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Hardy space of translated Dirichlet series

Tomás Fernández Vidal Daniel Galicer Martín Mereb
Pablo Sevilla-Peris

Abstract

We study the Hardy space of translated Dirichlet series H+. It consists on those
Dirichlet series

∑
ann−s such that for some (equivalently, every) 1 ≤ p <∞, the transla-

tion
∑

ann−(s+ 1
σ

) belongs to the Hardy space H p for every σ> 0. We prove that this set,
endowed with the topology induced by the seminorms

{‖ ·‖2,k
}

k∈N (where ‖∑
ann−s‖2,k

is defined as ‖∑
ann−(s+ 1

k )‖H 2 ), is a Fréchet space which is Schwartz and non nuclear.
Moreover, the Dirichlet monomials {n−s}n∈N are an unconditional Schauder basis of H+.
We also explore the connection of this new space with spaces of holomorphic functions
on infinite-dimensional spaces.
In the spirit of Gordon and Hedenmalm’s work, we completely characterize the compo-
sition operator on the Hardy space of translated Dirichlet series. Moreover, we study
the superposition operators on H+ and show that every polynomial defines an opera-
tor of this kind. We present certain sufficient conditions on the coefficients of an entire
function to define a superposition operator. Relying on number theory techniques we
exhibit some examples which do not provide superposition operators. We finally look at
the action of the differentiation and integration operators on these spaces.

1 Introduction

A Dirichlet series is a formal series of the form D = ∑
ann−s , where the coefficients an are

complex numbers and s is a complex variable. Introduced by Dirichlet in the second half of
the 19th century, they played a fundamental rôle in the development of the analytic theory
of numbers. In the beginning of the 20th century they started to be studied from the point
of view of complex analysis. It was then proved (see e.g. [15] or [10]) that Dirichlet series
converge on half planes and that, then, for each Dirichlet series D there exists σc (D) ∈ R∪
{±∞} so that the series

∑∞
n=1 an

1
ns converges for every Re s > σc (D) and diverges for every

Re s <σc (D). For a given σ ∈Rwe denote

Cσ = {s ∈C : Re s >σ} .

We will write C+ instead of C0. With this notation Cσc (D) is the maximal half plane of conver-
gence of D , and D(s) defines a holomorphic function on Cσc (D). With the same idea, there
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is an abscissa σa(D) that defines the maximal half plane of absolute convergence of the se-
ries, and an abscissa σu(D) so that the Dirichlet series converges uniformly on Cσ for every
σ>σu(D).

By the end of the 1990s a deep relation between Dirichlet series and different parts of analysis
(mainly harmonic and functional analysis) was discovered. Ever since, this interaction has
shown to be very fruitful, with interesting results in both sides. A key element in this devel-
opment are the Hardy spaces H p of Dirichlet series, introduced by Hedenmalm, Lindqvist
and Seip for p = 2 and p = ∞ [13] and by Bayart for the remaining cases in 1 ≤ p ≤ ∞ [3].
Let us briefly recall the definition of these spaces. The space H ∞ is defined as consisting of
Dirichlet series that define a bounded holomorphic function on C+. Given 1 ≤ p < ∞, the
expresion ∥∥∥ N∑

n=1
ann−s

∥∥∥
p
= lim

R→∞

( 1

2R

∫ R

−R

∣∣∣ N∑
n=1

ann−i t
∣∣∣p

d t
) 1

p
.

defines a norm on the space of Dirichlet polynomials (i.e. finite Dirichlet series). Then the
space H p is defined as the completion of the Dirichlet polynomials under this norm. Let us
note that H 2 consists exactly of those Dirichlet series

∑
ann−s for which (an)n ∈ `2.

Translation is a useful tool within the theory. Given a Dirichlet series D =∑
ann−s and σ ∈R

we define the following Dirichlet series

Dσ =∑ an

n1/σ
n−s .

Note that σc (Dσ) =σc (D)− 1
σ and, for Re s >σc (D)− 1

σ we have

Dσ(s) =
∞∑

n=1
an

1

ns+1/σ
= D

(
s + 1

σ

)
. (1)

A key property in this setting is that a Dirichlet series D belongs to H p if and only if

Dσ ∈H p for every σ> 0 and sup
σ>0

‖Dσ‖p <∞ .

A natural question then arises: ‘what happens if we drop the second condition?’ or, to be
more precise: ‘what kind of structure do we find when we consider those Dirichlet series
for which all translations belong to H p ?’. This task was overcome by Bonet for p = ∞ in
[6]. There the Fréchet space H ∞+ of Dirichlet series D so that Dσ ∈ H ∞ for every σ> 0 was
defined. Several properties of this space, as well as composition operators defined on these
spaces were studied. Our aim in this note is to complete this study, extending this to H p

for 1 ≤ p < ∞. We define for each p the corresponding Fréchet space with the same idea
and show that, in fact, they are all isomorphic. So, we denote this space by H+ and study in
Theorem 2.5 certain properties. In particular, we investigate its relation with spaces of holo-
morphic functions defined on infinite dimensional Banach spaces.

Given two open setsΩ1,Ω2 ⊆C and a holomorphic functionφ :Ω1 →Ω2, we have that f ◦φ is
holomorphic for every holomorphic function f . This defines in a natural way an operator Cφ

(called composition operator of symbol φ) given by f 7→ f ◦φ. These are by now very classical
objects that have been studied from several points of view. If φ : Cσ1 → Cσ2 is holomorphic
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and f is represented by a Dirichlet series on Cσ2 , then f ◦φ is holomorphic on Cσ1 but may
not be represented as a Dirichlet series. One may then wonder under what circumstances is
f ◦φ represented by a Dirichlet series on Cσ1 . Or, to put it in other terms, if F is some space
of Dirichlet series converging on Cσ2 , to find conditions on φ so that Cφ defines a compo-
sition operator acting on F and taking values on some other space of Dirichlet series. The
first ones to address this question were Gordon and Hedenmalm in [12], who characterised
those φ for which Cφ is a well defined (and continuous) operator on H 2 taking values on D

(see below for the definition) or on H 2 and studied some of their properties. This study was
later extended by Bayart for H p with p 6= 2 in [3] and Bonet for H ∞+ in [6]. In Section 4 we
perform an analogous study for operators Cφ defined on H+, giving conditions on φ so that
the compostion operator H+ → H+ is well defined, continuous or bounded. We also study
when the composition operator takes values in H ∞+ or H p for some p.
Superposition operators Sϕ are defined with a similar idea, but with a different point of view.
Given a function ϕ, these are defined as f 7→ ϕ ◦ f . When two spaces of functions are fixed
as domain and range, the questions are the same as before: to find conditions on the symbol
ϕ so that the operator Sϕ is well defined and continuous. For operators on H ∞and be-
tween H p and H q these questions were addressed in [4]. It was shown there that ϕ defines
a superposition operator H ∞ → H ∞ if and only if ϕ is entire, whereas those ϕs leading to
superposition operators between H p →H q correspond exclusively to certain polynomials
(where the degree depends on the involved space). In Section 5 we study superposition op-
erators defined on H+. We show that if ϕ defines a superposition operator H+ →H+, then
it has to be entire. Moreover, H+ results a Fréchet algebra and therefore, in particular, every
polynomial defines a superposition operator. On the other hand, opposite to the case of H ∞

(or also H ∞+ ), we exhibit entire functions that do not define operators of this type.
A very classical operator acting on spaces of differentiable functions is the differentiation
operator, f 7→ f ′. The action of this operator and of its inverse on H ∞+ has been studied in
[7]. In Section 6 we perform a similar study within this context.

Before we proceed let us fix some basic notation that will be used all along this note. We write
D for the space of Dirichlet series that converge at some point (and then define a holomor-
phic function on some half plane). We denoteN0 =N∪ {0} andN(N)

0 =⋃∞
n=0N

n
0 × {0} is the set

of multi-indices of arbitrary length with non-negative integer entries. Then the notationZ(N)

is clear. Given a sequence of complex numbers z = (zn)n and α = (α1, . . . ,αN ,0,0, . . .) ∈ Z(N)

we denote zα =∏N
n=1 zαn

n . We write D(z,r ) for the disc in the complex plane centred at z and
with radius r , and T for ∂D(0,1). Finally, p = (p j ) j denotes the sequence of prime numbers;
sometimes p will denote a particular primer number.

2 Spaces of translated Dirichlet series

As we already mentioned before, our aim is to consider the spaces of those Dirichlet series
whose translations belong to H p . Abscissas are a quite convenient way to formulate this
idea. Let us note that the space defined by Bonet in [6] can be reformulated as H ∞+ = {D ∈
D : σu(D) ≤ 0}. For 1 ≤ p <∞, we define the H p -abscissa of a Dirichlet series D = ∑

ann−s

as
σp (D) = inf

{
σ :

∑ an
nσ n−s ∈H p

}
,
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and define the space
H

p
+ = {D ∈D : σp (D) ≤ 0} .

For each k ∈Nwe consider the seminorm∥∥∥∑
ann−s

∥∥∥
p,k

=
∥∥∥∑ an

n
1
k

n−s
∥∥∥

H p
.

By [10, Proposition 11.20] we have ‖·‖p,k ≤ ‖·‖p,k+1, and we may endow H
p
+ with the Fréchet

topology defined by the family of seminorms
{‖ ·‖p,k

}
k∈N.

Remark 2.1. If a Dirichlet series
∑

ann−s belongs to H p for some 1 ≤ p <∞, then the trans-
lated series

∑ an
nσ n−s belongs to H q for all σ > 0 and every p < q <∞ (see [3, Section 3] or

[10, Theorem 12.9]).

The previous observation implies that σp (D) = σq (D) for every 1 ≤ p, q < ∞ and, in par-
ticular, all H

p
+ for 1 ≤ p <∞ are equal as vector spaces. Since the inclusion H q ,→ H p is

continuous, the inclusion H
q
+ ,→ H

p
+ between the Fréchet spaces is also continuous. Then

an application of the Open Mapping Theorem shows that they are all isomorphic. So, we are
dealing with only one Fréchet space (that we will denote H+) whose topology can be de-
fined by different families of seminorms

{‖ ·‖p,k
}

k∈N. In the following proposition we show
how these seminorms relate with each other. Before we proceed, let us briefly recall some
basic facts that we are going to use. First of all, we consider T∞, the infinite product of T
on which we consider the product of the normalised Lebesgue measures. Given a function
f ∈ L1(T∞) and α ∈Z(N) we consider the Fourier coefficient

f̂ (α) =
∫
T∞

f (z)z−αd z .

It is a well known fact (see e.g. [10, Chapter 11]) that for every 1 ≤ p ≤∞ the Hardy space

Hp (T∞) = { f ∈ Lp (T∞) : f̂ (α) = 0 for every α ∈Z(N) \N(N)
0 }

is isometrically isomorphic to H p .

Proposition 2.2. For every 1 ≤ p ≤ q <∞ and k ∈N there exists Ck,p,q > 1 so that∥∥∥∑
ann−s

∥∥∥
p,k

≤
∥∥∥∑

ann−s
∥∥∥

q,k
≤Ck,p,q

∥∥∥∑
ann−s

∥∥∥
p,2k

, (2)

for every Dirichlet series in H+.

Proof. The first inequality in (2) is obvious, so it is only left to show that the second inequality
holds. The proof relies heavily on [3, Section 3] and [11, Proposition 2.4 and Theorem 2.5]
(see also [10, Theorem 12.9 and Proposition 12.10]). First of all, fix 1 ≤ p ≤ q <∞, k ∈N and

find j0 = j0(p, q,k) ∈ N0 such that p
−1
2k
j <

√
p
q for every j > j0. Then, by [11, Proposition 2.4]

there exists a unique operator
T : Hp (T∞) → Hq (T∞)

4



satisfying T
(∑

α∈Λ aαzα
)=∑

α∈Λ aα
(
p−1/(2k)z

)α for every finiteΛ⊆N(N)
0 and ‖T ‖ ≤∏ j0

j=1
1

1−p
−1
2k
j

.

Following [11, Theorem 2.5], by doing M
(∑

ann−s
)
= ∑

ann− 1
2k n−s we define an operator

M : H p →H q satisfying ‖M‖ = ‖T ‖. Then

‖D‖q,k =
∥∥∥∑ an

n
1
k

n−s‖q = ‖M(D2k )‖q ≤ ‖M‖ ‖D2k‖p ≤
( j0∏

j=1

1

1−p
−1
2k
j

)
‖D‖p,2k .

This gives (2) and completes the proof.

Remark 2.3. A straightforward computation shows that

H ∞ ⊆H p ⊆H 1 ⊆H+

for every 1 ≤ p ≤∞ and
H ∞ ⊆H ∞

+ ⊆H+ .

There is, however, no relationship between the H p spaces and H ∞+ . On the one hand, we
take the series D = ∑

ann−s defined by an = 1 if n = 2 j for some j ∈N and an = 0 otherwise.
Note thatσu(D) ≤σa(D) = 0, so

∑
ann−s ∈H ∞+ , but clearly (an)n 6∈ `2 and then

∑
ann−s does

not belong to H 2 (nor to any H p for 2 ≤ p <∞). As a matter of fact, (an)n does not belong to
`r for any 1 ≤ r <∞; then a straightforward application of the Haussdorff-Young inequalities
(see e.g. [9]) shows that

∑
ann−s 6∈ H p for every 1 < p ≤ 2. The same argument shows that

the series
∑

bnn−s given by bn = j if n = 2 j for j = 0,1,2, . . . and 0 otherwise belongs to H ∞+
but not to H 1. Summing up,

H ∞
+ 6⊆H p

for every 1 ≤ p <∞.
On the other hand for a fixed 1

2 > ε > 0 the series
∑ 1

n
1
2 +ε n−s has abscissa of convergence

σc > 1
2 −ε> 0 and then cannot belong to H ∞+ . However, it clearly belongs to H 2 and, since

it can be seen as the ε
2 -translation of the series

∑ 1

n
1
2 + ε2

n−s (that again belongs to H 2), it

belongs to H p for every 1 ≤ p <∞. Hence

H p 6⊆H ∞
+

for every 1 ≤ p <∞.

Remark 2.4. Let us also observe that if D ∈ H+, then D1/ε ∈ H 2 for every ε > 0 and, by [10,
Remark 1.8 and Theorem 12.11] σa(D) =σa(D1/ε)+ε≤ 1

2 +ε. This gives σa(D) ≤ 1
2 . Now, the

series
∑ 1p

n
n−s is in H+ and satisfies σa(D) = 1

2 . Then

sup
D∈H+

σa(D) = 1

2
. (3)

Our aim now is to prove the following result, parallel to [6, Theorem 2.2].

Theorem 2.5. The space H+ is a Fréchet-Schwartz, non-nuclear algebra and the Dirichlet
monomials en(s) = n−s form an unconditional, non-absolute Schauder basis.
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Before we proceed, let us note that for each fixed 1 ≤ p <∞ and k ∈N we may consider the
following space of Dirichlet series

H
p
k :=

{∑
ann−s :

∑ an

n
1
k

n−s ∈H p
}

,

that, with the norm ‖ · ‖p,k , is a Banach space. Note that H
p
k+1 ⊆ H

p
k , and the inclusion

is continuous. By Remark 2.1 (and the comment after it), H+ is the projective limit of the
spaces H

p
k . Note that for every p we get the same projective limit, so we have

H+ :=
∞⋂

k=1
H 2

k ,

endowed with the projective limit topology.

The space H+ is Schwartz if the inclusions

idk : H 2
k+1 −→H 2

k (4)

(that, as we already mentioned, are continuous) are all compact. This in the case of H ∞+
is done in [6] by using a variant of Montel’s theorem for Dirichlet series due to Bayart [3,
Lemma 18]. In our case, due to the particular structure of the spaces, is particularly easy.
Let us note that the mappings H 2

k+1 →H 2 given by
∑

ann−s 7→∑ an

n1/(k+1) n−s and H 2 →H 2
k

given by
∑

ann−s 7→ ∑
ann1/k n−s are continuous. Also, the operator H 2 → H 2 defined as∑

ann−s 7→ ∑
an

n1/(k+1)

n1/k n−s is compact (because it is a diagonal operator between Hilbert

spaces with a defining sequence tending to 0). The inclusion H 2
k+1 ,→ H 2

k is the compo-
sition of these three mappings and is, therefore compact.

This already gives the first statement in Theorem 2.5, namely that H+ is a Fréchet-Schwartz
space (hence Montel and reflexive, see [14, Remark 24.24]). The rest of the statements are
scattered along the paper: the fact that it is an algebra is proved in Proposition 5.3, the mono-
mials are shown to form an unconditional Schauder basis in Lemma 2.6, and that it is not
absolute follows from the identification with certain Köthe echelon space (see Remark 2.8).
The non-nuclearity is given in Lemma 2.7.

Let us recall that a sequence {en}n in a locally convex space E is a Schauder basis if for every
x ∈ E there is a unique sequence (xn)n of scalars so that x = ∑∞

n=1 xnen . We now move to
the proof of the fact that the monomials {n−s} form a Schauder basis of H+. This is already
known for the Hardy spaces H p for 1 < p <∞ [1] and for H ∞+ [6]. In this case we even have
that the basis is uncoditional (that is, the series

∑∞
n=1 xπ(n)eπ(n) converges for every permuta-

tion π of the natural numbers.

Lemma 2.6. The Dirichlet monomials {n−s} form an unconditional Schauder basis of H+.

Proof. Take
∑

ann−s ∈ H+ and fix k ∈ N. Given N ∈ N and a permutation π, let us denote
F = {π(1), . . . ,π(N )}. Then∥∥∥∑

ann−s −
N∑

n=1
aπ(n)π(n)−s

∥∥∥
2,k

=
∥∥∥ ∑

n∈N\F

an

n
1
k

n−s
∥∥∥

H 2
=

( ∑
n∈N\F

|an |2
n2/k

) 1
2

.
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But the sequence
( |an |2

n2/k

)
n is absolutely summable (since

∑ an

n1/k n−s ∈H 2), hence it converges
unconditionally. This gives the conclusion.

Let us recall that a locally convex space E is nuclear if for every seminorm p there exist a
seminorm q such that the identity operator I : (E , q) → (E , p) is nuclear. Every nuclear space
is Schwartz and has a fundamental system of Hilbert seminorms (see [14, Corollary 28.5 and
Lemma 28.1]). The space H+ shares these two properties (note that the family

(‖ · ‖2,k
)

k is a
fundamental system of Hilbert seminorms). It comes then naturally to ask whether or not it
is nuclear.

Lemma 2.7. The space H+ is not nuclear.

Proof. Once we have that the monomials form a Schauder basis, this follows from a straigh-
forward application of the Grothendieck-Pietsch criterion (see e.g. [14, Theorem 28.15]).

Remark 2.8. A Köthe matrix is a sequence B = (bk )k∈N, of functions bk : I → R (where I is a
countable set of indices) satisfying that 0 ≤ bk (i ) ≤ bk+1(i ), for all k ∈N and all i ∈ I and that
for each i ∈ I there exist k ∈N such that bk (i ) > 0. Given a Köthe matrix and 1 ≤ p <∞, the
corresponding Köthe echelon space is defined as

λp (B) :=
{

x ∈CI : q (p)
k (x) :=

(∑
i∈I

|bk (i )xi |p
) 1

p <∞, for all k ∈N
}

.

These are all Fréchet spaces endowed with the topology given by the increasing sequence of

seminorms q (p)
1 ≤ q (p)

2 ≤ ·· · ≤ q (p)
k ≤ ·· · . Observe that taking I =N and defining the matrix B

as

bk (n) = 1

n
1
k

(5)

for k,n ∈N a straightforward computation shows that

H+ =λ2(B) (6)

as Fréchet spaces.
Let us recall that a Shauder basis {en}n of a locally convex space E is absolute if for every
continuous seminorm p on E there is a continuous seminorm q on E and C > 0 so that∑

n
|xn |p(en) ≤C q(x)

for every x ∈ E . Let us note that ‖n−s‖2,k = 1
n1/k for every n,k. If the monomials were an

absolute basis of H+ then, by [14, Lemma 27.25], H+ would be isomorphic to λ1(B). But
[14, Proposition 28.16] shows that this is not possible. Hence the monomials cannot build
an absolute Schauder basis.

Remark 2.9. Recall from Remark 2.3 that H ∞+ ⊆ H+ (as sets), and by the definition of the
seminorms, the inclusion is continuous . Furthermore, being H ∞+ a Fréchet-Schwartz space
[6, Theorem 2.2] it is Montel [14, Remark 24.24], and the inclusion H ∞+ ,→ H+ is Montel.
From [6, Proposition 2.3] and (6), both spaces are not isomorphic.
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3 Connection with spaces of holomorphic functions

It is a well known and important fact within the theory that Dirichlet series are closely re-
lated with holomorphic functions on infinite-dimensional Banach spaces. The space H∞
is isometrically isomorphic to the the space of bounded holomorphic functions on Bc0 (the
open unit ball of c0) and each H p is isometrically isomorphic to a certain Hardy space of
holomorphic functions on `2 ∩DN (see [15], [10, Chapters 3 and 13] or [5] for details). Our
aim in this section is to see to what extent can we connect the new spaces with spaces of
holomorphic functions.
First of all, let us recall that a function f : U →C (where U is an open subset of some normed
space X ) is said to be holomorphic if it is Fréchet differentiable at every point of U . We say
that X is a Banach sequence space if it is a vector subspace of CI (where I is either a finite
set or N) endowed with a complete norm and satisfying that, if x, y ∈ CI are so that x ∈ X
and |yi | ≤ |xi | for every i , then y ∈ X and ‖y‖ ≤ ‖x‖. An open subset R ⊆ X is a complete
Reinhardt domain if whenever x ∈ R and y ∈ CI are so that |yi | ≤ |xi | for every i , then y ∈ R.
If R is a complete Reinhardt domain, then every holomorphic function f : R → C defines a
unique family of coefficients

(
cα( f )

)
α (whereα runs overNI

0 if I is finite and onN(N)
0 if I isN).

If I is finite then f (z) =∑
α cα( f )zα for every z ∈ R, while if I =N this may not be the case. A

detailed account on these topics can be found in [10, Chapter 15].

For N and k we write

p−1/kDN = p−1/k
1 D×·· ·×p−1/k

N D= {
z ∈CN : |z j | < p−1/k

j , j = 1, . . . , N
}

and define the space H p (p−1/kDN ) as the space of holomorphic functions g : p−1/kDN →C so
that

‖g‖p := sup
0<r j <p−1/k

j
j=1,...,N

(∫
TN

|g (r1z1, . . . ,rN zN )|p d z
) 1

p <∞ .

To functions of N variables correspond Dirichlet series that depend only on the first N primes.
We denote PN = {pα1

1 ∈N · · ·pαN
N : (α1, . . . ,αN ) ∈NN

0 } and consider the space

H
p,(N )
k = {∑

ann−s ∈H
p
k : an 6= 0 ⇒ n ∈PN

}
.

Proposition 3.1. For every k, N ∈ N and 1 ≤ p < ∞ we have H
p,(N )
k = H p (p−1/kDN ) and, if∑

ann−s and g are related to each other, then an = cα(g ) whenever n = pα.

Proof. Choose some
∑

ann−s ∈ H
p,(N )
k , then

∑ an

n1/k n−s ∈ H p and depends only on the first

N primes. Then (see for example [10, page 316]) we can find f ∈ H p (DN ) so that cα( f ) = an

n1/k

whenever n = pα and
‖ f ‖p = ∥∥∑ an

n1/k n−s
∥∥

H p = ∥∥∑
ann−s

∥∥
H

p
k

.

Define now a function g : p−1/kDN → C by g (z) = f
(
p1/k

1 z1, . . . ,p1/k
N zN

)
. This is clearly holo-

morphic and

sup
0<r j <p−1/k

j
j=1,...,N

(∫
TN

|g (r1z1, . . . ,rN zN )|p d z
) 1

p = sup
0<s j <1

j=1,...,N

(∫
TN

| f (s1z1, . . . , sN zN )|p d z
) 1

p = ‖ f ‖H p (DN ) .
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Hence g ∈ H p (p−1/kDN ) and, moreover,

g (z) = f
(
p1/k

1 z1, . . . ,p1/k
N zN

)= ∑
α∈NN

0

cα( f )
(
p1/k z

)α = ∑
α∈NN

0

cα( f )
(
p1/k)αzα

for every z ∈ p−1/kDN . By the uniqueness of the monomial coefficients,

cα(g ) = cα( f )
(
p1/k)α = an

n1/k
n1/k = an

if n = pα, and H
p,(N )
k ,→ H p (p−1/kDN ).

On the other hand, given g ∈ H p (p−1/kDN ) define an = cα(g ) for n = pα and consider the
Dirichlet series

∑
ann−s (note that an = 0 for every n ∉ PN ). Essentially the same compu-

tations as before show that the function f : DN → C given by f (z) = g
(
p−1/k

1 z1, . . . ,p−1/k
N zN

)
belongs to H p (DN ) and cα( f ) = cα(g )

(p1/k )α
. Then (recall again [10, page 316]) we can find

∑
bnns ∈

H p so that bn = cα( f ) = cα(g )
(p1/k )α

= an

n1/k . This gives
∑

ann−s ∈ H
p,(N )
k and completes the

proof.

In H(DN ), the space of all holomorphic functions on DN we define, for each k and p,

ρk,p ( f ) =
(∫
TN

∣∣ f
(
p−1/k

1 z1, . . . ,p−1/k
N zN

)∣∣p d z
) 1

p
.

Proposition 3.2.

H (N )
+ := {∑

ann−s ∈H+ : an 6= 0 ⇒ n ∈PN
}= H(DN )

and, if f and
∑

ann−s are associated to each other,∥∥∑
ann−s

∥∥
p,k = ρk,p ( f )

for every k and 1 ≤ p <∞.

Proof. Fix some 1 ≤ p <∞ and take
∑

ann−s ∈ H (N )
+ . Then, for each k, the Dirichlet series

belongs to H
p,(N )
k and, by Proposition 3.1 we can find gk ∈ H p (p−1/kDN ) so that cα(gk ) = an

for every n = pα. By the uniqueness of the coefficients one easily gets that gk |p−1/ jDN = g j for

k ≥ j and, therefore, we may define a holomorphic function f : DN → C so that cα( f ) = an .
Moreover ρk,p ( f ) = ‖gk‖H p (p−1/kDN ) =

∥∥∑
ann−s

∥∥
p,k .

On the other hand, the restriction of every holomorphic function f :DN →C clearly belongs
to H p (p−1/kDN ) (and the norm equals ρk,p ( f )). Proposition 3.1 gives that

∑
ann−s (where

an = cα( f )) belongs to H
p,(N )
k for every k and, hence to H (N )

+ .

Proposition 3.3. Let E be either H ∞+ or H+ and ‖·‖k denote in each case either ‖·‖∞,k or ‖·‖2,k .
Then

∑
ann−s ∈ E if and only if

∑
n∈PN ann−s ∈ E for every N and supN

∥∥∑
n∈PN ann−s

∥∥
k <∞

for every k.

For each 1 ≤ p < ∞ we define the space H p
+(`2 ∩DN) as consisting of those holomorphic

functions f : `2 ∩DN→C satisfying

sup
N

(∫
TN

∣∣ f
(
p−1/k

1 z1, . . . ,p−1/k
N zN ,0,0, . . .

)∣∣p d z
) 1

p <∞ (7)

9



for every k.

Given f ∈ H p
+(`2∩DN) we may consider coefficients an = cα( f ) (with n = pα) and the Dirich-

let series ι( f ) = ∑
ann−s . Note that the restriction fN of f to DN is obviously holomorphic

and
(
ρk,p ( fN )

)
N is bounded by the supremum in (7). Then Propositions 3.2 and 3.3 yield∑

ann−s ∈H+, and therefore the mapping

ι : H p
+(`2 ∩DN) →H+ (8)

is an inclusion for every 1 ≤ p <∞.

It is very natural to wonder if the previous identification is in fact an isomporhism of Féchet
spaces. The following example shows that this mapping is not surjective.

Example 3.4. The series D =∑ 1p
pn
p−s

n is in H+ but it does not belong to ι(H p
+(`2 ∩DN)). To

see that this is indeed the case, suppose there is a function f ∈ H p
+(`2∩DN) such that ι( f ) = D .

Then, cα( f ) = 1p
pn

if α= en and cα( f ) = 0 otherwise.

Define now the sequence z = (zn) as z1 = 1/2, z2 = 1/2 and zn = 1/(
√

n log(n) loglog(n)) for
n ≥ 3. It is easy to see that z lies in the set `2 ∩DN. For each N ∈Nwe have

f (z1, . . . , zN ,0,0, . . . ) = ∑
α∈NN

0

cα( f )zα =
N∑

n=1

1p
pn

zn .

On the other hand, the truncates
(
(z1, . . . , zN ,0,0, . . . )

)
N clearly converge (in `2) to z. Thus,

continuity and the prime number theorem yield

f (z) = lim
N→∞

f (z1, · · · , zN ,0,0, . . . ) = lim
N→∞

N∑
n=1

1p
pn

zn ≥ lim
N→∞

N∑
n=3

C

n log(n) loglog(n)
=+∞.

This is a contradiction and proves our claim.

We give a characterization of the space H+ in terms of holomorphic functions in Corollary
3.6. To do that we begin by considering the following two weighted sequence spaces

`∞(p1/k ) = {
z ∈CN : ‖z‖∞,p1/k := sup

n
|znp

1/k
n | <∞}

and

`2(p1/k ) =
{

z ∈CN : ‖z‖2,p1/k :=
(∑

n
|znp

1/k
n |2

) 1
2 <∞

}
.

Both are Banach sequence spaces, and the set `2(p1/k )∩B`∞(p1/k ) is an open, complete Rein-

hardt domain in `2(p1/k ), and note that
(
`2(p1/k )∩B`∞(p1/k )

)∩CN = p−1/kDN for every N .

Now, for each 1 ≤ p <∞ we define the space H p (`2(p1/k )∩B`∞(p1/k )) as consisting of those

holomorphic functions on `2(p1/k )∩B`∞(p1/k ) so that

‖ f ‖ := sup
N

sup
0<r j<p−1/k

j
j=1,...,N

(∫
TN

∣∣ f
(
r1z1, . . . ,rN zN ,0,0, . . .

)∣∣p d z
) 1

p <∞ .
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Proposition 3.5. Let k ∈N, then

H 2
k = H 2(`2(p1/k )∩B`∞(p1/k ))

as Banach spaces.

Proof. Let us begin by taking some f ∈ H 2(`2(p1/k )∩B`∞(p1/k )), defining as usual an = cα( f )
for n = pα and considering the Dirichlet series

∑
ann−s . Fix N and define fN as the restriction

of f to p−1/kDN , which is holomorphic and satisfies that

sup
0<r j<p−1/k

j
j=1,...,N

(∫
TN

∣∣ fN
(
r1z1, . . . ,rN zN

)∣∣2d z
) 1

2

= sup
0<r j<p−1/k

j
j=1,...,N

(∫
TN

∣∣ f
(
r1z1, . . . ,rN zN ,0,0, . . .

)∣∣2d z
) 1

2 ≤ ‖ f ‖H 2(`2(p1/k )∩B
`∞(p1/k )) <∞ .

Hence fN ∈ H 2(p−1/kDN ) and, by Proposition 3.1, if bn = cα( fN ) for every n = pα with α ∈NN
0 ,

then the Dirichlet series
∑

bnn−s belongs to H 2,(N )
k . But, since cα( fN ) = cα( f ) for every α ∈

NN
0 , this implies that

∑
n∈PN ann−s ∈ H 2,(N )

k for every N or, in other words,
∑

n∈PN
an

n1/k n−s ∈
H 2,(N ) for every N . Moreover,∥∥∥∑

n∈PN
an

n1/k n−s
∥∥∥

H 2
= ∥∥∑

n∈PN ann−s
∥∥∥

H 2
k

= ‖ fN‖H 2(p−1/kDN ) ≤ ‖ f ‖H 2(`2(p1/k )∩B
`∞(p1/k )) .

With this [10, Corollary 13.9] gives
∑ an

n1/k n−s ∈H 2. Then
∑

ann−s ∈H 2
k and also ‖∑

ann−s‖2,k ≤
‖ f ‖H 2(`2(p1/k )∩B

`∞(p1/k )).

Take now
∑

ann−s ∈H 2
k and define cα = apα for each α ∈N(N)

0 . For z ∈ `2(p1/k )∩B`∞(p1/k ) we
have ∑

α∈N(N)
0

|cαzα| = ∑
α∈N(N)

0

|cα|
(p1/k )α

∣∣(p1/k )αzα
∣∣≤ ( ∑

α∈N(N)
0

|cα|2
(pα)2/k

) 1
2
( ∑
α∈N(N)

0

∣∣p2/k z2
∣∣α) 1

2
. (9)

Observe that
(
p2/k

n z2
n

)
n ∈ `1 ∩Bc0 and therefore the last sum in (9) converges (see e.g. [10,

Remark 2.18]). On the other hand,
∑∞

n=1
|an |2
n2/k < ∞ (because the Dirichlet series belongs to

H 2
k ) and, so,

∑
α∈N(N)

0

|cα|2
(pα)2/k also converges. This altogether shows that the power series in

(9) converges (absolutely) and, then f (z) = ∑
α∈N(N)

0
cαzα defines a holomorphic function on

`2(p1/k )∩B`∞(p1/k ). [10, Theorem 15.57].

Consider for each N the restriction of f to p−1/kDN and denote it by fN . This belongs to
H 2(p−1/kDN ) (see Proposition 3.1) and

‖ fN‖H 2(p−1/kDN ) =
∥∥∑

n∈PN
an

n−1/k n−s
∥∥

H2
≤ ∥∥∑ an

n−1/k n−s
∥∥

H2
.

This immediately yields f ∈ H 2(`2(p1/k )∩B`∞(p1/k )) with ‖ f ‖ ≤ ∥∥∑
ann−s

∥∥
2,k and completes

the proof.

Corollary 3.6.

H+ =
∞⋂

k=1
H 2(`2(p1/k )∩B`∞(p1/k )) ,

where in the intersection the topology of the projective limit is considered.
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4 Composition operators on the space H+

If φ : Cθ → Cµ is holomorphic and D =∑
ann−s ∈D converges on Cµ, then one can consider

the composition D ◦φ = ∑
ann−φ(s). This defines a holomorphic function on Cθ. Following

the work performed in [12, 3, 6], in this section we analyse those functionsφ :Cθ →C 1
2

(since

every Dirichlet series in H+ converges at least on C 1
2

we are led to consider functions taking

values in this half-plane) whose associated composition operators are bounded or continu-
ous. We begin by looking at the case H+ → D, that goes essentially along the same lines as
[12, Theorem A].

Theorem 4.1. A functionφ :Cθ →C 1
2

defines a composition operator Cφ : H+ →D if and only

if it is an analytic function on some half-plane Cµ and there it has the form

φ(s) = c0s +ϕ(s), where c0 ∈N∪ {0} and ϕ ∈D . (10)

Proof. If Cφ is a composition operator, then 2−φ(s) and 3−φ(s) are holomorphic and nowhere-
vanishing functions on some half-plane Cµ with µ ≥ θ, so with the same proof given in [4,
Lemma 2.1] we have that φ is an analytic function on Cµ. On the other hand, the fact that
H 2 ⊆H+ and [12, Theorem A] immediately give that φ :Cµ→C 1

2
has to be as in (10).

Suppose now that φ(s) = c0s +ϕ(s) with c0 ∈N∪ {0} and ϕ ∈D. Then φ generates a composi-
tion operator on H 2. For each fixed ε> 0 we define φε(s) = c0s +ϕ(s)−ε, which also defines
a composition operator on H 2. Given a Dirichlet series D =∑

ann−s in H+ we have

D ◦φ(s) =∑
ann−φ(s) =∑ an

nε
n−(φ(s)−ε) = D1/ε ◦φε(s) ∈D

We move on now to characterise the continuous composition operators on H+, following
the spirit of [12, Theorem B].

Theorem 4.2. Let φ be as in (10). Then Cφ : H+ → H+ defines a continuous composition
operator if and only if φ has an analytic extension to C+, such that

1. φ(C+) ⊆C+ if c0 ∈N,

2. φ(C+) ⊆C 1
2

if c0 = 0.

Let us make a short comment before we proceed to the proof. Suppose φ :C+ →C is a holo-
morphic mapping as in (10) that defines a composition operator Cφ : H+ → D. Given k ∈N
and δ> 0 we define a function φk,δ :C− 1

k
→C by

φk,δ(s) =φ(
s + 1

k

)−δ . (11)

This is obviously holomorphic, but even more

φk,δ(s) = c0
(
s + 1

k

)+ϕ(
s + 1

k

)−δ= c0s +ϕk,δ(s) , (12)

where

ϕk,δ(s) = c0

k
−δ+ϕk (s) = c0

k
−δ+ c1 +

∞∑
n=2

an

n1/k
n−s

12



is a Dirichlet series that converges at least in the same half-plane as ϕ (and that, as ϕ, has a
holomorphic extension to C+). Then, by Theorem 4.1, φk,δ defines a composition operator
Cφk,δ : H+ → D. Let us note that, if D = ∑

ann−s ∈ H+, then D ◦φ ∈ D and, whenever this
converges, for k ∈Nwe have (recall (1))(

D ◦φ)
k (s) = D ◦φ(

s + 1
k

)=∑
ann−φ(s+1/k) =∑ an

nδ
n−φ(s+1/k)+δ = D1/δ ◦φk,δ(s) ,

that is (note that D1/δ again belongs to H+)(
D ◦φ)

k =Cφk,δ(D1/δ) . (13)

proof of Theorem 4.2. Take φ such that Cφ : H+ → H+ is continuous. For each fixed k we
considerφk,0 as in (11) and observe that it defines a continuous composition operator H 2 →
H 2 and (as in (13)) Cφk,0 (D) = (

D ◦φ)
k for every D ∈ H 2. Suppose that c0 = 0; then by [12]

φk (C+) ⊆C 1
2

which yieldsφ(C 1
k

) ⊆C 1
2

. Since this holds for every k the conclusion follows. The

same argument gives also the conclusion for c0 6= 0. This completes the proof of necessity.
To prove sufficiency, let us note in first place that if φ is such that for every k there is δ> 0 so
that the function in (11) defines a continuous composition operator Cφk,δ : H 2 → H 2, then
we just have to choose m with 0 < 1

m < δ and take (13) into account to get

‖Cφ(D)‖2,k = ‖(D ◦φ)k‖2 ≤ ‖Cφk,δ‖‖D1/δ‖2 ≤ ‖Cφk,δ‖‖D‖2,m

for every D ∈H+; and this shows that Cφ : H+ →H+ is continuous. It is then enough, then
to show that if φ satisfies any of the conditions in Theorem 4.2, then for each k we can find
δ> 0 so that the operator Cφk,δ : H 2 →H 2 is continuous. We consider different cases. First
of all, if c0 = 0, then φ = ϕ and, by hypothesis ϕ(C+) = φ(C+) ⊆ C 1

2
. Given k ∈ N, by [12,

Proposition 4.2] (see Remark 4.7) we can find δ > 0 so that ϕ(C 1
k

) ⊆ C 1
2+δ. Taking this δ we

define φk,δ as in (11). A simple computation shows that φk,δ(C+) ⊆ C 1
2

and [12, Theorem B]

gives that Cφk,δ : H 2 →H 2 is continuous. This completes the proof in this case.
Suppose now that c0 6= 0 andϕ 6= 0. In this caseφ(C+) ⊆C+ and, by [12, Proposition 4.2], given
k ∈ N we can find δ > 0 so that ϕ(C 1

k
) ⊆ Cδ. Then φk,δ(C+) ⊆ C+ and again [12, Theorem B]

yields that Cφk,δ : H 2 →H 2 is continuous, giving the result.
The remaining case (c0 6= 0 and ϕ= 0) follows by a direct computation. Note that in this case
φ(s) = c0s and, for each fixed k, we have

‖Cφ(D)‖2,k =
∥∥∥∑

ann−c0s
∥∥∥

2,k
=

∥∥∥∑ an

nc0/k

(
nc0

)−s
∥∥∥

2
=

∞∑
n=1

|an |2
n2c0/k

≤
∞∑

n=1

|an |2
n2/k

= ‖D‖2,k

for every D =∑
ann−s ∈H+.

An operator T : E → F between locally convex spaces is said to be bounded if there is a 0-
neighbourhood U in E for which T (U ) is bounded (in F ).

Remark 4.3. Suppose that (DN )N is a sequence of Dirichlet series (say DN = ∑
a(N )

n n−s) in
H 2 that converges to some D =∑

ann−s ∈H 2. Then for each s ∈C 1
2

we have

|DN (s)−D(s)| ≤
∞∑

n=1
|a(N )

n −an | 1

nRe s
≤

( ∞∑
n=1

|a(N )
n −an |2

) 1
2
( ∞∑

n=1

1

n2Re s

) 1
2

,

and DN (s) → D(s) as N →∞.

13



Theorem 4.4. Let φ, defined as in (10), be such that the composition operator Cφ : H+ →H+
is continuous. Then Cφ is a bounded composition operator in H+ if and only if there exists
ε> 0 such that

1. φ(C+) ⊆Cε if c0 ∈N,

2. φ(C+) ⊆C 1
2+ε if c0 = 0.

Proof. Let us begin by assuming that c0 ∈ N and φ(C+) ⊆ Cε for some ε > 0. Take 0 < 1
m < ε

and consider the following neighbourhood of 0 in H+,

Um = {D ∈H+ : ‖Dm‖2 < 1} .

For each k ∈ N we consider the function φk,1/m defined in (11) and note that, if Re s > 0 we
have

Reφk,1/m(s) = Reφ
(
s + 1

k

)− 1

m
> ε− 1

m
> 0.

In other words, φk,1/m(C+) ⊆ C+ and, by [12, Theorem B], the composition operator Cφk,1/m :
H 2 →H 2 is continuous. Having this, if D ∈Um (note that Dm ∈H 2 and recall (13)), then

‖Cφ(D)‖2,k = ‖Cφk,1/m (Dm)‖2 ≤ ‖Cφk,1/m‖‖Dm‖2 = ‖Cφk,1/m‖‖D‖2,m ≤ ‖Cφk,1/m‖ ,

and Cφ is bounded. The case c0 = 0 and φ(C+) ⊆C 1
2+ε follows in the same way.

Suppose now that φ generates a bounded operator. Then there exists N ∈ N (that we may
assume N ≥ 2, since the sequence of seminorms ‖·‖2,k is increasing) such that for each k ∈N
there is Mk > 0 such that ‖Cφ(D)‖2,k ≤ Mk‖D‖2,N for every D ∈ H+. Fix now some k ∈ N
and consider the function φk,1/N defined in (11). By Theorem 4.1 (check (12)) it defines a
composition operator H+ →D, and our aim now is to show that in fact Cφk,1/N : H 2 →H 2 is
continuous.
If P = ∑M

n=1 ann−s is a Dirichlet polynomial, we may consider P−N = ∑M
n=1 ann

1
N n−s . This is

again a Dirichlet polynomial, and as in (13) we have Cφk,1/N (P ) = (P−N ◦φ)k . Hence

‖Cφk,1/N (P )‖2 = ‖P−N ◦φ‖2,k ≤ Mk‖P−N‖2,N = Mk‖P‖2 .

This shows that Cφk,1/N defines on the Dirichlet polynomials a continuous operator taking
values in H 2. This operator extends by density to a continuous Gk,N : H 2 → H 2. Our aim
now is to see that this operator in fact coincides with Cφk,1/N . Choose some D ∈ H 2 and
take a sequence (PM )M of Dirichlet polynomials converging in H 2 to D . Then Gk,N (PM ) →
Gk,N (D). Since Cφ is continuous we know from Theorem 4.2 that φ(C+) ⊆ C+. Then, by [12,
Proposition 4.2] (see Remark 4.7), ϕ(C1/k ) ⊆Cσ. Let us see now that, if Re s > 1, then

Re
(
φk,1/N (s)

)
= c0 Re s + c0

k
− 1

N
+Re

(
ϕ

(
s + 1

k

))> 1

2
. (14)

Indeed, the case c0 6= 0 is clear. On the other hand, if c0 = 0 thenϕ(C1) ⊂C1/2+ε for some ε> 0
and therefore taking N sufficiently large, we have the inequality.
Once we have established (14), Remark 4.3 implies that PM

(
φk,1/N (s)

)→ D
(
φk,1/N (s)

)
. Hence

Gk,N (D) and D ◦φk,1/N coincide on C1, and they have to be equal in all the half-plane where
they are defined. Therefore Gk,N =Cφk,1/N , and the composition operator is continuous from
H 2 to H 2. Then, by [12, Theorem B], φk,1/N (C+) ⊆ Cσ, where σ = 0 if c0 6= 0 and σ = 1

2 if
c0 = 0. This gives φ(C 1

k
) ⊆Cσ+ 1

N
and, since k was arbitrary, yields our claim.
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We finish this section by finding conditions so that the operator takes values in a smaller
space, in the spirit of [3, Theorems 12 and 13], where conditions where given so that H p is
mapped to H q for 1 ≤ q ≤∞.

Our first result in this matter gives sufficient conditions on the composition operator to take
values in H p . Its proof is modelled along the same lines as [3, Theorem 12]

Theorem 4.5. Let φ(s) = c0s +ϕ(s), with c0 ≥ 1 and ϕ ∈ D be such that φ(C+) ⊆ Cε for some
ε> 0. Then Cφ(H+) ⊆H p for every 1 ≤ p <∞.

Proof. Let us consider the function

γ(s) =φ(s)−ε= c0s +ϕ(s)−ε= c0s +ψ(s) ,

and note thatψ= (c1−ε)+∑
n≥2 cnn−s ∈D. On the one hand we haveφ(C+) ⊆Cε. This, by [12,

Proposition 4.2] (see Remark 4.7), givesϕ(C 1
2

) ⊆Cε+δ, which together with the fact that c0 ≥ 1,

yields φ(C 1
2

) ⊆ C 1
2+ε. Then γ(C 1

2
) ⊆ C 1

2
and γ(C+) ⊆ C+. By [3, Theorem 11] Cγ : H p → H p

is a well defined composition operator for every 2 ≤ p < ∞. Fix some 2 ≤ p < ∞. Given
D =∑

ann−s ∈H+ we have D 1
ε
∈H p and

Cφ(D) =∑
ann−φ(s) =∑ an

nε
n−φ(s)+ε =∑ an

nε
n−γ(s) =Cγ(D 1

ε
) ∈H p .

This and the fact that H 2 ⊆H p ⊆H 1 for every 1 ≤ p ≤ 2 complete the proof.

Theorem 4.6. Let φ :C+ →C 1
2

be as in (10). Then

1. Cφ(H+) ⊆H ∞ if and only if φ(C+) ⊆C 1
2+ε for some ε> 0,

2. Cφ(H+) ⊆H ∞+ if and only if φ(C+) ⊆C 1
2

.

Proof. First of all, if Cφ(H+) ⊆ H∞ then, in particular (recall Remark 2.3), Cφ(H p ) ⊆ H∞
and [3, Theorem 13] gives φ(C+) ⊆C 1

2+ε for some ε> 0.

Let us conversely suppose that there is ε > 0 so that Re(φ(s)) > 1
2 + ε for all s ∈ C+. Take a

Dirichlet series D =∑
ann−s in H+ and s ∈C+, then

|Cφ(D)(s)| = |
∞∑

n=1
ann−φ(s)| ≤

∞∑
n=1

|an |n− 1
2−ε ≤

( ∞∑
n=1

|an |2
nε

) 1
2
( ∞∑

n=1

1

n1+ε
) 1

2
.

The last term is finite because D ∈H+ (and obviously does not depend on s). Hence Cφ(D) ∈
H∞ and the proof of the first statement is completed.
For the second statement let us assume that φ(C+) ⊆ C 1

2
, and fix ε > 0. From [12, Proposi-

tion 4.2] we know that we can find δ> 0 so that φ(Cε) ⊆C 1
2+δ. Define a function

Ψ(s) =φ(s +ε) = c0s + c0ε+ϕ 1
ε

(s)

and observe that ψ= c0ε+ϕ 1
ε
∈D. Clearly Ψ(C+) =φ(Cε) ⊆C 1

2+δ and, therefore the compo-

sition operator CΨ maps H+ into H∞. For D ∈H+ we have

sup
s∈Cε

|Cφ(D)(s)| = sup
s∈Cε

|D(φ(s))| = sup
s∈C+

|D(φ(s +ε))| = sup
s∈C+

|CΨ(D)| .

Being the latter finite (because CΨ(D) ∈ H ∞) and ε > 0 arbitrary this yields Cφ(D) ∈ H ∞+ .
Necessity follows just by hypothesis.
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We finish this section by looking at vertical limits, a topic that in our view is interesting by
itself and which eventually will lead to an alternative (though longer) proof of the necessity
in Theorem 4.2. We begin by fixing some concepts and notations. First of all, a character is
a function χ : N→ T satisfying χ(nm) = χ(n)χ(m) for every n,m. We write Ξ for the group
of all characters that, as a matter of fact, is the dual group of the multiplicative group Q+ of
positive rationals. With this in mind Ξ is a compact abelian group that has a unique (up to
normalisation) Haar measure. In [13] it was shown how Ξ can be identified with T∞ and the
Haar measure corresponds to the product of the normalised Lebesgue measure.
Given a Dirichlet series D =∑

ann−s and a character χ ∈Ξ we denote

Dχ =
∑

anχ(n)n−s .

We know from [13, Lemma 2.4] that the functions Dχ for χ ∈ Ξ correspond exactly with the
vertical limits of D . Clearly, if D belongs to D (or to H+), then so also does Dχ. Now, if φ is
defined as in (10), then we write

φχ(s) = c0s +ϕχ ,

which can no longer be seen as a vertical limit. Our first step is to see, following [12, Propo-
sition 4.3] how this action of the characters relates with composition. Let us recall that if φ is
as in (10), by [12, equation (4.2)], we have(

n−φ)
χ(s) =χ(n)c0 n−φχ(s) (15)

for s ∈Cσu (ϕ).

Remark 4.7. If φ is defined as in (10), then [12, Proposition 4.2] provides us with a good
control of the behaviour of ϕ in half-planes. More precisely, if φ(Cθ) ⊆ Cη, then for every
ε> 0 there is some δ> 0 so that ϕ(Cθ+ε) ⊆Cη+δ−c0θ.

Proposition 4.8. Suppose φ :Cθ →C 1
2

is a holomorphic mapping as in (10), then for D ∈H+
and χ ∈Ξ, the following relation holds:

(D ◦φ)χ(s) = Dχc0 ◦φχ(s) (16)

for s ∈Cθ.

Proof. On the right hand side, by [12, Proposition 4.1], we have that φχ maps the half-plane
Cθ into C 1

2
. On the other hand, Dχc0 is in H+, since D ∈ H+ and χc0 ∈ Ξ (because c0 ∈ N0).

Then (see (3)) it converges absolutely on C 1
2

, and Dχc0 ◦φχ defines a holomorphic function
on Cθ.
On the left hand side, since D =∑

ann−s ∈H+, it converges absolutely on C 1
2

(see again (3)).

Then

D ◦φ(s) =
∞∑

n=1
ann−φ(s) =

∞∑
n=1

ann−c0s−c1
∞∏

k=2

(
1+

∞∑
j=1

(−ck log(n)) j

j !
k− j s

)
can be rearranged as a Dirichlet series on some Cθ for θ big enough.
Then, (D ◦φ)χ is a Dirichlet series that converges absolutely (an then defines a holomorphic
function) on Cθ. The idea now is to see that these two functions coincide. We distinguish
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several cases.
First of all, if ϕ is constant, then φ=φχ = c0s + c1, and

(D ◦φ)χ(s) =
(∑(

ann−c1
)
(nc0 )−s

)
χ

=∑(
ann−c1

)
χ
(
nc0

)
(nc0 )−s =∑

χ(n)c0 ann−φχ(s) = Dχc0 ◦φχ(s)

for every s ∈Cθ, which gives our claim.
Suppose now that ϕ is not constant and fix θ′ > σu(ϕ) ≥ θ. By [12, Proposition 4.2] (see
Remark 4.7), we can find some ε= ε(θ′) > 0 such that ϕ

(
Cθ′

)⊆C 1
2+ε−c0θ

and

Re(φ(s)) = c0 Re(s)+Re(ϕ(s)) ≥ c0θ+ 1

2
+ε− c0θ = 1

2
+ε

for every s ∈Cθ′ . Hence

‖n−φ‖Cθ′ := sup
s∈Cθ′

|n−φ(s)| ≤ 1

n
1
2+ε

.

For each N let D (N ) = ∑N
n=1 ann−s denote the N -th partial sum of D . Fix k with 0 < 1

k < ε,
then

∑ |an | ‖n−φ‖Cθ′ ≤
∑ |an |n− 1

2−ε =∑ |an |
n

1
k

n− 1
2−ε+ 1

k ≤
(∑ |an |2

n
2
k

) 1
2
(∑ 1

n1+2ε− 2
k

) 1
2

,

and these two series are convergent. This implies that D (N ) ◦φ=∑N
n=1 ann−φ converges uni-

formly on Cθ′ to D ◦φ. Using again (15) we have

(D (N ) ◦φ)χ(s) =
N∑

n=1
anχ(n)c0 n−φχ(s) =

(
(D (N ))χc0 ◦φχ

)
(s)

on Cθ′ . Since taking vertical limits is continuous with respect to the uniform convergence,
this gives

(D ◦φ)χ = Dχc0 ◦φχ
on Cθ′ . So, these are two holomorphic functions on Cθ that coincide on a smaller half-plane.
The identity principle yields the claim.

The proof of the following result follows word by word that of [12, Proposition 5.1], so we
omit it.

Proposition 4.9. Let φ : C 1
2
→ C 1

2
be a holomorphic function for which the composition op-

erator Cφ : H+ → H+ is well defined and continuous. Then almost every (with respect to χ)
function φχ has an analytic extension to C+.

We need one more result before we proceed to the proof of Theorem 4.2. We know from [13,
Theorem 4.1] that if D ∈ H 2 then for almost every χ ∈ Ξ the vertical limit Dχ extends to a
holomorphic function in C+. We need the counterpart in H+ of this fact.

Proposition 4.10. Let D ∈ H+, then Dχ extends to a holomorphic function on C+ for almost
every χ ∈Ξ
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Proof. Take D =∑
ann−s ∈H+ and observe that, for each fixed k, since Dk ∈H 2, [13, Theo-

rem 4.1] implies that (Dk )χ has a holomorphic extension (let us call it fk,χ) to C+. Define the
set

Ak := {
χ ∈Ξ : (Dk )χ extends holomorphically to C+

}
and A = ⋂

k∈N
Ak (note that Ξ \ A has null measure in Ξ). We fix now χ ∈ A and k ∈ N and

observe that, for s ∈C 1
2+ 1

k
we have

Dχ(s) =
∞∑

n=1
anχ(n)

1

ns
=

∞∑
n=1

an

n
1
k

χ(n)
1

ns− 1
k

= (Dk )χ
(
s − 1

k

)= fk,χ
(
s − 1

k

)
.

Define now gk,χ : C 1
k
→ C by gk,χ(s) = fk,χ

(
s − 1

k

)
, that is clearly holomorphic and satisfies

gk,χ(s) = Dχ(s) for every s ∈ C 1
2+ 1

k
. Note now that, if k < l then gk,χ and gl ,χ coincide on C 1

k
,

and we can define gχ :C+ →C by gχ(s) = gk,χ(s) if s ∈C 1
k

. This is a holomorphic function that

extends Dχ to C+.

We can now give the announced alternative proof necessity in Theorem 4.2.

Alternative proof of necessity in Theorem 4.2. The proof follows essentially the same lines as
the proof of necessity in [12, Theorem B], so we only sketch it. Let us assume thatφ :C 1

2
→C 1

2

generates a continuous composition operator Cφ : H+ → H+. Then, by Proposition 4.8, for
every D ∈H+ and every χ ∈Ξ we have

(D ◦φ)χ = Dχc0 ◦φχ (17)

on C 1
2

. If we can find χ ∈Ξ for which φχ extends to a holomorphic function on C+ satisfying

φχ(C+) ⊆C+ if c0 ∈N or φχ(C+) ⊆C 1
2

if c0 = 0, (18)

then since φ= (
φχ

)
χ−1 , [12, Proposition 4.1] yields our claim.

By assumption D ◦φ ∈H+ and, by Proposition 4.10, (D ◦φ)χ extends to a holomorphic func-
tion on C+ for almost every χ. On the other hand, by Proposition 4.9, φχ extends to a holo-
morphic function on C+ for almost all χ.
Suppose that c0 = 1,2, . . .. Since the χ 7→ χc0 preserves measure, the function Dχc0 extends
holomorphically to C+ for almost every χ ∈ Ξ. Then there is a set of full measure in Ξ for
which Dχ, (D ◦φ)χ and φχ can be extended analytically to C+ and then (17) holds on C+.
Take one such χ and, following exactly the same argument as in [12, page 323], to see that
(18) holds in this case it suffices to find some D ∈H+ for which Dχ does not extend analyti-
cally to any region larger than C+ for almost all χ.
If c0 = 0 then we can only assure that Dχc0 = D defines a holomorphic function on C 1

2
. The

argument in [12, page 324] shows that if we can find a Dirichlet series D ∈H+ that cannot be
extended to a half-plane larger than C 1

2
then (18) holds in this case.

The series
∑

ann−s given by an = 1p
n logn

if n is prime and 0 otherwise clearly belongs to H+
and in [12, page 325] it is shown that satisfies the two required conditions.

18



5 Superposition operators

If ϕ : C→ C is some function and f belongs to some space of functions (say E) defined on a
subset of Cwith complex values we may consider Sϕ( f ) =ϕ◦ f . In this way we define an op-
erator Sϕ (called superposition operator) on E . We draw now our attention to the existence
of superposition operators between spaces of Dirichlet series. This was first considered in
[4], where it is shown that a function ϕ defines a superposition operator Sϕ : H ∞ → H ∞ if
and only if ϕ is entire, and Sϕ : H p → H q is well defined if and only if ϕ is a polynomial
degree less or equal to bp

q c. In this section we carry on with this study, considering opera-
tors defined on H ∞+ or H+. We show that Sϕ : H ∞+ →H ∞+ is well defined if and only if ϕ is
entire (as in the case of H ∞). The case of H+ is different. We give examples of entire func-
tions ϕ that are not polynomials but that define superposition operators Sϕ : H+ →H+, but
that there are entire functions that do not define superposition operators. We begin with a
technical lemma.

Lemma 5.1. Letϕ :C\{0} →C be such that fR (s) =ϕ( R
2s

) ∈D for every R > 0 and supR σc ( fR ) =
σ<∞.Then ϕ extends to an entire function.

Proof. Fix some R > 0, then the function s 7→ ϕ
( R

2s

)
defines a holomorphic function on Cσ.

Then, taking two different branches of the complex logarithm we have thatϕ is holomorphic
on D(0,R/2σ) \ {0}. Since R > 0 was arbitrary, we have that ϕ is holomorphic on C \ {0}. Now,
the Dirichlet series defined on Cσ by s 7→ϕ

( 1
2s

)
is bounded on some half plane Cθ and, then,

sup
|z|≤ 1

2θ

|ϕ(z)| = sup
s∈Cθ

∣∣∣ϕ(
1
2s

)∣∣∣<∞ .

Hence 0 is an isolated singularity of a bounded function inD(0, 1
2θ

). Henceϕ can be extended
holomorphically to 0 and this completes the proof.

Proposition 5.2. Let ϕ :C→C be any function. Then,

1. Sϕ : H ∞+ →H ∞+ is well defined if and only if ϕ is entire,

2. if Sϕ : H+ →H+ is well defined, then ϕ is entire.

Proof. First note that, in both cases, if Sϕ is well-defined thenϕ is holomorphic at the origin.
Indeed, if D(s) := −1+1−s then ϕ ◦D is holomorphic in C1/2 and then ϕ(s) = ϕ ◦D ◦D−1 is
holomorphic at s = 0. The fact that ϕ is entire then follows from Lemma 5.1.
It is only left to show that if ϕ is entire, then Sϕ : H ∞+ → H ∞+ is well defined. Take, then,
D ∈H ∞+ and fix k ∈N. Then

sup
Re(s)> 1

k

|ϕ◦D(s)| = sup
Re(s)> 1

k

|ϕ(D)(s)| = sup
Re(s)>0

∣∣∣ϕ(
D

(
s + 1

k

))∣∣∣= sup
Re(s)>0

|ϕ(Dk (s))| ,

and this supremum is finite because Dk ∈H ∞ and the superposition operator is well defined
from H ∞ to H ∞ (because ϕ is entire). Since this holds fore very k we conclude that ϕ◦D ∈
H ∞+ .
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So the behaviour of superposition operators on H ∞ and on H ∞+ is essentially the same.
This is not the case when we look at superposition operators defined on H+. In this case,
every polynomial (of any degree) defines a superposition operator. The reason for this is
that (unlike for H p ), the space H+ is an algebra.

Proposition 5.3. The space H+ is a Fréchet algebra.

Proof. Fix m and take two Dirichlet polynomials P and Q. Then PQ is again a Dirichlet
polynomial and (recall (2))

‖PQ‖2,m ≤Cm‖PQ‖1,2m =Cm‖(PQ)2m‖1 =Cm lim
T→∞

1

2T

∫ T

−T
|P2m(i t )Q2m(i t )|dt

≤Cm lim
T→∞

1

2T

(∫ −T

−T
|P2m(i t )|2dt

) 1
2
(∫ T

−T
|Q2m(i t )|2dt

) 1
2

=Cm lim
T→∞

(
1

2T

∫ T

−T
|P2m(i t )|2dt

) 1
2

lim
R→∞

(
1

2R

∫ R

−R
|Q2m(i r )|2dr

) 1
2

=Cm‖P2m‖2‖Q2m‖2 =Cm‖P‖2,2m‖Q‖2,2m .

Take now two Dirichlet series D1,D2 ∈ H+ and choose sequences of Dirichlet polynomials
(P j ) j and (Q j ) j converging to D1 and D2, respectively. Our first step is to show that (P j Q j ) j is
a Cauchy sequence. Note that for each k we may find Mk so that ‖P j‖2,k ≤ Mk and ‖Q j‖2,k ≤
Mk . With this at hand we immediately have, for each m

‖P j Q j −Pi Qi‖2,m ≤Cm(‖P j‖2,2m‖Q j −Qi‖2,2m +‖Pi −P j‖2,2m‖Qi‖2,2m)

≤Cm M2m(‖Q j −Qi‖2,2m +‖Pi −P j‖2,2m) .

Hence (P j Q j ) j is a Cauchy sequence and then converges to some D ∈ H+. Given s ∈ C 1
2

we

have
D(s) = lim

j
(P j Q j )(s) = lim

j
P j (s) lim

j
Q j (s) = D1(s)D2(s) ,

and this shows that D1D2 ∈H+, and a standard argument shows that

‖D1D2‖2,m ≤Cm M2m‖D1‖2,2m‖D2‖2,2m .

Corollary 5.4. If ϕ :C→C is a polynomial, then the superposition operator Sϕ : H+ →H+ is
well defined.

We address now the question of whether or not there are entire functions other than polyno-
mials that define a superposition operator on H+.

Theorem 5.5. There are entire functions that are not polynomials that define a superposition
operator on H+, but not every entire function does so.

There are two questions here to be answered. We deal with each one of them separately. The
key point for the first question (on the existence of entire functions defining superposition
operators that are not polynomials) is to have a good control of the seminorms of the powers

20



of a given Dirichlet series. Let us recall that if π(x) = ∑
p≤x

p prime
1 then, by the prime number

theorem

lim
x→∞

π(x)( x
log x

) = 1. (19)

Lemma 5.6. Given m ∈N there exist Cm ,bm > 1 so that

‖Dk‖2,m ≤Cmebm k2m+1‖D‖k
2,4m

for every D ∈H+ and every k ∈N.

Proof. Let m,k ∈ N and choose jk,m to be the smallest natural number so that p
−1
4m
jk,m

≤
√

2
k

(recall that p jk,m is the jk,m-th prime number). Then, for every Dirichlet polynomial P we
have (recall the proof of Proposition 2.2)

‖P k‖2,m ≤Cm‖P k‖1,2m =Cm lim
T→∞

1

2T

∫ T

−T
|P2m(i t )|k dt

=Cm

(
lim

T→∞
1

k
p

2T

(∫ T

−T
|P2m(i t )|k dt

) 1
k
)k

=Cm‖P2m‖k
k =Cm‖P‖k

k,2m

≤Cm

( jk,m∏
j=1

1

1−p
−1
4m
j

)k

‖P‖k
2,4m .

Take now D ∈ H+ and choose a sequence of Dirichlet polynomials (Pi )i converging to D .
Then, for each fixed k, the sequence (P k

i )i converges to Dk (check again the proof of Propo-
sition 5.3) and, then,

‖Dk‖2,m = lim
i

‖P k
i ‖2,m ≤ lim

i
Cm

( jk,m∏
j=1

1

1−p
−1
4m
j

)k

‖Pi‖k
2,4m =Cm

( jk,m∏
j=1

1

1−p
−1
4m
j

)k

‖D‖k
2,4m

for every m. As a straightforward consequence of (19) we can find Am > 1 so that π
((k

2

)2m
)
≤

Amk2m for every k. Taking cm = − log(2
1

4m − 1)+ 1
4m log(2), we have 1

1−x ≤ ex+cm for every

x ∈
[

0, 1

2
1

4m

]
. Then, taking bm = cm + Am we get

jk,m∏
j=1

1

1−p
−1
4m
j

≤
jk,m∏
j=1

e
p

−1
4m
j +cm = ecm jk,m e

jk,m∑
j=1

1

p
1

4m
j ≤ ecm jk,m e

Am
j
1− 1

4m
k,m

log( jk,m ) ≤ ebm k2m
e Am k2m = ek2m bm .

Now we can already answer our first question in Theorem 5.5, giving an example of an entire
function that is not a polynomial and that produces a well defined superposition operator
on H+.

Example 5.7. The entire function given by ϕ(z) =
∞∑

k=0

1

ekk zk defines an superposition opera-

tor on H+. Fix m ∈N and D ∈H+. Then we have

∥∥∥ M∑
k=N

1

ekk
Dk

∥∥∥
2,m

≤
M∑

k=N

1

ekk
‖Dk‖2,m ≤Cm

M∑
k=N

(
ebm k2m‖D‖2,4m

)k

ekk
=Cm

M∑
k=N

(ebm k2m‖D‖2,4m

ekk−1

)k
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for every M > N . Since
e b̃m k2m ‖D‖2,4m

ekk−1 < 1 for big enough k, the latter term tends to 0 as M and

N go to ∞. Then
N∑

k=0

1

ekk Dk is a Cauchy sequence in H+ and therefore converges to some

D̃ ∈ H+. In particular this implies
N∑

k=0

1

ekk Dk (s) → D̃(s) for every s ∈ C 1
2

. On the other hand,

if s ∈C 1
2

, then
N∑

k=0

1

ekk Dk (s) →
∞∑

k=0

1

ekk Dk (s) =ϕ(D)(s). This shows that ϕ(D) ∈H+ and Sϕ is a

well defined superposition operator on H+.

This example settles the first part of Theorem 5.5. In order to address the second part (if ev-
ery entire functionϕ defines a superposition operator Sϕ : H+ →H+) we change slightly our
perspective. Let H(C) be the space of entire functions endowed with the topology of uniform
convergence on compact sets. Given a Dirichlet series D ∈H+, we say that D is of composi-
tion in H+ if ϕ◦D remains in H+, for every entire function ϕ (in other words, the operator
CD : H(C) → H+ given by ϕ 7→ ϕ ◦D is well defined). It is plain that every entire function
defines a superposition operator if and only if every Dirichlet series in H+ is of composition.
So, our goal in order to answer (in the negative) the second question in Theorem 5.5 is to find
a Dirichlet series in H+ that is not of composition.
Let us suppose that D is such that the operator CD is well defined and let us see that it is
also continuous. Take a sequence (ϕm) ⊆ H(C) converging to some ϕ ∈ H(C) and assume
that CD (ϕm) =ϕm ◦D converges (in H+) to D̃ . On the one hand, since ϕm →ϕ in H(C) then
ϕm(D(s)) → ϕ(D(s)) for every s ∈ C 1

2
. On the other hand ϕm ◦D → D̃ in H+ so in particular

ϕm ◦D(s) → D̃(s) for all s ∈C 1
2

. Thereforeϕ◦D coincides with D̃ in the half-plane C 1
2

, so they

must be the same Dirichlet series. The closed-graph theorem gives that not only is CD well
defined, but also continuous.

In order to find the series that is not of composition we provide now a necessary and suffi-
cient condition for a Dirichlet series to be so.

Proposition 5.8. Let D ∈ H+, then D is of composition in H+ if and only if for every m ∈ N
there is a constant C > 0 such that

‖Dk‖
1
k
2,m ≤C , (20)

for every k ∈N.

Proof. Suppose D is of composition in H+ then the operator CD : H(C) →H+ is continuous.
Given m ∈N, there is a constant A > 0 and j ∈N so that ‖CD (ϕ)‖2,m ≤ A sup|z|≤ j |ϕ(z)|. Taking

ϕ(z) = zk we have
‖Dk‖2,m ≤ A sup

|z|≤ j
|z|k ≤ A j k ≤C k .

for C > 0 sufficiently large.
For the converse if ϕ(z) =∑∞

k=0 ak zk , note that if (20) holds then

∞∑
k=0

|ak |‖Dk‖2,m ≤
∞∑

k=0
|ak |C k <∞

for every m ∈N. Then the series converges and the operator given by CD (ϕ) = ∑∞
k=0 ak Dk is

well defined.
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With this we can give an example of a Dirichlet series in H+ that is not of composition,
answering the second question in Theorem 5.5. Let us recall that he first Chebishev function
ϑ(x) =∑

p≤x
p prime

log(p) satisfies

lim
x→∞

ϑ(x)

x
= 1. (21)

This is equivalent to the prime number theorem, and an accurate estimate can be found at
[16]).

Example 5.9. Let us consider D =
∞∑

n=1

1p
n

n−s , that obviously belongs to H+, and let us see

that it is not a composition Dirichlet series. Observe first that D(s) = ζ(s + 1
2 ) for every s ∈C 1

2

(being ζ the Riemann’s zeta function) and that, then,

Dk =
∞∑

n=1

dk (n)p
n

n−s ,

where the dk (n)s are the coefficients of ζk , that is dk (n) =∑
n1···nk=n 1.

Fix m ∈N, define σ= 1
2m and consider 0 < δ< 1 such that ω= 2(1−δ)

1+δ − (1+σ)(1+δ) > 0 (note
that such a δ exists because the previous expression is positive for δ= 0).
By (19) and (21) we can choose x0 so that

(1−δ)
x

log x
≤π(x) ≤ (1+δ)

x

log x
and (1−δ)x ≤ϑ(x) ≤ (1+δ)x (22)

for every x ≥ x0. Pick now k0 ∈ N so that k0 ≥ x0 and, for each k ≥ k0 define xk = k1+δ and
nk =∏

p≤xk
p= eϑ(xk ). Observe that in this case dk (nk ) = kπ(xk ). Then, taking (22) into account

we get

(d 2
k (nk )

n
1+ 1

2m
k

) 1
k =

( k2π(xk )

eϑ(xk )(1+ 1
2m )

) 1
k = exp

(
1
k

(
2π(xk ) log(k)− (1+σ)ϑ(xk )

))
> exp

(
k1+δ

k

(
2(1−δ)

1+δ − (1+σ)(1+δ)
))

= ekδω .

Hence

‖Dk‖
1
k
2,4m =

( ∞∑
n=1

d 2
k (n)

n1+ 1
2m

) 1
2k

≥
(d 2

k (nk )

n
1+ 1

2m
k

) 1
2k

> ekδ ω2 .

Proposition 5.8 gives that D cannot be a composition Dirichlet series in H+.

Our last result shows that, in some sense, if we want ϕ to define a superposition operator,
then its coefficients have to go to 0 quite fast (recall also Example 5.7).
Let us note that if Sϕ is of superposition then Sϕ(ζ(s+ 1

2 )) ∈H+, in particularϕ
(
ζ(s + 1

2 +ε)
) ∈

H 2 for all ε> 0. Rearranging terms we have

∞∑
n=1

( ∞∑
k=0

ak dk (n)

)
1

n
1
2+ε

n−s ∈H 2 .

What we are going to do now is to show that there are functions for which this does not hold.
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Proposition 5.10. For every 0 <C < 2 there exists some ε> 0 so that the series
∞∑

n=1

( ∞∑
k=0

dk (n)

ekC

)
1

n
1
2+ε

n−s

does not belong to H 2. In particular the function ϕ(z) =∑∞
k=0

1
ekC zk does not define a super-

position operator.

Proof. Considering as before n :=∏
p≤x p with large enough x we get( ∞∑

k=0

dk (n)

ekC

)
1

n
1
2+ε

≥ dk (n)

ekC

1

n
1
2+ε

= exp

(
log(k)π(x)−kC −ϑ(x)

(
1

2
+ε

))
. (23)

For a given δ> 0, this last exponent is bounded below by

x
logk

log x
(1−δ)−kC −x

(
1

2
+ε

)
(1+δ)

as long as (22) holds.

Let us choose C ′ such that C <C ′ < 2, xk := kC ′
and δ,ε> 0 small enough to that

ω := 1−δ
C ′ −

(
1

2
+ε

)
(1+δ) > 0.

Then (23) becomes ( ∞∑
k=0

dk (n)

ekC

)
1

n
1
2+ε

≥exp
(
ωkC ′ −kC

)
(24)

which tends to +∞ with k.

The same argument shows that ifϕ(z) =∑∞
k=0 ak zk is such that there exist m > 0 with ak ekC >

m for large enough k and 1 < C < 2, then it cannot define a superposition operator. In par-
ticular, the exponential function exp(z) = ∑

zk /k ! does not define a superposition operator,
since log(k !) = k logk +O(k).

6 Differentiation and integration operators

We finish this note by looking at the classical differentiation operator (that brings a holo-
morphic function to its derivative) and at its inverse, the integration operator. These two
operators, defined on the space H ∞+ have been studied in [7]. The situation in H+ is quite
close and the arguments are rather similar, so we sketch them, only pointing out the steps
on which they are different.

As we have already explained a Dirichlet series D =∑
ann−s defines a holomorphic function

on Cσc (D). Then its derivative is again a Dirichlet series obtained simply by differentiating
term by term, that is

D ′(s) =−
∞∑

n=2
an log(n)n−s ,

and has the same abscissa of convergence as D (see e.g. [2, Theorem 11.12]). We can then
consider the differentiation operator D : D →D defined as D(D) = D ′.
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Proposition 6.1. The differentiation operator D : H+ →H+ is continuous and satisfies

D(H+) =H+,0 :=
{∑

ann−s ∈H+ : a1 = 0
}

.

Proof. Let D =∑
ann−s ∈H+, fix k ∈N and set C = supn

logn
n1/(2k) . Then

‖D ′‖2,k =
( ∞∑

n=2

|an |2
n1/k

log(n)2

n1/k

) 1
2 ≤C

( ∞∑
n=2

|an |2
n1/k

) 1
2 ≤C

( ∞∑
n=1

|an |2
n2/(2k)

) 1
2 =C‖D‖2,2k ,

and D is well defined and continuous.
Clearly D(H+) ⊆ H+,0. On the other hand if D = ∑∞

n=2 ann−s ∈ H+,0, then is plain that D̃ =∑∞
n=2

−an
log(n) n−s ∈H+ and D(D̃) = D , hence D(H+) =H+,0.

A simple computation shows that, for each fixed N , the coefficient operator
∑

ann−s 7→ aN is
continuous on H+. Then the space H+,0 that we have just defined is closed.

We are also interested in the inverse operator J defined for Dirichlet series
∑

ann−s for which
a1 = 0 as follows

J
( ∞∑

n=2
ann−s

)
=−

∞∑
n=2

an

log(n)
n−s .

Considered as an operator H+,0 →H+,0, it is clearly well defined and continuous, since

‖J(D)‖2,k =
( ∞∑

n=2

|an |2
n2/k log(n)2

) 1
2 ≤

( ∞∑
n=2

|an |2
n2/k

) 1
2 = ‖D‖2,k

for every D = ∑∞
n=2 ann−s ∈ H+,0. A straightforward computation shows that DJ(D) = D =

JD(D) for all D ∈H+,0. Exactly the same argument as in [7, Theorem 2.3(iii)] shows that nei-
ther D, nor J are compact operators.

Suppose that D and E are two Dirichlet series with σa(D),σa(E) <∞. By [2, Theorems 11.12
and 11.10] D ′ has also finite abscissa of absolute convergence and the product D ′E =∑

cnn−s

again converges absolutely at some half-plane. Note also that c1 = 0, and then we may con-
sider J(D ′E). In this way, fixing D we define a Volterra-type operator VD : D → D given by
VD (E) = J(D ′E). The action of such operators on Hardy spaces was thoroughly studied in [8],
where deep results were given. Later, in [7, Corollary 2.4], it was shown that the situation in
H ∞+ is much easier to handle. Exactly the same arguments as there show that this is also the
case in H+, and VD : H+ →H+ is well defined (and continuous) if and only if D ∈H+.

We finish this note by looking at the spectrum of the differentiation and integration opera-
tors, in the same spirit as [7, Theorem 2.6]. Let us recall that the resolvent of a linear operator
T : X → X (where X is some Fréchet space) is defined as the set ρ(T, X ) consisting of those
λ ∈C for which (λI −T ) is bijective and its inverse is continuous. Then the spectrum of T is
σ(T, X ) =C\ρ(T, X ).

Proposition 6.2. We have the following characterization of the spectrums:

1. σ(D,H+,0) = {− logn : n ∈N, n ≥ 2}.
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2. σ(D,H+) = {0}∪ {− logn : n ∈N, n ≥ 2}.

3. σ(J,H+,0) = {− 1
logn : n ∈N, n ≥ 2}.

Proof. Take some 0 6= λ ∈ C so that λ 6= − logn for every natural number n ≥ 2 and let us see
that λ ∈ ρ(D,H+,0). Note first that, for

∑
n≥2 ann−s ∈H+,0 we have

(λI −D)
(∑

n≥2 ann−s
)
= ∑

n≥2
(λ+ logn)ann−s .

Choosing µ> 0 so that |λ| >µ and | logn +λ| >µ for every natural n ≥ 2 we have

∥∥∑
n≥2

an
λ+logn n−s

∥∥
2,k =

( ∞∑
n=2

|an |2
| logn +λ|2

1

n2/k

) 1
2 < 1

µ

( ∞∑
n=2

|an |2
n2/k

) 1
2 = 1

µ

∥∥∑
n≥2 ann−s

∥∥
2,k (25)

for every k. This shows that
∑

n≥2
an

λ+logn n−s ∈ H+,0 and, then (λI −D) : H+,0 → H+,0 is sur-

jective. Also (25) shows that the inverse (λI −D)−1 is continuous, giving our claim. The rest
of the proof follows exactly as that of [7, Theorem 2.6].
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