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Abstract 

Parallel robots (PRs) have singular configurations where the robot gains at least one degree-of-freedom and loses control. 
Theoretically, such singularity occurs when the Forward Jacobian-Matrix determinant becomes zero (Type II). However, actual 
PRs could lose control owing to Type II singularities for determinant values near zero, but not zero, because manufacturing 
tolerances introduce errors that are complex to model due to their low repeatability. Thus, using an actual 3UPS+RPU PR, this 
paper presents three contributions: i) a proximity detection index for Type II singularities based on the angle between two Output 
Twist Screws. The index can identify which kinematic chains contribute to the singularity. ii) an experimental benchmark to study 
Type II singularities. iii) PR configurations where the proposed index is zero and the Forward Jacobian determinant is not. In this 
last configuration, the findings show that the actual robot is unable to handle external actions applied to the PR.  
 
Keywords: singular configuration, parallel robot, virtual power, screw theory, assembly modes. 

1. Introduction 

In contrast to a serial robot, a parallel robot (PR) drives its end-effector (mobile platform) using at least two closed 
kinematic chains that help increase the PR stiffness and load capacity. Moreover, PRs have other advantages over their 
serial counterparts, such as lower weight, higher working speed with high precision, and lower power consumption 
[1,2]. These advantages, mainly due to the closed kinematic chain architecture, are key aspects that have increased the 
interest in studying their use in the academic, industrial, and robotics service fields over the last three decades. 
However, the PR architecture reduces not only the size of the robot workspace but also its kinematic performance, 
owing to the possible presence of singularities within the workspace. 

Initially, Gosselin and Angeles [3] studied the singularities of a PR using Jacobian matrices obtained from constraint 
equations, and classified them into i) inverse kinematic or Type I singularity, where the robot loses at least one degree 
of freedom (DOF), and ii) Forward Kinematic or Type II singularity, where the PR gains at least one DOF. In 
particular, Type II singularities could be critical because the mobile platform at the singularity is unable to bear the 
external forces despite having all the actuators locked (losing control of the PR motion). Likewise, Park and Kim [4], 
based on a similar Jacobian matrix analysis, classified PR singularities as actuator (analogous to Type I) and end-
effector (equivalent to Type II) singularities. Gregorio and Parenti-Castelli, in [5], subclassified Type II singularities 
using a 3-UPU PR according to the type of DOF gained (rotational or translational). Moreover, Slavutin et al. [6] 
proposed a graphical analysis for a spatial PR using the three-dimensional Kennedy theorem. 

The singularities of a PR, due to the instantaneous change in its DOF, are a problem to avoid. The conventional 
way to detect that a PR undergoes a singular configuration is by evaluating the determinant of the Jacobian matrix. 
When the determinant is zero, the PR is in a singular configuration. The Inverse Jacobian matrix is analyzed for a 
Type I singularity (𝐽𝐽𝐼𝐼) and the Forward Jacobian matrix for a Type II singularity (𝐽𝐽𝐷𝐷). However, the determinant of the 
Jacobian matrix (‖𝐽𝐽‖) does not have physical meaning [7]. Merlet, in [8], proposed alternative ways of detecting 
singularities based on the Jacobian matrix concept: manipulability index, condition number, and global condition 
index. Gallardo et al. [9] calculate a Jacobian Matrix based on Screw Theory and the Principle of Virtual Work to 
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detect singularities on a Schönflies PR. Some of these indices have an unclear physical meaning in some cases and 
have not been applied to actual robots. 

An alternative way to deal with singularities is to design the PRs focusing on optimizing the workspace to avoid 
the singular configuration. Davidson et al. [10] introduced an optimization procedure based on force/motion 
transmission efficiency. Yuan et al. [11] used Screw Theory to define a transmission index between the Transmission 
Wrench Screw (TWS) of the actuators and their Output Twist Screw (OTS) produced in the mobile platform. Chen 
and Angeles [12] established a general transmission index (GTI) considering the TWS as a general transmission 
wrench screw (GTWS). Takeda and Funabashi [13] defined a transmission index that was able to establish how each 
actuator contributes to the motion of the mobile platform; for this purpose, Ref. [13] considered just one actuator as 
active while the others were locked. Subsequently, the transmission index was normalized by Wang et al. [14], dividing 
it by the maximum virtual power of each actuator; the normalized index was named Output Transmission Index (OTI). 
Araujo-Gómez et al. [15] showed that even after optimizing the workspace of a 4 DOF PR, a small percentage of 
singularities still remain inside the workspace of the robot. Therefore, in a lower-mobility PR with a singular 
configuration inside its workspace, it becomes necessary to determine when the PR is near to a singular configuration. 
Hesselbach et al. [16] predicted the proximity of a singularity through online optimization algorithms (based on 
integrated sensors) to minimize robot configurations with zero transmitted power. 

Hunt and Primrose [17], on the other hand, initially indicated that within the workspace free of Type II singularities, 
a solution for the Forward Kinematic problem or assembly mode [18] is unique. Thus, to move from one assembly 
mode (‖𝐽𝐽𝐷𝐷‖ > 0) to another (‖𝐽𝐽𝐷𝐷‖ < 0) it is necessary to undergo a Type II singularity (‖𝐽𝐽𝐷𝐷‖ = 0). Later, Innocenti 
and Parenti-Castelli [19] showed that for PRs, there could be several solutions to the Forward Kinematic problem. 
This introduced the possibility of switching from one assembly mode to another without passing through a Type II 
singularity (‖𝐽𝐽𝐷𝐷‖ does not pass through zero). A very effective way to perform a non-singular assembly change is to 
go through a special Type II singularity called cuspidal point [20]. In [21], based on series expansion, McAree and 
Daniel defined a cuspidal point as a second-order degeneration or a special case of Type II singularity where three 
assembly modes are certain to meet. References [22–24] presented algorithms for trajectory planning avoiding 
singular points. 

Generally, the singularities of a PR are analyzed without modeling manufacturing errors because of their random 
behavior. Dali et al., in [25], showed that the actual position of the mobile platform of a PR has errors caused by 
manufacturing errors in links and joints. Chen et al. [26] model the position error due to joint clearances and input 
uncertainties in different joints of a planar PR. The study verified that, for each position of the planar PR, the effect of 
joint clearances is not deterministic. Binaud et al. [27], emphasized the difficulty of correcting the positioning errors 
due to joint clearances because of their low repeatability. Huang et al. [28] estimate the position error due to 
manufacturing errors using a probabilistic model. Moreover, Ohno and Takeda in [29] used embedded sensors to 
estimate the position error due to clearances.  

A literature search revealed that few studies have analyzed the closeness to a singularity in spatial PRs from an 
experimental perspective. Therefore, the contributions of this study are presented below: 

i) Proposes to use the angle (Ω) between two instantaneous screw axes from the Output Twist Screws (OTSs) as 
an index capable of detecting the proximity to Type II singularities. OTSs were used in [13] as part of the 
design optimization for PRs. The main advantages of the index Ω are physical meaning, sensitivity near a 
singularity and identification of the robot kinematic chains producing the singular configuration.  

ii) Presents an experimental benchmark between the index Ω and ‖𝐽𝐽𝐷𝐷‖ to analyze Type II singularities in an actual 
3UPS+RPU PR. The experiments show that the PR approaches a singular configuration for ‖𝐽𝐽𝐷𝐷‖ different from 
zero, i.e. ‖𝐽𝐽𝐷𝐷‖ identifies a singularity in the vicinity of zero. The experimental benchmark starts measuring the 
position of the mobile platform using a high-precision photogrammetry system. Subsequently, based on the 
measured positions, the values of ‖𝐽𝐽𝐷𝐷‖ and Ω are calculated and used to set the non-zero experimental limits to 
ensure that the actual PR avoids a Type II singularity. The set of trajectories employed to calculate the 
experimental limits relies on typical knee rehabilitation and diagnosis tasks. Finally, to verify that the ‖𝐽𝐽𝐷𝐷‖ and 
Ω limits were correctly established, several trajectories where the ‖𝐽𝐽𝐷𝐷‖ is very close to the limit are executed. 
These verification trajectories also allow to show that the proposed index is more sensitive and effective than 
the ‖𝐽𝐽𝐷𝐷‖ in detecting the proximity of Type II singularities for an actual PR. The proposed benchmark is not 
intended to consider joint clearances model explicitly. However, this experimental protocol can obtain limits 
for ‖𝐽𝐽𝐷𝐷‖ and Ω that are effective in avoiding singular configuration even under manufacturing errors in links 
and joints. The proposed protocol could be applied when developing an actual PR to obtain a safety index for 
avoiding singular configurations.  

iii) Introduces PR configurations where, in simulation, the angle Ω is zero, despite being non-singular or cuspidal 
points. In this special configuration, the actual analyzed PR loses motion control and allows it to undergo from 
one assembly mode to another. Therefore, this paper calls these points assembly changing points (AC points). 
Using simulated and experimental tests, the index Ω shows its capacity to detect AC points that cannot be 
detected using ‖𝐽𝐽𝐷𝐷‖. 
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Section 2 presents a briefly description of the 3UPS+RPU PR, singularities and cuspidal points in PRs, and the 
angle between the OTSs. Section 3 describes the procedure used to determine the ‖𝐽𝐽𝐷𝐷‖ and the indices Ω. The section 
also introduces the expression defining the number of assembly modes for the 3UPS+RPU PR that are used to verify 
the assembly change performance by the actual PR in an AC point. Moreover, it describes the test trajectories used to 
set the experimental limits for the ‖𝐽𝐽𝐷𝐷‖ and the Ω that avoid Type II singularities. Moreover, Section 3 describes the 
verification test to ensure the previously set experimental limits and the trajectories with AC points where the actual 
PR cannot hold external actions. Section 4 presents the test-bed for the experimental benchmark to analyze Type II 
singularities. The obtained results are also shown and discussed in this Section. Finally, in Section 5 the main 
conclusions are presented. 

2. Mathematical foundation 

2.1. 3UPS+RPU parallel robot 

In the 3UPS+RPU PR (see Fig. 1a) the fixed base is linked to the end-effector or mobile platform by means of four 
open kinematic chains or limbs, in which three of them have a UPS configuration and the fourth one has an RPU 
configuration. The letter R stands for revolute joint, P for prismatic joint (actuated in this case, indicated by the 
underlined format), U for universal joint, and S for spherical joint. The 3UPS+RPU robot was designed and built at 
Universitat Politècnica de València. The robot has four DOF: two translational and two rotational. The kinematic 
model of this PR and its optimization was developed in [15,30,31]. 

 

  
(a) 

 
(b) 

Fig. 1. 3UPS+RPU-type PR (a) Simplified representation (b) Mechanical configuration. 

Two reference systems �𝑂𝑂𝑓𝑓 − 𝑋𝑋𝐹𝐹𝑌𝑌𝐹𝐹𝑍𝑍𝐹𝐹� and {𝑂𝑂𝑚𝑚 − 𝑋𝑋𝑀𝑀𝑌𝑌𝑀𝑀𝑍𝑍𝑀𝑀}, see Fig. 1b, are attached to the fixed and mobile 
platforms of the PR, respectively. The location of reference system attached is at the center of the mobile platform as 
this location corresponds to the contact point with the patient’s leg. In contrast, the reference system of the fixed 
platform is established at the center of the platform to reduce model burden and facilitate the measure of the mobile 
platform position. 
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The position of the mobile platform is given by 𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚, 𝑧𝑧𝑚𝑚, with 𝑦𝑦𝑚𝑚 = 0, because the R joint of the central limb 
(4) constrains the movements on the 𝑌𝑌𝐹𝐹  axis. In addition, the U joint linking limb 4 with the mobile platform only 
allows two rotations, one around the 𝑌𝑌𝑀𝑀 axis represented by 𝜃𝜃 and another around the 𝑍𝑍𝑀𝑀 axis, defined by 𝜓𝜓.  

To derive the kinematic model, the Denavit-Hartenberg convention is considered [32]. In Fig. 1b, the universal 
joint in limbs 𝑙𝑙 = 1 … 3 is modeled as two perpendicular revolute joints, 𝑞𝑞𝑙𝑙1 and 𝑞𝑞𝑙𝑙2 being the generalized coordinates. 
The displacement of the prismatic joint corresponds to 𝑞𝑞𝑙𝑙3 and the spherical joints are modelled as three mutually 
orthogonal revolute joints with 𝑞𝑞𝑙𝑙4, 𝑞𝑞𝑙𝑙5 and 𝑞𝑞𝑙𝑙6 as generalized coordinates. For the central limb (limb 4), 𝑞𝑞41 is the 
generalized coordinate corresponding to the revolute joint, its prismatic displacement is modeled by 𝑞𝑞42, and the 
generalized coordinates corresponding to the universal joint are 𝑞𝑞43 and 𝑞𝑞44. The location of the point 𝐴𝐴0 on the fixed 
platform is defined by the radius 𝑅𝑅1 measured from 𝑂𝑂𝑓𝑓 and parallel to 𝑋𝑋𝐹𝐹 axis. The 𝐵𝐵0 is determined using radius the 
𝑅𝑅2 measured from 𝑂𝑂𝑓𝑓, and the angle 𝛽𝛽𝐹𝐹𝐷𝐷 measured counterclockwise from 𝑋𝑋𝐹𝐹 axis. The location of 𝐶𝐶0 is characterized 
by the radius 𝑅𝑅3 and the angle 𝛽𝛽𝐹𝐹𝐼𝐼  measured clockwise from 𝑋𝑋𝐹𝐹 axis. On the mobile platform, the link points to the 
external limbs (𝐴𝐴1, 𝐵𝐵1, 𝐶𝐶1) are defined similarly to 𝐴𝐴0, 𝐵𝐵0, 𝐶𝐶0 by using 𝑅𝑅𝑚𝑚1, 𝑅𝑅𝑚𝑚2, 𝑅𝑅𝑚𝑚3, 𝛽𝛽𝑀𝑀𝐷𝐷 and 𝛽𝛽𝑀𝑀𝐼𝐼 . Regarding limb 
4, the location of 𝐷𝐷0 on the fixed platform is defined by the distance 𝑑𝑑𝑠𝑠 measured from 𝑂𝑂𝑓𝑓. On the mobile platform, 
the limb 4 is connected directly to the origin 𝑂𝑂𝑚𝑚 coordinate system. 

In Table 1, the parameters used for the 3UPS+RPU PR are listed, both for simulation an experimentation. 

Table 1: Parameters for 3UPS+RPU PR. 
𝑹𝑹𝟏𝟏 (𝒎𝒎) 𝑹𝑹𝟐𝟐 (𝒎𝒎) 𝑹𝑹𝟑𝟑 (𝒎𝒎) 𝜷𝜷𝑭𝑭𝑭𝑭 (°) 𝜷𝜷𝑭𝑭𝑭𝑭 (°) 𝒅𝒅𝒔𝒔 (𝒎𝒎) 

0.4 0.4 0.4 90 45 0.15 
𝑹𝑹𝒎𝒎𝟏𝟏 (𝒎𝒎) 𝑹𝑹𝒎𝒎𝟐𝟐 (𝒎𝒎) 𝑹𝑹𝒎𝒎𝟑𝟑 (𝒎𝒎) 𝜷𝜷𝑴𝑴𝑭𝑭 (°) 𝜷𝜷𝑴𝑴𝑭𝑭 (°)  

0.3 0.3 0.3 50 90  

2.2. Singularities 

In a closed kinematic chain robot, a set of constraint equations, Φ���⃗ , defines the relationship between inputs or active 
generalized coordinates, �⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖, and outputs or degrees of freedom (DOF) of the mobile platform (�⃗�𝑋) [3]. 

Φ���⃗ ��⃗�𝑋, �⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖� = 0�⃗  (1) 

Taking time derivatives, the velocity equations for a PR are as follows: 

𝐽𝐽𝐷𝐷�̇⃗�𝑋 + 𝐽𝐽𝐼𝐼�̇⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖 = 0�⃗  (2) 

where 𝐽𝐽𝐷𝐷 is the Forward Jacobian matrix and 𝐽𝐽𝐼𝐼 is the Inverse Jacobian matrix. For a non-redundant PR both matrices 
are 𝐹𝐹𝑥𝑥𝐹𝐹 square matrices, 𝐹𝐹 being the DOF of the mobile platform. 

A Type I singularity occurs when the 𝐽𝐽𝐼𝐼 matrix is rank deficient ‖𝐽𝐽𝐼𝐼‖ = 0. In this case, the mobile platform cannot 
move (�̇⃗�𝑋 = 0) despite having a set of non-zero velocities in the actuators; in other words, at least one DOF is lost. In 
[2] this type of singularity is analyzed in detail. 

A Type II singularity that corresponds to the Forward Kinematic problem is defined by isolating �̇⃗�𝑋 in (2), thereby: 

�̇⃗�𝑋 = −𝐽𝐽𝐷𝐷−1𝐽𝐽𝐼𝐼�̇⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖 (3) 

In this case, the mobile platform can perform some motion, �̇⃗�𝑋 ≠ 0, if an external action is applied to the mobile 
platform, despite any motion in the actuators, �̇⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖 = 0. That is, the mobile platform gains at least one DOF (‖𝐽𝐽𝐷𝐷‖ =
0). Under these conditions, control over the robot is lost, which is potentially dangerous for the user or the robot itself. 
In [33] these types of singularities are analyzed using a 2PRU+1PRR robot. 

A Type II singularly implies first-order degeneration where at least two assembly modes are certain to meet [21]. 
In planar PRs, a Type II singularity where three assembly modes match [21], the terms associated with 𝜕𝜕2Φ���⃗ 𝜕𝜕�⃗�𝑋2⁄  
must satisfy:  

𝜈𝜈3𝑇𝑇 �𝑢𝑢13
𝜕𝜕2Φ1�����⃗

𝜕𝜕�⃗�𝑋2
+ 𝑢𝑢23

𝜕𝜕2Φ2�����⃗

𝜕𝜕�⃗�𝑋2
+ 𝑢𝑢33

𝜕𝜕2Φ3�����⃗

𝜕𝜕�⃗�𝑋2
� 𝜈𝜈3 = 0 (4) 

where 𝑢𝑢13, 𝑢𝑢23, 𝑢𝑢33 are elements of a row vector, and 𝜈𝜈3 is a column vector, both vectors are nonzero and extracted 
from 𝑎𝑎𝑑𝑑𝑎𝑎 �𝜕𝜕Φ

���⃗

𝜕𝜕𝑋𝑋�⃗
�, where 𝑎𝑎𝑑𝑑𝑎𝑎( ) is the adjoint operator.  
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For planar PRs, Type II singularities with second-order degeneration are called cuspidal points because their 
position projects a cusp on the joint plane (Fig. 2). For spatial PRs, due to the higher number of DOF and actuators, 
the representation of these points is not possible, but the name cuspidal has been retained. A cuspidal point is used as 
a pivot in a non-singular assembly mode change because it is a convergence point of the assembly modes, and the PR 
will not undergo a Type II singularity around it. 
 

 
Fig. 2. Cuspidal points and non-singular assembly mode changing. 

2.3. Angle between Output Twist Screws 

In a PR, the motion of the mobile platform is produced by the combined action of several actuators, which renders 
it difficult to identify the individual contribution of each actuator. 

 

  
Fig. 3. Instantaneous power from one actuator. 

Takeda and Funabashi, in [13], proposed to separate the motion of a point of the mobile platform in 𝐹𝐹 OTSs $𝑂𝑂. 
For this purpose 𝐹𝐹 actuators are locked except one (see Fig. 3), i.e. the mobile platform’s movement ($) can be 
expressed as: 

$ = 𝜌𝜌1$�𝑂𝑂1 + 𝜌𝜌2$�𝑂𝑂2 + ⋯+ 𝜌𝜌𝐹𝐹$�𝑂𝑂𝐹𝐹 (5) 

where 𝜌𝜌𝑖𝑖 is the amplitude for each OTS and $�𝑂𝑂𝑖𝑖  is a normalized OTS. 
To determine the F normalized OTSs ($�), the instantaneous power produced by the locked actuators must be 

analyzed, using the expression: 

$�𝑂𝑂𝑖𝑖 ∘ $�𝑇𝑇𝑗𝑗 = 0  (𝑖𝑖, 𝑎𝑎 = 1,2, … ,𝐹𝐹, 𝑖𝑖 ≠ 𝑎𝑎) (6) 

where ∘ stands for the reciprocal product and $�𝑇𝑇𝑗𝑗is the unitary screw of each TWS of the actuators that are considered 
locked. 

Wang et al., in [14], proved that for a non-singular configuration the 𝐹𝐹 $�𝑂𝑂 are linearly independent. Then for a 
singular configuration at least two $�𝑂𝑂 are linearly dependent. Thus, 

$�𝑂𝑂𝑖𝑖 = $�𝑂𝑂𝑗𝑗  (7) 
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with: 

$�𝑂𝑂 = �𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂; 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗ � = �𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂; ℎ𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂 + 𝑟𝑟 × 𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂� (8) 

where 𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂 is the instantaneous screw axis, 𝑟𝑟 is the minimal distance between the moving element and 𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂, and ℎ is 
the screw’s pitch. For a more detailed analysis of Screw Theory the reader may refer to [10]. 

In other words, in a Type II singularity both angular ( 𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂) and linear components (𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗ ) of two $�𝑂𝑂 are equal. As 

𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂 is a unit vector, the equality between two different angular components is defined by the parallelism between 
them. Based on this property, this paper proposes to analyze Type II singularities considering pairs of $�𝑂𝑂. The 
proximity to a Type II singularity is measured by the angle of two 𝜇𝜇𝜔𝜔�����⃗ 𝑂𝑂, named Ω. Moreover, the proximity is verified 

by the equality of 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗ . Considering 𝐹𝐹 $�𝑂𝑂 grouped in pairs, there are �𝐹𝐹2� angles Ω, that is, 

Ω𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜇𝜇𝜔𝜔�����⃗ O𝑖𝑖 ∙ 𝜇𝜇𝜔𝜔�����⃗ O𝑗𝑗�   (𝑖𝑖, 𝑎𝑎 = 1,2, … ,𝐹𝐹, 𝑖𝑖 ≠ 𝑎𝑎) (9) 

where 𝑖𝑖 and 𝑎𝑎 identify the selected $�𝑂𝑂. 
From a theoretical perspective, a PR undergoes a Type II singularity, if and only if ‖𝐽𝐽𝐷𝐷‖ = 0, Ω𝑖𝑖,𝑗𝑗 = 0 and 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑖𝑖

=
𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑗𝑗
. This study considers both components of $�𝑂𝑂, however the analysis is limited to study on the angular component 

between two OTSs.  
As an index Ω𝑖𝑖,𝑗𝑗 is an angular measure, the proximity to a Type II singularity is measured in angular units, unlike 

the ‖𝐽𝐽𝐷𝐷‖. This physical meaning of a Ω𝑖𝑖,𝑗𝑗 allows to identify the chains that cause a Type II singularity. Note that when 
Ω𝑖𝑖,𝑗𝑗 = 0, $�𝑂𝑂𝑖𝑖 and $�𝑂𝑂𝑖𝑖 degenerate in expression (6), implying that the pair of chains 𝑖𝑖, 𝑎𝑎 are responsible for the singular 
configuration. Thus, further action can be taken based on this index, for instance, to develop a strategy for 
reconfiguring the pair of chains responsible for the singular configuration. 

A $�𝑂𝑂𝑖𝑖 was defined by Takeda and Funabashi in [13] to obtain the Output Transmission Indices (OTIs) used for the 
optimal design of PRs. These OTIs are applied in Ref. [34] to classify singularities on a Schönflies PR; however, the 
$�𝑂𝑂 is not analyzed considering each component. Then, a $�𝑂𝑂 has not been used directly in the detection of Type II 
singularities, which means that an angle Ω𝑖𝑖,𝑗𝑗 has not been used for analyzing Type II singularities. Therefore, the first 
contribution of this study is the angle Ω𝑖𝑖,𝑗𝑗 as a proximity detection index for Type II singularities. In the next section 
the indices Ω𝑖𝑖,𝑗𝑗 for the PR under study are developed. 

3. Simulations 

This Section first presents a procedure to obtain the 𝐽𝐽𝐷𝐷 for a 3UPS+RPU PR using the constraint equations. 
Subsequently, each Ω𝑖𝑖,𝑗𝑗 index is defined by analyzing the OTS produced by the four TWSs corresponding to the 
actuators of the robot under study. Later, the equations that define the possible assembly modes for the 3UPS+RPU 
PR are developed. Then, three set of trajectories that are used in simulations to fulfill the three contributions of this 
study are presented, which are: 

• Test Trajectories: Knee rehabilitation trajectories in the PR configuration space, some of which go through 
Type II singular configurations. The trajectories verify that in a Type II singular configuration the ‖𝐽𝐽𝐷𝐷‖ and 
the Ω𝑖𝑖,𝑗𝑗 index are zero and 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑖𝑖

= 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗
𝑗𝑗
, i.e. the proposed Ω𝑖𝑖,𝑗𝑗 index is able to detect the proximity to a Type 

II singularity. In this study, we evaluate all Ω𝑖𝑖,𝑗𝑗; nevertheless, only the angle closest to zero, which is the 
responsible for the singularity, is presented. 

• Verification Trajectories: Trajectories that theoretically do not contain any Type II singular configuration. 
The movements performed have no knee rehabilitation purposes as opposed to those performed in the test 
trajectories. The trajectories start from a configuration with ‖𝐽𝐽𝐷𝐷‖ ≫ 0, and during the trajectories the ‖𝐽𝐽𝐷𝐷‖ 
decreases up to the final position. Based on these trajectories, the analysis of the average rate of change of 
both the ‖𝐽𝐽𝐷𝐷‖ and the Ω𝑖𝑖,𝑗𝑗 index shows that the index proposed decreases faster than the ‖𝐽𝐽𝐷𝐷‖ when the 
3UPS+RPU PR gets closer to a Type II singularity configuration. In other words, a Ω𝑖𝑖,𝑗𝑗 index has more 
sensitivity in the proximity of a Type II singularity. 

• Trajectories with assembly change points: There are trajectories whose end configuration has Ω𝑖𝑖,𝑗𝑗 = 0 and 
‖𝐽𝐽𝐷𝐷‖ ≠ 0. The particular points mentioned cannot be singular or cuspidal, because ‖𝐽𝐽𝐷𝐷‖ ≠ 0 and 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑖𝑖
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑗𝑗
. 

Later on, Section 4.4 shows experimentally that at these points the control of the mobile platform is lost, and 
it experimentally allows a singular or non-singular assembly change (passing from one direct kinematic 
solution to another). PR positions with these characteristics are referred to herein as assembly change points 
(AC points). The simulation of the trajectories with assembly change points shows that the Ω𝑖𝑖,𝑗𝑗 index is able 
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to detect AC points. The possibility of AC points being singular or cuspidal is eliminated using the ‖𝐽𝐽𝐷𝐷‖ and 
the linear term 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗  of the pair 𝑖𝑖, 𝑎𝑎 unitary OTS. 

3.1. Forward Jacobian matrix 

To establish the equations (1), we consider the relationship of the closed chains between the position vector from 
the origin 𝑂𝑂𝑓𝑓 of the fixed reference system to the origin 𝑂𝑂𝑚𝑚 of the moving reference system and the open chains 
formed using the different limbs of the robot. The open chains take 𝑂𝑂𝑓𝑓 and 𝑂𝑂𝑚𝑚 as the starting and end point, 
respectively.  

 

  
(a) (b) 

Fig. 4. 3UPS+RPU robot (a) UPS chain, (b) RPU chain. 

For a UPS chain (Fig. 4a), we have: 

�𝑟𝑟𝒫𝒫0𝒫𝒫1� = �𝑟𝑟𝑂𝑂𝑓𝑓𝑂𝑂𝑚𝑚 + 𝑟𝑟𝑂𝑂𝑚𝑚𝒫𝒫1 − 𝑟𝑟𝑂𝑂𝑓𝑓𝒫𝒫0� (10) 

with 𝒫𝒫 = 𝐴𝐴,𝐵𝐵,𝐶𝐶 for limbs 1, 2 and 3, respectively.  
For an RPU chain (Fig. 4b), we have: 

�𝑟𝑟𝐷𝐷0𝑂𝑂𝑚𝑚� = �𝑟𝑟𝑂𝑂𝑓𝑓𝑂𝑂𝑚𝑚 − 𝑟𝑟𝑂𝑂𝑓𝑓𝐷𝐷0� (11) 

where 𝑟𝑟𝑂𝑂𝑓𝑓𝑂𝑂𝑚𝑚 is the position of the center of the mobile platform with regard to the fixed reference system. 

𝑟𝑟𝑂𝑂𝑓𝑓𝑂𝑂𝑚𝑚 = [𝑥𝑥𝑚𝑚 0 𝑧𝑧𝑚𝑚]𝑇𝑇 (12) 

Vectors 𝑟𝑟𝑂𝑂𝑚𝑚𝒫𝒫1  are determined by the rotation matrix 𝑅𝑅 𝑓𝑓 𝑚𝑚 and the vectors from the origin 𝑂𝑂𝑚𝑚 to each vertex on the 
mobile platform with respect to the moving reference system. 

𝑟𝑟𝑂𝑂𝑚𝑚𝒫𝒫1 = 𝑅𝑅 𝑓𝑓 𝑚𝑚 𝑟𝑟 𝑚𝑚 𝑂𝑂𝑚𝑚𝒫𝒫1  (13) 

where 𝑅𝑅 𝑓𝑓 𝑚𝑚 is the rotation matrix between the moving and fixed reference system. Considering the Euler Y-Z’ angle 
convention with respect to moving axes, then: 

𝑅𝑅 𝑓𝑓 𝑚𝑚  = �
cos 𝜃𝜃 cos𝜓𝜓 − cos𝜃𝜃 sin𝜓𝜓 sin𝜃𝜃

sin𝜓𝜓 cos𝜓𝜓 0
− sin𝜃𝜃 cos𝜓𝜓 sin 𝜃𝜃 sin𝜓𝜓 cos 𝜃𝜃

� (14) 

Developing (10) and (11), the set of constraint equations Φ���⃗ ��⃗�𝑋, �⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖� is defined as: 

𝑞𝑞132 + 𝑎𝑎1C𝜃𝜃C𝜓𝜓 + 2𝑅𝑅𝑚𝑚1C𝜃𝜃C𝜓𝜓𝑥𝑥𝑚𝑚 − 2𝑅𝑅𝑚𝑚1𝑆𝑆𝜃𝜃C𝜓𝜓𝑧𝑧𝑚𝑚 − 2𝑅𝑅1𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑚𝑚2 − 𝑧𝑧𝑚𝑚2 + 𝑎𝑎2 = 0 

𝑞𝑞232 − 𝑏𝑏1C𝜃𝜃𝑆𝑆𝜓𝜓 + 𝑏𝑏2C𝜃𝜃C𝜓𝜓 + 𝑏𝑏3C𝜃𝜃𝑆𝑆𝜓𝜓𝑥𝑥𝑚𝑚 + 𝑏𝑏4𝑆𝑆𝜓𝜓 − 𝑏𝑏3𝑆𝑆𝜃𝜃𝑆𝑆𝜓𝜓𝑧𝑧𝑚𝑚 − 𝑏𝑏5C𝜃𝜃C𝜓𝜓𝑥𝑥𝑚𝑚 + 𝑏𝑏6C𝜓𝜓 + 𝑏𝑏5𝑆𝑆𝜃𝜃C𝜓𝜓𝑧𝑧𝑚𝑚
+ 𝑏𝑏7𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑚𝑚2 − 𝑧𝑧𝑚𝑚2 + 𝑏𝑏8 = 0 

(15) 
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𝑞𝑞332 + 𝑎𝑎1C𝜃𝜃𝑆𝑆𝜓𝜓 + 𝑎𝑎2C𝜃𝜃C𝜓𝜓 − 𝑎𝑎3C𝜃𝜃𝑆𝑆𝜓𝜓𝑥𝑥𝑚𝑚 − 𝑎𝑎4𝑆𝑆𝜓𝜓 − 𝑎𝑎5C𝜃𝜃C𝜓𝜓𝑥𝑥𝑚𝑚 + 𝑎𝑎6𝐶𝐶𝜓𝜓 + 𝑎𝑎3𝑆𝑆𝜃𝜃𝑆𝑆𝜓𝜓𝑧𝑧𝑚𝑚 + 𝑎𝑎5𝑆𝑆𝜃𝜃C𝜓𝜓𝑧𝑧𝑚𝑚 + 𝑎𝑎7𝑥𝑥𝑚𝑚
− 𝑥𝑥𝑚𝑚2 − 𝑧𝑧𝑚𝑚2 + 𝑎𝑎8 = 0 

𝑞𝑞422 − 𝑑𝑑𝑎𝑎2 + 2𝑑𝑑𝑎𝑎𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑚𝑚2 − 𝑧𝑧𝑚𝑚2 = 0 

where: 
C𝜃𝜃 = cos𝜃𝜃 
S𝜃𝜃 = sin𝜃𝜃 
C𝜓𝜓 = cos𝜓𝜓 
S𝜓𝜓 = sin𝜓𝜓 
𝐶𝐶𝐹𝐹𝐷𝐷 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝛽𝛽𝐹𝐹𝐷𝐷) 
S𝐹𝐹𝐷𝐷 = sin(𝛽𝛽𝐹𝐹𝐷𝐷) 
𝐶𝐶𝐹𝐹𝐼𝐼 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝛽𝛽𝐹𝐹𝐼𝐼) 
S𝐹𝐹𝐼𝐼 = sin(𝛽𝛽𝐹𝐹𝐼𝐼) 
𝐶𝐶𝑀𝑀𝐷𝐷 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝛽𝛽𝑀𝑀𝐷𝐷) 
S𝑀𝑀𝐷𝐷 = sin(𝛽𝛽𝑀𝑀𝐷𝐷) 
𝐶𝐶𝑀𝑀𝐼𝐼 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝛽𝛽𝑀𝑀𝐼𝐼) 
S𝑀𝑀𝐼𝐼 = sin(𝛽𝛽𝑀𝑀𝐼𝐼) 

𝑎𝑎1 = 2𝑅𝑅1𝑅𝑅𝑚𝑚1 
𝑎𝑎2 = −𝑅𝑅12 − 𝑅𝑅𝑚𝑚12 
 

𝑏𝑏1 = 2𝑅𝑅2𝑅𝑅𝑚𝑚2C𝐹𝐹𝐷𝐷𝑆𝑆𝑀𝑀𝐷𝐷 
𝑏𝑏2 = 2𝑅𝑅2𝑅𝑅𝑚𝑚2C𝐹𝐹𝐷𝐷𝐶𝐶𝑀𝑀𝐷𝐷 
𝑏𝑏3 = 2𝑅𝑅𝑚𝑚2𝑆𝑆𝑀𝑀𝐷𝐷 
𝑏𝑏4 = 2𝑅𝑅2𝑅𝑅𝑚𝑚2𝑆𝑆𝐹𝐹𝐷𝐷𝐶𝐶𝑀𝑀𝐷𝐷 
𝑏𝑏5 = 2𝑅𝑅𝑚𝑚2𝐶𝐶𝑀𝑀𝐷𝐷 
𝑏𝑏6 = 2𝑅𝑅2𝑅𝑅𝑚𝑚2𝑆𝑆𝐹𝐹𝐷𝐷𝑆𝑆𝑀𝑀𝐷𝐷  
𝑏𝑏7 = 2𝑅𝑅2C𝐹𝐹𝐷𝐷 
𝑏𝑏8 = −𝑅𝑅22 − 𝑅𝑅𝑚𝑚22 
 

𝑎𝑎1 = 2𝑅𝑅3𝑅𝑅𝑚𝑚3C𝐹𝐹𝐼𝐼𝑆𝑆𝑀𝑀𝐼𝐼  
𝑎𝑎2 = 2𝑅𝑅3𝑅𝑅𝑚𝑚3C𝐹𝐹𝐼𝐼𝐶𝐶𝑀𝑀𝐼𝐼 
𝑎𝑎3 = 2𝑅𝑅𝑚𝑚3𝑆𝑆𝑀𝑀𝐼𝐼  
𝑎𝑎4 = 2𝑅𝑅3𝑅𝑅𝑚𝑚3𝑆𝑆𝐹𝐹𝐼𝐼𝐶𝐶𝑀𝑀𝐼𝐼 
𝑎𝑎5 = 2𝑅𝑅𝑚𝑚3𝐶𝐶𝑀𝑀𝐼𝐼 
𝑎𝑎6 = 2𝑅𝑅3𝑅𝑅𝑚𝑚3𝑆𝑆𝐹𝐹𝐼𝐼𝑆𝑆𝑀𝑀𝐼𝐼 
𝑎𝑎7 = 2𝑅𝑅3C𝐹𝐹𝐼𝐼  
𝑎𝑎8 = −𝑅𝑅32 − 𝑅𝑅𝑚𝑚32 

 

 

 
If �⃗�𝑋 = [𝑥𝑥𝑚𝑚 𝑧𝑧𝑚𝑚 𝜃𝜃 𝜓𝜓]𝑇𝑇  and �⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖 = [𝑞𝑞13 𝑞𝑞23 𝑞𝑞33 𝑞𝑞42]𝑇𝑇, the 𝐽𝐽𝐷𝐷 is defined as a 4𝑥𝑥4 matrix: 

𝐽𝐽𝐷𝐷  = �
𝜕𝜕Φ���⃗
𝜕𝜕𝑥𝑥𝑚𝑚

𝜕𝜕Φ���⃗
𝜕𝜕𝑧𝑧𝑚𝑚

𝜕𝜕Φ���⃗
𝜕𝜕𝜃𝜃

𝜕𝜕Φ���⃗
𝜕𝜕𝜓𝜓

� (16) 

3.2. Angle between two Output Twist Screws 

To define every Ω𝑖𝑖,𝑗𝑗 index, it is necessary to establish four $�𝑂𝑂 (𝐹𝐹 = 4) on a point in the mobile platform (see Fig. 
5a). For the sake of simplicity, the analysis considers the origin of the mobile platform 𝑂𝑂𝑚𝑚. The $�𝑇𝑇 corresponding to 
the four actuators are: 

$�𝑇𝑇1 = �
𝑧𝑧12

𝑟𝑟𝑂𝑂𝑚𝑚𝐴𝐴1 × 𝑧𝑧12
� , $�𝑇𝑇2 = �

𝑧𝑧22
𝑟𝑟𝑂𝑂𝑚𝑚𝐵𝐵1 × 𝑧𝑧22

� , $�𝑇𝑇3 = �
𝑧𝑧32

𝑟𝑟𝑂𝑂𝑚𝑚𝐶𝐶1 × 𝑧𝑧32
� , $�𝑇𝑇4 = �𝑧𝑧41

0�⃗
� (17) 

where 𝑧𝑧  is the unit vector in the direction of the force applied by the actuators and 𝑟𝑟 the vector measured from 𝑂𝑂𝑚𝑚 to 
each vertex connecting the mobile platform with the limbs of the PR (see Fig. 5b). 
 

 

 

 

 

(a) (b) 
Fig. 5. Screws of the parallel robot (a) OTS, (b) TWS. 

By replacing (17) in (6), a system of three equations to calculate four $�𝑂𝑂 can be defined. There are several methods 
to solve a reciprocal screw of order 𝐹𝐹, as detailed explained in [35]. In this case, the screw system of 𝐹𝐹 $�𝑂𝑂 is completed 
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based on the geometrical constrains of the 3UPS+RPU PR. Thus, for each $�𝑂𝑂 there are five components (𝜔𝜔𝑂𝑂𝑥𝑥, 𝜔𝜔𝑂𝑂𝑦𝑦, 
𝜔𝜔𝑂𝑂𝑧𝑧, 𝜈𝜈𝑂𝑂𝑥𝑥 and 𝜈𝜈𝑂𝑂𝑧𝑧). Thus, two more equations are needed to complete the system. The component 𝜈𝜈𝑂𝑂𝑦𝑦 = 0 because 
of the physical constraints of the robot in 𝑂𝑂𝑚𝑚, that is the point selected to analyze every $�𝑂𝑂.The fourth equation is 
given by the norm of the instantaneous screw axis 𝜇𝜇𝜔𝜔�����⃗ O, as follows:  

𝜔𝜔𝑂𝑂𝑥𝑥
2 + 𝜔𝜔𝑂𝑂𝑦𝑦

2 + 𝜔𝜔𝑂𝑂𝑧𝑧
2 = 1 (18) 

Now, considering the time derivative of the matrix 𝑅𝑅 𝑓𝑓 𝑚𝑚, the angular velocity of the mobile platform is given by: 

𝜔𝜔��⃗ 𝑚𝑚 = �
𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� = �

sin𝜃𝜃 �̇�𝜓
�̇�𝜃

cos 𝜃𝜃 �̇�𝜓
� (19) 

From (19) a relationship between the components 𝜔𝜔𝑥𝑥 and 𝜔𝜔𝑧𝑧 can be established. For a $�𝑂𝑂 this relationship can be 
written as: 

𝜔𝜔𝑂𝑂𝑥𝑥 =
sin𝜃𝜃
cos 𝜃𝜃

𝜔𝜔𝑂𝑂𝑧𝑧 (20) 

The expression (20) is the fifth equation that completes the no nonlinear system to solve each  $�𝑂𝑂. In this study, 
there are four $�𝑂𝑂; thus, it is possible to combine �4

2�, i.e., six possible Ω𝑖𝑖,𝑗𝑗 indices, that is, 

Ω1,2 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜇𝜇𝜔𝜔�����⃗ O1 ∙ 𝜇𝜇𝜔𝜔�����⃗ O2�  

Ω1,3 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜇𝜇𝜔𝜔�����⃗ O1 ∙ 𝜇𝜇𝜔𝜔�����⃗ O3� 

Ω1,4 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜇𝜇𝜔𝜔�����⃗ O1 ∙ 𝜇𝜇𝜔𝜔�����⃗ O4� 

Ω2,3 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜇𝜇𝜔𝜔�����⃗ O2 ∙ 𝜇𝜇𝜔𝜔�����⃗ O3� 

Ω2,4 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜇𝜇𝜔𝜔�����⃗ O2 ∙ 𝜇𝜇𝜔𝜔�����⃗ O4� 

Ω3,4 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝜇𝜇𝜔𝜔�����⃗ O3 ∙ 𝜇𝜇𝜔𝜔�����⃗ O4� 

(21) 

For the proximity to Type II singularity in the PR under study, the Ω𝑖𝑖,𝑗𝑗 (selected from (21)) that remains close to 
zero is analyzed, and verified by the equation corresponding to the linear components 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗ . 
From a theoretical perspective, in the workspace of the PR under study there are cases where two or three different 

Ω𝑖𝑖,𝑗𝑗 are zero simultaneously. In these particular cases, three and four limbs degenerate the OTS system of the PR with 
‖𝐽𝐽𝐷𝐷‖ less than 10−5. However, they are very difficult to reach experimentally because a singular configuration is 
already met for values higher than 10−5. Thus, they are not included in this paper. 

3.3. Assembly mode equations 

To determine the number of assembly modes of a 3UPS+RPU PR, a polynomial system established from the 
constraint equations must be solved. This could be done using Groebner bases [36], Bézout’s elimination method [37], 
or another multivariate polynomial solving method [38]. Considering the following variable changes: 

𝑥𝑥1 = 𝑥𝑥𝑚𝑚   

𝑥𝑥2 = 𝑧𝑧𝑚𝑚 

 

C𝜃𝜃 =
1 − 𝑥𝑥32

1 + 𝑥𝑥32
 

𝑆𝑆𝜃𝜃 =
2𝑥𝑥3

1 + 𝑥𝑥32
 

C𝜓𝜓 =
1 − 𝑥𝑥42

1 + 𝑥𝑥42
 

𝑆𝑆𝜓𝜓 =
2𝑥𝑥4

1 + 𝑥𝑥42
 

 

After replacing (29) in (15), the polynomial system that defines the solutions of the Forward Kinematic problem 
is: 
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−𝑥𝑥12𝑥𝑥32𝑥𝑥42 − 𝑥𝑥22𝑥𝑥32𝑥𝑥42 + 𝐴𝐴4𝑥𝑥1𝑥𝑥32𝑥𝑥42 − 𝑥𝑥12𝑥𝑥32 − 𝑥𝑥12𝑥𝑥42 − 𝑥𝑥22𝑥𝑥32 − 𝑥𝑥22𝑥𝑥42 − 𝐴𝐴5𝑥𝑥2𝑥𝑥3𝑥𝑥42
+ 𝐴𝐴2𝑥𝑥32𝑥𝑥42 + 𝐴𝐴3𝑥𝑥1𝑥𝑥32 + 𝐴𝐴3𝑥𝑥1𝑥𝑥42 − 𝑥𝑥12 − 𝑥𝑥22 + 𝐴𝐴5𝑥𝑥2𝑥𝑥3 + 𝐴𝐴1𝑥𝑥32 + 𝐴𝐴1𝑥𝑥42 + 𝐴𝐴4𝑥𝑥1
+ 𝐴𝐴2 = 0 

−𝑥𝑥12𝑥𝑥32𝑥𝑥42 − 𝑥𝑥22𝑥𝑥32𝑥𝑥42 + 𝐵𝐵7𝑥𝑥1𝑥𝑥32𝑥𝑥42 − 𝑥𝑥12𝑥𝑥32 − 𝑥𝑥12𝑥𝑥42 − 𝐵𝐵10𝑥𝑥1𝑥𝑥32𝑥𝑥4 − 𝑥𝑥22𝑥𝑥32 − 𝑥𝑥22𝑥𝑥42
− 𝐵𝐵9𝑥𝑥2𝑥𝑥3𝑥𝑥42 + 𝐵𝐵3𝑥𝑥32𝑥𝑥42 + 𝐵𝐵5𝑥𝑥1𝑥𝑥32 + 𝐵𝐵5𝑥𝑥1𝑥𝑥42 − 2𝐵𝐵10𝑥𝑥2𝑥𝑥3𝑥𝑥4 + 𝐵𝐵6𝑥𝑥32𝑥𝑥4 − 𝑥𝑥12
+ 𝐵𝐵10𝑥𝑥1𝑥𝑥4 − 𝑥𝑥22 + 𝐵𝐵9𝑥𝑥2𝑥𝑥3 + 𝐵𝐵1𝑥𝑥32 + 𝐵𝐵2𝑥𝑥42 + 𝐵𝐵7𝑥𝑥1 + 𝐵𝐵8𝑥𝑥4 + 𝐵𝐵4 = 0 

−𝑥𝑥12𝑥𝑥32𝑥𝑥42 − 𝑥𝑥22𝑥𝑥32𝑥𝑥42 + 𝐶𝐶7𝑥𝑥1𝑥𝑥32𝑥𝑥42 − 𝑥𝑥12𝑥𝑥32 − 𝑥𝑥12𝑥𝑥42 − 𝐶𝐶10𝑥𝑥1𝑥𝑥32𝑥𝑥4 − 𝑥𝑥22𝑥𝑥32 − 𝑥𝑥22𝑥𝑥42
− 𝐶𝐶9𝑥𝑥2𝑥𝑥3𝑥𝑥42 + 𝐶𝐶3𝑥𝑥32𝑥𝑥42 + 𝐶𝐶5𝑥𝑥1𝑥𝑥32 + 𝐶𝐶5𝑥𝑥1𝑥𝑥42 − 2𝐶𝐶10𝑥𝑥2𝑥𝑥3𝑥𝑥4 + 𝐶𝐶6𝑥𝑥32𝑥𝑥4 − 𝑥𝑥12
+ 𝐶𝐶10𝑥𝑥1𝑥𝑥4 − 𝑥𝑥22 + 𝐶𝐶9𝑥𝑥2𝑥𝑥3 + 𝐶𝐶1𝑥𝑥32 + 𝐶𝐶2𝑥𝑥42 + 𝐶𝐶7𝑥𝑥1 + 𝐶𝐶8𝑥𝑥4 + 𝐶𝐶4 = 0 

−𝑥𝑥12 − 𝑥𝑥22 + 𝐷𝐷2𝑥𝑥1 + 𝐷𝐷1 = 0 

(22) 

where the coefficients of the polynomial system 𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖 , 𝐶𝐶𝑖𝑖 and 𝐷𝐷𝑖𝑖  are obtained by grouping the geometric terms of the 
robot and its active variables. It is computationally complex to solve the system of equations (22) using Groebner 
bases. However, this system can be solved by choosing a defined configuration of the PR to apply Groebner bases and 
solve it numerically. Subsequently, a maximum of 44 solutions were found for the Forward Kinematic problem. 

3.4. Test trajectories 

The 3UPS+RPU PR was designed to perform human knee rehabilitation and diagnosis, this task requires three 
fundamental movements [39] i) flexion of hip ii) flexion-extension of knee and iii) internal-external rotation knee. 
This study combines these three knee movements and ankle rotation through nine trajectories to analyze the angles 
Ω𝑖𝑖,𝑗𝑗 as indices to detect proximity to Type II singularities. The nine trajectories were designed to make complete use 
of the workspace of the PR under study. Table 2 describes the movement performed by each trajectory in the lower 
limb and their corresponding motions in the PR under study. 

Table 2: Description of test trajectories. 
 Lower limb  PR 
TT1 Complete internal-external knee rotation Rotation around the 𝑍𝑍𝑀𝑀 axis for the interval 𝜓𝜓 =

[0 59]º, with 𝑋𝑋𝐹𝐹 = −0.155m 
TT2 Flexion-extension of knee combined with 

hip flexion, ankle, and knee rotations 
Simultaneous motion of 0.2m on the 𝑋𝑋𝐹𝐹 axis, 0.1m on 
𝑍𝑍𝐹𝐹, while 𝜃𝜃 rotates 15º and 𝜓𝜓 rotates 59º 

TT3 Flexion-extension of knee combined with 
hip flexion, ankle, and knee rotations 

Elliptical motion on the 𝑍𝑍𝐹𝐹 axis as a function of 0.2m 
displacement on the 𝑋𝑋𝐹𝐹 axis, simultaneously turns 4º 
in 𝜃𝜃 and 4º for 𝜓𝜓 

TT4 Flexion-extension of knee combined with 
hip flexion, ankle, and knee rotations 

Elliptical motion on 𝑍𝑍𝐹𝐹 axis as a function of 0.2m 
displacement on the 𝑋𝑋𝐹𝐹 axis, simultaneously rotates 
5º in 𝜃𝜃 and 10º for 𝜓𝜓 

TT5 Partial internal-external knee rotation Rotation around the 𝑍𝑍𝑀𝑀 axis for the interval 𝜓𝜓 =
[0 20]º, with 𝑋𝑋𝐹𝐹 = 0.012m 

TT6 Flexion-extension of knee combined with 
ankle and knee rotations 

Displacement of 0.1m on the 𝑋𝑋𝐹𝐹 axis, while 𝜃𝜃 rotates 
20º and 𝜓𝜓 rotates 10º 

TT7 Flexion-extension of knee combined with 
hip flexion 

Elliptical motion on 𝑍𝑍𝐹𝐹 axis as a function of the 0.1m 
displacement on the 𝑋𝑋𝐹𝐹 axis  

TT8 Flexion-extension of knee combined with 
ankle and knee rotations  

Displacement of 0.16m on 𝑋𝑋𝐹𝐹 axis, while 𝜃𝜃 rotates 20º 
and 𝜓𝜓 rotates 20º 

TT9 Flexion-extension of knee combined with 
ankle and knee rotations 

Displacement of 0.2m on 𝑋𝑋𝐹𝐹 axis, while 𝜃𝜃 rotates 20º 
and 𝜓𝜓 rotates 20º 

 
For every test performed on the 3UPS+RPU PR the Ω3,4 is the closest to zero, providing the most useful information 

in contrast to the others five angles. The simulation of TT1 shows that ‖𝐽𝐽𝐷𝐷‖ does not reach zero. In this trajectory the 
minimum value of the Ω3,4 index (0.0193º) is reached in configuration 81 (see Fig. 7a), where the ‖𝐽𝐽𝐷𝐷‖ has a value of 
0.0143 (Fig. 6a). Section 4.2 shows experimentally that for TT1 the PR loses control on its mobile platform in practice. 
The time between two different configurations is 0.1s for all the trajectories in this study. 

In trajectories TT2-TT4 when the PR undergoes a configuration with ‖𝐽𝐽𝐷𝐷‖ = 0 (see Fig. 6a, Fig. 6b), the Ω3,4 index 
is zero (see Fig. 7a, Fig. 7b). These configurations in TT2, TT3, TT4 are 157, 244 and 233, respectively. Subsequently, 
in the simulations of TT5-TT9 the minimum ‖𝐽𝐽𝐷𝐷‖ (see Fig. 6b, Fig. 6c) is different from zero, as is the Ω3,4 index (see 
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Fig. 7b, Fig. 7c). For TT5-TT9 the configurations mentioned are 191, 150, 335, 150 and 150, respectively. At every 
singular configuration detected by Ω3,4, it is verified that 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
3

= 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗
4
. 

 

 
(a) 

 
(b) 
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(c) 

Fig. 6. ‖𝐽𝐽𝐷𝐷‖ for (a) TT1-TT3, (b) TT4-TT6, (c) TT7-TT9. 

 

 
(a) 
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(b) 

 
(c) 

Fig. 7. Ω3,4 for (a) TT1-TT3, (b) TT4-TT6, (c) TT7-TT9. 

All Ω𝑖𝑖 ,𝑗𝑗 presented in (21) are verified. Nevertheless only Ω3,4 is presented in Fig. 7, as it corresponds to the angle 
closer to the singularity than the others. Thus, in this particular trajectory, the index Ω3,4 is the first to detect the Type 
II singularities. For TT3, Fig. 8 shows that both Ω1,2 and Ω3,4 decrease until they become zero in a Type II singular 
configuration and Ω3,4 is closer to zero. In configuration 244 the ‖𝐽𝐽𝐷𝐷‖ = Ω1,2 = Ω3,4 = 0 and verifies that 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
1

=
𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
3

= 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗
4
. According to these simulation results, we can establish that the Ω𝑖𝑖,𝑗𝑗 closest to zero is the most suitable 

for detecting the proximity to Type II singularities, even though any Ω𝑖𝑖,𝑗𝑗 can detect a Type II singularity. It is important 
to mention that the index Ω𝑖𝑖,𝑗𝑗 and vectors 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑖𝑖
, 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑗𝑗
 are based on the linearly independent property between the $�𝑂𝑂 

previously demonstrated by Wang et al. [14]. 
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Fig. 8. Two different Ω𝑖𝑖,𝑗𝑗 indices for TT3 

3.5. Verification trajectories 

The verification trajectories differ from knee movements and have the feature of starting with ‖𝐽𝐽𝐷𝐷‖ ≫ 0, i.e. a non-
singular configuration, and during the trajectories the ‖𝐽𝐽𝐷𝐷‖ decreases up to the final position. The description of the 
movements of the three trajectories is shown in Table 3.  

Table 3: Description of verification trajectories. 
VT1 Independent linear motions to reach 𝑋𝑋𝐹𝐹 = 0.2174m, 𝑍𝑍𝐹𝐹 = 0.7052m, 𝜃𝜃 = 27.74º and 𝜓𝜓 = 14º 
VT2 Independent linear motions to reach 𝑋𝑋𝐹𝐹 = 0.087m, 𝑍𝑍𝐹𝐹 = 0.705m, 𝜃𝜃 = −3.93º and 𝜓𝜓 = 3.38º 
VT3 Independent linear motions to reach 𝑋𝑋𝐹𝐹 = 0.088m, 𝑍𝑍𝐹𝐹 = 0.724m, 𝜃𝜃 = 6.39º and 𝜓𝜓 = 15.66º 

 
The decreasing behavior of the verification trajectories for the ‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index are shown in Fig. 9a and 

Fig. 9b, respectively.  
 

 
(a) 
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(b) 

Fig. 9. Verification trajectories (a) ‖𝐽𝐽𝐷𝐷‖, (b) Ω3,4. 

In this Section, the verification trajectories are used to analyze the sensitivity of the ‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index in the 
proximities of a Type II singularity. For this purpose, the average rate of change of both indices will be analyzed. 
However, the ‖𝐽𝐽𝐷𝐷‖ and Ω3,4 have different dimensions, so it is necessary to normalize the ‖𝐽𝐽𝐷𝐷‖ and Ω3,4 by dividing 
them by their respective maximum value. The normalized indices are represented by ‖𝐽𝐽𝐷𝐷‖𝑖𝑖 and Ω3,4𝑖𝑖, respectively. 
For the verification trajectories, the rate of change of ‖𝐽𝐽𝐷𝐷‖𝑖𝑖 and Ω3,4𝑖𝑖 considering the initial values as the maximum 
can be written as: 

𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟 𝑎𝑎𝑜𝑜 𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟 =
𝑑𝑑‖𝐽𝐽𝐷𝐷‖𝑖𝑖
𝑑𝑑𝑟𝑟

=
𝑑𝑑Ω3,4𝑖𝑖
𝑑𝑑𝑟𝑟

 (23) 

Fig. 10 shows the rate of change for each verification trajectory for the ‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index. In this figure, the 
‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index are represented by a continuous and dashed line, respectively. Fig. 10a and Fig. 10c show that 
the Ω3,4 index decreases 0.1 % 𝑎𝑎�  faster than the ‖𝐽𝐽𝐷𝐷‖. In Fig. 10b the Ω3,4 index decreases 0.05 % 𝑎𝑎�  faster than the 
‖𝐽𝐽𝐷𝐷‖. Both cases allow us to assume that the Ω3,4 index, which is the closest to zero, is more sensitive in the proximity 
of a Type II singularity than the ‖𝐽𝐽𝐷𝐷‖. In Section 4.3 this fact is also verified experimentally. 
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(a) 

 
(b) 
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(c) 

Fig. 10. Comparison of rate of change between ‖𝐽𝐽𝐷𝐷‖ and Ω (a) VT1, (b) VT2, (c) VT3. 

3.6. Trajectories with assembly change points (AC points) 

The trajectories presented in this Section have a final configuration with the Ω3,4 index equal to zero; however, 
‖𝐽𝐽𝐷𝐷‖ is greater than zero and 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
3
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
4
. Table 4 provides a brief description of the movements performed in each 

trajectory. 

Table 4: Description of assembly change trajectories. 
ACT1 Independent linear motions to reach 𝑋𝑋𝐹𝐹 = 0.016m, 𝑍𝑍𝐹𝐹 = 0.7076m, 𝜃𝜃 = −14.67º and 𝜓𝜓 = 20º 
ACT2 Independent linear motions to reach 𝑋𝑋𝐹𝐹 = −0.1m, 𝑍𝑍𝐹𝐹 = 0.75m, 𝜃𝜃 = −15º and 𝜓𝜓 = 0º 
ACT3 Independent linear motions to reach 𝑋𝑋𝐹𝐹 = −0.144m, 𝑍𝑍𝐹𝐹 = 0.7047m, 𝜃𝜃 = 7.78º and 𝜓𝜓 = 16.8º 

 
From definition (7) and the assumptions presented in Section 3.4, any Ω𝑖𝑖,𝑗𝑗 index is expected to be zero only when 

a Type II singularity is present. However, after applying the Ω3,4 index to points in the PR’s workspace, configurations 
were found with ‖𝐽𝐽𝐷𝐷‖ ≠ 0, 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
3
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
4
 and Ω3,4 = 0. Having a ‖𝐽𝐽𝐷𝐷‖ ≠ 0 and 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
3
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
4
, these configurations 

cannot be considered as Type II singularities or cusp points. With 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗
𝑖𝑖
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑗𝑗
 and Ω𝑖𝑖,𝑗𝑗 = 0 a partial degeneration of 

two $�𝑂𝑂 is detected. Under these conditions the PR could lose control of at least one DOF because two actuators are 
contributing to the angular motion of the PR in the same direction. 

The simulations of ACT1 and ACT2 show the final configuration with the ‖𝐽𝐽𝐷𝐷‖ higher than zero (Fig. 11a) and the 
Ω3,4 index equal to zero (Fig. 11b). At the same configurations 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
3
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
4
, this result verifies that they are AC 

points. Moreover, Fig. 11 shows the advantage of Ω3,4 index, compared to the use of ‖𝐽𝐽𝐷𝐷‖, in AC points detection. 
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(a) 

 
(b) 

Fig. 11. Assembly change trajectories (a) ‖𝐽𝐽𝐷𝐷‖ and (b) Ω3,4. 

In ATC3 the final configuration has the ‖𝐽𝐽𝐷𝐷‖ greater than zero (Fig. 11a) and the Ω index equal to 1.89º (Fig. 11b). 
In simulation, this final point is not an AC point, but in Subsection 4.4 the actual PR reaches an AC point, allowing 
an assembly change to be performed. 
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4. Experimental Results 

At the beginning of this Section, the required experimental methodology is described. The experimental 
methodology focuses on the actual 3UPS+RPU PR, its unit control, and the high-precision photogrammetry system 
(5 tenths of a millimeter). 

Subsequently, the three set of trajectories previously described in Section 3 are performed. The performance of the 
trajectories has specific objectives that aim to fulfill the three contributions of this study in the following ways: 

• Test Trajectories: First, it is verified that a Type II singularity is presented with values of ‖𝐽𝐽𝐷𝐷‖ ≈ 0. Next, it 
allows the experimental benchmark to be established between the ‖𝐽𝐽𝐷𝐷‖ and the Ω𝑖𝑖 ,𝑗𝑗 index. Finally, the 
experimental benchmark established is applied to set limits for both ‖𝐽𝐽𝐷𝐷‖ and Ω𝑖𝑖,𝑗𝑗 that avoid the actual robot 
reaching a Type II singularity. 

• Verification Trajectories: It is confirmed that the experimental limits for both ‖𝐽𝐽𝐷𝐷‖ and the Ω𝑖𝑖,𝑗𝑗 index make it 
possible to avoid the Type II singular zone. Moreover, these trajectories show that the Ω𝑖𝑖,𝑗𝑗 index decreases 
faster than ‖𝐽𝐽𝐷𝐷‖ in the proximities of a Type II singularity. 

• Trajectories with assembly change points: First, it is shown that in the AC points at the end of these trajectories 
the actual PR loses control of the mobile platform’s movements. Subsequently, an external force is applied to 
the mobile platform while the actual PR is at the AC point. The external force makes the actual PR move to 
another configuration without moving the actuators’ position. Finally, this uncontrolled movement is 
compared with the singular and non-singular assembly change.  

4.1. Experimental methodology 

In this section, the trajectories established in Subsections 3.4 - 3.6 are performed on the actual 3UPS+RPU PR. 
The reference trajectories (�⃗�𝑋𝑟𝑟𝑟𝑟𝑓𝑓) are transformed to the space of generalized active coordinates �⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖 by solving the 
Inverse kinematics problem (see Fig. 12a). These �⃗�𝑞𝑖𝑖𝑖𝑖𝑖𝑖 trajectories are used as a reference for the robot control unit. 
This control unit is embedded in a high-performance industrial PC. It is equipped with data acquisition cards for 
reading the encoders’ signal and supplying the control actions for the PR actuators (active generalized coordinates 
𝑞𝑞13, 𝑞𝑞23, 𝑞𝑞33 and 𝑞𝑞42). Next, the measure of the position and orientation of the mobile platform (�⃗�𝑋𝑚𝑚𝑟𝑟𝑖𝑖′ ) is smoothed 
before being analyzed. Signal smoothing is performed in order to i) reduce the noise on the measurements and ii) 
adjust the sampling time from 8.3ms to 0.1s. The signal smoothing uses the Loess algorithm by Cleveland [40]. After 
performing a trajectory, the reference �⃗�𝑋𝑟𝑟𝑟𝑟𝑓𝑓  and the filtered position and orientation of the mobile platform (�⃗�𝑋𝑚𝑚𝑟𝑟𝑖𝑖 ) are 
stored. The experimental analysis of singularities uses �⃗�𝑋𝑟𝑟𝑟𝑟𝑓𝑓  and �⃗�𝑋𝑚𝑚𝑟𝑟𝑖𝑖  to calculated the ‖𝐽𝐽𝐷𝐷‖ and Ω𝑖𝑖 ,𝑗𝑗 and finally 
compare the reference and measured results. 

 

 
(a) 
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(b) 

Fig. 12. Experimentation (a) diagram (b) equipment. 

A critical element in the experimental study is the precise measurement of the position and orientation of the mobile 
platform (�⃗�𝑋). For this purpose, an OptiTrack® photogrammetry system consisting of 10 infrared cameras is used (Fig. 
12b). This photogrammetry system has been selected due to the following advantages. i) easy calibration of cameras 
that provides an accuracy of 0.5 mm. ii) sample time of 8.3 ms compatible with the controller sample time of 10 ms. 
iii) rigid body recognition with minimum modification of their dynamic properties. A rigid body is defined by plastic 
spheres (infrared markers) and iv) TCP/IP Communication protocol with .NET technology, compatible with several 
software applications such as Matlab and LabVIEW. 

4.2. Test trajectories 

When executing the trajectories of Table 2 on the actual PR, the trajectory TT1 was stopped in configuration 89 
because of the loss of control of the mobile platform. Trajectory TT1 is theoretically non-singular. In configuration 
89, where control of the PR is lost, ‖𝐽𝐽𝐷𝐷‖ is equal to 0.0148 (Fig. 13a), but not zero. In TT2, TT3, TT4 and TT5 control 
of the PR is lost in configurations 150, 226, 166, and 191, respectively. In those configurations the value of the ‖𝐽𝐽𝐷𝐷‖ 
is greater than zero (see Fig. 13a and Fig. 13b).  

It was verified that the actual 3UPS+RPU PR had all its components correctly assembled and fixed, ruling out 
failures of this type. At the non-singular starting point of TT1, clearances at the actual PR joints were visually verified 
(on the mobile platform). The clearances were mainly presented at the spherical joints. Note that the spherical joints 
were fabricated by the authors, using an iron sphere and a nylon circular case. The photogrammetry system allows us 
to measure a maximum displacement of 2 mm and a maximum rotation of 2.5º from the origin of the mobile platform 
with the actuators locked. Using this experimental analysis, a direct relation between joint clearances and singularities 
cannot be established. However, the photogrammetry measurements implicitly consider manufacturing errors such as 
joint clearances. Moreover, the measurements allow to verify experimentally that a Type II singularity occurs in the 
vicinity of ‖𝐽𝐽𝐷𝐷‖ = 0. Fig. 14a and Fig. 14b show the same results for the values of the Ω3,4 index. 

In the case of TT6-TT9, the trajectories are performed easily. The values reached by the actual PR for the ‖𝐽𝐽𝐷𝐷‖ in 
each configuration are presented in Fig. 13b and Fig. 13c. The behavior of the Ω3,4 index in each configuration is 
presented in Fig. 14b and Fig. 14c. The figures related to the ‖𝐽𝐽𝐷𝐷‖ show the difficulty of knowing how far the actual 
PR is from the Type II singularity due to its dimensionless nature. On the other hand, the figures of the Ω3,4 index, 
due to their physical meaning, allow us to interpret the proximity to a Type II singularity. In addition, Fig. 14a, Fig. 
14b and Fig. 14c show that the proposed index is able to identify that the Type II singularities are produced by the 
actuators on limbs three and four. For trajectories TT6-TT9 the minimum values for ‖𝐽𝐽𝐷𝐷‖ and Ω3,4 are presented in 
Fig. 13c and Fig. 14c respectively. 
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(a) 

 
(b) 
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(c) 

Fig. 13. Results of ‖𝐽𝐽𝐷𝐷‖ for (a) TT1-TT3, (b) TT4-TT6, (c) TT7-TT9. 

 
(a) 
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(b) 

 
(c) 

Fig. 14. Results of Ω3,4 for (a) TT1-TT3, (b) TT4-TT6, (c) TT7-TT9. 

To ensure proper detection of a Type II singularity in an actual PR, this study proposes the experimental benchmark 
shown in Fig. 15. First, based on the task, the fundamental trajectories of the PR under study are selected. 
Subsequently, several trajectories similar to the fundamental trajectories are generated to make complete use of the 
workspace, especially near to theoretical Type II singularities. The number of test trajectories is represented by 𝑎𝑎𝑇𝑇𝑇𝑇. 
Then, each test trajectory is executed on the actual PR to measure the minimum values reached for the index under 
analysis (𝜄𝜄𝑎𝑎). In a singular trajectory the minimum value is the value reached before losing the control of the PR. The 
experimental limit (𝑙𝑙𝑖𝑖𝑙𝑙𝑟𝑟) for the 𝜄𝜄𝑎𝑎 is calculated as the average of the minimum values reached in the test trajectories. 
Finally, a new set of trajectories is developed to verify that the experimental limit can detect the proximity to a singular 
configuration. The number of these verification trajectories has to be at least 30% of the 𝑎𝑎𝑇𝑇𝑇𝑇 and the final point has 
to be next to the experimental limit of 𝜄𝜄𝑎𝑎. If min(𝜄𝜄𝑎𝑎) ≥ 𝑙𝑙𝑖𝑖𝑙𝑙𝑟𝑟 in the execution of the verification trajectories does not 
cause control problems, the process is finished. Otherwise, it is necessary to modify the criteria to generate the test 
trajectories, according to the PR application. As mentioned above, the aim of the PR under study is knee and diagnosis 
rehabilitation, where three fundamental trajectories are the major tasks performed. After modifying these fundamental 
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trajectories, 𝑎𝑎𝑇𝑇𝑇𝑇 = 9 test trajectories were designed (TT1-TT9). Thus, three verification trajectories (VT1-VT3) were 
required in this study. For the 3UPS+RPU PR the 𝜄𝜄𝑎𝑎 was the ‖𝐽𝐽𝐷𝐷‖ or the Ω𝑖𝑖,𝑗𝑗. 

 

   
Fig. 15. Experimental benchmark flowchart. 

The data used to set the experimental limits for the ‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index for the PR under study is shown in 
Table 5. The theoretical minimum values are included in this table to contrast them with the measurements on the 
actual PR.  

Table 5: Results of minimum ‖𝐽𝐽𝐷𝐷‖ and Ω3,4 for test trajectories. 
 ‖𝑱𝑱𝑭𝑭‖𝒎𝒎𝒎𝒎𝒎𝒎 (unitless) 𝛀𝛀𝒎𝒎𝒎𝒎𝒎𝒎 (º) Execution  Theoretical Measured Theoretical Measured 

TT1 0.0041 0.0041 0.0193 0.0000 It stops at sample 89 
TT2 -0.0213 0.0113 0.0000 1.0508 It stops at sample 150 
TT3 -0.0094 0.0109 0.0011 0.9470 It stops at sample 226 
TT4 -0.0106 0.0152 0.0000 1.9782 It stops at sample 166 
TT5 0.0143 0.0163 0.8077 1.1556 It stops at sample 191 
TT6 0.0227 0.0195 2.7428 2.6781 Complete  
TT7 0.0229 0.0207 3.5220 3.1103 Complete 
TT8 0.0227 0.0217 2.7428 2.6425 Complete 
TT9 0.0194 0.0166 2.9023 2.5478 Complete 

Average  0.0151  1.7900  
 

Based on Table 4, the experimental limits for ‖𝐽𝐽𝐷𝐷‖ and Ω3,4 are obtained through averaging the minimal values 
reached in the singular and non-singular trajectories. The limit for the ‖𝐽𝐽𝐷𝐷‖ results in 0.015, this value is approximated 
to thousandths of a unit, as the ‖𝐽𝐽𝐷𝐷‖ has dimensionless values between [0 1]. For the case of the Ω3,4 index the limit 
is set to 1.80º. In this case, the analysis in thousandths does not represent an advantage because it is a physical 
magnitude with a range between [0 180]. Then, the approximation of the limit value for the Ω3,4 index is limited to 
hundredths of a degree. 

The proposed benchmark (Fig. 15) represents the second contribution of this paper, it can be applied based on ‖𝐽𝐽𝐷𝐷‖ 
or Ω𝑖𝑖,𝑗𝑗 as both of them decrease in the proximity of a Type II singularity. The proposed benchmark can be applied to 
another PR by modifying the set of trajectories based on the requirements of the new PR application. The set of test 
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trajectories must be carefully selected because they directly affect the experimental limit of Ω𝑖𝑖,𝑗𝑗. For the PR under 
study by using only nine singular and non-singular trajectories ensures enough accuracy for the specific knee 
rehabilitation application.  

4.3. Verification trajectories 

After performing trajectory VT1, the mobile platform does not lose control of its motions throughout the test. Fig. 
16a and Fig. 16b show the values of the ‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index, respectively. In trajectory VT1 the minimum value 
of the ‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index are higher than the limits established in the previous Section (see Table 6). In the final 
configuration of trajectory VT2 the values of the ‖𝐽𝐽𝐷𝐷‖ and Ω3,4 index are below the established limits (see Fig. 16a 
and Fig. 16b, respectively). At the end of VT2 an external force is applied, so the parallel robot cannot maintain its 
position (Type II singularity). VT1 and VT2 confirm that the experimental limits for the ‖𝐽𝐽𝐷𝐷‖ and Ω index were 
correctly established. The data of the ‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index for both the theoretical and experimental part of the 
verification trajectories are depicted in Table 6. 

Table 6: Results of verification trajectories. 
 ‖𝑱𝑱𝑭𝑭‖𝒎𝒎𝒎𝒎𝒎𝒎 (su) 𝛀𝛀𝒎𝒎𝒎𝒎𝒎𝒎 (º) 
 Theoretical Measured Theoretical Measured 

VT1 0.0194 0.0166 2.90 2.54 
VT2 0.0137 0.0140 1.44 1.59 
VT3 0.0145 0.0174 0.73 1.29 

 
Finally, trajectory VT3 is performed easily, where the final configuration has the ‖𝐽𝐽𝐷𝐷‖ greater than the experimental 

limit. However, for the same configuration the Ω3,4 index is less than the experimental value set (see Table 6). It will 
be explained in detail in the next Subsection.  

 

 
(a) 
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(b) 

Fig. 16. Results of verification trajectories (a) ‖𝐽𝐽𝐷𝐷‖, (b) Ω3,4. 

Fig. 17a, Fig. 17b and Fig. 17c show the rate of change between the ‖𝐽𝐽𝐷𝐷‖ and the Ω3,4 index for the execution of 
trajectories VT1, VT2 and VT3, respectively. Fig. 17 shows that the Ω3,4 index has an increase in the rate of change 
of at least 0.05 % 𝑎𝑎� . The actual data presented confirm that the Ω3,4 index decreases faster as it gets closer to a Type 
II singularity. This verifies experimentally that the Ω3,4 index has greater sensitivity in the detection of Type II 
singularity proximity. 

 

 
(a) 



27 Pulloquinga J. L., Mata V., Valera A., Zamora-Ortiz P., Díaz-Rodríguez M., Zambrano I./ Mechanism and Machine Theory 

 
(b) 

 
(c) 

Fig. 17. Results for change velocity of ‖𝐽𝐽𝐷𝐷‖ and Ω3,4 for (a) VT1, (b) VT2, (c) VT3. 

4.4. Trajectories with AC points 

In the end configuration of trajectory VT3, the actual PR is not able to keep its position while an external force is 
applied to the mobile platform. In this configuration the ‖𝐽𝐽𝐷𝐷‖ calculated (Fig. 16a) is greater than the experimental 
limit but the Ω3,4 index is below the experimental limit (Fig. 16b). There is a partial degeneration of a pair of $�𝑂𝑂. In 
this Section, three trajectories executed on the actual PR with the same characteristic in the final configuration are 
analyzed. 

Fig. 18a and Fig. 18b show the initial and final values reached by the ‖𝐽𝐽𝐷𝐷‖ and Ω3,4 respectively, during the 
application of the external force. Note that in the trajectory shown in Fig. 18 the condition 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
3
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
4
 is verified. 
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(a) 

 
(b) 

Fig. 18. Assembly change performed at the end of ATC1 (a) ‖𝐽𝐽𝐷𝐷‖ and (b) Ω3,4.  

Based on the final configuration reached by the actual PR in ACT1, the Forward Kinematic problem is solved using 
the expression (22) from Subsection 3.3. It determines 44 possible positions in which the 3UPS+RPU PR can 
theoretically be assembled, 8 of which are real and the others are imaginary. From the 8 real possible assembly modes, 
the solutions with negative robot heights (𝑧𝑧𝑚𝑚) are eliminated, leaving 3 theoretical assembly modes (Fig. 19).  
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Fig. 19. ATC1 real assembly modes. 

Fig. 19 shows that the ‖𝐽𝐽𝐷𝐷‖ at the initial and final points reached by the actual PR in Fig. 18a match assembly mode 
1 and assembly mode 2. This verifies the existence of a singular assembly change in the AC point reached at the end 
of ACT1. The final configuration of trajectory ATC2 has a similar behavior to that previously analyzed. In the final 
configuration of ACT2 there are 8 real assembly modes that can be reached, and 4 of them can actually be assembled. 
In ACT2 a singular assembly change was performed by the actual PR when the external force was applied. 

Finally, for the AC point at the end of ATC3, 4 real assembly modes can be achieved, two of which are feasible. 
Fig. 20 shows the non-singular assembly change performed by applying an external force to the mobile platform.  

 
Fig. 20. ‖𝐽𝐽𝐷𝐷‖ for assembly change in ATC3, with assembly modes reached. 

The final configuration of ACT1-ACT3 cannot be considered a Type II singularity. This is because the ‖𝐽𝐽𝐷𝐷‖ has a 
value greater than the experimental limit and the theoretical condition of ‖𝐽𝐽𝐷𝐷‖ = 0 and 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
3
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
4
 is not suitable. 

However, the Ω3,4 index has a value below the established limit for a Type II singularity. The previous experimental 
observation allows us to state that, in fact, when a partial degeneration in a pair of $�𝑂𝑂 occurs, the actual robot loses 
the control capacity of at least one DOF. A configuration under this condition is not necessarily a Type II singularity 
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or a cuspidal point. Nevertheless, the behavior for practical purposes is equivalent, due to loss of control of the mobile 
platform.  

The proposed indices could identify a novel non-singular configuration where an actual robot loses control of the 
end effector. These configurations are the third contribution of this paper. These non-singular configuration are named 
AC points because of the assembly change performed by the actual 3UPS+RPU PR. It is necessary to highlight the 
capability of a Ω𝑖𝑖 ,𝑗𝑗 index to detect this type of points, both analytically and experimentally, something that cannot be 
done by ‖𝐽𝐽𝐷𝐷‖. 

5. Conclusions 

From the results obtained in this study, it can be concluded that: 
The proposed index Ω𝑖𝑖,𝑗𝑗, as a detection index for proximity to Type II singularities, has a physical meaning and a 

higher sensitivity near singularities. The higher sensitivity of the proposed index was verified from an analytical and 
experimental perspective in contrast to ‖𝐽𝐽𝐷𝐷‖. Moreover, the proposed index based on the angle between two 
instantaneous screw axes from the Output Twist Screws (OTSs) is capable of identifying the pair of active components 
causing the Type II singularity. In other words, the Ω𝑖𝑖,𝑗𝑗 index detects when two actuators are contributing to the motion 
of the mobile platform on a same $�𝑂𝑂𝑖𝑖, with 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑖𝑖

= 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗
𝑗𝑗
.  

The linear component 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂
∗  of two different $�𝑂𝑂 in Type II singularities are equal, and in this study it is used only to 

verify Type II singularities. However, a partial degeneration has not been developed for this component; thus, further 
studies are required. 

An experimental setup that uses a photogrammetry system in conjunction with an industrial computer-based control 
system to measure the position of the actual 3UPS+RPU PR was presented. The experimental setup allows to show, 
for the first time, that an actual Type II singularity occurs for ‖𝐽𝐽𝐷𝐷‖ > 0 and Ω𝑖𝑖,𝑗𝑗 > 0. Based on the experiments, a 
benchmark has been developed to analyze Type II singularities. The proposed experimental benchmark uses 
trajectories that progressively move away from a Type II singularity to establish the limit value of the ‖𝐽𝐽𝐷𝐷‖ or the Ω𝑖𝑖,𝑗𝑗 
index. The experimental limits guarantee that the actual PR does not reach a singularity and avoids the need to model 
the error produced by clearances in the PR joints. This study was not intended to establish a direct relation between 
Type II singularities and manufacturing errors such as joint clearances. The research was focused on developing an 
experimental approach to establish the limits of ‖𝐽𝐽𝐷𝐷‖ or Ω𝑖𝑖,𝑗𝑗 to determine singular configuration on an actual PR. The 
experimental benchmark proposed in this paper can be applied to other types of PRs changing only the set of 
trajectories according to the application of the PR. The experimental limits of the ‖𝐽𝐽𝐷𝐷‖ and the Ω𝑖𝑖,𝑗𝑗 index can be 
applied to optimization processes in the design of a PR or in trajectory planning. 

The proposed index Ω𝑖𝑖,𝑗𝑗 renders it possible to identify novel configurations of the robot where two angular motions 
(𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑖𝑖
≠ 𝜇𝜇𝑣𝑣����⃗ 𝑂𝑂

∗
𝑗𝑗
) produced by a pair of actuators are aligned with ‖𝐽𝐽𝐷𝐷‖ ≠ 0. This particular configuration cannot be 

considered a Type II singularity, much less a cuspidal point. Through the experiments, it was verified that the actual 
PR loses control of its final effector when it reaches these particular configurations. In this configuration, the actual 
PR undergoes from one assembly mode to another, by the application of an external force. For this reason, we named 
the particular configurations as assembly change points or AC points. It is important to analyze and identify these 
points because of the loss of control of at least one degree of freedom of the PR presented at these points. In an AC 
point the behavior of the actual PR is analogous to a Type II singularity, which can be dangerous for the user or the 
robot itself. Moreover, it is important to mention that the behavior shown by AC points were proven just for a 
3UPS+RPU PR assembled according to Table 1, and thus, further studies are required.  

The developed experimental analysis for detecting Type II singularities has two limitations. First, the Ω𝑖𝑖,𝑗𝑗 index 
has been tested only in a limited PR with 4-DOF. Second, the generalization of the experimental benchmark has to be 
further verified by implementing the indices on a different parallel robot.  

The 3UPS+RPU PR used in this study is being developed for knee rehabilitation. In this regard, the main 
contribution of this paper is that this index can be implemented for trajectory planning and design of an advanced 
controller, focusing on avoiding Type II singularities. Therefore, the experimental limits established for ‖𝐽𝐽𝐷𝐷‖ will be 
used to optimize the design of the 3UPS+RPU PR. Moreover, the proposed Ω𝑖𝑖,𝑗𝑗 index will be applied to an in-depth 
study about the peculiar behavior of AC points in several assembly configuration. This study will focus on the partial 
degeneration of the angular component of an OTS.  
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