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A Novel Shortcut Addition Algorithm with Particle
Swarm for Multi-sink Internet of Things

Abstract—The Internet of Things (IoT) integrates a large
number of distributed nodes to collect or transmit data. When
the network scale increases, individuals use multiple sink nodes
to construct the network. This increases the complexity of the
network and leads to significant challenges in terms of the existing
methods with respect to the aspect of data forwarding and
collection. In order to address the issue, this paper proposes
a Shortcut Addition strategy based on the Particle Swarm
algorithm for multi-sink network (SAPS). It constructs network
topology with multiple sinks based on a small-world network.
In SAPS, we create a fitness function by combining the average
path length and load of the sink node to evaluate the quality of a
particle. Subsequently, crossover and mutation are used to update
particles to determine the optimal solution. The simulation results
indicate that SAPS is superior to the GMSW and LM-GAS in
terms of the average path length, load balance, and number of
added shortcuts.

Keywords—Internet of Things, small-world network, particle
swarm, multi-sink network

I. INTRODUCTION

INTERNET of Things (IoT) [1]–[4] is used in military
affairs, environmental monitoring, agriculture production

and many other fields [5], [6]. It contains a large number of
distributed nodes (sensor nodes and sink nodes) with sensing,
and computing and communication capabilities [7], [8]. In IoT,
sensor nodes transmit the perceived temperature, humidity,
and other environmental information to sink nodes through
wireless communication [9]. Given the limited communication
distance of sensor nodes, it is typically necessary to pass
multiple hops to transfer data from the sensor nodes to sink
nodes. Additionally, the energy of the sensor node is limited,
and multi-hop transmission consumes a large amount of energy
in the node. This easily leads to the failure of the node.
Therefore, it is necessary to construct a network topology to
reduce the number of hops in the multi-hop transmission path
and the energy consumption of the node.

The small-world network exhibits the characteristics of
shorter path length [10], [11]. Therefore, we introduce the
small-world phenomenon in the complex network theory to
construct network topology. The small-world phenomenon was
first studied by Milgram in a scientific way via the mail
delivery experiment, and he suggested that any individual
can establish contact with only five intermediate individuals
on an average [12]. Subsequently, Watts and Strogatz [13]
proposed to start randomly reconnecting edges from the rule
graph, and this led to the features of short average path length
and high clustering coefficient. This presented a small-world
phenomenon. Newman and Watts [14] used randomization
to add edges instead of previous random reconnections to
make the network exhibit small-world features and avoid the
destruction of the original structure of a network. In this paper,

we construct a small-world model based on the theory of
Newman and Watts by adding a small amount of remote links
(shortcuts) to the original topology. In order to enable nodes
to add remote links, it is necessary to equip more powerful
hardware devices on the nodes for remote communication.
We term the node with stronger communication capacity as
a super node [15]. Given the high cost of super-nodes, only
a small number of super-nodes are deployed in the network.
Most of the nodes correspond to ordinary nodes equipped with
common hardware devices. This paper is based on the super
nodes to establish shortcuts.

When only one sink node exists in the network, the nodes
around the sink consume their energy quickly [16]–[18]. Given
special data transmission characteristics in IoT (i.e., the sink
node denotes the end and start point of data transmission),
more traffic is routed through the nodes around the sink [19],
[20]. Additionally, when the sensor node is far away from the
sink node, it is necessary to forward the message via several
hops to reach the sink node, and the data transmission time
is extended. The aforementioned problems are more serious
when the network size increases. In order to overcome the
problems, we use multiple sink nodes to construct the network
to extend the lifetime and reduce the number of hops for
message forwarding [9]. In the multi-sink network, each sensor
node selects a sink node as the end of the data transmission.
The sensor nodes that select the same sink node form a cluster.
Each sink is responsible for receiving data gathered from
sensor nodes in its cluster. Additionally, the probability of
having a sink in the proximity of a sensor node increases when
the number of sink nodes increases. Therefore, the number of
hops that reach the sink node decreases.

However, in a network with multiple sinks, the load among
the sink nodes is unbalanced when a large difference exists in
the number of nodes among clusters. With respect to solving
the problem, in the existing algorithm [21], constraints are set
to balance the load of the sink while adding shortcuts although
a certain degree of randomness exists when selecting the node
pair as the shortcut endpoint. Therefore, we attempt to use the
particle swarm algorithm to determine the appropriate node
pairs as the endpoints of the shortcuts.

In this paper, we examine the modeling problem of a
small-world network with multiple sinks and propose a novel
shortcut addition algorithm with particle swarm for multi-sink
Internet of Things (SAPS). The main contributions of this
paper are as follows:

• We propose a shortcut adding algorithm for multi-sink
Internet of Things based on the particle swarm algorithm
(SAPS). In SAPS, the fitness function is constructed,
and thus the network average shortest path length is
minimized and the load of the sink node is balanced.
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• We introduce novel crossover operation and mutation
operation to replace the particle update method in the
traditional particle swarm algorithm to achieve individual
evolution

• We compare SAPS with existing methods [21], [22] in
terms of the average path length, standard deviation of
cluster nodes, and number of shortcuts. The simulation
results indicate that SAPS outperforms GMSW and LM-
GAS.

The rest of this paper is organized as follows. In Section II,
a briefly related work is introduced. Section III describes the
modeling process of SAPS with small-world characteristics.
Section IV details the specific algorithm implementation. We
present the evaluation results of the performance of SAPS,
GMSW, and LM-GAS in Section V. Finally, in Section VI,
we summarize the main results and discuss our future work.

II. RELATED WORK

Several studies explore the application of the small-world
theory in a single-sink network. Helmy et al. [23] introduced
the idea of small world to wireless network for the first time
wherein several shortcuts were randomly added to the network
to significantly reduce its average path length and ensure
that the wireless network exhibits the characteristics of small
world. Jiang et al. [24] used mobile router nodes (data mules)
to construct variable length shortcuts. Data are loaded onto
the mule at the source node and dismounted at the destination
node. The path between the two nodes is termed as a shortcut.
These data could be transmitted between nodes that do not
communicate directly through data mules. Additionally, it is
proved that the addition of a small number of data mules can
significantly reduce the average path length of the network.
Guidoni et al. [15], [25] proposed the directed angulation
toward the sink node (DASM) model. They introduced super
nodes and chose super nodes as the endpoints of shortcuts.
Furthermore, given the special communication mode of IoT,
the addition of a shortcut is allowed when the deflection angle
of the shortcut and the sink node satisfies certain conditions.
The addition of a small number of shortcuts reduces the
communication delay of nodes and improves the reliability
of the network. Huang et al. [26] used the narrow-band search
space model to construct a small-world model. Simultaneously,
the endpoints of the shortcuts are periodically replaced to
reduce their energy consumption. Subsequently, the network
exhibits the characteristics of small world and robustness. Asif
et al. [27] calculated the betweenness of each node in the
network by the neighbor avoiding walk (NAW) method and
subsequently selected the nodes with large betweenness as
the endpoints of the shortcuts. Zheng et al. [28] proposed
the power control algorithm (PCS) to construct a small world
theory for airborne health management. They constructed a
shortcut between a power amplifier node and this node’s
neighbor node. Kong et al. [29] optimized topology based on a
small-world network. They deployed a small number of super
nodes in the network, and each super node was connected
to other super nodes with a probability of p to form a long
connection. After optimizing the topology, the efficiency of

the network improved and the lifetime of the network was
prolonged. Qiu et al. [22] proposed the greedy model with
small world (GMSW). In GMSW, the neighbor nodes with
high local importance are selected to add the shortcut, and thus
the network exhibits better small-world characteristics and a
certain robustness in terms of the node failure.

When compared to the network with a single-sink node,
a few studies explored the application of the small-world
theory to the multi-sink network. Verma et al. [21] proposed a
load-balanced multi-gateway aware long link addition strategy
(LM-GAS). In this, each node selects a gateway closest to
itself based on the number of hops. The nodes that select the
same gateway form a cluster. The shortcut addition includes
the addition of shortcuts within the cluster and addition of
shortcuts between the clusters. With respect to adding intra-
cluster shortcuts, two nodes are randomly selected in the
same cluster and the constraints are verified to add a shortcut
between them. If the conditions are satisfied, a connection is
established between the two nodes. With respect to adding
inter-cluster shortcuts, two nodes that are in different clusters
are randomly selected. Additionally, it is verified as to whether
the two nodes satisfy the constraints, and if so, a connection is
established between them. The results indicate that the average
path length reduces and the load of the gateway is balanced.

In order to reflect the superiority of SAPS, we extend
GMSW to the multi-sink network based on the idea of LM-
GAS and compare SAPS with GMSW. First, the nodes in the
network are divided into multiple clusters, and each cluster
is equivalent to a single-sink network. While adding intra-
cluster shortcuts, a shortcut is added between certain nodes
based on the local importance. The method in GMSW is no
longer applicable to add shortcuts among clusters, we adopt
the strategy in LM-GAS when adding inter-cluster shortcut.

III. SAPS
The particle swarm algorithm is an evolutionary algorithm.

It begins from a random solution and determines the optimal
solution through iteration. The particle swarm algorithm e-
valuates the quality of the solution through fitness value and
obtains the optimal solution by tracking individual extremum
and population extremum in the solution space. Given its
simple and easy implement characteristics, the particle swarm
algorithm is used to solve the problem of establishing a small-
world model in the multi-sink Internet of Things.

In this section, we first introduce some preliminary concept-
s. Subsequently we detail the modeling process of SAPS. The
processes include particle encoding, construction of the fitness
function, initialization of particles, and updation of particles.

A. Preliminaries

• Euclidean distance denotes the distance between two
nodes. The Euclidean distance of node v and node s is
as follows:

d(v, s) =

√
(vx − sx)

2
+ (vy − sy)

2 (1)

where vx and vy denote the coordinates of node v, and
sx and sy denote the coordinates of node s.
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• Neighbor node set: the maximum communication radius
of the ordinary node is r, the maximum communica-
tion radius of the super node is R, and R > r. We
consider the super node v as an example. Specifically,
P ′′ denotes a collection of short-range neighbor nodes
of the super node v. The Euclidean distance between
the neighbor nodes and super node v is ≤ r. Thus,
∀s ∈ P ′′, d(v, s) ≤ r. Additionally, P ′ denotes a set
of long-range neighbor nodes of super node v, which are
super nodes or the sink nodes. The Euclidean distance
between the neighbor nodes and the super node v is > r
and ≤ R, ∀s ∈ P ′, r < d(v, s) ≤ R. Therefore, the set
of super node’s neighbor nodes v is P = P ′′ + P ′.

• Next hop node set: we use the long-range neighbor node
set P ′ of each super node as its next hop node set.

• Average path length: It refers to the average number of
hops from sensor nodes to the sink nodes.

• Standard deviation of number of nodes among clusters:
it shows how the total number of sensors in the network
is divided among sinks. The formula is as follows:

S =

√√√√ 1

m

m∑
i=1

(Ni −
N

m
)2 (2)

where m denotes the number of sink nodes, Ni denotes
the number of sensor nodes in the cluster of sink i (each
node selects a sink closest to itself based on the number
of hops). It is observed that a decrease in the standard
deviation value makes the sink node load more balanced.

B. Encoding
In SAPS, each particle represents a shortcut addition

scheme. In this paper, the particle is coded in terms of integers,
and this corresponds to an integer array with a length of |V |∗d.
Specifically, |V | represents the number of super nodes in the
network, and d represents a sufficiently high number. The
location of the (i − 1) ∗ d of the array represents the super
node Vi’s ID. The (i − 1) ∗ d + 1 ∼ i ∗ d positions indicate
the IDs of nodes that are connected to the super node Vi. It
shows that shortcuts are added between the super node Vi and
the nodes. Each particle encoding is shown in Fig. 1.

… … … 0 …

1

Fig. 1. Individual encoding

In Fig. 1, ni
j denotes the ID of the jth node connected to the

super node Vi. When the number Ni of nodes connected to Vi

is lower than d−1, we set the values of (i−1)∗d+ni+2 ∼ i∗d
positions to 0. Additionally, if ni

j < 0, it indicates that the jth
node connected to the super node Vi is sink node.

C. Fitness Function

Each individual in the population is associated with a fitness
value that is calculated from the fitness function. During the
update iteration of the algorithm, we use a fitness value to
represent the relative quality of the solution of the particle.

A few clusters are overloaded with sensor nodes when only
the average path length is given while establishing a shortcut
in a multi-sink network, and this results in an unbalanced load.
This increases the pressure on the neighbor nodes of the sink
node with a large load and significantly impacts the network.
Thus, we combine the two factors of path length and sink load
to construct the fitness function. This is expressed as follows:

Fitness = γ ∗ L

Linitial
+ (1− γ) ∗D (3)

Linitial denotes the path length from sensor nodes to the
sink node before adding shortcuts, L denotes the path length
from sensor nodes to the sink node after adding shortcuts, and
γ denotes the sliding factor for the interval [0, 1]. Additionally,
D denotes a variance function to evaluate the load among
multiple sinks and is expressed as follows:

D =
1

m

m∑
i=1

(
Ni −Navg

Navg
)2 (4)

where m denotes the number of sink nodes, Ni denotes
the number of sensor nodes in the sink i’s cluster, and Navg

denotes the number of sensor nodes that should be contained
in each cluster under ideal circumstances. This is expressed
as follows:

Navg =
N

m
(5)

where N denotes the number of sensor nodes in the net-
work. As shown in Eq. 4, when the number of sensor nodes
in each cluster is closer to Navg , a decrease in the value of D
makes the load of sink more balanced. When the difference
between the number of nodes in each cluster and Navg is
high, an increase in the value of D makes the load of sink
more unbalanced. Therefore, as shown in the fitness function,
a decrease in the fitness value of the particle improves the
solution.

D. Initial Population

In SAPS, particles are randomly generated and each particle
is a feasible solution. It is necessary to select node pairs in
the communication range as endpoints for shortcuts to ensure
the feasibility of the solution. Therefore, when a particle is
initialized, each super node randomly selects a node from P ′

and connects with it. Thus, the connected nodes are within the
communication range of the super node.

E. Particle Updates in SAPS

The particles in the SAPS are encoded into discrete forms,
and thus the particle update formula in the standard particle
swarm algorithm is no longer applicable. In order to update the
particles, we introduce crossover and mutation in the genetic
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algorithm. A part of the information on the current particle
and its optimal particle is saved by the crossover, and new
individuals are generated through mutation.

1) Crossover: In this paper, the current particle is adjusted
based on the population optimal particle. First, α different
super nodes v1, v2 · · · vα are randomly selected from all |V |
super nodes. Specifically, Lis1, Lis2 · · ·Lisα denote shortcut
lists of the α super nodes in the current particle. The shortcut
lists of the α super nodes in the optimal particle are as
follows: Ls1, Ls2 · · ·Lsα. Next, the following operations are
performed on the α super nodes. We disconnect the shortcuts
between the super node vi and the nodes in the list Lisi.
Subsequently, the connections between the super node vi and
nodes in the list Lsi are established. A new particle is formed
after completing the above operations of α super nodes. As
shown in Fig. 2, an example is used to illustrate the operation.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Current particle

Optimal particle

New particle

Fig. 2. An example of crossover operation

In Fig. 2, the position denoted in blue stores the ID of the
super node, and three positions are reserved behind each super
node to store the node IDs that establish connections with the
super node. We refer to the three positions as the super node’s
associated location. And the ID value of node i is expressed
as IDi. We only list the connections of a few super nodes.
We assume that the super node v is selected as a cross node.
The ID of the node v is IDv. The super node v in the current
particle is connected to node u, and the super node v in the
optimal particle is connected to node m. While crossing, we
disconnect the connection between nodes u and v. We find
IDu from the associated location of super node v and delete
it. If IDu < 0, it means that node u is a sink node. There is no
associated position of the sink node in the particle, we don’t
need to perform subsequent delete operations. If IDu > 0,
we find IDv from the associated location of super node u and
delete it. We add a connection between nodes v and m. We
add IDm in the association position of super node v. And if
IDm > 0, we add IDv in the association position of super
node m. Finally, we obtain a new particle.

2) Mutation: In this paper, the mutation operation for each
individual is as follows. We randomly select β different super
nodes (v1, v2 · · · vβ) as the mutated nodes. Each super node
is connected to the n1, n2 · · ·nβ nodes in the communica-
tion range. Specifically, Lis1, Lis2 · · ·Lisβ correspond to the

shortcut lists of β super nodes. Subsequently, the following
operations are performed on the β super nodes. The previous
connection between vi and the nodes in the list Lisi is
disconnected. We then randomly select ni nodes (the nodes
make up a list Lsti) from the next hop list P

′

i of vi and
Lisi ̸= Lsti. The connections between the super node vi and
nodes in the list Lsti are established. A new particle is formed
after completing the above operations of β super nodes. An
example of a mutation operation is given in Fig. 3.

0 0 0 0

0 0 0 0 0

Current particle

New particle

Fig. 3. An example of mutation operation

It is assumed that the super node v is selected as a mutation
node. The ID of the node v is IDv. In the current particle,
super node v is connected to node u. When mutating, we
disconnect the connection between nodes v and u. We find
IDu from the associated location of super node v and delete
it. If IDu > 0, we find IDv from the associated location of
super node u and delete it. Subsequently, we randomly select
a node m from the next hop node list and add a connection
between v and m. We add IDm in the association position
of super node IDv. And if IDu > 0, we add IDv in the
association position of super node m. Finally, we obtain a
new particle.

In the algorithm, we first initialize the particle, and each
particle represents a scheme for adding shortcuts. After ob-
taining the initial solution, the fitness value of each particle
in the population is calculated, and the population optimal
particle is updated based on the fitness value. Subsequently, the
crossover operation and mutation operation of each individual
are performed, the fitness value of each particle is recalculated,
and the population optimal particle is updated. Finally, whether
the termination condition of the algorithm is reached is de-
termined. If the termination condition is reached, the optimal
particle of the population represents the final shortcut addition
scheme; otherwise, the next iteration is performed.

IV. ALGORITHM DESIGN

In this section, we implement the SAPS initialization al-
gorithm, crossover operation algorithm, mutation operation
algorithm, and SAPS algorithm. The variables used in all
algorithms are shown in Table I:

Algorithm 1 describes the SAPS initialization process. Al-
gorithm 1 works as follows. Before initializing the particle, the
list of each super node’s next hop is first obtained (lines 2–4).
While initializing a particle, the shortcut lists of all super nodes
of the particle are set as empty. (lines 6–8). Subsequently, each
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super node selects a node vk from its next hop node list P
′

i

and connects with it, and the shortcut lists of the two nodes
are separately updated. (lines 9–13). Finally, we obtain a new
particle based on the shortcut lists of all super nodes (lines
14–18). After all particles are initialized, we obtain S different
particle individuals.

Algorithm 2 describes the SAPS crossover operation pro-
cess. Algorithm 2 works as follows. In the cross operation
of a particle, α super nodes are first randomly selected from
the list L. The contents of shortcut lists of the α super
nodes are reorganized to generate a new individual (line 2).
Subsequently, based on the population optimal particle and
the current particle, two shortcut lists Lsi and Lisi of a
super node vi in Lc are obtained (lines 4 and 5), respectively.
Next, the following operations are performed on the α super
nodes. We disconnect the shortcuts between the super node vi
and the nodes in the list Lisi (lines 6–8). Subsequently, the
connections (shortcuts) between the super node vi and nodes in
the list Lsi are established (lines 9–11). After performing the
above operations on the α super nodes, the original particles
recombine to form a new particle (lines 2–13).

TABLE I
PARAMETERS IN ALGORITHMS

Symbol Description

S The population size

L List of all super nodes

p
′
i list of node vi’s next hop node

Q A population consisting of S particles

Lisi The shortcut list of node vi in current particle

n The number of elements in list Lisi

num Number of super nodes

d A large enough constant

particle Current particle

α Number of cross super nodes

opt particle Optimal particle in the population

Lsi Shortcut list of node vi in optimal particle

Lc List of cross super nodes

β Number of the mutated super nodes

Lsti Shortcut list of node vi after mutation

N Number of elements in list p
′
i

Gen Maximum number of iterations

Fit List of fitness values for the population

Gbest Record the best particle in the population

Algorithm 3 describes the SAPS mutation process. Algo-
rithm 3 works as follows. First, we set a variable i with
an initial value of 0 to indicate the number of super nodes
that are conducted on the following evolution operations (line
2). We perform the following operations when i is less than
β (line 3). In the mutation operation of a particle, we first
randomly select a super node vi from L that is not selected
in this round (line 5). Subsequently, the shortcut list Lisi
of node vi is obtained from the current particle, and the
length of the Lisi is calculated (lines 6–7). Next, the list P

′

i

Algorithm 1 Initialization
Input: S, L, num, d
Output: Q

1: procedure Initialization()
2: for all vi ∈ L do
3: p

′

i ← getNextHopNodeList(vi)
4: end for
5: for i = 1→ S do
6: for all vj ∈ L do
7: Lisi ← ∅
8: end for
9: for all vj ∈ L do

10: Randomly select a node vk from p
′

j

11: Lisj ← Lisj ∪ vk
12: Lisk ← Lisk ∪ vj
13: end for
14: for j = 1→ num do
15: Q[i, (j − 1) ∗ d+ 1] = vj
16: n← getLength(Lisj)
17: Q[i, (j − 1) ∗ d+ 2 · · · (j − 1) ∗ d+ n+ 1] =

Lisj [1 · · ·n]
18: end for
19: end for
20: return Q
21: end procedure

Algorithm 2 Crossover Operator
Input: α, num, particle, opt particle, L
Output: particle

1: procedure Cross()
2: Lc← getNodeList(L,α, num)
3: for all vi ∈ Lc do
4: Lsi ← getShortcutList(opt particle, vi)
5: Lisi ← getShortcutList(particle, vi)
6: for all vk ∈ Lisi do
7: Delete the link from vk to vi
8: end for
9: for all vk ∈ Lsi do

10: Add the link from vk to vi
11: end for
12: end for
13: return particle
14: end procedure

of the super node vi’s next hop node is obtained, and the
length of the P

′

i is calculated (lines 8–9). When shortcuts are
established between vi and all nodes in list P

′

i , or no shortcuts
are established between vi and nodes in list P

′

i , we select
a super node again to perform the mutation (10–12 lines).
Otherwise, we randomly select n nodes from the list P

′

i to
form the list Lsti. In order to generate a new particle, we
select Lsti ̸= Lisi (lines 13–15). We disconnect the shortcuts
between the super node vi and nodes in the list Lisi (lines
16–18). The connections (shortcuts) between the super node
vi and nodes in the list Lsti are established (lines 19–21).
After completing the mutation operation of super node vi,
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Algorithm 3 Mutation Operator
Input: β, num, particle, L
Output: particle

1: procedure Mutation()
2: i← 0
3: while i < β do
4: vi ← getNode(L, num)
5: Lisi ← getShortcutList(particle, vi)
6: n← getLength(Lisi)
7: p

′

i ← getNextHopNodeList(vi)
8: N ← getLength(p

′

i)
9: if n == N ∥ n == 0 then

10: continue
11: end if
12: do
13: Randomly select n nodes from p

′

i, the n nodes
constitute the Lsti

14: while Lsti ̸= Lisi
15: for all vk ∈ Lisi do
16: Delete the link from vk to vi
17: end for
18: for all vk ∈ Lsti do
19: Add the link from vk to vi
20: end for
21: i← i+ 1
22: end while
23: return particle
24: end procedure

we set the value of variable i to increase by 1 (line 22).
After performing the aforementioned operations on the β super
nodes, the original particle mutates to form a new particle
(lines 2–24).

Algorithm 4 describes the detailed process of the SAPS.
The algorithm 4 works as follows. First, different particle
individuals are obtained (line 2) through the initialization
operation. Before the optimization operation, the initial fitness
value for each particle is calculated, and the particle with the
smallest fitness value is recorded as the population optimal
particle (lines 3–6). Subsequently, the SAPS begins. The
crossover operation and mutation operation are performed for
each particle in the population in turn. A new particle is
obtained by crossing the particle with the population optimal
particle. If the fitness value of the new particle is smaller than
the fitness value of the old particle, then the old particle is
replaced by the new particle; otherwise, it remains unchanged
(lines 9-13). A new particle is obtained by the particle self-
mutation. Similarly, if the new particle’s fitness value is lower
than the old particle’s fitness value, the old particle is replaced
by the new particle; otherwise, it remains unchanged (lines
14–18). At the end of each iteration, the population optimal
particle is updated based on the fitness value (line 20). The
process continues until the number of iterations reaches Gen.

V. SIMULATION RESULTS

In this section, we first determine the value of γ through
experiments. Subsequently, we compare our proposed method

Algorithm 4 SAPS
Input: S, num, Gen, L, α, β
Output: Gbest

1: procedure SAPS()
2: Q← Initialization()
3: for i = 1→ S do
4: Fit[i]← getF itnessV alue(Q[i])
5: end for
6: Record individual Gbest with the minimum fitness

value
7: for i = 1→ Gen do
8: for j = 1→ S do
9: new particle ←

Cross(num,α,Q[j], Gbest, L)
10: if Fit[j] > getF itnessV alue(new particle)

then
11: Fit[j] =

getF itnessV alue(new particle)
12: Q[j] = new particle
13: end if
14: new particle←Mutation(β,Q[j], num,L)
15: if Fit[j] > getF itnessV alue(new particle)

then
16: Fit[j] =

getF itnessV alue(new particle)
17: Q[j] = new particle
18: end if
19: end for
20: Record individual Gbest with the minimum fitness

value
21: end for
22: return Gbest
23: end procedure

SAPS with the LM-GAS and GMSW from three aspects while
randomly placing different sink numbers. The aspects include
the average path length, degree of load of sink, and the number
of added shortcuts. All algorithms are simulated in MATLAB.
In the simulation experiment, we randomly deploy nodes in
a 1000*1000 area. The nodes correspond to super nodes and
ordinary nodes. The communication range of the super node
is 450 m, and the communication range of the ordinary node
is 150 m. The number of sink node in the topology increases
from 2 to 6, and the sink nodes are randomly placed in the
network. The results obtained from the experiments are taken
from the average of 10 simulations.

A. Effect of fitness function coefficients

The coefficient γ of the fitness function is a sliding fac-
tor used to balance the average path length and sink node
load. The optimal value of γ should be determined before
conducting comparison experiments. Specifically, γ is in the
range [0,1], and we select γ with an interval of 0.1. Prior to
determining the value of γ, we obtain the number of crossover
nodes α = 4, number of mutation nodes β = 1, and number
of particles Num = 40. We set the maximum number of
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Fig. 4. The effect of change in γ on the average path length and standard deviation of number of nodes among clusters

iterations Nmax to 400.
In order to analyze the effect of changes in γ on the

average path length and the sink node load in further detail,
we separately evaluate the average path length and standard
deviation of number of nodes among the clusters (Eq. 2). We
set the number of sensor nodes to 200, and the number of super
nodes is 20%. Additionally, all experiments are performed
under the same number of sink 3. Each sensor node selects
a sink node as the end of the data transmission in terms of
number of hops. If more than one such sink node with equal
distance exists, it randomly picks one. As shown in Fig. 4,
when the number of sink nodes in the network is constant, the
value of the average path length decreases when γ increases,
and the value of the standard deviation continues to increase.
However, when the value of γ changes from 0.9 to 1, the value
of the standard deviation increases significantly. We combine
the conclusions in Fig. 4(a) and Fig. 4(b) and select γ =0.9
because the average path length is close to the minimum.
Furthermore, the value of standard deviation is maintained at
a relatively high level.

B. Shortcut addition diagram

Figure 5 illustrates the shortcuts created using LM-GAS,
GMSW and SAPS respectively when the number of sink n is
3 and 5. In the above figure, the black nodes represent sensor
nodes and the number is 200, and the red nodes represent the
sink nodes. The grey edges indicate the connection relation-
ships between the sensor nodes. The blue thick edges indicate
shortcuts. As we can see in Figure 5(a), Figure 5(b), Figure
5(d) and Figure 5(e), LM-GAS and GMSW add constraints
while adding inter-cluster shortcuts although a certain degree
of randomness exists when selecting the node pair as the
shortcut endpoint. In this case, they may add some useless
edges. In SAPS (Figure 5(c) and Figure 5(f)), it searches the
appropriate node pairs to add shortcuts by the way of iteration.
It improves the quality of shortcuts and reduces the appearance
of redundant edges.

C. Performance evaluation of SAPS

In this part, we analyze the average path length of the
network, the number of added shortcuts and the standard
deviation of the number of nodes among clusters change with
the number of sink nodes when there are 200 sensor nodes
in the network. And the number of super nodes accounts for
20%.

Figure 6 shows the average path length when the total
number of sensor nodes is 200 and the number of sink nodes
is 2–6 in the network. As shown in the figure, the average
path length decreases when the number of sink nodes in the
network increases. The total number of sensors in each cluster
is reduced when the number of sink nodes is high. Therefore,
only a small number of hops is required from the sensor node
to the sink node. Additionally, in all the cases, the average
path length of the SAPS is less than that of the LM-GAS and
GMSW.
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Fig. 6. Average path length with different number of sinks

Figure 7 shows the standard deviation when the total number
of sensor nodes is 200 and the number of sink nodes is 2–6 in
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(a) LM-GAS(n=3) (b) GMSW(n=3) (c) SAPS(n=3)

(d) LM-GAS(n=5) (e) GMSW(n=5) (f) SAPS(n=5)

Fig. 5. Creation of shortcuts when the number of sink changes in LM-GAS, GMSW and SAPS
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Fig. 7. Standard deviation with different number of sinks

the network. As shown in the graph, the standard deviation of
the SAPS is lower than that of LM-GAS and GMSW. Thus,
in SAPS, the number of sensor nodes in each cluster is more
evenly distributed. This aids in balancing the load of the sink
node to a considerable extent.

Figure 8 shows the number of shortcuts when the total
number of sensor nodes is 200 and the number of sink nodes
is 2–6 in the network. As shown in the figure, the number
of shortcuts added by SAPS is lower than that of LM-GAS
and GMSW. Additionally, when the number of sink nodes
corresponds to 2 and 3, the number of shortcuts added by
SAPS does not significantly differ from that of LM-GAS and
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Fig. 8. Number of shortcuts with different number of sinks

GMSW. When the number of sink nodes is high, the number
of shortcuts added by the SAPS is significantly lower than that
of LM-GAS and GMSW.

D. The scalability of SAPS

In this section, we study the scalability of SAPS. For this,
we use 300 and 500 sensor nodes to conduct experiments,
in which the number of super nodes accounted for 20%. We
analyze the average path length of the network, the number of
shortcuts added and the standard deviation of the number of
nodes among clusters as the number of sink nodes changes.

When there are 300 nodes and 500 nodes in the network
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respectively, the number of shortcuts added by different mod-
els is shown in Figure 9 and Figure 10. It can be seen that the
number of shortcuts added by SAPS is still lower compared
to GMSW and LM-GAS.
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Fig. 9. Number of shortcuts with different number of sinks(the number of
nodes is 300)
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Fig. 10. Number of shortcuts with different number of sinks(the number of
nodes is 500)

Figure 11 and Figure 12 show the average path length when
the total number of sensor nodes in the network is 300 and 500,
respectively. As can be seen from the figures, SAPS can still
maintain the average path length of the network at a reduced
level and is better than LM-GAS and GMSW.

Figure 13 and Figure 14 show the standard deviation of the
number of nodes between clusters when the total number of
sensor nodes in the network is 300 and 500, respectively. It
can be seen from the figures that compared with LM-GAS and
GMSW, the value of the standard deviation of the proposed
method is relatively small, which can largely balance the load
of the sink node.

VI. CONCLUSION

In this paper, we proposed a novel shortcut addition algo-
rithm with particle swarm for multi-sink Internet of Things.
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Fig. 11. Average path length with different number of sinks(the number of
nodes is 300)
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Fig. 12. Average path length with different number of sinks(the number of
nodes is 500)
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Fig. 14. Standard deviation with different number of sinks(the number of
nodes is 500)

While adding shortcuts, the aim involved minimizing the
average shortest path length of the network and balancing the
load of sink nodes. Additionally, we introduced crossover and
mutation operations. The optimal solution was obtained by
searching for the solution space through crossing and particle
self-mutation. Finally, we compared our algorithm with the
two existing algorithms in terms of the average path length,
number of added shortcuts, and standard deviation of cluster
nodes. The experimental results indicated that when the num-
ber of sink nodes in the network was identical, the algorithm
added fewer shortcuts and ensured that the entire network
exhibited a shorter average path length. Simultaneously, when
compared with GMSW and LM-GAS, the SAPS balanced the
load among sink nodes in a better manner and maintained the
standard deviation of cluster nodes at a relatively small level.

In the future work, we will further explore the construction
of topological structure based on complex networks in the
actual environment. We plan to construct a high-performance
network topology by considering various factors in the actual
environment.
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