Table of Contents

1	Introduction				
	1.1	Introduction	1		
	1.2	Context	2		
	1.3	Justification	7		
	1.4	Objectives	8		
	1.5	General outline	9		
	Refe	erences	12		
2	Lite	erature review	13		
	2.1	Introduction	13		
	2.2	H ₂ as an energy carrier	14		
	2.3	Fuel cell technology	16		
	2.4	Passenger car FCV	19		
		2.4.1 Fuel cell range-extender architecture	21		
	2.5	Heavy-duty FCV	23		
	2.6	Fuel cell degradation	25		
	2.7	Summary and conclusions	29		
	Refe	erences	31		
3	Methodology				
	3.1	Introduction	38		
	3.2	Methodology Outline	38		
	3.3	Fuel cell stack model	40		

ii Table of Contents

	3.3.1	Numeri	cal description	40
	3.3.2	Validati	ion	41
3.4	Fuel c	ell systen	n model	44
	3.4.1	Balance	e of plant outline	44
	3.4.2	Balance	e of plant limitations	46
3.5	Fuel o	ell electri	c vehicle platform	47
	3.5.1	Passeng	ger car	48
	3.5.2	Heavy-c	luty vehicle	49
3.6 Energy management strategy				50
3.7	Fuel c	ell degrad	dation model	56
	3.7.1	Degrada	ation model outline	60
	3.7.2	1 st layer	r: reference degradation rates	60
	3.7.3	2 nd laye	er: electrochemical phenomena	62
		3.7.3.1	Low-power/idle condition	62
		3.7.3.2	Load-change condition	64
		3.7.3.3	High-power condition	65
		3.7.3.4	Medium-power/natural degradation	66
	3.7.4	3 rd laye	r: physical conditions	67
		3.7.4.1	Effect of temperature on degradation	68
		3.7.4.2	Effect of relative humidity on degradation	69
	3.7.5	Degrada	ation model integration	70
		3.7.5.1	Integration along the PEMFC polarization curve	70
		3.7.5.2	Integration with PEMFC models	72
	3.7.6	Validati	ion	73
3.8	Life c	ycle asses	sment	75
	3.8.1	Bounda	ries and environmental flows	75
	3.8.2	Function	nal unit	77
	3.8.3	Impact	categories	77
	3 8 4	Life cyc	ele inventory	78

Table of Contents iii

			3.8.4.1	Fuel production LCI	78
			3.8.4.2	Vehicle manufacturing LCI	79
			3.8.4.3	Operation cycle LCI	81
	3.9	Drivin	ng cycle sin	mulation procedure	81
	3.10	Summ	ary and c	onclusions	85
	Refe	erences			86
4	Fue	l Cell	Electric [*]	Vehicle Powerplant Optimization	91
	4.1	Introd	luction		92
	4.2	.2 Fuel cell system energy balance optimization			93
		4.2.1	Optimiza	ation space	93
		4.2.2	Optimur	n Energy Balance Identification	97
			4.2.2.1	Passenger car	97
			4.2.2.2	Heavy-duty vehicle	101
	4.3	FCRE	ex architec	eture for the passenger car application	104
		4.3.1	Effect of	powertrain components sizing on performance	105
		4.3.2		f energy management strategy dynamic and nal limits on performance and FC durability .	114
			4.3.2.1	Effect of limiting $ di/dt $	114
			4.3.2.2	Effect of limiting i_{min}	119
			4.3.2.3	Simultaneous limitation of $ \mathrm{d}i/\mathrm{d}t $ and i_{min}	124
		4.3.3		ect of dynamics-limited energy management sizing on performance and FC durability	130
			4.3.3.1	Effect over the FCS behaviour	130
		4.3.4	Effect or	FCV performance	134
		4.3.5	Effect or	FC stack durability	136
	4.4	Multi-	FCS arch	itecture for heavy-duty vehicle applications	139
		4.4.1		dynamics-limited energy management strategy rmance and FC durability	140
		4.4.2	strategy	ect of dynamics-limited energy management and FCS sizing on performance and FC	146

iv Table of Contents

	4.5	Summ	ary and conclusions	151			
		v					
	Tion	TCHCCS		156			
5	Life	cycle	emissions optimization	157			
	5.1	5.1 Introduction					
	5.2	2 Cradle-to-grave emissions of FCREx vehicles					
		5.2.1	Impact of FCREx design on consumption and the manufacturing cycle	159			
		5.2.2	Cradle-to-grave and fuel production GHG-100 emissions	163			
		5.2.3	Cradle-to-grave and fuel production NO_{X} emissions	168			
		5.2.4	Blue and green H ₂ comparison	172			
		5.2.5	Potential of FCREx architecture to decrease cradle-to- grave emissions	174			
	5.3 Cradle-to-grave emissions of Multi-FCS HDV		e-to-grave emissions of Multi-FCS HDV	176			
		5.3.1	GHG-100 cradle-to-grave emissions of heavy-duty FCV	177			
		5.3.2	NO_{X} cradle-to-grave emissions of heavy-duty FCV \ldots	185			
	5.4	4 Summary and conclusions					
	Refe	eferences					
6	General conclusions and future work						
	6.1	Introduction					
	6.2	Conclusions					
		6.2.1	Fuel Cell Electric Vehicle Powerplant Optimization	194			
		6.2.2	Life cycle emissions optimization conclusions	197			
	6.3	Future	e work	198			
	Refe	rences		202			
Re	efere	nces		203			