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We consider the Cauchy problem for a general class of parabolic partial differential
equations in the Euclidean space R

N . We show that given a weighted Lp-space
Lp

w(RN ) with 1 � p < ∞ and a fast growing weight w, there is a Schauder basis
(en)∞n=1 in Lp

w(RN ) with the following property: given an arbitrary positive integer
m there exists nm > 0 such that, if the initial data f belongs to the closed linear
span of en with n � nm, then the decay rate of the solution of the problem is at
least t−m for large times t.

The result generalizes the recent study of the authors concerning the classical
linear heat equation. We present variants of the result having different methods of
proofs and also consider finite polynomial decay rates instead of unlimited m.
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1. Introduction and preliminaries

Given an integrable function f ∈ L1(RN ) in the Euclidean space R
N , N ∈ N =

{1, 2, . . .}, we study the following parabolic Cauchy problem for an unknown
function u on RN × [0,∞) � (x, t),

∂tu(x, t) = Au(x, t) for x ∈ R
N , t > 0 (1.1)

u(x, 0) = f(x) for x ∈ R
N , (1.2)
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1022 J Bonet, W. Lusky and J. Taskinen

where −A is a strongly elliptic partial differential operator of nth order with even
n ∈ N. More precisely, we assume

−Ag(x) =
∑
|α|�n

aα(x)Dαg(x), (1.3)

where the coefficients aα belong to L∞(RN ), and the ellipticity condition means
that for some constant c > 0

(−1)n/2Re
∑
|α|=n

aα(x)ξα � c|ξ|n ∀x, ξ ∈ R
N . (1.4)

(For elliptic partial differential operators, see [2], Sect. 6.1, [4], Ch. I,V, [6], [7],
Ch. 7, or many others; for the notation, see below). In addition, we make the
assumptions that A is a generator of a C0-semigroup eAt, see [7], with an integral
kernel K : RN × RN × [0,∞) → C,

eAtf(x) =
∫

RN

K(x, y, t)f(y) dy, x ∈ R
N , (1.5)

and that the problem (1.1) and (1.2) has a unique classical solution which coincides
with (1.5). We assume that the kernel K is a Lebesgue measurable function such
that the integral (1.5) converges for all f ∈ L1(RN ) and almost all x, t. All of our
further, crucial assumptions will be imposed in the sequel directly to the kernel K.
In fact, the proofs of our main results will not even use the assumption that A is a
partial differential operator, although our main examples will be such operators.

In the paper [1] we showed that given a rapidly increasing weight w : R → (0,∞)
satisfying some technical assumptions, one can find a Schauder basis (en)∞n=1 of the
Banach-space Lp

w(RN ), 1 � p <∞, with the following property: given any m ∈ N,
the solution of the heat equation, i.e. the problem (1.1) and (1.2) for the Laplacian
A = Δ, satisfies the decay estimate

‖etΔf‖∞ � C

(1 + t)m
, t > 0, (1.6)

for all initial data f in the closed linear span of the basis elements en with n � nm

for some nm ∈ N. In other words, the subspace of initial data in Lp
w(RN ) leading

to fast convergence (1.6) is ‘large’, i.e., finite codimensional. We also showed that
the basis (en)∞n=1 of Lp

w(RN ) can be constructed as in a sense arbitrarily small
perturbation of any given Schauder basis of Lp

w(RN ), if p > 1.
In this paper we will present how to generalize this result to parabolic equations

with more general elliptic parts (1.3), which may have non-constant coefficients
and may be of arbitrary order. This will be done in three different versions. The
approach in section 2 is based on the Taylor expansion of the kernel K, and the
first main result of our paper is formulated in theorem 2.1. The crucial assumption
concerns the interdependence of the space and time variables of the kernel, see (2.1).
The second main result, theorem 3.1, is based on the Fourier-transform, and it is
formulated only in the Hilbert-space case p = 2, although using Lp-estimates for
the Fourier-transform, the proof would generalize to other p ∈ (1,∞) as well. The
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On decay rates of the solutions of parabolic Cauchy problems 1023

basic assumptions consist of an L2-estimate of the derivatives of the kernel and the
requirement that the kernel is of convolution type, or slightly more general.

In addition, we will give in section 4 a 1-d-argument for equations with semi-
group kernels with good enough Lp-estimates of the derivatives, which need not be
of convolution type. In the case N = 1 this result seems to be the most general,
although the argument seems not to generalize directly to higher dimensions.

Also, in [1] we only considered initial data in the space Lp
w(R) with rapidly

increasing weights w: here, we also allow weights with polynomial growth rate.
(In this case one cannot expect the analogue of (1.6) to hold for all m.) In all
of the above mentioned cases we present versions with finite polynomial decay
rates instead of unlimited m in (1.6). Examples of applications will be discussed in
section 5.

We remark that our assumptions involve estimates for higher spatial derivatives
of the semigroup kernel, which is often a challenging question, but in our opinion
not everything possible has been done in the literature yet, and there should be
room for future research.

Let us explain some notation. If N > 1, we use the standard multi-index nota-
tion α = (α1, . . . , αN ) ∈ NN

0 (where N0 = {0} ∪ N) with |α| = α1 + · · · + αN and
α! = α1! . . . αN !. Accordingly, we denote the partial derivatives with respect to the
variable x = (x1, . . . , xN ) ∈ R

N by

Dα = Dα
x =

∂α1

∂xα1
1

. . .
∂αN

∂xαN

N

= ∂α1
x1
. . . ∂αN

xN
.

Given f ∈ L1(RN ), N � 1, its Fourier transform is denoted by

f̂(k) = Ff(k) =
1

(2π)N/2

∫
RN

e−ik·xf(x) dx, k ∈ R
N ,

where k · x = k1x1 + · · · + kNxN . We put x2 = x2
1 + · · · + x2

N .
Given p ∈ [1,∞] we use standard notation Lp(RN ), Lp(0, 1), etc., for unweighted

Lebesgue spaces, the norms of which are denoted by ‖ · ‖p. If p <∞ and w : RN →
(0,∞) is a continuous weight function, we denote by Lp

w(RN ) the weighted Lp-space
on R

N endowed with the norm

‖f‖p,w :=

(∫
RN

|f(x)|pw(x) dx

)1/p

. (1.7)

Given M ∈ N (respectively, M = ∞), we let BM (RN ) be the space of all M times
continuously differentiable (resp. infinitely smooth) functions h : R

N → R such that
h and all partial derivatives of Dαh with |α| � M (resp. α ∈ N

N ) exist and are
bounded. For example, h(x) = e−x2 ∈ B∞(RN ). If m ∈ N, we denote by Hm(RN )
the Sobolev–Hilbert-space of functions f ∈ L2(RN ) such that the weak partial
derivatives Dαf belong to L2(RN ) for all |α| � m. For these notions, see [8].

As for other general notation, by C,C ′, etc., we denote generic positive constants,
the exact value of which may change from place to place. The possible dependence,
say, on a parameter p is indicated as Cp. By supp f we denote the support of
a function f and by sp(A) the linear span of a subset A of a vector space. Its
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1024 J Bonet, W. Lusky and J. Taskinen

closure is denoted by sp(A). We write R
± = {x ∈ R : ±x � 0}. The characteristic

or indicator function of a set A is denoted by 1A.
If X denotes a Banach space over the scalar field K (either R or C), X∗ stands

for its dual. The norm of X∗ is denoted ‖ · ‖X∗ . The identity operator X → X
is denoted by idX . For a linear operator T between Banach spaces, ‖T‖ denotes
the operator norm. If X is separable, we recall that a sequence (en)∞n=1 ⊂ X is
a Schauder basis (briefly: basis), if every element f ∈ X can be presented as a
convergent sum f =

∑∞
n=1 fnen where the numbers fn ∈ K are unique for f . An

orthonormal basis of a separable Hilbert space is an example. For the general theory
of Schauder bases we refer to [5], [9].

Given a basis (en)∞n=1 of a separable Banach space X we denote for every n ∈ N

by Pn the basis projection

Pnf = Pn

( ∞∑
k=1

fkek

)
=

n∑
k=1

fkek, where f =
∞∑

k=1

fkek ∈ X.

The number K = supn ‖Pn‖ is called the basis constant of (en)∞n=1; the supremum
defining K is always finite, see [5]. In [1] we introduced the following notion.

Definition 1.1. Let x∗ ∈ X∗. A Schauder basis (en)∞n=1 of X is called shrinking
with respect to x∗, if limn→∞ ‖x∗ ◦ (idX − Pn)‖X∗ = 0.

For a basis (en)∞n=1 of X, the biorthogonal functionals e∗n ∈ X∗ are defined such
that e∗n(em) = δmn (Kronecker delta). Denoting W = sp{e∗n : n ∈ N} ⊂ X∗, it is
easily seen that (e∗n)∞n=1 is a Schauder basis of W with the basis projections P ∗

n ,
where P ∗

n(x∗) = x∗ ◦ Pn for x∗ ∈ X∗. However, in general W �= X∗. We obtain that
(en)∞n=1 is shrinking with respect to x∗ ∈ X∗, if and only if x∗ ∈W . According to
[1], in a reflexive Banach space every basis is shrinking for all bounded functionals.

We will need the following result, which is theorem 2.2 of [1].

Theorem 1.2. Let X be a separable Banach space, let x∗m ∈ X∗ for all m ∈ N,
assume that (ẽn)∞n=1 is a Schauder basis of X which is shrinking with respect to all
x∗m, and let ε > 0 be arbitrary. Then, there exists an increasing sequence (nm)∞m=1 ⊂
N and a basis (en)∞n=1 of X such that

x∗m(en) = 0 for all n � nm. (1.8)

If T : X → X is the linear operator with T ẽn = en for all n, then we have

‖idX − T‖ < ε. (1.9)

We remark that the functionals x∗m ∈ X∗ need not be different from each other.
We will not use property (1.9) in the proofs of our result, but it yields the additional
information that the desired basis can be obtained as a perturbation of any given
Schauder basis, in particular, any orthonormal basis.

2. Approach via Taylor expansion of the kernel K

In order to formulate and prove our first main result, we start by describing our
assumptions on the semigroup kernel K. We now fix M ∈ N or M = ∞, and assume
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On decay rates of the solutions of parabolic Cauchy problems 1025

that the semigroup generated by the operator A has an M times continuously
differentiable kernel (1.5) of the form

K(x, y, t) =
d

tb
h
(
(x− y)t−a

)
(2.1)

for some h ∈ BM (RN ), constants a, d > 0, b � 0, x, y ∈ R
N , t > 0. Clearly, the

Gaussian heat kernel of the Laplacian A = Δ corresponds to the case a = 1/2,
b = N/2, M = ∞. More generally, we also consider kernels

K(x, y, t) =
J∑

j=1

Uj(x, t)vj(y)hj

(
(x− y)t−aj

)
, x ∈ R

N , t > 0, (2.2)

where J ∈ N and, for all j, the numbers aj > 0 are constants, and vj is a
bounded and continuous function on R

N , and hj ∈ BM (RN ); finally, the measurable
functions Uj are assumed to satisfy for some constants Cj > 0, bj � 0,

U(·, t) ∈ L∞(RN ) for t > 0, |Uj(x, t)| � Cj

tbj
for x ∈ R

N , t � 1. (2.3)

Let 1 � p <∞. We need to fix a parameter L ∈ (0,∞] such that

L > Mp+N(p− 1), (2.4)

if M <∞, and L = ∞ in the other case. Then, let wL : R
N → R

+ be a continuous
weight function satisfying the growth condition

sup
x∈RN

1
wL(x)

(1 + |x|)m <∞ ∀m ∈ {1, . . . , L}, (2.5)

where ‘m ∈ {1, . . . , L}’ is to be read as ‘m ∈ N’, if L = ∞.
Assuming these conditions on K and w we state the following result.

Theorem 2.1. Let first M = ∞. There exists a basis (en)∞n=1 of the Banach space
Lp

wL
(RN ) and an increasing sequence (nm)∞m=1 ⊂ N with the following property:

given m ∈ N and initial data

f =
∞∑

n=1

fnen ∈ Lp
wL

(RN ), (2.6)

with fn = 0 for all n = 1, . . . , nm, the solution of (1.1) and (1.2) has the fast decay
property

‖etAf‖∞ � Cm,p

tm
‖f‖p,wL

for all t � 1. (2.7)

If M <∞, then there exists a basis (en)∞n=1 of Lp
wL

(RN ) and a number nM ∈ N

such that

‖etAf‖∞ � CM,p

ta
‖f‖p,wL

for all t � 1, (2.8)
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1026 J Bonet, W. Lusky and J. Taskinen

where

a = min{Maj + bj : j = 1, . . . , J} (2.9)

for all f ∈ sp{en : n � nM} (see (2.2), (2.3) for the notation).

The proof of theorem 2.1 is a generalization of that in [1]. We need to recall
a result, which is contained in theorem 3.1 of the citation. Given a measurable
function h on RN we define in Lp

wL
(RN ) the functional

Φh(f) :=
∫

RN

h(y)f(y) dy, (2.10)

if the integral converges for all f ∈ Lp
wL

(RN ).

Theorem 2.2. Let 1 � p <∞ and let for all m ∈ N the functions hm : RN → R be
measurable such that, if p > 1,∫

RN

( |hm(y)|p
wL(y)

)1/(p−1)

dy <∞, (2.11)

or, if p = 1,

all hm/wL are continuous and can be continuously (2.12)

extended to [−∞,∞]N .

Then, every Φhm
as in (2.10) is a bounded linear functional on Lp

wL
(RN ), and there

are a Schauder basis (en)∞n=1 of Lp
wL

(RN ) and indices 0 < n1 < n2 < . . . such that
Φhm

(en) = 0 for all n � nm.

Here, the metric space [−∞,∞]N is defined as the N -fold Cartesian product of
the two-point compactification of (−∞,∞). For the proof of theorem 2.2, see the
above mentioned reference.

Proof of theorem 2.1. We consider only the general case (2.2) instead of (2.1). Fix
x ∈ R

N , t > 0 and for all j = 1, . . . , J , put

hj,x(y) = hj

(
(x− y)t−aj

)
, y ∈ R

N . (2.13)

For any α ∈ N
N
0 we have

Dαhj,x(y) =
(−1)|α|

taj |α| (Dαhj)
(
(x− y)t−aj

)
. (2.14)

Let us denote by m(j, α) an ordering of all pairs (j, α), where j = 1, . . . , J and
α ∈ N0, such that in particular m(j, α) < m(k, β) for all α, β with |α| < |β|. Then,
if M = ∞, we define for every m ∈ N0 the functions hm,

hm(y) = vj(y)yα, y ∈ R
N , (2.15)

where (j, α) is such that m = m(j, α). If M <∞, we define hm by (2.15), if m =
m(j, α) with |α| < m̃ = M , and hm(y) ≡ 1 for all other m; this last definition does
not play any important role later, see also the remark just after theorem 1.2.
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On decay rates of the solutions of parabolic Cauchy problems 1027

If M = ∞, it follows easily from the choice of the weight in (2.5) and the bound-
edness and continuity of vj , that the functions hm satisfy the assumptions of
theorem 2.2. If M <∞, we obtain from (2.5) the estimate wL(y) � C(1 + |y|)L

and thus (2.15), (2.4) and p′ = p/(p− 1) imply for all m � M , p > 1,

∫
RN

( |hm(y)|p
wL(y)

)1/(p−1)

dy � CM

∫
RN

|y||α|p′
(1 + |y|)−L/(p−1) dy

� CM

∫
RN

(1 + |y|)Mp′−L/(p−1) dy

� CM

∫
RN

(1 + |y|)−N−δ dy <∞

for some constant δ > 0. If p = 1, we obtain for all m � M < L from (2.5) that
|hm(y)/wL(y)| → 0 as |y| → ∞ so that (2.12) holds by setting hm/wL = 0 on the
boundary of (−∞,∞)N . Hence, the assumptions of theorem 2.2 hold also in this
case (the case m > M is trivial since hm = 1 there) so that Φhm

are bounded
functionals on Lp

wL
(RN ) and we find a Schauder basis (en)∞n=1 of Lp

wL
(RN ) and

indices ν1 < ν2 < · · · such that

Φhm
(en) = 0 for all n � νm. (2.16)

If M <∞, we define the number nM , appearing in the statement (2.8) of the
theorem, as follows: if m(j, α) is the largest number under the condition |α| < M ,
then we set

nM := νm(α,j)

This, the choice of the numbers m(j, α) and (2.16) imply that

Φhm(α,j)(en) = 0 for all n � nM , all α with |α| < M and all 1 � j � J . (2.17)

In the case M = ∞ we take an arbitrary m ∈ N and then again define m(j, α)
as the largest number such that |α| < m. For the number nm in (2.6) we choose
nm := νm(α,j). Again we get

Φhm(α,j)(en) = 0 for all n � nm, all α with |α| < m and all 1 � j � J .

For the rest of the proof we take an arbitrary m ∈ N, if M = ∞, and m = M
in the case M <∞. Recall that hj ∈ BM (RN ) for every j = 1, . . . , J . Then, the
multidimensional Taylor formula yields for all j a function ȳj(y) such that

hj,x(y) =
∑

|α|<m

Dαhj,x(0)
α!

yα +
∑

|α|=m

Dαhj,x(ȳj(y))
α!

yα, y ∈ R
N . (2.18)
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1028 J Bonet, W. Lusky and J. Taskinen

Hence, by (2.15),

J∑
j=1

Uj(x, t)vj(y)hj,x(y) =
∑

|α|<m

J∑
j=1

Uj(x, t)
Dαhj,x(0)

α!
vj(y)yα

+
∑

|α|=m

J∑
j=1

Uj(x, t)vj(y)
Dαhj,x(ȳj(y))

α!
yα

=
∑

|α|<m

J∑
j=1

Uj(x, t)Dαhj,x(0)
α!

hm(α,j)(y)

+
∑

|α|=m

J∑
j=1

Uj(x, t)vj(y)
Dαhj,x(ȳj(y))

α!
yα, (2.19)

where x, y ∈ RN , t > 0. For α with |α| = m we obtain constants cj,α,m (in particular
independent of t), such that

sup
x,y

∣∣∣∣Dαhj,x(ȳj(y))
α!

∣∣∣∣ � cj,α,m

tmaj
(2.20)

for all j, t � 1. This follows from (2.14) and the fact that hj ∈ BM (RN ). Now let
f =

∑
n�nm

fnen ∈ Lp
wL

(RN ). We get by (2.13), (2.19),

|etAf(x)| =

∣∣∣∣∣
J∑

j=1

Uj(x, t)
∫

RN

vj(y)hj,x(y)f(y) dy

∣∣∣∣∣
=

∣∣∣∣∣
J∑

j=1

∑
|α|<m

Uj(x, t)
Dαhj,x(0)

α!
Φhm(α,j)

( ∑
n�nm

fnen

)

+
∑

|α|=m

J∑
j=1

Uj(x, t)
∫

RN

Dαhj,x(ȳ(y))
α!

vj(y)yαf(y) dy

∣∣∣∣∣, x ∈ R
N , t � 1.

Here, due to (2.17), only the last line is non-zero, and it can be bounded using
(2.3), (2.20) by

∑
|α|=m

J∑
j=1

|Uj(x, t)|
∫

RN

∣∣∣∣∣Dαhj,x(ȳ(y))
α!

vj(y)yαf(y)

∣∣∣∣∣ dy
�
∑

|α|=m

J∑
j=1

Cj,α,m

tajm+bj

∫
RN

|vj(y)yαf(y)|dy

� Cm,p
1
ta
‖f‖p,wL

where x ∈ R
N , t � 1, a is as in (2.9), and Cj,α,m and Cm,p are constants. This yields

(2.8) and also (2.7) since m was arbitrary in the case M = ∞. �
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On decay rates of the solutions of parabolic Cauchy problems 1029

3. Approach using Fourier analysis

In this section we describe an alternative approach using the Fourier-transform. The
result overlaps with that in section 2, but there are also some obvious differences in
the assumptions of theorems 2.1 and 3.1. We start by fixing an even M ∈ N such
that M −N � 2, or M = ∞, and assume that the weight wM : R

N → R
+ is as in

(2.5), with M replacing L. In the following, if M = ∞, the notation M/2 is to be
read as ∞, and inequalities like x � M for some real number x are to be interpreted
as no condition.

We assume that the kernel K(x, y, t), (1.5), is of convolution type, K(x, y, t) =
K̃(x− y, t), and that in addition the function x → Dα

x K̃(x, t) belongs to L2(RN ) for
every α ∈ N

N
0 with |α| � M/2 and t > 0, and the function t → K̃(·, t) is continuous

as a map from (0,∞) to L2(RN ). See the remark at the end of this section about
possible more general forms of the kernel. Note that in (3.1) and later in similar
places the differentiation is with respect to the space variable.

Theorem 3.1. Let the weight wM and the kernel K̃ be as described above, and
assume that there exist constants a > 0 and b ∈ R such that the kernel satisfies for
all t � 1 the estimate

‖DαK̃(·, t)‖2 � C

ta|α|+b
(3.1)

for all multi-indices α with |α| � μ, where μ ∈ N is the largest integer not bigger
than M/2 −N/2.

If M = ∞, there exists a basis (en)∞n=1 of the Banach space L2
wM

(RN ) and an
increasing sequence (nm)∞m=1 with the following property: given m ∈ N, then for
any initial data

f =
∞∑

n=nm

fnen ∈ L2
wM

(RN ), (3.2)

the solution of (1.1) and (1.2) has the bound

‖etAf‖∞ � Cm

tm
‖f‖2,wM

for all t � 1. (3.3)

If M <∞, then there exists a basis (en)∞n=1 of L2
wM

(RN ) and a number nM ∈ N

such that

‖etAf‖∞ � CM

tμa+b
‖f‖2,wM

for all t � 1, (3.4)

for all f ∈ sp{en : n � nM}.
We aim to use theorem 1.2 and work with the Fourier transform. For all multi-

indices α with |α| � M/2 we define the linear functionals by

Jαf =
∫

RN

yαf(y) dy. (3.5)

If M <∞, we define in addition for example Jαf :=
∫

RN f(y) dy for all α with |α| >
M/2. Due to the choice of the weight wM , these functionals are bounded mappings
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1030 J Bonet, W. Lusky and J. Taskinen

L2
wM

(R) → C. Then, again due to the choice of wM , we have xαf ∈ L2(RN ) for all
|α| � M/2 and there holds

Dαf̂(k) = (−i)|α|F(xαf(x))(k), k ∈ R
N , (3.6)

at least for the weak partial derivatives. Thus, the Fourier transform f̂ belongs to
the Sobolev space HM/2(RN ) for every f ∈ L2

wM
(RN ), and we have

Dαf̂ ∈ L2(RN ) , ‖Dαf̂‖2 � Cα‖f‖2,wM
for all |α| � M/2. (3.7)

By the Sobolev embedding theorem, see for example [8], theorem 7.25, every func-
tion g ∈ HM/2(RN ) is at least μ times continuously differentiable, where μ is as in
(3.1), so that we obtain for every multi-index β with |β| � μ and every compact set
B ⊂ RN ,

sup
k∈B

|Dβg(k)| � CB max
|α|�M/2

‖Dαg‖2,

where the expression on the right is equivalent to the norm of the Sobolev space
HM/2(RN ). Combining this with (3.7) we obtain

sup
k∈B

|Dαf̂(k)| � CB‖f‖2,wM
(3.8)

for every compact set B ⊂ R
N , function f ∈ L2

wM
(RN ), and index |α| � μ.

Lemma 3.2. If f ∈ L2
wM

(RN ) and Jαf = 0 for all multi-indices α with |α| � μ− 1,
then all partial derivatives Dαf̂ with |α| � μ− 1 vanish at 0. Consequently, we can
write

f̂(k) =
∑
|α|=μ

kαgα(k) (3.9)

where gα ∈ L2(RN ) ∩ C(RN ), and

‖gα‖2 � Cα‖f‖2,wM
. (3.10)

Proof. Let us denote by BN the closed unit ball of R
N .

The vanishing of the derivativesDαf̂(0) for all |α| � μ− 1 is a direct consequence
of the relations (3.6), the assumption on the functionals Jα, and

F(xαf)(0) =
1

(2π)N/2

∫
RN

ei0̄·xxαf(x) dx =
1

(2π)N/2
Jαf.

Then, one obtains the formula

f̂(k) =
∑
|α|=μ

kαǧα(k)

from the Taylor expansion of μth degree for f̂ at 0 (cf. (2.18)); here every function
ǧα is continuous, since f̂ ∈ Cμ(RN ). Moreover, for k ∈ 2BN = {k : |k| � 2} we have
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On decay rates of the solutions of parabolic Cauchy problems 1031

ǧα(k) = Dαf̂(κ(k)), where κ is a continuous function with values in 2BN ⊂ R
N , so

that we can bound by using (3.8)

sup
k∈2BN

|ǧα(k)| � C sup
k∈2BN

|Dαf̂ | � C ′‖f‖2,wM
.

To treat the domain RN � BN � k, one defines an open covering of the surface
SN = {k ∈ R

N : |k| = 1} by some sets Ωα ⊂ SN , indexed by multi-indices α with
|α| = μ, such that |kα| � 1/N2 for all k ∈ Ωα, and then defines a smooth partition
of unity (χα)|α|=μ, where χα : SN → [0, 1] for all α, subordinate to this covering.
One writes

f̂(k) =
∑
|α|=μ

kαg̃α(k)

with g̃α(k) = χα(k/|k|)f̂(k)/kα. We find that g̃α : RN � BN → CN is a continuous
function whose norm in the space L2(RN

� BN ) is bounded by a constant times
‖f̂‖2.

Finally, one defines a continuous cut-off function X : RN → [0, 1] such that
X (k) = 1 for k ∈ BN and X (k) = 0 for k ∈ R

N
� 2BN . Writing gα = X ǧα + (1 −

X )g̃α we obtain (3.9) and (3.10). �

Proof of theorem 3.1. We obtain the desired Schauder basis (en)∞n=1 from
theorem 1.2, where we take the space L2

wM
(RN ) for X and the functionals Jα

for x∗m. If M <∞, we show that (3.4) holds, if the initial data satisfies

Jαf = 0 (3.11)

for all |α| � μ− 1. Then, in the case M = ∞ we obtain (3.3), since we can apply
the result with finite M , where the number μ can be chosen arbitrarily large.

Let us fix f such that (3.11) holds. Then, lemma 3.2 applies, and we can write
f̂ with the help of the functions gα as in (3.9). By the assumptions on the semi-
group, the function x → Dα

x K̃(x, t) belongs to L2(RN ) for all t > 0, hence, by the
Plancherel theorem the function

F(Dα
x K̃(x, t)

)
is also in L2(RN ); here and later, we consider the Fourier-transform with respect
to the x-variable. Moreover, due to (3.1) and the Plancherel theorem we have for
|α| � μ and t > 0 the estimate

∥∥F(Dα
x K̃(x, t)

)∥∥
2

� C

(t+ 1)a|α|+b
. (3.12)

By the Young inequality, f ∈ L1(RN ) and K̃(·, t) ∈ L2(RN ) imply

K̃(·, t) ∗ f(x) =
∫

RN

K̃(x− y)f(y) dy ∈ L2(RN ) (3.13)
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1032 J Bonet, W. Lusky and J. Taskinen

and also the formula for the commutation of the Fourier transform and convolution
([8], theorem 7.19) generalizes to this case, so that we get

etAf(x) = K̃(·, t) ∗ f(x) = F−1F(K̃(·, t) ∗ f)(x)
= (2π)−N/2

∫
RN

eixk
(FK̃(·, t))(k)f̂(k) dk

= (2π)−N/2
∑
|α|=μ

∫
RN

eixkF(K̃(·, t))(k)kαgα(k) dk

= (2π)−N/2
∑
|α|=μ

(−i)−|α|
∫

RN

eixkF(Dα
x K̃(x, t)

)
(k)gα(k) dk, (3.14)

where we also used

F(Dα
x K̃(x, t)

)
(k) = (−i)|α|kαF(K̃(·, t))(k)

Hence, according to (3.12), (3.10) and the Cauchy–Schwartz inequality∣∣etAf(x)
∣∣ � ∑

|α|=μ

∫
RN

∣∣F(Dα
x K̃(x, t)

∣∣ |gα(k)|dk

�
∑
|α|=μ

∥∥F(DαK̃(·, t))∥∥
2
‖gα‖2 � C

(1 + t)aμ+b
‖f‖2,wM

. (3.15)

�

We finally remark that the above approach also works for more general kernels

K ′(x, y, t) = U(x, t)K̃(x− y, t),

where K̃ is as in theorem 3.1 and U is a measurable function R
N × (0,∞) such

that for some constants C > 0, β ∈ R,

U(·, t) ∈ L∞(RN ) for t > 0, |U(x, t)| � C

tβ
for x ∈ R

N , t � 1.

We obtain the result of theorem 3.1, where the exponent μa+ b in (3.4) is replaced
by μa+ b+ β. As for the proof, we just write

etAf(x) = U(x, t)K̃(·, t) ∗ f
and apply (3.14) and (3.15) to estimate the convolution.

4. Approach using repeated integration functionals

In this section we describe yet another approach which allows us to relax the specific
assumptions on the form of the x- and y-dependence of the semigroup kernel K
in theorems 2.1 and 3.1. However, our proof only works in one space dimension so
that we fix N = 1 for this section. As for the operator A in equation (1.1) and its
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On decay rates of the solutions of parabolic Cauchy problems 1033

associated semigroup kernel K, (1.5), we assume that there exist constants a > 0
and b ∈ R such that, for some index M ∈ R ∪ {∞},

|∂m
y K(x, y, t)| � C

(t+ 1)am+b
(4.1)

for all m � M (for all m ∈ N, if M = ∞) and all x, y ∈ R, t > 0.
In order to formulate the main result of this section, we select the space of initial

data to be Lp
wQ

(R), where 1 � p <∞ and we fix Q such that

Q > p(M + 1) + 1, (4.2)

if M <∞, and Q = ∞ in the other case. The weight wQ : R
N → R

+ is as in (2.5),
with Q replacing L.

Theorem 4.1. If M = ∞, there exists a basis (en)∞n=1 of the Banach space Lp
wQ

(R)
and an increasing sequence (nm)∞m=1 with the following property: given m ∈ N, then
for any initial data

f =
∞∑

n=nm

fnen ∈ Lp
wQ

(R), (4.3)

the solution of (1.1) and (1.2) has the estimate

‖etAf‖∞ � Cm

tm
‖f‖p,wQ

for all t � 1. (4.4)

If M <∞, then there exists a basis (en)∞n=1 of Lp
wQ

(R) and a number nM ∈ N

such that

‖etAf‖∞ � CM

tMa+b
‖f‖p,wQ

for all t � 1, (4.5)

for all f ∈ sp{en : n � nM}.

First, for all m � M (for all m ∈ N, if M = ∞) we define the linear operator of
repeated integrations and the corresponding functional as follows:

Imf(x) =
1

(m− 1)!

∫ x

−∞
(x− y)m−1f(y) dy, (4.6)

Jmf =
1

(m− 1)!

∫ 0

−∞
(−y)m−1f(y) dy, m ∈ N. (4.7)

Notice that indeed

Imf(x) =
∫ x

−∞
Im−1f(y) dy and Jmf =

∫ 0

−∞
Im−1f(y) dy

for all m � 2. If M <∞, we set Jmf =
∫

R
f(y) dy for m > M . We denote

Lp,−
wQ

(R) := {f ∈ Lp
wQ

(R) : suppf ⊂ R
−}.
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1034 J Bonet, W. Lusky and J. Taskinen

Lemma 4.2.

(i) There exists δ > 0 such that if m � M (or m ∈ N, if M = ∞) and f ∈
Lp

wQ
(R), then the restriction of Imf to R

− satisfies

sup
x∈R−

(1 + |x|)1+δ|Imf(x)| � CM,p‖f‖p,wQ
<∞. (4.8)

(ii) If m � M (or m ∈ N, if M = ∞) is given and f ∈ Lp,−
wQ

(R) has the property
that Jkf = 0 for all k ∈ N with k � m, then

supp Ikf ⊂ R
− (4.9)

for all k � m. In particular Ikf ∈ L1(R) and

‖Ikf‖1 � Ck,p,wQ
‖f‖p,wQ

(4.10)

for every k � m.

(iii) Every Jm is a bounded linear functional on Lp
wQ

(R).

Proof. As for (i), we denote the dual exponent p′ = p/(p− 1) and choose

δ :=
Q− p(M + 1) − 1

2p− 1
> 0,

if M is finite, or any δ > 0, if M = ∞. Then, (4.6) and the Hölder inequality imply
for x � 0

(1 + |x|)1+δ|Imf(x)|

� Cm(1 + |x|)1+δ

∫ x

−∞
|x− y|m−1|f(y)|dy

� Cm(1 + |x|)1+δ

∫ x

−∞
|y|m−1

× (1 + |y|)−δ−m−((1+δ)/p′)(1 + |y|)δ+m+((1+δ)/p′)|f(y)|dy

� Cm

∫ x

−∞
(1 + |y|)−((1+δ)/p′)(1 + |y|)δ+m+((1+δ)/p′)|f(y)|dy

� Cm

(∫ 0

−∞
(1 + |y|)−1−δ dy

)1/p′

×
(∫ 0

−∞
(1 + |y|)pm+(p/p′)+δ(p+(p/p′))|f(y)|p dy

)1/p

� Ck,m,p

(∫ 0

−∞
wQ(y)|f(y)|p dy

)1/p

� Ck,m,p‖f‖p,wQ
.
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On decay rates of the solutions of parabolic Cauchy problems 1035

Here, in the case of finite Q, we used

pm+
p

p′
+ δ
(
p+

p

p′
)

= p(m+ 1) − 1 + δ(2p− 1) � Q.

The proof for the case p = 1 is simpler.
Concerning (ii), a straightforward induction argument yields (4.9): assume that

Jkf = 0 for all k � m and that m̃ < m and (4.9) holds for all k � m̃. Then, by the
definition of Im̃+1, for x � 0,

Im̃+1f(x) =
∫ 0

−∞
Im̃f(y) dy +

∫ x

0

Im̃f(y) dy

Here, the first term equals Jm̃+1f and is thus 0, and the second term also vanishes
by the induction assumption. The bound (4.10) follows from (4.9), (4.8) and an
application of the Hölder inequality.

The statement (iii) is a consequence of the Hölder inequality and the choice of
the number Q and the weight wQ. �

The next result about decay rates can now be obtained by a simple integration
by parts argument.

Proposition 4.3. Let N = 1, assume (4.1) holds for the kernel K, and let f ∈
Lp,−

wQ
(R) be such that Jmf = 0 for all m ∈ N with m � M . Then, there holds the

bound

‖etAf‖∞ �
Cp,M‖f‖p,wQ

taM
, t � 1. (4.11)

Proof. We employ repeated integration by parts M times with respect to y in order
to evaluate (1.5):

u(x, t) =
∫

R

(
∂M

y K(x, y, t)
)
(IMf)(y) dy. (4.12)

The replacement terms vanish, since by lemma 4.2.(i), (ii), for all m � M the func-
tion Imf(y) decays to 0 as y → ±∞ and also ∂m

y K(x, y, t) is a bounded function
of y. The bound (4.11) for t � 1 follows from (4.1) and (4.8):∣∣∣ ∫

R

(
∂M

y K(x, y, t)
)
(IMf)(y) dy

∣∣∣ � sup
x,y∈R

∣∣∂M
y K(x, y, t)

∣∣ ∫
R

∣∣(IMf)(y)
∣∣ dy

� Cp,M

taM+b
‖f‖p,wQ

. �

The authors do not know a straightforward generalization of this argument to
higher dimensional spaces R

N � x. Problems are caused by the more complicated
replacement terms with mixtures of definite and indefinite integrals.

Proof of theorem 4.1. Let p and w be as in the assumption and first consider the
Banach space X = Lp,−

w (R). The functionals Jm =: x∗m of (4.7) are well defined and
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1036 J Bonet, W. Lusky and J. Taskinen

bounded on X, by lemma 4.2, (iii). We fix a basis (ẽ−n )∞n=1, which is shrinking with
respect to all x∗m; in the case p = 1 we use the proof of theorem 2.2 to find this.
Then, theorem 1.2 yields the desired basis (e−n )∞n=1 of Lp,−

w (R) and the sequence of
indices (nm)∞m=1; in particular, given m ∈ N we have

Jk(e−n ) = 0 (4.13)

for every k � m, n � nm. To see that (4.4) holds for a given m and for any initial
data f− ∈ G−

nm
:= sp {e−n : n � nm} ⊂ Lp,−

w (R) we remark that such a f− has a
representation

f− =
∞∑

n=nm

f−n e
−
n .

Since this series converges in Lp
w(R) and every Jk is a continuous mapping, (4.13)

implies Jkg = 0 for all k � m. Hence, (4.4) follows from proposition 4.3.
To complete the proof we remark that the space Lp

w(R) equals in a natural way
the direct sum Lp,−

w (R) ⊕ Lp,+
w (R), where the second component is defined as the

closed subspace of Lp
w(R) consisting of functions with supports in R

+. The functions

e+n := e−n ◦ ψ , where ψ(x) := −x ∀x ∈ R

form a Schauder basis of Lp,+
w (R), which plays the same role as the basis (e−n )∞n=1

has in Lp,−
w (R). This follows from the formal commutation relations

∂2
x(f ◦ ψ) = (∂2

xf) ◦ ψ , et∂2
x(f ◦ ψ) =

(
et∂2

xf
) ◦ ψ.

Consequently, the union of the sequences (e−n )∞n=1 and (e+n )∞n=1 is the desired
Schauder basis. �

5. Examples

We present some examples of operators A and semigroups generated by A such that
the assumptions of theorems 2.1, 3.1 or 4.1 hold. In general it seems that there is
some amount of research to be done in this direction: many more important classes
of operators should satisfy our conditions for the higher derivatives of the semigroup
kernel, although optimal results in this respect seem not yet to be available in the
literature.

1◦. By the classical explicit Gaussian semigroup formula, both theorems 2.1
and 3.1 can be applied with M = ∞ to the case of the Laplacian A = Δ
on R

N .

2◦. The negative bi-Laplacian

A = −Δ2 = −
(

N∑
j=1

∂2
xj

)(
N∑

j=1

∂2
xj

)
(5.1)

satisfies (3.1) with M = ∞. The next argument using the Fourier transform
is folklore for specialists in parabolic equations, but since we do not know
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On decay rates of the solutions of parabolic Cauchy problems 1037

a reference, we expose a proof for the convenience of the reader. First, the
Fourier transform turns the equation (1.1) with A = −Δ2 into

∂tû(k, t) = −k2k2û(k, t),

hence, solving this elementary ordinary differential equation (where k is just
a parameter), taking into account the initial condition (1.2) and applying the
inverse Fourier transform shows that the solution of the Cauchy problem (1.1)
and (1.2) for the negative bi-Laplacian is given by

1
(2π)N

∫
RN

∫
RN

eik(x−y)e−k2k2t dk f(y) dy.

Thus, the integral kernel K̃ of theorem 3.1 reads as

K̃(x, t) =
1

(2π)N

∫
RN

eixke−k2k2t dk

We have for all multi-indices α

Dα
x K̃(x, t) =

1
(2π)N

∫
RN

(ik)α

(
N∏

j=1

eixjkje−k2
j k2

j t
N∏

� �=j

e−k2
j k2

� t

)
dk

=:
∫

RN

kαR(x, k, t) dk. (5.2)

Let us choose an index j = 1, . . . , N and for a moment fix the variables k�

with  �= j as well as the variables x and t. Then, looking at the expression
(5.2) one observes that for all j the function

kj → kαR(x, k, t)

has a unique analytic extension to C � kj . In (5.2), the integration with
respect to the variable kj can be considered as a path integral along the real
axis, and due to the just mentioned analyticity and properties of complex
path integrals, the integration contour can be changed into γx,t,j , where

γx,t,j(kj) = kj + i|xj |1/3sgn(xj)(Lt)−1/3 for kj ∈ R, (5.3)

sgn(a) is the sign of the real number a and L > 0 is a large enough number
to be specified soon. For all k ∈ RN , let

γx,t(k) :=
(
γx,t,1(k1), . . . , γx,t,N (kN )

) ∈ C
N , S(x, k, t) := R(x, γx,t(k), t),

hence,

Dα
x K̃(x, t) =

∫
RN

γx,t(k)αS(x, k, t) dk. (5.4)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2020.48
Downloaded from https://www.cambridge.org/core. IP address: 83.53.248.241, on 17 May 2021 at 06:07:28, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2020.48
https://www.cambridge.org/core


1038 J Bonet, W. Lusky and J. Taskinen

Changing kj into (5.3) for all j causes the following changes in the integrand
of (5.2):

eixjkj → exp
(
ixjkj − 2−1|xj | 43L− 2

3 t−
1
3 − 2−1|xj | 43L− 2

3 t−
1
3

)
(5.5)

e−k2
j k2

j t → exp
(
− k4

j t+ 4k2
j |xj | 23L− 2

3 t
1
3 − |xj | 43L− 4

3 t−
1
3 − irj(x, k, t)

)
= exp

(
− 2−1k4

j t− 2−1k4
j t+ 4k2

j |xj | 23L− 2
3 t

1
3 − 8|xj | 43L− 4

3 t−
1
3

+ 7x
4
3
j L

− 4
3 t−

1
3 − irj(x, k, t)

)
= exp

(
− 2−1k4

j t−
(
2−

1
2 k2

j t
1
2 − 2

3
2 |xj | 23L− 2

3 t−
1
6
)2

+ 7|xj | 43L− 4
3 t−

1
3 − irj(x, k, t)

)
(5.6)

e−k2
j k2

� t → exp
(
− k2

jk
2
� t+ 4kjk�|xj | 13 |x�| 13L− 2

3 t
1
3

− |xj | 23 |x�| 23L− 4
3 t−

1
3 − irj,�(x, k, t)

)
= exp

(
− (kjk�t

1
2 − 2|xj | 13 |x�| 13L− 2

3 t−
1
6
)2

+ 3|xj | 23 |x�| 23L− 4
3 t−

1
3 − irj,�(x, k, t)

)
, (5.7)

where all rj and rk,� are some real valued functions which we do not need to
specify. We need to evaluate |S(x, k, t)|; our aim is to prove the upper bound

|S(x, k, t)| � e−b|k|4t−b(|x|4t−1)1/3
(5.8)

for it, where b > 0 is some constant. To this end we can omit all imaginary
terms of the exponent of S(x, k, t). Moreover, choosing L > 1 large enough so
that L−2/3 >> L−4/3, half of the negative last term −2−1|xj |4/3L−(2/3)t−(1/3)

of (5.5) cancels out the positive term 7|xj |4/3L−(4/3)t−(1/3) in (5.6). In the
same way, using

N∑
j=1

|xj |2 � 1
2N2

N∑
j=1

N∑
�=1

|xjx�|

and possibly enlarging L, the positive term in (5.7) can still be cancelled out
by the last term of (5.5). The estimate (5.8) follows from the remaining neg-
ative terms −2−1|xj |4/3L−(2/3)t−(1/3) in (5.5) and −2−1k4

j t in (5.6).

Using (5.4), (5.8) we estimate for all t � 1 and all α ∈ N
N
0∣∣Dα

x K̃(x, t)
∣∣ = 1

(2π)N

∣∣∣ ∫
RN

γx,t(k)αS(x, k, t) dk
∣∣∣

� CL

∫
RN

(|k||α| + (|x|t−1)
|α|
3
)
e−b|k|4t−b(|x|4t−1)1/3

dk

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2020.48
Downloaded from https://www.cambridge.org/core. IP address: 83.53.248.241, on 17 May 2021 at 06:07:28, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2020.48
https://www.cambridge.org/core


On decay rates of the solutions of parabolic Cauchy problems 1039

� CLe
−b(|x|4t−1)1/3

∫
RN

|k||α|e−b|k|4tdk

+ CL(|x|t−1)
|α|
3 e−b(|x|4t−1)1/3

∫
RN

e−b|k|4tdk

� C ′
Le

−b(|x|4t−1)1/3
t−

1
4 |α|

∫
RN

(t
1
4 |k|)|α|e−b|k|4tdk

+ C ′
Lt

− 3|α|
4 (|x|t−1/4)

|α|
3 e−b(|x|4t−1)1/3

� C ′
Lt

− 1
4 |α|e−b′(|x|4t−1)1/3

for some constant 0 < b′ < b. The L2-norm of this function has the bound
Ct−(|α|/4)+N/4 for t � 1, which is of the form (3.1).

3◦. Other examples: theorem 4.1 applies for example in much more complicated
cases like the linearized Cahn–Hilliard equation, see the semigroup estimates
in theorem 2.1 of [3], where the kernel satisfies the estimate (4.1) with M = 3,
a = 1/3, b = 2/3.
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