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Multivariate Six Sigma: a key improvement strategy in Industry 4.0 

This paper aims to generate a reflection on the changes that need to be made in 

the Six Sigma strategy so that it continues to be a successful improvement 

strategy capable of facing the new challenges derived from Industry 4.0. 

Keywords: Six Sigma; Industry 4.0; data science; Big Data; multivariate 

statistics; principal component analysis (PCA); partial least squares regression 

(PLS) 

Motivation 

Is this true that Data Science, with its powerful machine learning tools, is the future in 

which we must bet to guarantee the survival of companies in the new Big Data 

environment of Industry 4.0? Does it make sense to continue betting on the scientific 

method and statistical thinking with subject matter knowledge for understanding the 

root causes that cause problems, or all we need is exploiting the abundance of data 

generated in this new environment with powerful algorithms and computing facilities? 

What are the challenges for Six Sigma to remain a successful improvement strategy in 

Industry 4.0?  

The “Big” Data tsunami 

Industrial enterprises of the 21st century are facing a big new challenge: the so-called 

data tsunami, creating the Industry 4.0 paradigm. Digitalization is its driving force 

fostered by the Industrial Internet of Things (IIoT). In other sectors -such as sales, 

finance, marketing, and social networks- smartphones and Internet are contributing in a 

similar way to increase dramatically the amount of data registered creating the Big Data 

movement. This is characterized by the four V´s: volume, variety, velocity and veracity. 

For the first time in history, we have data everywhere and there is a belief that data 

contain useful information that has to be mined for helping the decision-making process 
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(Ferrer 2020). 

In this new environment a new discipline has emerged: Data Science. Lots of 

companies are offering a new type of job: data scientist; and an apparent new discipline 

is emerging: data analytics, with the intended goal of effectively transform data to 

knowledge, creating added value by enabling cost reductions, productivity gains, or 

revenue increases (White 2016).  

Data scientist are highly trained in processing large data sets, programming in 

Python, SQL, R, etc., applying machine learning methods such as neural networks, 

support vector machines and random forests, and mastering impressive visualization 

tools. Except in few exceptions, scarce training (if any) in statistical thinking is usually 

included in the syllabus (Hardin et al. 2015). Their interest is usually focused on 

forecasting the future or classifying new observations, i.e., extracting features or 

discovering patterns from databases that, used as predictors in the algorithms developed, 

yield good predictions or classifications. Given the powerful computing resources 

available and the ease of modeling nonlinearities, hundreds of complex predictive 

models can be fitted and updated at a very low cost. For these predictive goals only 

correlation (not causation) is needed, and good predictions may be obtained just by 

playing with the (abundance) available data (by trial and error). 

In industry, this approach is used for building soft sensors that forecast the value 

of a low sampling frequency and hard-to-measure response variable, based on high 

sampling frequency and easy-to-measure process variables. In these situations, there is 

really no new scientific knowledge (i.e., process understanding) acquired; only features, 

patterns and good predictions (i.e., the so-called high-level knowledge extracted from 

low-level data), but not science.  
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As an industrial consultant, I am witnessing a lot of experts in information 

technology (IT) landing in the industry under the claim of the digitization required by 

industry 4.0, spreading two worrying statements. The first one comes from Anderson 

(2008). In this paper, entitled “The End of Theory: the Data Deluge that Makes the 

Scientific Method Obsolete”, it is stated that because of the quantity and speed of data 

production, new technologies could now solve major scientific and industrial problems 

solely through empirical data analysis, without the use of scientific models, theory, 

experience, or domain knowledge. This is generating a (false) belief that all we need are 

lots of data, computer facilities and machine learning algorithms, and by “pushing the 

bottom” we would expect successful results. This is based on what Crawford (2013) 

calls Data Fundamentalism, forgetting the fact that data quality matters, and big data do 

not necessarily mean value data because they may be biased data (i.e. large-sized 

samples not representing the whole picture of the population under study). A second 

worrying statement is that we no longer have to be fixated on causality and the world is 

shifting from causation to correlation (Mayer-Schönberger and Cukier 2013). The 

consequence is that given the “black-box” nature of the algorithms used and the usual 

correlation of predictors, model interpretation to gain process understanding (i.e., 

scientific knowledge) of the problem addressed is not possible (Ferrer 2020). 

But, where do these beliefs come from? One possible explanation is that this 

forecast-based data analysis culture with "black box" models have generated significant 

economic revenues for some companies analyzing customer data or in applications 

where the only thing that matters is to obtain a good prediction or classification such as, 

for example, in soft sensors for feeding control loops, voice recognition or image 

identification systems. The problem is believing that what works in a certain area will 

work in whatever area is applied.  
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Six Sigma challenges  

Certainly, the predictive applications commented in the previous section, typical of 

most data science projects, are not suited for troubleshooting, process improvement and 

optimization. These are critical goals in industry and technology, and scientific method 

(i.e. iterative inductive/deductive approach) and causal models are required. Causality 

implies that for any active changes in the adjustable variables in the process, the model 

will reliably predict the changes in the output of interest (MacGregor 2018). The 

question is how can we pursue these goals in Industry 4.0? 

For the past forty years, Six Sigma has been promoting a never-ending 

improvement culture based on a strong and professionalized organization for 

improvement, a clear and well thought five-step DMAIC cycle (i.e., Define, Measure, 

Analyze, Improve and Control) empowered by the scientific method, and using 

statistical thinking as a catalyst of the learning process (Snee and Hoerl 2003). But Six 

Sigma, conceived in the 80s of the last century, must be revisited, to meet the 

challenges of data-rich environments in Industry 4.0. 

What do come first: questions or data? 

Six Sigma was created in a data-scarce context: low number of variables with small 

sample sizes (usually more observations than variables) that in most of the cases had to 

be measured (or generated) (i.e., there were no data available at the beginning of the Six 

Sigma project). Once defined the project, the Measure phase begins not by measuring 

but by asking questions, following the typical Question-Data-Analysis (QDA) paradigm 

in Statistics (Cao 2019). However, in the data-rich context typical of the Big Data era, 

in most of the situations, a lot of data are already available before the project is even 

defined. Some people think that the QDA has to be changed to a Data-Questions-

Analysis (DQA) paradigm, claiming that data come first. Nevertheless, data have no 
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meaning in themselves, the focus has to be on the problem to be solved and data is just 

one of the resources to help accomplish the goals. Therefore, even in data-rich contexts 

I advocate for using the classical QDA paradigm following the fundamental principles 

of statistical methodology, often ignored in some data science applications: i) critical 

evaluation of data quality (i.e. the data pedigree); ii) integration of sound subject-matter 

knowledge; iii) development of an overall strategy for attacking the problem; and iv) 

sequential approaches versus “one-shot studies” (Hoerl, Snee and De Veaux 2014). In 

this QDA paradigm, the problems to be solved that define the critical-to-quality (CTQ) 

attributes of Six Sigma projects generate relevant questions that guide the searching for 

the relevant data to be selected and analyzed for getting the answers. Having lots of data 

is not any guarantee of success, quantity does not mean quality, data may be biased and 

not representative of the population under study.  

Nature of Data in Industry 4.0 

IT revolution in Industry 4.0 has not caused only a change in the number of the 

variables (that in some cases is even higher than the number of observations) but also a 

change in the nature of the registered data. Nowadays it is possible to register data from 

customers, quality, process and even from equipment. Sensors are providing different 

type of signals: chemical (i.e., spectra), physical (i.e., pressures, temperatures, flows, 

etc.), biochemical (i.e., pH, conductivity, dissolved oxygen, etc.), digital (i.e., electronic 

eyes), potentiometric (electronic noses and tongues), acoustic (i.e., electronic ears), and 

so on. These data are mostly collected from daily production and often exhibit high auto 

and cross correlation, rank deficiency, low signal-to-noise ratio, multi-stage and multi-

way structure, and missing values. In most of the cases they are happenstance data (i.e., 

data from daily routine production and not generated from any experimental design) 

and, therefore, correlation does not necessarily mean causation. The complexity of this 
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type of data requires special skills to manage them. This is why some companies are 

defining a new job position as data engineer. These people should be involved in the 

Six Sigma project teams for helping in the data acquisition tasks. 

Revisiting the Six Sigma statistical toolkit  

Process data in industry, although shares many of the characteristics represented by the 

four V´s (i.e., volume, variety, veracity and velocity), may not really be Big Data in 

comparison to other sectors such as social networks, sales, marketing and finance. 

However, the complexity of the questions we are trying to answer with industrial 

process data is really high, and the information that we wish to extract from them is 

often subtle. This info needs to be analyzed and presented in a way that is easily 

interpreted and that is useful to process engineers. Not only do we want to find and 

interpret patterns in the data and use them for predictive purposes (as in classical data 

science projects), but we also want to extract meaningful relationships that can be used 

to improve and optimize a process (García-Muñoz and MacGregor 2016). 

Traditional Six Sigma statistical toolkit, mainly focused on classical statistical 

techniques (such as scatterplots, correlation coefficients, hypothesis testing, and linear 

regression models from experimental designs), is seriously handicapped for problem 

solving using Industry 4.0 process data. New approaches have to be incorporated. I 

suggest augmenting the Six Sigma toolkit with machine learning tools and latent 

variable-based multivariate statistical techniques such as principal component analysis-

PCA (Jackson 1991)) and partial least squares regression – PLS (Wold, Sjöström and 

Eriksson 2001). Machine learning tools may play a critical role in the Measure and 

Analyze phases to find and interpret patterns and for predictive purposes (as in classical 

data science projects). These tools may help uncover potential inputs variables related to 

CTQ attributes. Therefore, data scientist should be part of the Six Sigma projects teams. 
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PCA is a superb exploratory tool to be used also in the Measure phase and at the 

beginning of the Analyze phase. PCA and PLS can be used for (multivariate) process 

monitoring, fault detection and diagnosis, typical tasks in multivariate statistical process 

control (MSPC). Traditional univariate SPC (taught in most of the Six Sigma training 

courses) should be enriched with MSPC. PLS can also be used for building predictive 

models (as machine learning tools). But the most remarkable characteristic of PLS 

models is that they not only model the relationship between X and Y (as classical linear 

regression and machine learning models do), but also provide models for both the X and 

Y spaces. This fact gives them very nice properties: uniqueness and causality in the 

reduced latent space (this is the only space within which the process has varied) no 

matter if the data come either from a design of experiments (DOE) or daily production 

process (historical/happenstance data) (MacGregor et al. 2015). These properties make 

them suitable for process understanding, troubleshooting and optimization in Industry 

4.0. 

Causal models: the role of DOE 

The goal of any Six Sigma project is to gain process understanding, that is, to discover 

which adjustable input variables X (i.e. raw material properties, processing conditions, 

etc.) are causally related to the process output Y (i.e., CTQ attribute) and predict what 

change in the CTQ attribute will cause any change in the X variables. This is expressed 

mathematically as Y=f(X1, X2,…, XJ). By inverting these causal models it is possible to 

obtain the values of the inputs that give rise to the desired value for the CTQ attributes, 

allowing troubleshooting and process optimization. Data-driven models are usually 

resorted to for fitting these causal models. 

To guarantee causality when using data-driven approaches, however, independent 

variation in the input variables is required (Box, Hunter and Hunter 2005). The design 
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of experiments (DOE) is the "jewel in the crown" of the Six Sigma tools, specially 

designed to obtain causal empirical models. The problem is that in Industry 4.0 classical 

DOE using fractional factorial designs, as usually done in many Six Sigma projects, 

may be difficult to carry out, if not unfeasible (i.e. the number of potential factors to 

consider as inputs can be really high, and due to the complex correlation structure 

among them there are a lot of restrictions that prevent moving some factors 

independently from others). On the other hand, nowadays large amounts of historical 

data are available in most production processes. The problem is that these data are 

highly collinear and low rank, therefore, input-output correlation does not mean 

necessarily causation, and classical predictive models (such as linear regression and 

machine learning models) cannot be used for process optimization.1 

So, is this possible to use the abundant historical data to guide the process 

optimization? The answer is yes, but using the DOE approach in a different way as it is 

usually done in classical Six Sigma projects. One approach is to sample (filter) the large 

data base of process data for observations that were closed to the design points of a 

fractional factorial design in X-space, and fit a classical linear regression model with 

simple effects and interactions. This retrospective DOE approach is simple but requires 

selecting a small number of the potential X variables that can be manipulated 

independently (Wold et al. 2004). 

A second approach is by fitting PLS models. As already commented, PLS models 

provide uniqueness and causality in the reduced latent space no matter if the data come 

either from a DOE or daily production process, therefore, optimization can be done in 

the latent space (Jaeckle and MaGregor 2000). This implies that it is possible to 
                                                

1 Note that this is a mistake that is beginning to occur in industry 4.0 with the indiscriminate use 

of machine learning tools. 
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estimate the values of the latent variables that guarantee the desired values in the CTQ 

attributes. From these latent variables values the settings of the original X variables are 

obtained. Nevertheless, there are limitations in the optimization in the latent space. The 

latent variables cannot be explicitly manipulated by the user, but the original X 

variables can be manipulated in a way that changes on the raw materials and process 

conditions are done along the directions of the latent variables, which is equivalent to 

implicitly “manipulating” the latent variables themselves. This, of course, implies that 

the optimization in the latent space is highly restricted, since it will only provide 

solutions that respect the correlation structure of the PLS model (i.e., it will only allow 

us to modify the process in specific ways, so that the original X variables are not varied 

independently from each other, and any solution will abide by the correlation structure 

defined by the subspace of the PLS regression model). Furthermore, since the initial 

number of X variables involved is reduced to a smaller number of uncorrelated latent 

variables, the computational cost of any optimization problem in the latent space will 

decrease in comparison to the equivalent problem in the original space (Palací-López et 

al. 2019, Tomba et al. 2012).  

A third approach is to run a DOE in the latent space.  This implies that the design 

variables are not selected from the high number of original correlated X variables but 

from the few orthogonal scores from the PCA or PLS models fitted with the abundant 

historical process data. Some people call this as multivariate design-MVD (Wold et al. 

1986). Because the latent variables are independent, as opposed to the original X 

variables, which may be correlated, the latent variable space is the only space in which a 

truly orthogonal design can be accomplished. Each latent variable is a linear 

combination of these original variables, therefore choosing levels of latent variables for 

a factorial experiment correspond to moving several of the original X variables up 
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and/or down together (Nichols 2011). Some examples of these MVD can be found in 

Wold et al. (2004). 

Multivariate Six Sigma  

In order to address the challenges that Big Data is creating in Industry 4.0, Six Sigma 

statistical toolkit, based mainly in least squares techniques, has to incorporate new tools 

such as machine learning and latent variables-based multivariate statistical techniques, 

giving rise to the so-called Multivariate Six Sigma (Palací-López et al. 2020). 

Some examples of the integration of multivariate statistical tools into the Six 

Sigma toolkit are available in the literature. For example, Peruchi et al. (2020) 

integrated principal component analysis (PCA) into a Six Sigma DMAIC project for 

assessing the measurement system, analyzing process stability and capability, as well as 

modeling and optimizing multivariate manufacturing processes in a hardened steel 

turning case involving two CTQ attributes. In Ismael et al. (2018), discriminant analysis 

and PCA were integrated into the DMAIC Six Sigma framework in order to improve 

the quality of oil type classification from oil spills chromatographic data.  

Palací-López et al. (2020) show a case study of a successful integration of latent 

variables models (PCA and PLS) into the DMAIC problem solving strategy using 

historical data from past production of a batch process at a chemical plant. In the 

Measure phase, validation of the data to detect and diagnose potential outliers was done 

using PCA. In the Analyze phase PCA was used to explore the correlation structure 

among the process variables and CTQ attributes and to detect cluster of batches that 

were operated in a similar way. Afterwards, a PLS regression model permitted 

predicting the CTQ attributes from the process variables and determining which of these 

process variables have a significant relationship on the CTQ attributes. The discriminant 

version of PLS (i.e., PLS-DA) was used to identify which process variables behaved in 
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a different way between batches with good and bad performance.	As a result of the 

analyses performed, in the Improve phase the team responsible for this process was able 

to pinpoint a specific behavior in the process potentially related to the bad performance. 

Once the causes of the bad performance were detected and addressed, in the Control 

phase a multivariate monitoring scheme was implemented in the plant to detect and 

diagnose possible deviations in the process variables. The solution implemented 

remains a success to this day, with estimated benefits/savings above 140,000 €/year 

(40,000€ higher that the initial estimation in the Define phase). 

Lessons learned 

Data Science projects without a scientific method approach and a proved problem- 

solving strategy are doomed to failure in Industry 4.0 when process understanding is 

needed for troubleshooting and process optimization. The credibility of the Six Sigma 

strategy as a useful methodology for process improvement in Industry 4.0 depends on 

the speed with which it integrates new tools from the field of artificial intelligence (such 

as machine learning techniques) and multivariate statistics (such as latent variable 

techniques), as well as the skill in using them for what they serve in the DMAIC cycle. 

This evolution of Six Sigma into what has come to be called Multivariate Six Sigma 

requires more successful case studies to convince managers of its usefulness. 
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