, we suppressed the first MaxPooling layer of

Figure 6 to avoid data loss. The parameters were set with 16 and 8 filters for

the first and second Conv1D layers, respectively, both with kernel (filter) size440

3. The second MaxPooling1D was set with a pool size of 2, and the Dropout

with a rate of 0.5. The Fully-connected layer is composed of 10 neurons, and

the output layer is formed of 1 neuron to generate a binary result. All methods

were tested through 1000 epochs.

We applied classical anomaly detection statistic techniques to measure their445

efficiency in detecting DDoS attacks targeting an external server. Figure 8 shows

the outcomes achieved by each one of the tested methods through confusion

matrices.

As observed, the CNN method fared better, achieving the lowest false-

positive (FP) rate, i.e., when benign data are classified as a DDoS attack, fol-450

lowed by MLP, D-MLP, and LR methods. MLP and D-MLP methods achieved

lowest false-negative (FN) rates, i.e., when a DDoS interval is classified as nor-

mal, but the difference between them and CNN is small.

Other classical metrics used to measure anomaly detection performance are

the accuracy, precision, recall and f-measure techniques. Accuracy shows the455

percentage of time intervals correctly classified. Precision estimates the ratio of

intervals correctly recognized as DDoS among all the samples classified as DDoS.
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Figure 8: Confusion Matrices of the tested methods relating the first test scenario.

The recall metric represents the percentage of correctness for DDoS intervals.

Finally, F-measure represents the harmonic mean between recall and precision.

The results achieved by the tested methods using these metrics on each day are460

shown by Figures 9 to 12.

In this test scenario, despite the results presented by the confusion matrices,

a global analysis of the accuracy rates, presented by Figure 9, shows that all

methods achieved good classification results on the average. The accuracy rates

were higher than 99.5% for all tested approaches for all analyzed days, except465

for the LR method on Day 6. CNN method presented better results in compari-

son to the other methods, despite the similarity of their outcomes (rates around

99.9% on the average), as the difference between CNN, MLP, and D-MLP accu-

racies are around 0.01%. The LR method achieved the lowest accuracy results,

with rates around 0.03% lower than CNN on the average. This method achieved470

an accuracy rate of around 97% on Day 6, a day with a stealthier attack. How-
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Figure 9: Methods’ accuracy outcomes for the first test scenario.

ever, on Day 7, the LR method achieved an improved accuracy outcome, even

though both days present the same attack intensity. This occurrence is due to

the attack duration since Day 7 has a shorter malicious time interval than Day

6.475
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Figure 10: Methods’ precision outcomes for the first test scenario.

As shown by Figure 10, the CNN method achieved better outcomes for the

precision metric, with a rate of 99.9% on the average. This result was expected,

as the analysis of the confusion matrices pointed out that this method is more

efficient in classifying benign intervals. Furthermore, MLP achieved precision

rates of 99.7% on the average, faring slightly better than its deep-learning ap-480
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proach, which achieved precision rates of 99.4% on the average, possibly due to

an overfitting occurrence. As pointed out by [15], when a small amount of data

is available, models with fewer layers tend to be more efficient. Finally, the LR

method fared worse, achieving better results on Days 4 and 5, when the number

of hosts and attack intensity are nearer to the training set, with a precision rate485

of 95.1% on the average. However, most methods achieved low precision rates on

Day 7, which is due to the day’s characteristics (low DDoS intensity for a short

period). On this day, CNN achieved a precision rate of 94.2%, which is lower

than the results regarding the other analyzed days but significantly higher than

the rates achieved by the different methods. Thus, it is possible to infer that490

the CNN method efficiently extracted the main characteristics of both benign

and malicious traffic.
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Figure 11: Methods’ recall outcomes for the first test scenario.

As previously cited, the recall metric shows the efficiency in identifying DDoS

intervals. The results presented by Figure 11 show that CNN, MLP, and D-

MLP achieved very similar results, with rates of around 99.9%, even though495

CNN fared slightly worse (with recall rates 0.04% lesser than MLP and D-MLP

methods). Although LR fared worse than the other approaches, it achieved

recall values higher than 96.7% on days 2 to 6, which is a good outcome. How-

ever, this method produced a low recall rate on Day 7, which points out that

it could not efficiently identify the attack with low intensity performed over a500
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short period in this scenario.
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Figure 12: Methods’ f-measure outcomes for the first test scenario.

Finally, Figure 12 presents the methods’ outcomes relating to the f-measure

metric. As it represents the harmonic mean between precision and recall metrics,

CNN fared slightly better than the other techniques on Days 2 to 6, with rates

of 99.9% on the average, followed by MLP, D-MLP, and LR methods, which505

achieved average rates of 99.7%, 99.6% and 91.7%, respectively. However, on

Day 7, due to the test day’s characteristics, the f-measure achieved by the tested

approaches differs the most, with rates of 97%, 89.3%, 83.3%, and 43.8% for

the methods CNN, D-MLP, MLP, and LR, respectively. Although all the tested

approaches were able to detect DDoS attacks on the analyzed days efficiently,510

only the CNN method consistently performs this task on all evaluated days,

which proves its efficiency in comparison to the other tested approaches.

Figure 13 presents a radar plot that summarizes the results previously ad-

dressed in a single image, where the nearer to the outer circle, the closer to

100% the analyzed approach fared on the average for the four measurement515

techniques. While CNN, MLP, and D-MLP reached similar outcomes for accu-

racy and recall, CNN achieved better results for precision and f-measure rates.

Thus, in this test scenario, it is possible to conclude that the CNN method

achieved the best classification results, operating as an efficient DDoS identifier

at the Detection Module of the presented SDN defense system.520
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Figure 13: Radar plot presenting the methods’ average outcomes for the first test scenario.

5.2. Scenario 2 - CICDDoS 2019 Data set

In this scenario, we applied simulated IP flows collected from a public data

set called CICDDoS 2019 [16]. It generates realistic background traffic profiled

through B-Profile System to abstract the behavior of human interactions for

benign traffic. In this data set, the authors abstract the behavior of 25 users525

based on different protocols, such as HTTP, FTP, and SSH.

The CICDDoS 2019 data set separates the data into two days. The first

one is a training day, containing 12 types of different DDoS attacks, including

NTP, DNS, MSSQL, LDAP, NetBIOS, SNMP, UDP, UDP-Lag, SSDP, Syn,

WebDDoS and TFTP. The second is a testing day, containing 6 different DDoS530

attacks, which are NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, and Syn.

This data set provides data with 87 extracted IP Flow features, such as

source and destination IP addresses and ports, protocols, several flags, counters,

and flow identification features. All the data was submitted to a data formatting

process to convert qualitative features into quantitative ones, and to group data535

into one-second intervals like described in section 3.

The parameters of the CNN were set with 64 and 32 filters and a kernel
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size of 32 and 16 for the first and second Conv1D layers, respectively. Both

MaxPooling1D layers were set with a pool size of 2, and the Dropout with a

rate of 0.5. The Fully-connected layer is composed of 10 neurons, and the output540

layer is formed of 1 neuron to generate a binary result. All methods were tested

through 1000 epochs.

The efficiency measurement was performed as described in the first test

scenario, comparing CNN with the methods MLP, D-MLP, and LR over classical

techniques. Figure 14 shows the outcomes achieved by each one of the tested545

methods through confusion matrices on this scenario.

(a)

(c)

(b)

(b)

Figure 14: Confusion Matrices of the tested methods relating the first test scenario.

The second test scenario presents some interesting differences from the first

one, which can be observed at the Confusion Matrices presented by Figure 14.

Besides having less normal intervals, the DDoS attacks present in this data are

related to 12 different behaviors, which makes the binary classification process550

a complex task. As observed by the confusion matrices, the number of false-
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positive and false-negative intervals is higher for all the methods in comparison

to the ones achieved in the first test scenario. With relation to the number of

false-positive intervals, the CNN method fared better, followed by LR, MLP,

and D-MLP, respectively. When considering the false-negative intervals, the555

D-MLP fared better, followed by MLP, CNN, and LR methods. While MLP

and D-MLP presented a greater difficulty in classifying normal intervals, the LR

method faired worse on classifying DDoS intervals. The CNN method, in turn,

presented the most balanced outcome.

The results achieved by the tested methods using classical metrics in this560

scenario are shown in Figure 15
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Figure 15: Methods’ outcomes for accuracy, precision, recall and f-measure metrics over the

second test scenario.

As observed in Figure 15, the CNN method obtained better accuracy mea-

sures, reaching a rate of 95.4%, followed by D-MLP, MLP, and LR approaches,

which achieved rates of 92.6%, 92.5% and 87.8%, respectively.

For the precision metric, the CNN approach also fared better, with a rate565

of 93.3%, followed by LR, MLP, and D-MLP methods, with 86.8%, 84.4% and

83.4% precision rates, respectively.

For the recall metric, the D-MLP achieved the best results, with a rate of

95.7%, followed by MLP, with a percentage of 94.2%, CNN, which reached a

92.4% recall measure, and LR, with a rate of 77.1%.570
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Finally, for the f-measure metric, the CNN method achieved better out-

comes with a rate of 92.8%, followed by D-MLP, MLP, and LR methods, which

obtained an f-measure result of 89.2%, 89% and 79.4%, respectively.
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Figure 16: Radar plot presenting the methods’ average outcomes for the second test scenario.

Figure 16 summarizes the previously addressed metrics’ results in a single fig-

ure. In short, CNN methods achieved better accuracy, precision, and f-measure575

results than the other tested methods, reaching values around 95%. In turn,

D-MLP presented the best recall outcome, followed by the MLP method, which

produced similar results using fewer layers.

As the results achieved in the first scenario, the CNN method also fared

better on the average than the other approaches on the second test environment,580

achieving promising test outcomes that make it an efficient technique on DDoS

detecting.

5.3. Mitigation

As previously discussed in section 3, the proposal of a novel mitigation ap-

proach is not in the scope of this paper. So, to demonstrate the efficiency of585
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the presented SDN security system, we applied a game-theoretical (GT) ap-

proach, proposed in [29], on the mitigation module. This method is used in

DDoS mitigation of internal attacks against external targets.

The Mitigation module is in charge of providing the SDN central controller

with the optimal drop policy, aiming to mitigate or even interrupt the DDoS590

attack entirely. By preventing the distributed attack from reaching the Internet,

it is possible to mitigate the attack on the destination-end network indirectly.

Every second, IP flow data are collected and submitted to the Detection

module, where a classification process occurs based on the anomaly detection

method. This classification outcome may be a “normal” label or a “DDoS” one,595

in which the Mitigation module is triggered. Thus, the GT-approach analyses

the provided information to automatically determine the optimal drop rate as

a DDoS countermeasure. Figure 17 shows the traffic of the analyzed SDN

before and after the mitigation process, relating the first test day of the first

scenario through the usage of the CNN anomaly detection method. For better600

understanding, the figure shows the traffic from 12:30 to 19:30, the interval in

which the DDoS attacks occurred.

Figure 17: Hexa-dimensional IP flow view of the analyzed SDN, with two DDoS attacks based

on 15 hosts, before and afterwards the procedures of detection and mitigation utilizing CNN

and GT.

As observed, the GT-approach retrieved the optimal drop policy, which was
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incorporated by the SDN controller at the next time interval, i.e., at the up-

coming second from the CNN detection. It is also possible to observe that the605

final stage of the attacks was not mitigated. It occurs because the drop policy

generated to minimize the DDoS has a lifespan of one hour, and the attacks

lasted longer. When this happens, a new alarm will be generated by the detec-

tion module, and the GT-approach will be triggered once again, restarting the

process.610

As the results point out, the GT-approach was able to mitigate the DDoS

attacks successfully. The mitigation module brings the SDN back to its regular

operation, and GT represents a feasible approach against both internal and

external DDoS attacks.

6. Conclusions615

The proposed defense system was capable of inspecting the SDN traffic be-

havior in one-second time intervals. It effectively detects and mitigates the oc-

currence of DDoS attacks on the controller and, consequently, over the external

targeted server.

We presented a Convolutional Neural Network (CNN) approach to acting620

within the Detection module, which was tested against three other anomaly

detection approaches: the Logistic Regression (LR); the Multi-Layered Percep-

tron (MLP) network; and Dense MLP. The methods were submitted to two test

scenarios. The first one uses simulated SDN data, generated using Mininet and

Floodlight, over four different days containing DDoS attacks. The second one625

uses a public data set known as CicDDoS 2019, providing more than 12 types

of DDoS attacks. As the LR method fared worse on most tests, the other three

tested methods achieved relatively good results. The CNN method achieved

low false-positive rates, higher accuracy, precision, and f-measure outcomes.

The MLP and D-MLP methods fared better for the recall metric, achieving630

similar results.

Moreover, we described the Mitigation module and presented an example
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of an operation using a game-theoretical approach. To mitigate the attack, we

applied a Game Theory (GT) based technique that optimizes the packet discard

rate in a policy applied inside the central controller of the SDN. The outcomes635

reveal that the mitigation approach is efficient in restoring the SDN’s regular

operation.

For future works, we intend to increase the number of hosts on the simulated

SDN environment to test the behavior of the proposed system against stealthier

DDoS internal attacks. Furthermore, we want to study the impact of recurrent640

deep learning approaches, such as LSTM and GRU, on classification problems

such as DDoS detection in SDN environments.
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