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Abstract The ensemble smoother with multiple data assimilation (ES-MDA) cou-

pled to a normal-score transformation is used to fit a Langmuir isotherm curve

to estimate its parameters (Sm and b) and their uncertainty. The highlights of

this work are three: i) the ES-MDA can be used as a curve fitting procedure, ii)

the ES-MDA provides also a full uncertainty quantification about the fitted pa-

rameters and iii) for the specific case of the Langmuir isotherm, parameter Sm is

well identified with little uncertainty, while parameter b is well identified with a

larger uncertainty, indicative that solute concentrations are more sensitive to Sm

than to b. As a by-product, the number of samples required to characterize the

joint uncertainty of Langmuir isotherm parameters is also investigated; it can be

concluded that the minimum number of samples to use is six, with best results
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obtained with eight samples, a value larger than the number recommend in the

literature.

Keywords Tracer tests · Inverse modeling · Solute transport · Batch test ·

Bayesian methods
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1 Introduction1

The retention of chemical constituents through the transfer of ions from the aque-2

ous phase (sorptives) to the solid phase (sorbent) is widely known as sorption.3

To quantify the sorption characteristics of a soil, batch experiments are usually4

performed in which the relationship between the equilibrium concentrations of the5

sorptive and the sorbate is measured for a variety of sorptive concentrations while6

holding temperature constant; the outcome of this experiment results in what is7

known as a sorption isotherm, an example of which is shown in Fig. 1. The most8

common sorption isotherms are linear, Freundlich, and Langmuir isotherms.9

The transport of disolved contaminants in soils mostly depends on the sorption10

capacity of soils and rocks (Pathak and Sharma 2018). The sorption processes are11

important in a variety of applications in the field of geosciences, including remedi-12

ation systems design (Luo et al. 2014), the selection of a waste site (Bouchelaghem13

2018), the design of groundwater pump-and-treat systems or the evaluation of nat-14

ural attenuation and salinity (Park et al. 2007; Tavakoli-Kivi et al. 2019). Most15

of these applications involve at some point the use of numerical models, in which16

the parameters defining the isotherm equation are required as input data (Guo17

et al. 2019; Masood and Abd Ali 2020). An accurate determination of these pa-18

rameters is crucial for good transport predictions, especially when these models19

are used to perform quantitative risk analysis (Capilla et al. 1998; Franssen and20

Gómez-Hernández 2002; Gómez-Hernández and Wen 1994; Hinz et al. 1994; Li21

et al. 2011; Zhou et al. 2011; Fairey and Wahman 2013). Hinz et al. (1994) studied22

the sensitivity of solute transport predictions on sorption isotherm parameters by23

quantifying the ratio of the input concentration to the maximum sorption capac-24

ity; the results show that the retardation of contaminants are highly influenced by25

the Langmuir isotherm parameters.26

Determining sorption isotherm parameters based on data from laboratory ex-27

periments is always difficult and involves uncertainties. The chemical composition28

of the solute, the physical structure of the sorbent, the effect of temperature,29



measurement errors, and natural variations in soils and rocks are examples of30

sources of uncertainty in laboratory experiments. This uncertainty, then, propa-31

gates through the isotherm fitting process onto the isotherm parameters. It is also32

still unclear how many experiments should be run to get a good fit of the isotherm33

curve with small estimate uncertainties. Roy et al. (1991), in his thorough analysis34

of batch-type adsorption procedures for estimating soil attenuation of chemicals,35

recommends a minimum of five experiments to fit the isotherm parameters.36

Although there exist a vast number of papers related to sorption isotherms,37

few deal with the uncertainty associated with parameter estimation from batch ex-38

periments. Fairey and Wahman (2013) compared weighted regression with Markov39

chain Monte Carlo (McMC) to determine the joint uncertainty of Freundlich sorp-40

tion isotherm fitting parameters, and found that both frequentist and Bayesian41

analyses reduced the uncertainty in parameters compared with treating the uncer-42

tainty independently, and that the difference between the two techniques becomes43

more pronounced as the degree of non-linearity in the isotherm increases. In a re-44

cent study, a hierarchical Bayesian model combined with McMC was satisfactorily45

used to estimate parameters from multiple sources of experimental data of sorp-46

tion and to characterize the uncertainty of Langmuir isotherm parameters (Shih47

et al. 2020).48

In this work, several numerical examples were performed to propose a proce-49

dure to fit non-linear isotherm curves, and to analyze how the number of experi-50

mental pairs used affects the estimated values and their uncertainty. The example51

is applied to the fitting of the two parameters that define the Langmuir isotherm52

and the two parameters that define the Freundlich isotherm, the expressions of53

which will be introduced below. Additionally, we investigate the influence of the54

ensemble size, the measurement-error magnitude, and the number of ES-MDA55

iterations on the uncertainty estimation.56

The good results obtained in this specific context allows us to make a recom-57

mendation that the ES-MDA be used for curve-fitting in the general sense, not58



limited to fitting isotherm curves. Traditionally this type of fitting is done using59

least-square approaches, yielding reasonable results; however least-squares will not60

provide an estimation of the uncertainty of the estimates, something that the ES-61

MDA will do independently of the prior distributions adopted for the parameters62

to be fitted. Also, the analysis of the stabilization of the statistics of the posterior63

distributions of the fitted parameters can be used as a tool to determine how many64

samples are needed to obtain reliable parameter estimates, as will be shown.65

The proposed procedure is based on the ensemble smoother with multiple data66

assimilation (ES-MDA) (Emerick and Reynolds 2013; Evensen 2018), a method67

widely used in geosciences (Emerick 2017; Chen and Oliver 2012; Todaro et al.68

2019; 2021; Silva et al. 2021a), and it includes a normal-score transformation to69

deal with the possible non-Gaussianity of both prior and posterior uncertainties70

about the parameters (Capilla et al. 1999; Zhou et al. 2011; Li et al. 2012; Xu71

and Gómez-Hernández 2015; 2016; 2018). Recently, the ES-MDA was satisfacto-72

rily used to fit the parameters of a B-Spline curve conditioned to well-test data73

(Silva et al. 2021b); however, this application is a common approach to solve a74

history matching exercise in which the parameters to be identified are not mate-75

rial parameters, such as permeability or porosity, but the geometrical parameters76

(widths and lengths) that define the turbidite lobes in the reservoir. The fact that77

the authors define a B-Spline curve as a function of the parameters identified does78

not imply that they are performing curve fitting in its traditional sense as used in79

this paper. To the best of our knowledge, this is the first paper in which the normal-80

score ES-MDA is used for curve fitting and estimation uncertainty quantification81

of an isotherm curve, and that investigates how many samples are necessary for a82

proper characterization.83

The remainder of this paper is organized as follows. After a description of the84

ES-MDA in Sect. 2, materials and methods are reported in Sect. 3, results are85

presented and discussed in Sect. 4, conclusions are drawn in Sect. 5, and finally86

additional synthetic examples are presented in the Appendix.87



The work described in this paper was presented as a poster at the 46th Annual88

Congress of the International Association of Hydrogeologists but it was never89

published (Gómez-Hernández et al. 2019).90

2 The ensemble smoother with multiple data assimilation (ES-MDA)91

The ES-MDA algorithm is based on the ensemble smoother (ES) (Burgers et al.92

1998), described by Emerick and Reynolds (2013) and Evensen (2018) as an al-93

ternative to the ensemble Kalman filter (Xu et al. 2013; Zhou et al. 2012). The94

ES-MDA is an iterative data assimilation method that updates parameters (in our95

case, the isotherm parameters) making use of a set of system states (in our case,96

equilibrium concentrations) and the deviations between the predictions resulting97

from the current parameter values with respect to the experimental observations.98

The relationship between parameters and observations must be known and a for-99

ward model relating parameters and state variables must be available (in our case,100

the forward model is simply the isotherm equation).101

The assimilation procedure used by the ES-MDA includes an initialization102

step, to generate Ne parameter realizations through statistical or geostatistical103

methods, a forecast step, and an update step. In the forecast step, the forward104

model is solved for each realization i, to obtain model predictions of the system105

state. Then, the vector P of model parameters used for the forecast is updated106

based on the discrepancy between observations and their model predictions. The107

updated parameter vector Pu is given, for each realization, by108

Pu
i = Pi +K

[
Yob + εobi −Yi

]
, {i = 1, . . . , Ne}, (1)

where the subscript i refers to a specific realization, Yi is the vector of model109

predictions for realization i, Yob is the vector of state observations, εobi is the110

vector of observation errors for realization i (the observations errors have zero111

mean and a covariance given by matrix R) and K is the Kalman gain, given by112



K = CP,Y

(
CY,Y +R

)−1
, (2)

where CY,Y is the auto-covariance of the state variables and CP,Y is the cross-113

covariance between all parameters and state variables, which are computed from114

the ensemble of realizations as115

CP,Y =
1

Ne − 1

Ne∑
i=1

(
Pi −P

) (
Yi −Y

)T
, (3)

CY,Y =
1

Ne − 1

Ne∑
i=1

(
Yi −Y

) (
Yi −Y

)T
, (4)

with P and Y being the ensemble means of parameters and predictions, respec-116

tively.117

In a problem where there are np parameters (in our case, np will be two,118

since there are only two parameters in the Langmuir isotherm equation) and no119

observations (in our case, no varies between four and sixteen), vectors Pu
i and Pi120

have sizes np × 1, vectors Yob
i , εobi , and Y have sizes no × 1, the Kalman gain K121

and the covariance CP,Y are matrices of size np x no, and the matrices CY,Y and122

R are of size no × no. When the observation errors are modeled as uncorrelated,123

R is a diagonal matrix. In the covariance matrix calculation, P is a column vector124

of size np × 1 with the average values of each parameter computed through the125

realizations, P = 1
Ne

∑Ne

i=1 Pi, and, similarly Y is a column vector of size no × 1126

with the average values of each parameter computed through the ensemble of127

realizations, Y = 1
Ne

∑Ne

i=1 Yi.128

2.1 Dealing with nonlinear state equations129

The resulting updated parameters from Eq. (1) will be optimal estimates if, and130

only if, the state equation is linear. The ES-MDA was proposed to deal with non-131

linear systems by iteratively applying this process of forecasting and updating132



using the last updated parameters to make the next forecast. This iteration implies133

that the same data will be assimilated multiple times; for this reason, there is134

a need to inflate the covariance matrix by a coefficient αj , at each iteration j,135

satisfying the following equation Evensen (2018)136

Nj∑
j=1

1

αj
= 1, (5)

where Nj is the total number of iterations.137

According to the approach proposed by Evensen (2018), to compute αj , first,

it is necessary to select any nonzero value for α′
0, then, the remaining α′

j are

calculated as

α′
j =

α′
j−1

αgeo
, (6)

where αgeo is a constant that controls the extent of the changes of α′
j from one

iteration to the next. Finally, the values from Eq. (6) are normalized to obtain the

final coefficients as

αj = α′
j

 Nj∑
j=1

1

α′
j

 . (7)

We refer to Evensen (2018) for more details on the computation of the αj . A138

modification in the update step is also required to consider the αj coefficients. The139

update equation for the ES-MDA results then140

Pu
MDA,i = Pi +CP,Y

(
CY,Y + αjR

)−1
[
Yob +

√
αjε

ob
i −Yi

]
. (8)

The updating step as presented in Eq. (8) has the limitation of being subop-

timal for parameters displaying a non-Gaussian distribution. To take advantage

of the fact that the ES-MDA formulation is optimal when dealing with Gaussian

parameters, a normal-score transformation can be performed. The advantage of

using such transformation is that it can be applied to any prior distribution. Af-

ter the ES-MDA formulation is applied in Gaussian space, a back transformation

recovers the physical meaning of the parameters into the original non-Gaussian



space. In this work, a normal-score transformation is used at each iteration follow-

ing the work by Zhou et al. (2011) in their proposal of the normal-score ensemble

Kalman filter (NS-EnKF). The method consists in assuming a non-Gaussian prior

for the parameters P, which are transformed into Gaussian parameters G after

applying a Gaussian anamorphosis T(·), also known as Nataf transformation or

normal-score transform (Nataf 1962)

Gu
MDA,i = T

(
Pu

MDA,i

)
. (9)

The forecasting step is performed using P as input to the state equation, but

the updating is performed on the Gaussian parameter vector G computed after

the Gaussian transform of P

Gu
MDA,i = Gi +CG,Y

(
CY,Y + αjR

)−1
[
Yob +

√
αjε

ob
i −Yi

]
; (10)

notice that the cross-covariance between parameters and state is computed on the

Gaussian transform of the parameters. Finally, the updated or posterior distri-

bution is recovered by applying the inverse transformation T−1(·) of the Eq. (9)

as

Pu
MDA,i = T−1 (Gu

MDA,i

)
. (11)

The different steps of the algorithm are summarized in the Algorithm 1 insert.141



Algorithm 1: Iterative data assimilation

Set: Nj = The number of iterations of ES-MDA

Set: Yob = Observation data (here, concentrations at the solid phase)

Set: Ne = The number of parameter realizations

Set: α,
0 = Initial inflation coefficient

Set: αgeo = Constant that controls the extent of the change of αj between

iterations

begin

Generate an ensemble of initial parameters P (here, these parameters

are drawn from their prior uniform distributions)

Calculate all αj coefficients such that

α,
j =

α,
j−1

αgeo
and αj = α,

j

(
Nj∑
j=1

1
α,

j

)
for j ← 1 to Nj do

for i← 1 to Ne do

Perturb the observations: Yob +
√
αjε

ob
i

Run forward model (here, evaluate the Langmuir sorption

isotherm for the different liquid phase equilibrium solute

concentrations) using Pi as input parameters to obtain Yi

end for

Apply a Gaussian anamorphosis: Gu
MDA,i = T

(
Pu

MDA,i

)
Calculate: CG,Y = 1

Ne−1

∑Ne

i=1

(
Gi −G

) (
Yi −Y

)T
Calculate: CY,Y = 1

Ne−1

∑Ne

i=1

(
Yi −Y

) (
Yi −Y

)T
Update:

Gu
MDA,i = Gi +CG,Y

(
CY,Y + αjR

)−1
[
Yob +

√
αjε

ob
i −Yi

]
Back transform: Pu

MDA,i = T−1
(
Gu

MDA,i

)
end for

end

142



3 Materials and methods143

The Langmuir isotherm is one of the most common models used for sorption

in relation with transport in porous media. It explains how a solute distributes

between the solid and liquid phases once equilibrium is reached. This isotherm

considers that the surface at which the solute can adsorb onto the solid phase

is finite and, therefore, there is a maximum adsorbed concentration possible; its

expression is

S =
SmbCe

1 + bCe
, (12)

where S is the solid-phase equilibrium concentration
[
Mchemical M

−1
sorbent

]
, Ce is144

the liquid-phase equilibrium concentration
[
Mchemical L

−3
water

]
, Sm represents the145

maximum concentration of soil-adsorbed solute
[
M M−1

]
, and b is an adsorption146

constant related to binding energy
[
L3 M−1

]
. Figure 1 shows a typical Langmuir147

isotherm.148

In our case, in the context of the ES-MDA algorithm, the forward model is the149

Langmuir sorption isotherm function, Eq. (12), Sm and b are the model parameters,150

whereas S is the system state. The solute concentrations at equilibrium, Ce for the151

liquid phase will be the forcing terms of the forward model and they are known.152

The parameter vector Pi for a given realization i is153

Pi =

Sm,i

bi

 . (13)

The system state vector Yi is the set of predicted solid-phase concentrations at154

equilibrium corresponding to the set of liquid-phase concentrations at equilibrium155

for which the corresponding laboratory tests have been performed156



Yi =



S1,i

S2,i

· · ·

Sno,i


. (14)

From those laboratory tests, there will be no observed solid-phase equilibrium157

concentrations resulting from the experiments158

Yob =



Sob
1

Sob
2

· · ·

Sob
no


. (15)

Based on a range of previous numerical experiments, several scenarios were159

considered in order to analyze the impact of different parameters in the estimation160

process of the Langmuir coefficients. More precisely, the number of realizations of161

the ensemble took the values of 30, 100 and 300; the number of observation no162

took all integer values between four and sixteen, the observation error standard163

deviation took the values of 10−2, 5 · 10−3 and 10−4 mg·g-1; and the number of164

iterations of the ES-MDA, Nj , took all integer values between 1 and 6. The steps165

followed for any given scenario are described next.166

The first step is to generate a set of data pairs (Ce, S) consistent with a Lang-167

muir isotherm as they could have obtained in the laboratory. These would be the168

value pairs that have to be curve fitted by the isotherm function. An ideal soil for169

which sorption follows the Langmuir isotherm and with realistic parameter values170

Sm = 0.1 mg·g-1 and b = 100 l·mg-1 (Godoy et al. 2018) is considered. Sixteen171

experiments are mimicked with equally spaced values of Ce in the interval between172

0 and 0.1 mg·l-1. The corresponding observations are computed by applying the173

Langmuir equation and perturbing the resulting value with an error εob drawn174



from a Gaussian distribution with zero mean and standard deviation σεob . From175

these sixteen data pairs, the necessary no observations will be chosen.176

Second, an ensemble of initial values for the two parameters is generated. The177

initial parameters are drawn from the uniform distributions Sm ∼ U [0, 3] mg·g-1178

and b ∼ U [0, 300] l·mg-1.179

Third, the ES-MDA with a normal-score transformation, as described previ-180

ously, was applied for each scenario.181

Fourth, the moments (mean, standard deviation, kurtosis, and skewness) of the182

ES-MDA final estimates were analyzed to investigate how many isotherm samples183

are necessary to reach stable statistics and, consequently, acceptable estimates.184

Specifically, the optimal number of samples will be determined by visual analysis185

of the moments of the final probability distributions of the different parameters;186

this optimal number will be achieved when the moments stabilize.187

The results presented next correspond only to synthetic experiments, no real188

experimental data have been used. The principal reason of this choice is that it is189

the only way in which a comparison between the estimates and the “true” values190

can be made and to perform an effective evaluation of the methodology. Including191

an additional example with experimental data will not serve to verify or increase192

the reliability of the synthetic results, as long as the soil being analyzed does193

display an adsorption behavior suitable to be modeled by a Langmuir isotherm.194

The method proposed does not pretend to be a method to discriminate between195

isotherm curves, and therefore, it is important to note that including an additional196

case with laboratory data will not improve the validity of the approach. In any197

case, for the sake of completeness, two additional synthetic cases have been run,198

which are discussed in the Appendix: one with a synthetic soil with a different199

Langmuir isotherm, and another one with a Freundlich isotherm. These two ad-200

ditional examples prove that the method is general enough for curve fitting and201

it could be used with a different isotherm and even in a different curve-fitting202

context.203



4 Results and discussion204

Figures 2, 3 and 4 serve to illustrate how the ES-MDA works. An initial ensemble205

of 100 realizations of parameters (Fig. 2a) is generated using the above mentioned206

uniform distributions, the pairs (Sm, b) are distributed randomly within the do-207

main U [0, 3] × U [0, 300]. Each of the points in Fig. 2a corresponds to one of the208

isotherm curves plotted in Fig. 3a. We can see a wide scatter of potential isotherm209

curves all of them quite far from the “true” curve. In Fig. 3 the points correspond-210

ing to the observations are also displayed. The discrepancies between the S values211

for the different curves and the observed ones, the intrinsic variability of the pa-212

rameters values as measured by its covariance, and the cross-correlation between213

parameters and predicted values serve to compute the different elements in the214

ES-MDA equations and to update each one of the points in Fig. 2a into a new215

pair that gives a new isotherm curve closer to the real one. After the first update,216

the new pairs of parameters are shown in Fig. 2b, the dashed lines correspond217

to the values of the isotherm curve used to generate the observations. It is quite218

evident how, after one iteration, the range of variability of the Sm parameter is219

much narrower than the initial range and quite close to the true value, whereas220

the range of the b parameters is still scattered over the entire initial range. The221

reason for this fast convergence of the Sm parameter is due to the higher sensitiv-222

ity that the shape of the isotherm curve has to the Sm parameter than to the b223

parameter. We can see how the cloud of pairs keeps reducing its spread after each224

assimilation iteration, and at iteration #4 the cloud of parameters has collapsed225

onto the true values with little spread. The remaining spread is a measure of the226

residual uncertainty in their estimation. The results obtained for iterations #5 and227

#6 are not shown since they are almost identical to those of iteration #4. Fig. 4228

shows the histograms of the initial ensembles and after four iterations. The initial229

histograms correspond to the starting uniform distributions and the histograms230

after four iterations show a spike at the true value for Sm and a histogram with231

some spread and a little bias for the b parameter. The smaller sensitivity of the232



isotherm curves to this parameter makes it impossible to identify it more precisely.233

This small sensitivity translates in that the set of isotherm curves corresponding234

to this range of b values result in almost superposing curves in Fig. 3d.235

The previous figures, which have been obtained for a specific scenario, demon-236

strate the power of the ES-MDA to identify the Langmuir parameters, together237

with a measure of their uncertainty. This exercise has been repeated for several238

other scenarios with the objective to determine how many experiments should be239

run, that is, how many observation pairs are needed to find the parameters that240

provide the best fitting curve. One way to analyze this aspect is to seek when the241

estimate of the statistics of the final set of parameters stabilizes with the num-242

ber of samples, if at all. This analysis will be performed on the results after four243

iterations of the ES-MDA; similarly as for the scenario displayed in Figures 2, 3244

and 4, four iterations were enough for the parameter estimates to stabilize in all245

scenarios.246

Figure 5 shows results for the final ensemble of updated values for parameters247

Sm. The values of the mean, standard deviation, skewness and kurtosis are shown248

for all combinations of number of ensemble realizations, observation error and249

observation samples. It is evident that the best results are obtained when using250

an ensemble of 300 realizations, but good estimates of the true value (as given251

by the ensemble mean) with little uncertainty (as given by the ensemble standard252

deviation) can be obtained for all scenarios as soon as six observations are used.253

The estimates stabilizes at six observations when using 300 realizations for all254

statistics. A stable estimate for the means and standard deviations when using255

a smaller number of realizations requires between eight and ten samples. The256

estimated skewness and kurtosis vary more erratically for the scenarios with 30257

and 100 realizations, in part due to the smaller number of elements to compute258

these statistics, and in part due to the narrowness of the final distribution which259

make these values very sensitive to small departures from the mean. It is very260

interesting to note that the magnitude of the observation error has little or no261



effect in the estimates of the means and standard deviations in all scenarios as262

long as at least six observations are used in the estimation.263

Figure 6 shows results for the final ensemble of updated values for parameter264

b. The values of the mean, standard deviation, skewness and kurtosis are shown265

for all combinations of number of ensemble realizations, observation error and266

observation samples. Contrary to Fig. 5, there is not a striking difference on the267

curves as a function of the number of realizations. The main reason for this results268

is the already-mentioned fact that the Langmuir curve is less sensitive to parameter269

b than to parameter Sm; for this reason, as soon as an estimated value is relatively270

close to the real one, the estimated Langmuir isotherm is almost indistinguishable271

with the true one, and there is no need to update the parameter anymore. This272

behavior is particularly noticeable in the values of the standard deviations; they do273

not get as close to zero as for Sm but remain with non-zero values throughout and274

with larger values when the observation errors are larger. Skewness and kurtosis275

estimates behave as for Sm. Due to the smaller sensitivity of the isotherm to the276

b value, an estimate based only on four samples would be enough.277

The ES-MDA performed remarkably well for the purpose of estimating the278

fitting parameters of a Langmuir isotherm in a wide range of scenarios, with the279

additional benefit of providing also an estimate of their uncertainty. This uncer-280

tainty estimate is a confidence measurement about the estimated value and it is281

also a measurement of the sensitivity of the fitting to the parameter. After all, at282

the end of the exercise, there is an experimental histogram showing the full distri-283

bution of potential values for the parameters, from which the mean or the median284

could be selected as best estimates, but from which an analysis of the parameter285

values which are consistent with the observations can also be performed. Such an286

analysis of the uncertainty about the estimates cannot be performed with stan-287

dard fitting procedures, such as least-squares, that, at most, provide an estimated288

value and an estimation error.289



In summary and with regard to the recommendation by Roy et al. (1991)290

that a minimum of five observations should be used to estimate the isotherm291

parameters, we conclude that such a number would be enough for the estimation292

of the b coefficient, but not for the estimation of Sm. Our recommendation would293

be to increase that minimum number to six and, preferably, to eight.294

The successful results in the application of the ES-MDA for curve fitting for the295

three non-linear isotherm curves analyzed in the paper, makes us postulate the use296

of the ES-MDA for general curve fitting when characterization of the uncertainty297

about the final estimates is important.298

5 Conclusions299

In this paper, we proposed a procedure to fit sorption isotherm curves using300

an ensemble smoother with multiple data assimilation (ES-MDA) coupled to a301

normal-score transform. The main advantage of this approach is not only that the302

parameter is good, but also that a characterization of the parameter estimation303

uncertainty is obtained. In order to evaluate the proposed procedure, we performed304

numerical examples with a variety of scenarios to additionally investigate the influ-305

ence of the number of experimental pairs, the ensemble size, the measurement-error306

magnitude, and the number of ES-MDA iterations on the uncertainty estimation.307

Our results show that, since the shape of the Langmuir isotherm is much more308

sensitive to the Sm parameter than to the b parameter, the precision in their identi-309

fication is not the same. After four ES-MDA iterations, the cloud of experimental310

pairs has collapsed onto the reference value for the Sm parameter and presents311

some spread and a little bias for the b parameter. By investigating other scenarios312

with several combinations of number of ensemble realizations, observation error313

and observation samples we find that, for the Sm parameter, the best results are314

obtained when using an ensemble of 300 realizations, and the use of at least six315

observations can be enough to produce relatively good estimates of the true value316

regardless of the scenario. An interesting finding is that when at least six obser-317



vations are used, the magnitude of the observation error has almost no effect in318

the estimates of the mean and standard deviation of Sm. For the b parameter,319

there is not a clear difference on the curves as a function of the scenarios because320

the Langmuir curve is little sensitive to this parameter. These results demonstrate321

the power of the ES-MDA to identify the Langmuir parameters together with an322

estimate of their uncertainty. We conclude that the actual recommendation that a323

minimum of five observations should be used to estimate the Langmuir parameters324

would be enough for the estimation of the b coefficient, but not for the estimation325

of Sm. In order to correctly estimate Langmuir parameters together with their326

uncertainty a minimum of six and, preferably, eight samples should be used. The327

results of the application in the two additional cases included in the Appendix are328

similar and reinforce our belief that the ES-MDA could be applied for standard329

curve fitting when an uncertainty characterization about parameter estimates is330

needed.331
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transient groundwater flow by coupling ensemble kalman filtering and upscaling. Water380

Resources Research, 48:W01537.381

Luo, Q., Wu, J., Yang, Y., Qian, J., and Wu, J. (2014). Optimal design of groundwater382

remediation system using a probabilistic multi-objective fast harmony search algorithm383

under uncertainty. Journal of Hydrology, 519:3305–3315.384



Masood, Z. B. and Abd Ali, Z. T. (2020). Numerical modeling of two-dimensional simula-385

tion of groundwater protection from lead using different sorbents in permeable barriers.386

Environmental Engineering Research, 25:605–613.387

Nataf, A. (1962). Determination des distribution don t les marges sont donnees. Comptes388

Rendus de l Academie des Sciences, 225:42–43.389

Park, D. K., Ko, N. Y., and Lee, K. K. (2007). Optimal groundwater remediation design390

considering effects of natural attenuation processes: Pumping strategy with enhanced-391

natural-attenuation. Geosciences Journal, 11:377–385.392

Pathak, P. and Sharma, S. (2018). Sorption isotherms, kinetics, and thermodynamics of con-393

taminants in indian soils. Journal of Environmental Engineering, 144:04018109.394

Roy, W., Krapac, I., Chou, S., and Griffin, R. (1991). Batch-Type Adsorption Procedures for395

Estimating Soil Attenuation of Chemicals.396

Shih, C., Park, J., Sholl, D. S., Realff, M. J., Yajima, T., and Kawajiri, Y. (2020). Hierar-397

chical Bayesian estimation for adsorption isotherm parameter determination. Chemical398

Engineering Science, 214:115435.399

Silva, T. M., Pesco, S., Barreto Jr, A., and Onur, M. (2021a). A new procedure for generating400

data covariance inflation factors for ensemble smoother with multiple data assimilation.401

Computers & Geosciences, page 104722.402

Silva, T. M., Villalobos, R. S., Cardona, Y. A., Barreto, A., and Pesco, S. (2021b). Well-403

testing based turbidite lobes modeling using the ensemble smoother with multiple data404

assimilation. Computational Geosciences, 25:1139–1157.405

Tavakoli-Kivi, S., Bailey, R. T., and Gates, T. K. (2019). A salinity reactive transport and406

equilibrium chemistry model for regional-scale agricultural groundwater systems. Journal407

of Hydrology, 572:274–293.408
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Fig. 1: Typical Langmuir isotherm.

A Additional Synthetic Examples434

In the following, two additional examples are included to support the claims in the main

body of the text; the first one is for a synthetic soil with adsorption characteristics given by a

Langmuir isotherm with parameters Sm = 7.2 mg·g-1 and b = 0.174 l·mg-1 (?), and the second

one for a soil characterized by a Freundlich isotherm

S = KfC
1/n
e (16)

with parameters Kf = 1.5 and n−1 = 0.39; S is given in mg·g-1 and Ce in mg·l-1 (?). Figure435

A.1 shows the three isotherms considered in the paper.436

The procedure to fit the curves is the same as the one used in the body of the text.437

The initial sets of realizations are drawn from the following bivariate uncorrelated uniform438

distributions: (Sm, b) ∈ U [0, 230]× U [0, 0.8], and (Kf , n
−1) ∈ U [0, 30]× U [0.001, 0.99].439

The evolution with the number of samples of the best estimate as given by the mean of the440

ensemble of updated parameters for the two cases can be seen in Figure1 A.2. The conclusions441

that can be drawn from the analysis of these figures are the same as from the analysis of442
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Fig. 2: Operation of the ES-MDA for: a prior pairs of Sm and b; parameters values
obtained after ES-MDA #1, #2 and #4 iterations and 100 realizations.

the example in the main body. The estimated values are affected by the magnitude of the443

measurement errors, the larger the measurement errors, the larger the bias of the estimated444

value (as given by the mean of the ensemble results). When the error standard deviation445

is set to 1%, the estimates are quite close to the true value of the synthetic soil. For the446

Langmuir isotherm, the fluctuations of the mean m and mean b stabilize about six samples447

with a better stabilization the larger the number of realizations of the ensemble have been448

used. For the Freundlich isotherm, the estimation needs at least 13 samples and either 100 or449

300 realizations to retrieve good estimates when the error standard deviation is above 1%; for450

the smaller error, seven samples are necessary before the mean estimate stabilizes close to the451
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Fig. 3: Variability in the computation of the Langmuir isotherm using: a prior;
and b-d updated parameters for 17 observations at iterations #1, #2 and #4, 100
realizations, and εob of 10−3 mg g-1.

reference value. It could be concluded that the Freundlich estimate may need more samples to452

ensure a good estimation of its parameters.453
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Fig. 5: From top to bottom, variation of the: a) mean, b) standard deviation, c)
kurtosis, and d) skewness of Sm with the number of isotherm samples.
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Fig. 6: From top to bottom, variation of the: a) mean, b) standard deviation, c)
kurtosis, and d) skewness of b with the number of isotherm samples.
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Fig. 8: From top to bottom, variation of the mean of parameter: Sm, b, Kf , and
n−1 with the number of isotherm samples.


