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Abstract—A fundamental problem in fog computing networks
is how to schedule the deadline-aware offloaded tasks that
directly arrive from the end-users and via other fog nodes.
The computational resource allocation becomes more challenging
when the tasks demand different delay-deadlines. In this letter, we
aim to propose a scheduling strategy to maximize the number
of the completed tasks within their respective deadlines while
making the network strongly stable. We exploit Lyapunov drift-
plus-penalty function on the queue length to schedule the tasks
in the queues. Subsequently, the scheduling policy decides the
amount of task to be offloaded to the underloaded fog nodes to
fully utilize the computational resources offered by all fog nodes
in the network. Our simulation results reveal that the proposed
strategy outperforms the baseline schemes, especially when those
tasks have distinct delay-deadlines.

I. INTRODUCTION

Due to the proliferation of latency-sensitive services, the
resource (e.g., computation, storage, and energy) constrained
end-users seek additional resources from the fog/edge com-
puting layers that reside near the network edge. It is expected
that the offloaded tasks can be executed within their respective
delay-deadlines to obtain the results [1]–[3]. However, at
the same time, considering the offloaded tasks with different
delay-deadlines from the multiple end-users, it becomes a
challenging issue: how to allocate resources to the high-
priority task. In several cases, offloading to either other fog
nodes or the remote cloud can be another way to serve the
resource-hungry tasks, however, several downsides cannot be
ignored for these delay-bounded task processing. For example,
on the one hand, the transmission delay dominates in the total
delay when the tasks are offloaded to the cloud. On the other
hand, the delay of computation offloading horizontally among
fog nodes1 has a significant impact on the task completion
when the fog nodes collaborate for task processing [2], [4]. In
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addition, when the tasks are offloaded from one fog node to
the other fog nodes, it creates a burden on these fog nodes [5].
The main reason is that the fog node comprises of the limited
computational resources to process the latency-sensitive tasks,
ignoring the scenario when the tasks compete with each other
for the transmission resources [6], [7].

In this letter, our main objective is to minimize the failure
probability to meet the different delay deadlines for the tasks
that are arrived at the fog node. How to find the optimum
scheduling policy that gives higher number of tasks to be
processed while making both queues stable is studied in this
letter. We mainly consider two queues in each of the fog nodes,
namely, high- and low-priority queues. The tasks directly
arrived from the end-users and offloaded from the fog nodes
enter these queues based on their respective delay deadlines.
In addition, we apply the Lyapunov drift for queue scheduling
when the tasks in these two queues have demanding latency
requirements.

II. NETWORK MODEL

A. System Model

Consider a fog computing network with a set of fog nodes
N = {1, 2, . . . , N} and a set of end-users K = {1, 2, . . . ,K}.
The fog nodes and end-users are uniformly and randomly
distributed over the entire network. The end-user generates
tasks that are independent and identically distributed (i.i.d.)
over time. The CPU cycle required to process one bit of the
task is denoted as L, which is assumed to be same for all
tasks generated by the end-users. We denote τn as the delay-
deadline for the task type-n.

Assumption: Assuming a typical binary offloading sce-
nario2, the end-users offload their entire tasks, i.e., all the
generated data packets to a nearby fog node, hereinafter
referred to as primary fog node. We assume that an end-
user can select only one primary fog node. Thus, denoting
Ki = {1, 2, . . . ,Ki},

∑N
i=1Ki = K as the set of end-users

that select the ith fog node as their primary fog node, we
write Ki∩Ki′ ≡ Ø for i 6= i′. When the primary fog node
estimates that the available computing resource is not sufficient
to process the tasks arrived at the time t within their delay-
deadlines, the primary fog node would offload these tasks to
its neighboring fog nodes. Therefore, a fog node receives the
tasks from the direct end-users under its primary coverage
and the tasks from the other end-users via its neighboring fog

2 In a partial offloading, a part of the task is offloaded to the fog node,
and the rest of the task is locally processed at the end-user side.
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nodes. We term the latter as offloaded tasks from fog nodes
to explicitly differentiate the tasks arrived at the primary fog
node. Moreover, the downloading of the task output is ignored
due to the small data size of the results compared to the
uploaded task data size. However, we can easily extend our
system model by considering the downloading time from the
fog nodes to the end-user by calculating the end-to-end delay.

B. Task Arrival at the Fog node and Queue Model

We take a time-slotted system indexed by t = {0, 1, , . . . , t},
where the length of each timeslot is ∆t. Initially, the system is
idle and all queues are empty when t < 0. We denote Auser,n

k,i (t)
as the number of offloaded type-n tasks arrived from the kth
end-user to the ith primary fog node in the time interval [t, t+
1) with task arrival rate λuser,n

k,i = E[Auser,n
k,i (t)]. We further

denote Afog,n
j,i (t) as the number of offloaded type-n tasks from

the jth neighboring fog node to the ith fog node in the time
interval [t, t+1). We consider that each fog node maintains two
virtual queues, namely high-priority queue and low-priority
queue, as depicted in Fig. 1. The priorities of the tasks are
determined based on their respective delay-deadlines. Namely,
the low-priority tasks can tolerate longer delay compared to
the high-priority tasks.

Let Mi be the number of neighboring fog nodes that may
offload their tasks to the ith fog node. Denote QX

i (t) as the
number of tasks queueing in the ith fog node’s X-queue (here,
X = H and L refer to the high-priority queue and low-priority
queue, respectively) at the beginning of the timeslot t and can
be expressed as follows:

QX
i (t) =

Ki∑
k=1

Quser,n,X
k,i (t) +

Mi∑
j=1

Qfog,n,X
j,i (t), X ∈ {H,L} , (1)

where Quser,n,X
k,i (t) and Qfog,n,X

j,i (t) are the number of type-n
tasks queueing in the ith fog node’s queue-X from the kth
end-user and the number of type-n tasks queueing in the ith
fog node’s queue-X from the jth fog node, respectively, at
the beginning of time t. As a result, the queue length in the
queue-X of the ith fog node will evolve as

QX
i (t+ 1) = max[QX

i (t) +AX
i (t)−BX

i (t), 0] , (2)

where AX
i (t) and BX

i (t) are the number of tasks arrived at the
queue-X in the ith fog node and left (i.e., locally processed)
from the queue-X in the ith fog node during the time interval
[t, t+ 1), respectively.

C. Local Task Processing and Offloading to Other Fog Nodes

1) Local task processing at the fog node: The local exe-
cution delay for a single task in the ith fog node is simply
expressed as τi = Ld/fi, where d is the task data size and fi
denotes the CPU clock speed (in cycles/s) of the ith fog node.
We denote µi = 1/τi as the service rate of the ith fog node.

2) Offloading: We consider that the fog node uses orthog-
onal bands to offload the task data to the neighboring fog
nodes as in 4G cellular networks [8]. Denote ri,j(t) as the
offloading rate between the ith primary fog node and the jth
neighboring fog node during the time interval [t, t+ 1) and is
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Fig. 1. Illustration of queueing model in the ith primary fog node. Assume
that the offloaded task from the end-users can be offloaded from a fog node
just once, hence, a fog node cannot further offload the tasks that arrived from
the neighboring fog nodes.

expressed as ri,j(t) = xi log2 (1 + pi gi,j(t)/xin0), where xi
is the allocated bandwidth for the ith fog node, pi denotes the
transmit power for user for node i, gi,j(t) is the channel gain
between the ith primary fog node and the jth neighboring fog
node during the time interval [t, t + 1), and n0 is the power
spectral density of the additive white Gaussian noise. Here, we
consider equal xi allocation for simplicity, i.e., xi = W/N ,
where W is the total channel bandwidth.

III. PROPOSED ALGORITHM

A. Problem Formulation

Denote Auser,n,X
k,i (t) and Auser,n,offload

k,i,j (t) as the number of
type-n tasks offloaded from the kth end-users entering the ith
fog node’s local queue-X and number of kth end-user’s type-n
tasks to be offloaded from the ith primary fog node to the jth
neighboring fog node. Therefore, we write

Auser,n
k,i (t) =

∑
X∈{H,L}

Auser,n,X
k,i (t) +Auser,n,offload

k,i,j (t) (3)

and

AX
i (t) =

Ki∑
k=1

Auser,n,X
k,i (t) +

Mi∑
j=1

Auser,n,offload
k′,j,i (t)︸ ︷︷ ︸

via other fog nodes

,∀k′ ∈ K \ Ki.

(4)

To reduce the system complexity, it is further assumed that an
end-user uniformly and randomly generates only one task at a
time from a set of two tasks with different delay-deadlines. We
assume that the type-1 task is more stringent than the type-
2 task, i.e., τ1 < τ2. We have the following cases when the
task is offloaded to the ith fog node at the beginning of the
timeslot t:
• When a type-1 (or type-2) task is offloaded from the jth

neighboring fog node to the ith fog node: The task is sent
to the queue-H (or queue-L) in the ith fog node.

• When a type-1 task is offloaded directly from the end-
user: If QH

i (t)/µi is lower than τ1, then type-1 task is
sent to the queue-H. Otherwise, the ith fog node tries
to offload the task to the other fog node. Now, if the
combined transmission time from the ith fog node to the
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Algorithm 1: Buffering and scheduling algorithm
1 begin
2 for u = 1 to AX

i (t) do
3 Find a position v in the ith fog node’s queue-X that satisfies:

TX
i,v(t) ≤ Tu(t) ≤ TX

i,(v+1)
(t);

4 Insert the uth task after the vth position in the queue
QX

i (t) = QX
i (t) + 1 ; /* buffering algorithm */

end
5 Based on the Theorem 1, we observe the present Qi(t) and

choose B∗i (at,X) to maximize

E

[∑
X∈{H,L}Q

X
i (t)Bi(at,X)

∣∣∣Qi(t)
)]

− V E
[
P (ai

t)
∣∣Qi(t)

]
;

/* scheduling algorithm */
end

jth fog node and queue-H length of the jth fog node is
lower than the queue-H length of the ith fog node, then
the type-1 task is offloaded to the jth fog node, otherwise
the task enters to the ith fog node’s queue-H.

• When a type-2 task is offloaded from the end-user: If(
QH
i (t) + QL

i (t)
)
/µi < τ2, then the type-2 task enters

the queue-L, otherwise, it is offloaded to the other fog
node. The task will select the fog node that provides the
highest transmission rate among the possible set of fog
nodes with lower queue-L length compared to the ith fog
node’s queue-L length.

We assume same arrival rate for the tasks offloaded from the
end-users to the fog node. We further consider that the service
rate of all fog nodes is higher or equal to the arrival rate of the
end-user tasks, i.e.,

∑N
i=1

∑Ki

k=1

(
λuser,1
k,i +λuser,2

k,i

)
≤
∑N
i=1 µi.

B. Insertion of tasks in a queue

When a new task u of type-n arrives at the beginning of time
t in the ith fog node’s queue-X, then Algorithm 1 is initiated
to buffer the new task based on the weighted remaining
lifetime [9] that is expressed as Tu(t) =

(
τn − τ ′u(t)

)
/τn,

where τ ′u(t) denotes the amount of time spent by the task
u over the network up to the beginning of timeslot t. We
further denote TX

i,v(t) as the weighted remaining lifetime at
the timeslot t for the task at the vth position of the ith fog
node’s queue-X.

C. Scheduling of the queues

We denote Bi(ait,X) as the number of tasks processed at
the ith fog node’s queue-X under the scheduling policy ait
at timeslot t. We aim to design the scheduling policy that is
ergodic with well defined steady state averages.

Lyapunov drift for stability: Considering both queue-H and
queue-L, the ith fog node is strongly stable, if

lim sup
t→∞

1

t

t−1∑
τ=0

E
[
QX
i (τ)

]
<∞ , X ∈ {H,L} . (5)

Moreover, the network is strongly stable if all individual ith
fog node’s queues of the network are strongly stable.

Lyapunov drift-plus-penalty: Let Qi(t) ,
(
QH
i (t), QL

i (t)
)

be a stochastic queue-length vector with real-valued com-
ponents. We define the following quadratic Lyapunov func-

tion [9], [10] on Qi(t) as a scalar measure of the aggregate
congestion of two queues in the ith fog node

L(Qi(t)) ,
1

2

[
QH
i (t)2 +QL

i (t)
2

]
(6)

Define ∆L(Qi(t)) as the one-step conditional Lyapunov drift
and is expressed as

∆L(Qi(t)) , E
[
L(Qi(t+ 1))− L(Qi(t))|Qi(t)

]
(7)

Lemma 1. Under any scheduling policy, the Lyapunov drift
must satisfies the following for every timeslot t as

∆L(Qi(t)) ≤ B +
∑

X∈{H,L}

QX
i (t)λX

i

− E

[ ∑
X∈{H,L}

QX
i (t)Bi(at,X)

∣∣∣Qi(t)
)]
, (8)

where B is a positive constant.

Proof. From (2), we obtain the following bound for each ith
queue in the networks as

QX
i (t+ 1)2 ≤

(
QX
i (t) +AX

i (t)−BX
i (t)
)2
. (9)

Therefore,
1

2

∑
X∈{H,L}

QX
i (t+ 1)2 ≤ 1

2

∑
X∈{H,L}

QX
i (t)2

+
1

2

∑
X∈{H,L}

(
AX
i (t)−BX

i (t)
)2

+
∑

X∈{H,L}

QX
i (t)

(
AX
i (t)−BX

i (t)
)
.

It follows that

∆L(Qi(t)) ≤
1

2

∑
X∈{H,L}

E
[(
AX
i (t)−BX

i (t)
)2∣∣∣Qi(t)

]
+

∑
X∈{H,L}

QX
i (t)E

[
AX
i (t)−BX

i (t)
∣∣∣Qi(t)

]
. (10)

Since λX
i = E

[
AX
i (t)

]
and BX

i (t) ≤ µi, we have
(λX
i − µi)

2 ≤ max
[(
λX
i

)2
,
(
µi − λX

i

)2]
. Let B =

max
[

1

2

(
λX
i

)2
,

1

2

(
µi − λX

i

)2]
and substituting in (11), we ob-

tain the following

∆L(Qi(t)) ≤ B +
∑

X∈{H,L}

QX
i (t)E

[
AX
i (t)−BX

i (t)
∣∣∣Qi(t)

]
.

Finally, as λX
i is independent of Qi(t), we write∑

X∈{H,L}

QX
i (t)E

[
AX
i (t)−BX

i (t)
∣∣∣Qi(t)

]
=

∑
X∈{H,L}

QX
i (t)λX

i

− E
[ ∑

X∈{H,L}

QX
i (t)Bi(at,X)

∣∣∣Qi(t)
)]
.

Then, the statement follows. �

Particularly, the inequality in (8) satisfies the stability of the
both queues in the ith fog node, however, it ignores the priority
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Fig. 2. Random scheduling without offload: when the tasks from end users
are computed in a standalone fog node (no offloading to other fog nodes) with
random scheduling of the queues in the fog node, random scheduling with
offload: when the fog collaboration with (Mi = 4) is assumed with random
scheduling of the queues.

based on the deadline. Thus, to introduce the task’s delay-
deadline, we define the Lyapunov drift-plus-penalty function
on Qi(t) as ∆L(Qi(t))+V E

[
P (ait)

∣∣Qi(t)
]
, where P (ait) is

the penalty function and V is a non-negative control parameter
that will affect the delay-deadline priority of the tasks and
steady state of the queues tradeoff. We express the penalty
function under a scheduling policy ait in the ith fog node at
timeslot t to consider the delay-deadline priority as

P (ait) =
∑

X∈{H,L}

QX
i (t)∑
u

τ ′u(t) + τwait
u (ait)

τn
, (11)

where τwait
u (ait) is the expected waiting time for the uth task

in the ith fog node’s queue under the current scheduling
policy ait at timeslot t. Particularly, we aim to minimize the
penalty function that is the weighted total waiting time in the
ith fog node’s queue under scheduling policy ait. Moreover,
it is important to note that the above penalty function also
considers the respective deadline of the type-n task (i.e., τn)
to calculate the weighted total waiting time.

Theorem 1. Under any scheduling policy, the Lyapunov drift-
plus-penalty must satisfies the following for every Qi(t) as

∆L(Qi(t)) + V E
[
P (ait)

∣∣Qi(t)
]
≤ B +

∑
X∈{H,L}

QX
i (t)λX

i

+ V E
[
P (ait)

∣∣Qi(t)
]
− E

[ ∑
X∈{H,L}

QX
i (t)Bi(at,X)

∣∣∣Qi(t)
)]
.

Proof. Adding V E
[
P (ait)

∣∣Qi(t)
]

in the both side of the
Lemma 1 concludes the proof. �

IV. SIMULATION RESULTS

In the simulation setup, we take N = 10, K = 20,
W = 1 MHz, noise power n0 = −174 dBm/Hz, pi = 0.1 Watt.
Besides, gi,j(t) is uniformly distributed over [−50,−30] dBm,

Number of neighbor fog node set, M
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Fig. 4. Performance of reliability, we fix τ2 = 2 s, M1 = 2.

L = 297.62 [cycles/bit], each d = 4096 bit, fi = 4 × 109

[cycles/s] [2], λuser,n
k,i = 3 packet/s. The results are averaged

over 10, 000 different runs with Monte Carlo simulations.
Fig. 2 illustrates that applying Lyapunov drift at the schedul-

ing maintains the stability of the queues, whereas the backlog
size increases with random scheduling. Moreover, the relia-
bility is expressed as to interpret how many tasks meet their
deadlines in the current scheduling process. From Fig. 3,
we see that the scheduling with only with Lyapunov drift
outperforms the random scheduling in term of reliability.
It is further observed that the use of penalty in Lyapunov
drift-plus-penalty function (see, (10)), has a positive impact
on reliability maximization and significantly improves the
reliability performance. However, as the resource utilization
in term of service rate to support the task arrival rate reaches
to its maximum point, the further increasing of neighboring
fog node does not further improve the reliability.

Finally, Fig. 4 shows how the deadline ratio (τ1/τ2) between
the tasks affects the reliability performance of the high-priority
tasks. The deadline ratio indicates the difference between the
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deadlines of high- and low-priority tasks. When τ1/τ2 is low,
i.e., the high-priority task has much stringent deadline, the
number of high-priority tasks completed within the deadlines
is small, i.e., low reliability. When τ1/τ2 is increased, i.e.,
the deadline of the high-priority task gets relaxed, it becomes
easier for the system to satisfy the high-priority tasks deadline
requirements, i.e., high reliability. This result is expected.
What is interesting to see in the figure is that controlling
parameter V can affect the reliability, which means that we
can adjust V to improve the reliability of high-priority tasks.

V. CONCLUSION

In this letter, we studied the optimum scheduling policy of
the two queues system in a fog node that allows a higher
number of deadline-aware offloaded tasks to be processed
while making both queue stable. The proposed approach is
decoupled into two strategies: the priority-aware scheduling
policy by applying Lyapunov drift-plus-penalty function and
the fog nodes collaboration based on each fog node’s queueing
status under the scheduling policy. Furthermore, the simulation
results suggest that under the same resource configuration, our
scheme can guarantee as more as tasks completion within the
deadlines. To find the optimum scheduling policies under dif-
ferent resource configurations with a combination of reward-
penalty is a part of future work.
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