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Dynamics of shift operators on non-metrizable
sequence spaces

José Bonet, Thomas Kalmes and Alfred Peris

Abstract. We investigate dynamical properties such as topological tran-
sitivity, (sequential) hypercyclicity, and chaos for backward shift operators
associated to a Schauder basis on LF-spaces. As an application, we charac-
terize these dynamical properties for weighted generalized backward shifts
on Köthe coechelon sequence spaces kp((v(m))m∈N) in terms of the defining
sequence of weights (v(m))m∈N. We further discuss several examples and
show that the annihilation operator from quantum mechanics is mixing,
sequentially hypercyclic, chaotic, and topologically ergodic on S′(R).

1. Introduction

The study of dynamical properties of linear operators has attracted much interest
in recent years. Most articles concentrate on the dynamics of (continuous linear
operators) T ∈ L(E) defined on a separable Fréchet space E. The advantage
of completeness and metrizability lies in the applicability of Baire category argu-
ments, which are very useful in this context. A few articles deal with dynamics
of operators on non-metrizable topological vector spaces (see e.g. [7], [8], [9], [12],
[14], [17], [20], [21], [23], and Chapter 12 in [15]).

Recall that an operator T ∈ L(E) on a topological vector space E is called
(topologically) transitive if for any pair of non-empty, open subsets U, V ⊆ E the
set

NT (U, V ) = {n ∈ N; Tn(U) ∩ V 6= ∅}

is not empty, while T is called (topologically) mixing, if these sets are cofinite.
More generally, for an infinite subset I ⊆ N, a family (Tn)n∈I ∈ L(E)I is called
(topologically) transitive if for every pair of non-empty, open subsets U, V ⊆ E
there is n ∈ I with Tn(U) ∩ V 6= ∅. Obviously, T is (topologically) mixing if
and only if, for any infinite subset I ⊆ N the family (Tn)n∈I is (topologically)
transitive.
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Moreover, T is called (sequentially) hypercyclic if there is x ∈ E whose orbit
{x, Tx, T 2x, . . .} is (sequentially) dense in E. Clearly, every hypercyclic operator
is transitive. The converse holds in case E is separable, complete, and metrizable,
due to Birkhoff’s Transitivity Theorem. Furthermore, a transitive operator T on
E is called chaotic if the set of periodic points of T is dense in E. Finally, T is
called topologically ergodic if for each pair of non-empty and open subsets U, V of E
the set NT (U, V ) is syndetic, i.e. there is p ∈ N such that {n, . . . , n+ p} intersects
NT (U, V ) for every n ∈ N.

The purpose of this article is to characterize dynamical properties for weighted
generalized backward shifts on Köthe coechelon spaces. Köthe echelon and co-
echelon spaces play a very relevant role in the theory of Fréchet spaces and their
applications, for example in connection with the isomorphic classification and the
existence of Schauder basis. Moreover, many spaces of analytic or smooth functions
are isomorphic to echelon or coechelon spaces. We refer the reader to [3], [5], [6],
[24], [25] and the references therein. Weighted (generalized) backward shifts are
natural operators on sequence spaces, and thus, many authors have investigated
the above properties of these operators on various sequence spaces (see e.g. [22],
[13], [18] and [2]). The paper is organized as follows. In section 2 we consider LF-
spaces with a special Schauder basis and we study the above dynamical properties
for the backward shift associated to these Schauder bases. In section 3, on the
one hand, we evaluate our results for the special case of Köthe coechelon spaces
kp(V ) and on the other hand we extend them to characterize the above dynam-
ical properties for weighted generalized backward shifts in terms of the defining
weight sequence V = (v(m))m∈N. In the final section 4 we present some examples
to illustrate our results and we conclude with some natural open problems. In
particular, we consider the special case of dual spaces of power series spaces of
infinite type, and as a concrete application we show that the annihilation operator
from quantum mechanics is mixing, hypercyclic, chaotic, and topologically ergodic
on S′(R).

For anything related to functional analysis which is not explained in the text,
we refer the reader to [19], and for notions and results about dynamics of linear
operators we refer to [1] and [15].

2. The backward shift on certain LF-spaces

The basic model of linear dynamics in a sequence space is the (unilateral) backward
shift

B(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).

As mentioned in the introduction, several dynamical properties of (weighted and
unweighted) backward shifts have been studied on Fréchet sequence spaces. It turns
out that in certain natural cases one cannot iterate the operator in the space, since
each iterate has the range in a bigger space. This is the case, for instance, for the
dynamics of the differentiation operator on certain weighted spaces of holomorphic
functions (which, at the end, can be represented as the backward shift on a suitable
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sequence space) studied in [7], or the “snake shifts” introduced in [8]. This is the
main motivation to study the dynamics of shift operators on countable inductive
limits of Fréchet spaces (in short, LF-spaces).

An inductive spectrum of Fréchet spaces (Em)m∈N is an increasing sequence of
Fréchet spaces such that the inclusion Em ⊂ Em+1 is continuous for each m ∈ N.
The inductive limit E = indmEm of the spectrum is the union of the sequence
(Em)m∈N and it is endowed with the finest locally convex topology such that the
inclusion Em ⊂ E is continuous for each m ∈ N. We assume that the topology
of the inductive limit is Hausdorff. This is always the case for Köthe coechelon
spaces. The space D(Ω) of test functions for Schwartz distributions is one of the
most important examples of an (LF)-spaces. We refer the reader to [3], [26] and
[27] for more information about (LF)-spaces.

In this section we characterize dynamical properties of the backward shift op-
erator on certain LF-spaces.

Definition 2.1. Let (Em)m∈N be an inductive spectrum of Fréchet spaces with in-
ductive limit E = indmEm. A sequence (ej)j∈N in E1 is called a stepwise Schauder
basis if (ej)j∈N is a Schauder basis for each Em,m ∈ N. If the linear mapping
on span{ej ; j ∈ N} defined by Be1 := 0 and Bej := ej−1, j ≥ 2, extends to a
continuous linear self-map B on E, B is called the backward shift associated with
(ej)j∈N.

Remark 2.2. i) For an LF-space E = indmEm with stepwise Schauder basis
(ej)j∈N and associated backward shift B it is an immediate consequence of
Grothendieck’s Factorization Theorem [19, Theorem 24.33] that for every
m ∈ N there is n ∈ N such that B(Em) ⊆ En and that B : Em → En is
continuous. By dropping some of the step spaces if necessary we thus may
assume without loss of generality that B : Em → Em+1, m ∈ N.

ii) The typical example of an LF-space with stepwise Schauder basis (ej)j∈N
and associated backward shift we have in mind is an LF-sequence space
E = indmEm, i.e. an LF-subspace E of ω = KN for which the canonical basis
sequence (ej)j∈N with ej = (δj,l)l∈N is a Schauder basis in each step space of
E. If E is invariant under the continuous linear mapping

ω → ω, (xj)j∈N 7→ (xj+1)j∈N

it follows that its restriction to E has a closed graph, and thus, is a continuous
linear self-map of E by de Wilde’s Closed Graph Theorem [19, Theorem
24.31].

We begin with a result which will be used several times within this section.

Proposition 2.3. Let E = indmEm be an LF-space with stepwise Schauder basis
(ej)j∈N. Then, for every m ∈ N, on the Fréchet space Em there is an increasing
fundamental sequence of seminorms (pk)k∈N satisfying

∀ k ∈ N, x =

∞∑
j=1

xjej ∈ Em, s ∈ N : pk(

s∑
j=1

xjej) ≤ pk(x).



4 J. Bonet, T. Kalmes and A. Peris

Proof. Fix m ∈ N and let (qk)k∈N be an increasing fundamental system of semi-
norms for Em. For s ∈ N we define

πs : Em → Em, x =

∞∑
j=1

xjej 7→
s∑
j=1

xjej .

Then {πs; s ∈ N} is equicontinuous since (ej)j∈N is a Schauder basis for Em. In
particular, for x ∈ Em the set {πs(x); s ∈ N} is a bounded subset of Em and via

pk : Em → [0,∞), x 7→ max{qk(x), sup
s∈N

qk(πs(x))}, k ∈ N,

we obtain an increasing fundamental sequence of seminorms (pk)k∈N for Em satis-
fying the desired property. 2

Proposition 2.4. Let E be an LF-space with stepwise Schauder basis (ej)j∈N and
associated backward shift B. Then, for an infinite subset I ⊆ N, the following are
equivalent.

i) (Bn)n∈I is transitive on E.

ii) For each s ∈ N0 there are m ∈ N and a strictly increasing sequence (jk)k∈N ∈
IN such that limk→∞ ejk+s = 0 in Em.

Proof. In order to show that i) implies ii) we assume that (Bn)n∈I is transitive on
E but ii) is not satisfied, that is, there is s ∈ N0 such that for all m ∈ N there is
an absolutely convex zero neighborhood Um in Em such that Um∩{ej+s; j ∈ I} is
finite. By shrinking each Um if necessary we may assume without loss of generality
that Um and {ej+s; j ∈ I} are disjoint for each m ∈ N. Moreover, taking into
account Proposition 2.3, we additionally may assume without loss of generality
that for each m ∈ N there is a continuous seminorm p(m) on Em satisfying

(2.1) ∀x =

∞∑
j=1

xjej ∈ Em, r ∈ N : p(m)(

r∑
j=1

xjej) ≤ p(m)(x)

such that {x ∈ Em; p(m)(x) ≤ 1} and {ej+s; j ∈ I} are disjoint, i.e. p(m)(ej+s) > 1
for all j ∈ I,m ∈ N. We first assume s ≥ 1.

Since for each Em the projection onto the span of es is continuous, the same
holds for E (cf. [19, Proposition 24.7]) so that {x ∈ E; |xs| < 1/2} is a zero
neighborhood in E as is

W :=
⋃
k∈N

( k∑
m=1

1

2m
{x ∈ Em; p(m)(x) ≤ 1}

)
∩ {x ∈ E; |xs| < 1/2}

(cf. [19, Proposition 24.6(c)]). From the transitivity of (Bn)n∈I we conclude the
existence of x ∈W and n ∈ I with Bnx ∈ (3es+W ). In particular, there is x ∈W
and n ∈ I with |(Bnx)s − 3| < 1/2 so that |xn+s| > 5/2.
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As x ∈W there are k ∈ N and y(m) ∈ {y ∈ Em; p(m)(y) ≤ 1}, 1 ≤ m ≤ k, such

that x =
∑k
m=1

1
2m y

(m). Thus, applying the projection onto the (n+s) coordinate
with respect to the Schauder basis (ej)j∈N we get from

5/2 < |xn+s| ≤
k∑

m=1

1

2m
|y(m)
n+s| <

k∑
m=1

1

2m
p(m)(y

(m)
n+sen+s)

=

k∑
m=1

1

2m

(
p(m)

( n+s∑
j=1

y
(m)
j ej −

n+s−1∑
j=1

y
(m)
j ej

))

≤
k∑

m=1

1

2m−1
p(m)(y(m)) < 2,

the desired contradiction. In particular, there are m ∈ N and a strictly increasing
sequence (jk)k∈N ∈ IN such that limk→∞ ejk+1 = 0 in Em. By Remark 2.2 we find
n ≥ m such that B : Em → En and it is continuous. Thus limk→∞ ejk = 0 in En,
and we have shown ii) for the case s = 0.

It remains to show that ii) implies transitivity of (Bn)n∈I on E. In order to
do so, we will show that for every x, y ∈ {ej ; j ∈ N} and each absolutely convex
zero neighborhood W in E there are n ∈ I and w ∈W with Bn(x+w) ∈ (y+W ).
Since {ej ; j ∈ N} is sequentially dense in E, transitivity of (Bn)n∈I will follow
therefrom.

So, we fix x, y ∈ {ej ; j ∈ N} and an absolutely convex zero neighborhood W
in E. Let s ∈ N be such that x =

∑s
j=1 xjej and y =

∑s
j=1 yjej . Then

W̃ := ∩sn=0B
−n(W )

is an absolutely convex zero neighborhood in E.
Let (jk)k∈N ∈ IN and m ∈ N be as in ii) for s. Since limk→∞ ejk+s = 0 in Em,

in particular, there is jk > s (which we fix for the rest of the proof) with

ejk+s ∈
1

1 +
∑s
l=1 |yl|

W̃

implying

∀ 0 ≤ n ≤ s : Bn(ejk+s) ∈
1

1 +
∑s
l=1 |yl|

W.

We define

w :=

s∑
l=1

ylejk+l =

s∑
l=1

ylB
s−lejk+s ∈

s∑
l=1

yl
1 +

∑s
j=1 |yj |

W ⊆W,

since W is absolutely convex. Moreover, since jk > s

Bjk(x+ w) = Bjkw =

s∑
l=1

ylB
jkejk+l =

s∑
l=1

ylel = y

which proves the claim. 2



6 J. Bonet, T. Kalmes and A. Peris

The above result enables to characterize transitivity and mixing of backward
shifts.

Corollary 2.5. Let E be an LF-space with stepwise Schauder basis (ej)j∈N and
associated backward shift B.

a) The following are equivalent.

i) B is transitive on E.

ii) There are m ∈ N and a strictly increasing sequence (jk)k∈N ∈ NN such
that limk→∞ ejk = 0 in Em.

b) The following are equivalent.

i) B is topologically mixing on E.

ii) For every infinite subset I ⊆ N there are m ∈ N and a strictly increasing
sequence (jk)k∈N ∈ IN such that limk→∞ ejk = 0 in Em.

Proof. Clearly, a) follows immediately from Proposition 2.4 applied to I = N. In
order to show b), observe that B is mixing if and only if, for every infinite subset
I ⊆ N the family (Bn)n∈I is transitive. By Proposition 2.4, the latter is equivalent
to the fact that for every infinite subset I ⊆ N and each s ∈ N0 there are m ∈ N
and (jk)k∈N ∈ IN for which (ejk+s)k∈N converge to 0 in Em which is obviously
equivalent to condition ii). 2

Before we come to a characterization of (sequential) hypercyclicity for backward
shifts, we recall that a subset I ⊆ N is thick if

∀ p ∈ N ∃ j ∈ N : {j, j + 1, . . . , j + p} ⊆ I.

The following criterion for sequential hypercyclicity [21, Corollary 3] will be crucial
for our next result. We include it here for the reader’s convenience.

Lemma 2.6. Let E be a sequentially separable topological vector space and T ∈
L(E) such that there is a sequentially dense set E0 := {xn : n ∈ N} ⊂ E, a
sequence of maps Sn : E0 → E,n ∈ N, a subspace Y ⊂ E with a finer topology
τ such that (Y, τ) is an F-space, and an increasing sequence (nk)k∈N of natural
numbers (n0 := 0) satisfying:

i) For all j ∈ N and each x ∈ E0 there is l ∈ N such that (TnkSnjx)k≥l ⊂ Y
and converges to 0 in (Y, τ),

ii) for all j ≥ 0 and each x ∈ E0 there is l ∈ N such that (TnjSnkx)k≥l ⊂ Y
and converges to 0 in (Y, τ),

iii) for each x ∈ E0 there is l ∈ N such that (x−TnkSnkx)k≥l ⊂ Y and converges
to 0 in (Y, τ).

Then T is sequentially hypercyclic.

Proposition 2.7. Let E be an LF-space with stepwise Schauder basis (ej)j∈N and
associated backward shift B. Then, the following are equivalent.
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i) B is sequentially hypercyclic on E.

ii) B is hypercyclic on E.

iii) There are m ∈ N and a thick set I ⊆ N such that lim
I3j→∞

ej = 0 in Em.

Proof. Trivially, i) implies ii). In order to show that ii) implies iii) we define for
p ∈ N

πp : E → Kp, x =

∞∑
j=1

xjej 7→ (x1, . . . , xp)

which is surjective. Let x ∈ E be a hypercyclic vector for B and let m ∈ N be such
that x ∈ Em. Then, for every r ∈ N the set {πp(Bnx);n ≥ r} is dense in Kp. In
particular, for every p, r ∈ N there is nrp ≥ r such that

1/2 > max
1≤l≤p

|
(
πp(B

nrpx)
)
l
− 1|.

Hence, for p, r ∈ N there is nrp ≥ r such that |xnrp+l| ≥ 1/2 for all 1 ≤ l ≤ p which
implies

(2.2) ∃ (np)p∈N ∈ NN strictly increasing ∀ 1 ≤ l ≤ p : |xnp+l| ≥ 1/2.

Obviously, I := {np + l; p ∈ N, 1 ≤ l ≤ p} is a thick subset of N. Since x ∈ Em
and since (ej)j∈N is a Schauder basis of Em the sequence (xjej)j∈N converges to
0 in Em, where as usual x =

∑∞
j=1 xjej . Thus, for an arbitrary absolutely convex

zero neighborhood U in Em there is N ∈ N such that xjej ∈ U whenever j ≥ N .
Hence, for all p ∈ N with np > N and each 1 ≤ l ≤ p we conclude by the absolute
convexity of U and (2.2)

enp+l =
1

xnp+l
xnp+lenp+l ∈ 2U

which proves limI3j→∞ ej = 0 in Em.
It remains to show that iii) implies i). To accomplish this we introduce

S : {ej ; j ∈ N} → {ej ; j ∈ N},
s∑
j=1

xjej 7→
s∑
j=1

xjej+1

as well as Sn := Sn. Note that E0 := {ej ; j ∈ N} is a sequentially dense subspace
of E and that for k, l ∈ N

BkSl(

s∑
j=1

xjej) =

s∑
j=1

xj emax{0,l−k+j},

where e0 := 0.
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Let I = {nk + l; k ∈ N, 1 ≤ l ≤ k} with (nk)k∈N strictly increasing and m ∈ N
be such that limI3j→∞ ej = 0 in Em. We define recursively ñ1 := n1 and for k ∈ N

ñk+1 :=

k∑
r=1

ñr + nk+1+
∑k
r=1 ñr

.

Then, for every k, j ∈ N with k > j and each 1 ≤ l ≤ k we have

ñk − ñj + l =

k−1∑
r=1,r 6=j

ñr + nk+
∑k−1
r=1 ñr

+ l(2.3)

∈ {nk+
∑k−1
r=1 ñr

+ 1, . . . , nk+
∑k−1
r=1 ñr

+ k +

k−1∑
r=1

ñr}.

Next we fix x =
∑s
j=1 xjej ∈ {ej ; j ∈ N}. Given an absolutely convex zero

neighborhood U in Em there is K ∈ N such that enk+l ∈ U whenever k ≥ K
and 1 ≤ l ≤ k. From (2.3) we obtain in particular that whenever k is such that

k +
∑k−1
r=1 ñr ≥ K

∀j < k, 1 ≤ l ≤ k : eñk−ñj+l ∈ U

so that for all k with k +
∑k−1
r=1 ñr ≥ K it follows

∀ j < k : BñjSñk

( s∑
l=1

xlel

)
=

s∑
l=1

xleñk−ñj+l ∈ (1 +

s∑
l=1

|xl|)U

by the absolute convexity of U . Hence, (BñjSñkx)k∈N converges to 0 in Em. Since
trivially (BñkSñjx)k∈N and (x−BñkSñkx)k∈N both converge to 0 in Em it follows
form Lemma 2.6 that B is sequentially hypercyclic on E. 2

Before we come to the next result of this section, we recall some notions for
subsets of N. Recall that for a given m ∈ N a subset A ⊆ N is m-syndetic if
N ⊆ {a − k; a ∈ A, k ∈ {0, . . . ,m}}. In case that A is m-syndetic for some m,
we simply say that A is syndetic. Given m ∈ N, a set A ⊆ N is called piecewise
m-syndetic if A = A1 ∩ A2 with A1 ⊆ N thick and A2 ⊆ N m-syndetic. Piecewise
syndetic sets are those which are piecewise m-syndetic for some m ∈ N. Finally,
given n,m ∈ N with n > m, we say that a finite set F ⊆ N is (n,m)-syndetic if
F = J ∩A, with J ⊆ N being an interval of length n and A ⊆ N m-syndetic.

Proposition 2.8. Let E be an LF-space with stepwise Schauder basis (ej)j∈N and
associated backward shift B. If B is mixing then B is sequentially hypercyclic.

Proof. By Remark 2.2 we can assume without loss of generality that for E =
indmEm we have

(2.4) ∀m ∈ N : B : Em → Em+1 continuously.

By Proposition 2.7, we have to show the existence of m ∈ N and a thick set
I ⊆ N such that limI3j→∞ ej = 0 in Em. Actually, if we find m, m̃ ∈ N and a
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piecewise m̃-syndetic set Ĩ ⊆ N such that limĨ3j→∞ ej = 0 in Em then by (2.4)
and the continuity of the inclusions Ek ↪→ Ek+1, k ∈ N, we immediately conclude
the existence of a thick set I ⊆ N such that limI3j→∞ ej = 0 in Em+m̃, so that B
is indeed sequentially hypercyclic.

Let us assume that for every m ∈ N there is no piecewise syndetic Ĩ ⊆ N with
limĨ3j→∞ ej = 0 in Em. We will show that under this assumption B cannot be
mixing.

Claim 1: For every piecewise syndetic I ⊆ N and for every m ∈ N, there are a
piecewise syndetic subset Im ⊆ I as well as a zero neighborhood Um in Em such
that Um ∩ {ej ; j ∈ Im} = ∅.

In order to prove claim 1, let I ⊆ N be piecewise k-syndetic for some k ∈ N
and let m ∈ N. Moreover, let (Un)n∈N be a decreasing zero neighborhood basis
in Em. Then, there is n0 > k such that for all (n0, k)-syndetic sets F we have
{ej ; j ∈ F} ∩ (Em\Un0

) 6= ∅. Indeed, otherwise we had that for each n > k

there was a (n, k)-syndetic sets Fn with {ej ; j ∈ Fn} ⊆ Un. Since Ĩ := ∪n>kFn
is piecewise k-syndetic and for every l ∈ N, l > k, we have ej ∈ Ul whenever
j ∈ ∪n≥lFn, this would imply limĨ3j→∞ ej = 0 in Em which contradicts our

assumption that there is no piecewise syndetic J̃ ⊆ N with limJ̃3j→∞ ej = 0 in
Em.

Since I is piecewise k-syndetic, for each n > n0 we find a (n · n0, k)-syndetic
set Fn ⊆ I. We write as a disjoint union

Fn =

n⋃
i=1

Fn,i,

where each Fn,i is a (n0, k)-syndetic set, i = 1, . . . , n. Hence, for each i = 1, . . . , n

there is j(n, i) ∈ Fn,i such that ej(n,i) /∈ Un0 . The set F̃n := {j(n, i); i = 1 . . . , n}
is clearly a (nn0, 2n0)-syndetic set. We further define

Im :=

∞⋃
n=n0+1

F̃n ⊆ I

which is piecewise 2n0-syndetic and

∀ j ∈ Im : ej /∈ Un0

which proves claim 1.
Claim 2: There exist a decreasing sequence (Im)m∈N of piecewise syndetic sets

Im ⊆ N and a sequence (Um)m∈N of zero neighborhoods Um in Em, m ∈ N, such
that

∀m ∈ N : Um ∩ {ej ; j ∈ Im} = ∅.
Indeed, proceeding by induction, we obtain claim 2 immediately from claim 1.

Now, let (Im)m∈N and (Um)m∈N be as in claim 2. We select an increasing
sequence (jm)m∈N ∈

∏
m∈N Im and set I := {jm; m ∈ N} which is an infinite

set such that for every m ∈ N the zero neighborhood Um in Em is disjoint to
{ej ; j ∈ I, j ≥ m}. Hence, by Corollary 2.5 b), B is not mixing on E. 2
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The last result of this section gives a sufficient condition under which the back-
ward shift is topologically ergodic. However, this sufficient condition is not neces-
sary, in general, as is shown in Proposition 4.5 below.

Proposition 2.9. Let E be an LF-space with stepwise Schauder basis (ej)j∈N and
associated backward shift B. Assume that there is m ∈ N such that for every zero
neighborhood W in Em the set IW := {j ∈ N; ej ∈ W} is syndetic. Then B is
topologically ergodic on E.

Proof. Let U, V ⊆ E be open and non-empty. Then, there are x, y ∈ span{ej ; j ∈
N} and an absolutely convex zero neighborhood W̃ in E such that

x+ W̃ ⊆ U and y + W̃ ∈ V.

Let s ∈ N be such that x =
∑s
j=1 xjej as well as y =

∑s
j=1 yjej and define

W̃1 := ∩sn=0B
−n(

1

1 +
∑s
l=1 |yl|

W̃ )

which is a zero neighborhood in E. Denoting by im the canonical injection of Em
into E, W := i−1

m (W̃1) is a zero neighborhood in Em so that by the hypothesis
IW := {j ∈ N; ej ∈W} is syndetic. From the definition it follows

∀n = 0, . . . , s, j ∈ IW : Bnej ∈
1

1 +
∑s
l=1 |yl|

W̃ .

For j ∈ IW ∩ {s+ 1, s+ 2, . . .} we set

wj :=

s∑
k=1

ykej−s+k =

s∑
k=1

ykB
s−kej ∈ W̃ .

Then, for j ∈ IW ∩ {2s+ 1, 2s+ 2, . . .} it holds

Bj−s(x+ wj) = Bj−swj =
s∑

k=1

ykB
j−sej−s+k = y

so that Bj−s(x+ W̃ ) ∩ (y + W̃ ) 6= ∅ which implies the proposition since with IW
also {n; n = j − s, j ∈ IW , j > 2s} is syndetic. 2

3. The backward shift on Köthe coechelon spaces

In this section we evaluate and complement the results from the previous section for
the case of Köthe coechelon spaces. Let V = (v(m))m∈N be a decreasing sequence

of strictly positive weights on N, i.e. v(m) = (v
(m)
j )j∈N ∈ (0,∞)N,m ∈ N, such that

∀m, j ∈ N : v
(m)
j ≥ v(m+1)

j .
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For m ∈ N and 1 ≤ p <∞ we define as usual

`p(v
(m)) := {x = (xj)j∈N ∈ ω; (xjv

(m)
j )j∈N ∈ `p}.

Equipped with the norm ‖x‖p,v(m) := ‖(xjv(m)
j )j∈N‖`p this is a Banach space for

which (ej)j∈N = ((δj,l)l∈N)j∈N is a Schauder basis. Due to the fact that (v(m))m∈N
is decreasing, (`p(v

(m)))m∈N is an inductive spectrum of Banach spaces whose
inductive limit we denote by kp(V ) or kp((v

(m))m∈N). Analogously, for m ∈ N we
set

c0(v(m)) := {x = (xj)j∈N ∈ ω; (xjv
(m)
j )j∈N ∈ c0}

which is Banach space when equipped with the norm ‖x‖0,v(m) := supj∈N |xj |v
(m)
j .

Again, (ej)j∈N = ((δj,l)l∈N)j∈N is a Schauder basis of c0(v(m)) and (c0(v(m)))m∈N is
an inductive spectrum of Banach spaces whose inductive limit we denote by k0(V )
or k0((v(m))m∈N). In particular, kp(V ), p ∈ {0} ∪ [1,∞), is an LF-space for which
the standard basis sequence (ej)j∈N = ((δj,l)l∈N)j∈N is a stepwise Schauder basis.
In this section, (ej)j∈N always stands for this basis sequence.

For a given decreasing sequence of weights V = (v(m))m∈N we denote by V̄
the associated family of weights of its projective description, i.e. for v̄ = (v̄j)j∈N ∈
[0,∞)N

v̄ ∈ V̄ ⇔ ∀m ∈ N∃αm > 0 ∀ j ∈ N : v̄j ≤ αmv(m)
j .

Then kp(V ) = Kp(V̄ ), p ∈ {0} ∪ [1,∞) where

Kp(V̄ ) := projv̄∈V̄ `p(v̄), 1 ≤ p <∞,

respectively

K0(V̄ ) := projv̄∈V̄ c0(v̄),

see [6].
Before we evaluate the results from the previous section in the particular con-

text of Köthe coechelon spaces, we characterize, when the backward shift B asso-
ciated with the standard basis sequence is well-defined (and continuous) on kp(V ).

Proposition 3.1. Let V = (v(m))m∈N be a decreasing sequence of strictly positive
weights and p ∈ {0} ∪ [1,∞). Then the following are equivalent.

i) The backward shift B : kp(V )→ kp(V ) is well-defined.

ii) The backward shift B : kp(V )→ kp(V ) is continuous.

iii) For every m ∈ N there exist n ∈ N, n ≥ m, and C > 0 such that

∀ j ∈ N : v
(n)
j ≤ Cv(m)

j+1.

Proof. Clearly, iii) implies ii), and i) follows from ii). Moreover, by Remark 2.2 ii),
ii) follows from i).
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Finally, if ii) holds it follows from Grothendieck’s Factorization Theorem [19,
Theorem 24.33] that for each m ∈ N there is n ∈ N such that

B : `p(v
(m))→ `p(v

(n)), (xj)j∈N 7→ (xj+1)j∈N

is well-defined and continuous - in case 1 ≤ p <∞, analogously for p = 0 - so that
there is C > 0 such that

∀ j ∈ N : v
(n)
j = ‖ej‖p,v(n) ≤ C‖ej+1‖p,v(m) = Cv

(m)
j+1,

i.e. iii) is true. 2

It should be noted that continuity of the backward shift B (and being well-
defined) on kp(V ) is independent of p.

For a decreasing sequence of strictly positive weights V we denote by A(V ) =
(a(m))m∈N the Köthe matrix where a(m) := 1/v(m) (see e.g. [19, Chapter 27] for the
notion of a Köthe matrix as well as for the corresponding Köthe (echelon) sequence
spaces λ2(A(V )) appearing in the next theorem). Recall that a continuous linear
operator between locally convex spaces is called Montel if it maps bounded sets to
relatively compact sets.

Theorem 3.2. Let V = (v(m))m∈N be a decreasing sequence of strictly positive
weights such that the backward shift B is continuous on kp(V ), p ∈ {0} ∪ [1,∞).

a) The following are equivalent.

i) B is transitive on kp(V ).

ii) There is m ∈ N such that lim infj→∞ v
(m)
j = 0.

b) The following are equivalent.

i) B is sequentially hypercyclic on kp(V ).

ii) B is hypercyclic on kp(V ).

iii) There are m ∈ N and a thick set I ⊆ N such that limI3j→∞ v
(m)
j = 0.

c) The following are equivalent.

i) B is topologically mixing on kp(V ).

ii) For every infinite set I ⊆ N there is m ∈ N with lim infI3j→∞ v
(m)
j = 0.

iii) For every v̄ ∈ V̄ we have limj→∞ v̄j = 0.

iv) The natural map i : `2 → k2(V ) is (well-defined and) compact.

v) The natural map i : λ2(A(V ))→ `2 is (well-defined and) Montel.

d) Assume that there is m ∈ N such that the set Iε := {j ∈ N; v
(m)
j < ε} is

syndetic for every ε > 0. Then B is topologically ergodic on kp(V ).
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Proof. Since for each m, j ∈ N we have ‖ej‖p,v(m) = v
(m)
j , part a) follows imme-

diately from Corollary 2.5 a), part b) follows from Proposition 2.7, and part d) is
a direct consequence of Proposition 2.9. Moreover, that i) and ii) in part c) are
equivalent is an immediate consequence of Corollary 2.5 b).

Next, we assume that ii) of c) holds but that there is v̄ ∈ V̄ which does not
converge to 0. Hence, there are ε > 0 and a strictly increasing sequence (jk)k∈N in
N such that

∀ k ∈ N : v̄jk > ε.

Choose m ∈ N according to c) ii) for I := {jk; k ∈ N}, i.e. infk∈N v
(m)
jk

= 0. As

v̄ ∈ V̄ there is αm > 0 such that v̄j ≤ αmv(m)
j for every j ∈ N. In particular,

∀ k ∈ N : ε < v̄jk ≤ αmv
(m)
jk

contradicting infk∈N v
(m)
jk

= 0. Thus, c) ii) implies c) iii).
In order to prove the converse implication, assume that c) iii) holds but that for

some infinite I ⊆ N for each m ∈ N there is εm > 0 such that v
(m)
j ≥ εm whenever

j ∈ I. Then, via

v̄j := inf
m∈N

v
(m)
j

εm
, j ∈ N,

we obtain v̄ ∈ V̄ with v̄j ≥ 1 for every j ∈ I. Since I ⊆ N is supposed to be
infinite, this contradicts c) iii), so that c) iii) implies c) ii).

So far we have shown that i), ii), and iii) in c) are equivalent. Moreover, c)
iii) holds if and only if the inclusion `2 ↪→ `2(v̄) is well-defined and compact for
all v̄ ∈ V̄ . Hence, c) iii) implies that (by Tychonov’s Theorem) the natural map
i : `2 → k2(V ) = K2(V̄ ) is well-defined and compact. On the other hand, if

i : `2 → k2(V ) = K2(V̄ ) = projv̄∈V̄ `2(v̄)

is compact, it follows that `2 ↪→ `2(v̄), v̄ ∈ V̄ , is compact. Thus, c) iii) and c) iv)
are equivalent.

Finally, taking into account that λ2(A(V )) is the strong dual of k2(V ) (see e.g.
[19, Proposition 27.3, Proposition 27.13]) it follows from [11, Corollary 2.4] that
c) iv) and c) v) are equivalent. 2

Next, we give a characterization of when the backward shift is chaotic on Köthe
coechelon spaces.

Proposition 3.3. Let V = (v(m))m∈N be a decreasing sequence of strictly positive
weights such that the backward shift B is continuous on kp(V ), p ∈ {0} ∪ [1,∞).
Then, the following are equivalent.

i) B has a periodic point x ∈ kp(V ), x 6= 0.

ii) There is m ∈ N such that v(m) ∈ `p, respectively, v(m) ∈ c0 when p = 0.

iii) B is chaotic, mixing, and sequentially hypercyclic on kp(V ).
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iv) B is chaotic on kp(V ).

In particular, B is sequentially hypercyclic whenever B is chaotic.

Proof. Trivially, iii) implies iv) and iv) implies i). We show that i) implies ii).
Thus, let x ∈ kp(V )\{0} be periodic for B. We choose m0, N, j0 ∈ N such that x ∈
`p(v

(m0)) (we consider the case 1 ≤ p <∞; the case p = 0 is analogous), BNx = x,
and xj0 6= 0. Then x is a periodic sequence with period N and (xj0+jN )j∈N is a
constant non-null sequence. Since

|xj0 |p
∞∑
j=1

|v(m0)
j0+jN |

p ≤ ‖x‖p
p,v(m0) <∞

it follows that
∞∑
j=1

(v
(m0)
j0+jN )p <∞.

We can find m > m0 such that Bnx ∈ `p(v(m)) for every n ∈ {1, . . . , N − 1} and
applying the arguments from above to Bnx, n = 1 . . . , N − 1 we get

∀n ∈ {1, . . . , N − 1} :

∞∑
j=1

(v
(m)
j0+jN−n)p <∞

which implies v(m) ∈ `p.
Next, if ii) holds, it follows from Theorem 3.2 c) that B is mixing, and thus

sequentially hypercyclic, too, by Proposition 2.8. We define

H := {x = (xj)j∈N ∈ ω; x periodic}.

With m as in ii) and v(m) ∈ `p it follows that `∞ ⊆ `p(v(m)), hence H ⊆ `p(v(m)) ⊆
kp(V ). Clearly, every x ∈ H is periodic for B, so it is enough to show that H is
dense in `p(v

(m)) (which is dense in kp(V ) since span{ej ; j ∈ N} is). The latter

will be accomplished once we have shown ek ∈ H
`p(v(m))

, k ∈ N. So, we fix k ∈ N
and ε > 0. Select i ∈ N, i > k, such that

∑∞
j=i+1(v

(m)
j )p < εp and set

z :=

∞∑
j=0

ek+ji ∈ H.

Then

‖ek − z‖pp,v(m) =

∞∑
j=1

(v
(m)
k+ji)

p < εp,

so that indeed ek ∈ H
`p(v(m))

. Hence, ii) implies iii). 2

In the remainder of this section we will generalize the results for the backward
shift to weighted generalized backward shifts. In order to do so, we first introduce
some terminology.
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Definition 3.4. A symbol ψ is a bijection ψ : N→ N\{1} satisfying

N = {1} ∪
⋃
n∈N
{ψn(1)}.

Moreover, a weight (sequence) w is a sequence w = (wj)j∈N ∈ ω such that wj 6=
0, j ∈ N. Then,

Bw,ψ : ω → ω, x = (xj)j∈N 7→ (wψ(j)xψ(j))j∈N

is called the weighted generalized backward shift (with weight sequence w and sym-
bol ψ). In case wj = 1, j ∈ N, we simply write Bψ (generalized backward shift) and
in case ψ(j) = j + 1, we write Bw instead of Bw,ψ (weighted backward shift). Ac-
tually, Bw,ψ = Cψ ◦Dw, a weighted composition operator, where the composition
operator with symbol ψ is defined as Cψ((xj)j) = (xψ(j))j , and the multiplication
(diagonal) operator with weight w is Dw((xj)j) = (wjxj)j .

Proposition 3.5. Let ψ be a symbol and w a weight sequence. Then

Tw,ψ : ω → ω, x = (xj)j∈N 7→ ((

j−1∏
l=0

wψl(1))xψj−1(1))j∈N

is an isomorphism such that T−1
w,ψ ◦B ◦ Tw,ψ = Bw,ψ. Here, as usual ψ0(1) := 1.

Proof. Since ψ : N→ N\{1} is a symbol, N = {1} ∪
⋃
n∈N ψ

n(1) and this union is
a partition of N. Hence,

χ : N→ N, χ(1) := 1, χ(j + 1) := ψj(1), j ∈ N,

is a bijection. Clearly,

(3.1) ∀ j ∈ N : ψ(χ(j)) = χ(j + 1).

With this, one readily sees

∀x ∈ ω : Tw,ψ x = ((

j∏
l=1

wχ(l))xχ(j))j∈N

which implies that Tw,ψ is bijective. Obviously, Tw,ψ is also bicontinuous. Finally,
for x ∈ ω we have

Tw,ψ
(
Bw,ψ x

)
= Tw,ψ

(
(wψ(j)xψ(j))j∈N

)
=
(
(

j∏
l=1

wχ(l))wψ(χ(j))xψ(χ(j))

)
j∈N

=
(
(

j+1∏
l=1

wχ(l))xχ(j+1)

)
j∈N = B

(
Tw,ψ x

)
,

where we have used (3.1) in the third equality. Since Tw,ψ is bijective, the claim
follows. 2
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Corollary 3.6. Let ψ be a symbol and w a weight sequence. Moreover, let V =
(v(m))m∈N be a decreasing sequence of strictly positive weights and p ∈ {0}∪ [1,∞).
Then, the following are equivalent.

i) kp(V ) is invariant under Bw,ψ.

ii) Bw,ψ : kp(V )→ kp(V ) is well-defined and continuous.

iii) For every m ∈ N there are n ∈ N and C > 0 such that

∀ j ∈ N : |wψj(1)|v
(n)
ψj−1(1) ≤ Cv

(m)
ψj(1).

Proof. With χ : N→ N as in the proof of Proposition 3.5 it follows for 1 ≤ p <∞

∀x ∈ ω :

∞∑
j=1

(
|xj |v(m)

j

)p
=

∞∑
j=1

(
|
j∏
l=1

wχ(l)xχ(j)|
v

(m)
χ(j)∏j

l=1 |wχ(l)|
)p

=

∞∑
j=1

(
|(Tw,ψ x)j |

v
(m)
χ(j)∏j

l=1 |wχ(l)|
)p
,

so that Tw,ψ x ∈ `p
(
(

v
(m)

χ(j)∏j
l=1 |wχ(l)|

)j∈N
)

if and only if x ∈ `p(v(m)). Thus, for 1 ≤ p <
∞

Tw,ψ : kp(V )→ kp(Vw,ψ)

is a well-defined, continuous bijection (even a stepwise isometric isomorphism),

where the decreasing sequence of strictly positive weights Vw,ψ = (v
(m)
w,ψ)m∈N is

given by

∀m, j ∈ N : (v
(m)
w,ψ)j =

v
(m)
χ(j)∏j

l=1 |wχ(l)|
=

v
(m)
ψj−1(1)∏j

l=1 |wψl−1(1)|
.

Now, the claim follows for 1 ≤ p <∞ directly from Proposition 3.5 and Proposition
3.1. The case p = 0 is treated analogously. 2

Corollary 3.7. Let ψ be a symbol, w a weight sequence and V = (v(m))m∈N be
a decreasing sequence of strictly positive weights such that Bw,ψ is a well-defined,
continuous linear operator on kp(V ), p ∈ {0} ∪ [1,∞). Then the following hold.

a) The following are equivalent.

i) Bw,ψ is transitive on kp(V ).

ii) There is m ∈ N such that

lim inf
j→∞

v
(m)
ψj(1)∏j

l=0 |wψl(1)|
= 0.

b) The following are equivalent.
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i) Bw,ψ is (sequentially) hypercyclic on kp(V ).

ii) There are m ∈ N and a thick set I ⊆ N such that

lim
I3j→∞

v
(m)
ψj(1)∏j

l=0 |wψl(1)|
= 0.

c) The following are equivalent.

i) B is mixing on kp(V ).

ii) For every infinite set I ⊆ N there is m ∈ N such that

lim inf
I3j→∞

v
(m)
ψj(1)∏j

l=0 |wψl(1)|
= 0.

d) Assume there is m ∈ N such that for every ε > 0 the set

Iε :=

j ∈ N;
v

(m)
ψj(1)∏j

l=0 |wψl(1)|
< ε


is syndetic. Then Bw,ψ is topologically ergodic on kp(V ).

e) The following are equivalent.

i) Bw,ψ has a periodic point x ∈ kp(V ), x 6= 0.

ii) There is m ∈ N such that v
(m)
ψj(1)∏j

l=0 |wψl(1)|


j∈N

∈ `p,

respectively,  v
(m)
ψj(1)∏j

l=0 |wψl(1)|


j∈N

∈ c0

when p = 0.

iii) Bw,ψ is chaotic on kp(V ).

Proof. Recall that two continuous self-maps T : X → X and S : Y → Y on
topological spaces X,Y are conjugate if there is a homeomorphism φ : X → Y
such that S ◦ φ = φ ◦ T . As seen in the proof of Corollary 3.6, Bw,ψ on kp(V ) and
B in kp(Vw,ψ) are conjugate via Tw,ψ. Since all considered dynamical properties
are preserved under conjugacy and since x is periodic for Bw,ψ if and only if Tw,ψ x
is periodic for B, the claim follows from Theorem 3.2 and Proposition 3.3. 2
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4. Examples and open problems

In this section we present some examples. We begin by considering topological
dual spaces of power series spaces of infinite type.

4.1. Weighted generalized backward shifts on duals of power series spaces
of infinite type

Let (αj)j∈N be an increasing sequence of positive real numbers with limj→∞ αj =

∞. As in [19], we set with a
(m)
j = emαj

Λ∞(α) := λ2((a(m))m∈N) := {x ∈ ω; ∀m ∈ N : ‖x‖2m :=

∞∑
j=1

|xj |2e2mαj <∞}.

Then, the topological dual Λ′∞(α) of Λ∞(α) is topologically isomorphic to

k2

(
(

1

a(m)
)m∈N

)
= k2

((
(e−mαj )j∈N

)
m∈N

)
= {x ∈ ω; ∃m ∈ N :

∞∑
j=1

|xj |2e−2mαj <∞}.

The particular case of αj = j gives Λ∞((j)j∈N) ∼= H(C), the latter denoting
the space of entire functions, and Λ′∞((j)j∈N) ∼= H({0}), the space of germs of
holomorphic functions in 0. Weighted backward shifts on k2((j)j∈N), i.e. weighted
generalized backward shifts with ψ(j) = j + 1, played an important role in the
investigation of weighted backward shifts on spaces of real analytic functions in
[12].

For a symbol ψ : N→ N\{1} and a weight sequence w we have by Corollary 3.6
that Bw,ψ is well-defined (and continuous) on Λ′∞(α) if and only if

∀m ∈ N ∃n ∈ N : ∞ > sup
j∈N

|wψj(1)|e−nαψj−1(1)

e−mαψj(1)

= exp
(

sup
j∈N

(log |wψj(1)|+mαψj(1) − nαψj−1(1))
)

so that Bw,ψ is well-defined (and continuous) on Λ′∞(α) precisely when

(4.1) ∀m ∈ N ∃n ∈ N : sup
j∈N

(
log |wψj(1)|+mαψj(1) − nαψj−1(1)

)
<∞.

In case of ψ(j) = j + 1 we obtain the weighted backward shift which we simply
denote by Bw. Since then ψl(1) = l + 1, l ∈ N0, by (4.1), Bw is well-defined and
continuous on Λ′∞(α) if and only if

(4.2) ∀m ∈ N ∃n ∈ N : sup
j∈N

(
log |wj+1|+mαj+1 − nαj

)
<∞.
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Corollary 4.1. Let ψ be a symbol and let α = (αj) be as above such that the
generalized backward shift Bψ is well-defined on Λ′∞(α). Then Bψ is mixing on
Λ′∞(α). Moreover, Bψ is chaotic on Λ′∞(α) if, and only if,

∑∞
j=1 e

−lαj < ∞ for
some l > 0.

Proof. Since ψ is a symbol, we have the disjoint union N = {1} ∪
⋃
j∈N ψ

j(1). In
particular,

lim
j→∞

ψj(1) =∞,

so that with v
(m)
j = e−mαj ,m, j ∈ N, due to the fact that (αj)j∈N increases to

infinity, we have

∀m ∈ N : 0 = lim
j→∞

e−mαψj(1) = lim
j→∞

v
(m)
ψj(1).

Because Λ′∞(α) = k2((v(m))m∈N), the claim follows from Corollary 3.7. 2

4.2. The annihilation operator on S′(R).

The special case of α = (log j)j∈N in the previous subsection gives Λ′∞(α) = s′,
the space of slowly increasing sequences, i.e. the strong dual space of

s := λ2 (((jm)j∈N)m∈N) = {x ∈ ω; ∀m ∈ N : ‖x‖2m :=

∞∑
j=1

|xj |2j2m <∞}.

It follows from (4.2) that the weighted backward shift Bw with weight sequence w
is a well-defined and continuous operator on s′ if and only if

∀m ∈ N ∃n ∈ N : sup
j∈N

|wj+1|(j + 1)m

jn
<∞.

Given a weight sequence w satisfying the above condition, it follows that the
weighted backward shift Bw is transitive, hypercyclic, etc. if (and only if) there is
m ∈ N such that the sequence (

1

jm
∏j
l=1 |wl|

)
j∈N

satisfies the respective properties mentioned in part a), b) etc. of Corollary 3.7.
Instead of repeating these conditions explicitly, we just consider the special

weighted backward shiftBw with weight sequence wj =
√
j. By the above, B(

√
j)j∈N

is clearly well-defined and continuous on s′. As is well-known, see e.g. [19, Example
29.5(2)], via Hermite expansion, B(

√
j)j∈N on s′ is conjugate to the annihilation

operator on S′(R) (when the latter is equipped with the strong dual topology), i.e.
to the operator

A− : S′(R)→ S′(R), u 7→ 1√
2

(u′ + xu),
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where we denote the multiplication operator with the identity on S′(R) simply
by u 7→ xu, u ∈ S′(R). Dynamical properties of the annihilation operator on the
Fréchet space s of rapidly decreasing sequences were studied in [16] and taken up
on a different Fréchet space in [10].

Corollary 4.2. The annihilation operator

A− : S′(R)→ S′(R), u 7→ 1√
2

(u′ + xu)

on S′(R) equipped with the strong dual topology is mixing, sequentially hypercyclic,
topologically ergodic, and chaotic.

Proof. It follows immediately from

∀m ∈ N :
( 1

jm
√
j!

)
j∈N ∈ `2

and Corollary 3.7 that B(
√
j)j∈N is mixing, (sequentially) hypercyclic, chaotic, and

topologically ergodic on k2

((
( 1
jm )j∈N

)
m∈N

)
= s′. Hence, the claim follows by

conjugacy. 2

4.3. Separating examples.

In this subsection we provide examples of Köthe coechelon spaces such that the
backward shift B is well-defined and continuous on these spaces as well as topo-
logically ergodic but not hypercyclic, mixing but does not satisfy the sufficient
condition for topological ergodicity from Theorem 3.2 d), respectively. Moreover,
we give an example of a nuclear Köthe coechelon space on which the backward
shift is transitive but not hypercyclic.

Proposition 4.3. There is a decreasing sequence V = (v(m))m∈N of strictly posi-
tive weights such that B on kp(V ) is topologically ergodic but not hypercyclic.

Proof. We set

v
(1)
j = 2−n if j = 2n−1(2k − 1) for some k, n ∈ N.

With this, we define recursively

∀m, j ∈ N : v
(m+1)
j := min{v(m)

j , v
(m)
j+1}

so that V = (v(m))m∈N is a decreasing sequence of strictly positive weights such
that B is well-defined and continuous on k2(V ) by Proposition 3.1.

Clearly, (v(m))m∈N satisfies the condition in Theorem 3.2 d) (with m = 1) but
the condition under b) is not fulfilled so that B is topologically ergodic on kp(V )
but not hypercyclic. 2

Proposition 4.4. There is a decreasing sequence V = (v(m))m∈N of strictly pos-
itive weights such that k2(V ) is nuclear and the backward shift B is transitive on
k2(V ) but not hypercyclic.
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Proof. For every j ∈ N there are unique n(j) ∈ N and r(j) ∈ {0 . . . , 2n(j)−1 − 1}
such that j = 2n(j) − r(j). Then,

∀ j ∈ N : 2n(j+1) − r(j + 1) = j + 1 = 2n(j) − r(j) + 1,

so that either
n(j) = n(j + 1) and r(j + 1) = r(j)− 1

or
n(j + 1) = n(j) + 1 and r(j) = 0, r(j + 1) = 2n(j) − 1.

For m, j ∈ N we define

v
(m)
j :=

{
1

2n(j)j2m
, if r(j) < m,

2j

j2m , else.

Then, for fixed j ∈ N the sequence (v
(m)
j )m∈N is decreasing.

We first show that for each m ∈ N there is C > 0 such that v
(m+1)
j ≤ Cv

(m)
j+1

for every j ∈ N so that the backward shift B is well-defined (and continuous) on
k2(V ) by Proposition 3.1.

So, we fix m ∈ N. For j ∈ N we consider first the case that r(j) < m + 1. If
additionally n(j) = n(j + 1) we have r(j + 1) = r(j)− 1 < m so that

v
(m+1)
j

v
(m)
j+1

=
1/(2n(j)j2(m+1))

1/(2n(j+1)(j + 1)2m)
=

1

j2
(1 +

1

j
)2m ≤ 4m.

On the other hand, if n(j+ 1) = n(j) + 1 we have r(j) = 0 and r(j+ 1) = 2n(j)−1
so that

v
(m+1)
j

v
(m)
j+1

=


r(j + 1) ≥ m :

1/(2n(j)j2(m+1))

2j+1/(j + 1)2m
=

(1+ 1
j )2m

j22n(j)+j+1 ≤ 4m

r(j + 1) < m :
1/(2n(j)j2(m+1))

1/(2n(j+1)(j + 1)2m)
=

2(1+ 1
j )2m

j2 ≤ 4m+1.

Thus in case r(j) < m+ 1 we have v
(m+1)
j ≤ 4m+1v

(m)
j+1.

In case of r(j) ≥ m+ 1 we have in particular r(j) > 0 so that n(j) = n(j + 1)
as well as r(j + 1) = r(j)− 1 ≥ m hold. Then

v
(m+1)
j

v
(m)
j+1

=
2j/j2(m+1)

2j+1/(j + 1)2m
=

1

2j2
(1 +

1

j
)2m ≤ 4m.

Hence, we have shown v
(m+1)
j ≤ 4m+1v

(m)
j+1 for all j ∈ N. It should be noted that

for fixed m ∈ N and j = 2n − m,n ∈ N, we have j + 1 = 2n − (m − 1), i.e.
n(j) = n(j + 1) = n, r(j) = m, r(j + 1) = m− 1 so that

v
(m)
j

v
(m)
j+1

=
2j/j2m

1/(2n(j+1)(j + 1)2m)
= 2j+n(j+1)(1 +

1

j
)2m ≥ 22n−m+n
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so that supj∈N v
(m)
j /v

(m)
j+1 =∞ and thus `2(v(m)) is not B-invariant.

Obviously, for every m ∈ N it holds

lim inf
j→∞

v
(m)
j = 0

so that B is transitive on k2(V ) by Theorem 3.2 a). Moreover, because

∀m ∈ N : lim
j→∞

2j

j2m
=∞

it follows

∀m ∈ N, ε > 0 ∃L ∈ N ∀ l ≥ L, r ≥ m : sup
1≤j≤r

v
(m)
l+j > ε

so that by Theorem 3.2 b) B is not hypercyclic on k2(V ).
Finally, due to

v
(m+1)
j

v
(m)
j

=



r(j) < m : 1/(2n(j)j2(m+1))
1/(2n(j)j2m)

= 1
j2

r(j) = m : 1/(2n(j)j2(m+1))
2j/j2m = 1

j2
1

2n(j)+j

r(j) ≥ m+ 1 : 2j/j2(m+1)

2j/j2m = 1
j2

it follows that (v
(m+1)
j /v

(m)
j )j∈N ∈ `1 so that k2(V ) is nuclear (cf. [3, Proposition

2.15]). 2

Proposition 4.5. There is a decreasing sequence V = (v(m))m∈N of strictly pos-
itive weights such that B is mixing on kp(V ) but does not satisfy the sufficient
condition for topological ergodicity from Theorem 3.2 d).

Proof. The following construction is inspired by the example [19, Example 27.21]
of a Köthe echelon space which is a Montel space but not a Schwartz space. We
fix a bijection ϕ : N2 → N such that, for every k ∈ N there are arbitrarily long
bounded intervals I with

I ∩ N = ϕ
(
{(l, k); l ∈ F}

)
for some finite set F ⊆ N. We then define v̂

(1)
j := 1, j ∈ N and for m, j ∈ N,m ≥ 2

v̂
(m)
j :=

{
(ml)−m, if j = ϕ(l, k) with k < m

m−k, if j = ϕ(l, k) with k ≥ m.

By the choice of ϕ it follows that for every m ∈ N and every ε ∈ (0, 1/mm) there

are arbitrarily long bounded intervals I such that v̂
(m)
j > ε for every j ∈ I ∩ N.
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To have a decreasing sequence V = (v(m))m∈N of strictly positive weights such

that B is continuous on kp(V ), we set v
(1)
j := v̂

(1)
j , j ∈ N as well as

∀m, j ∈ N : v
(m+1)
j := min{v̂(m+1)

j , v
(m)
j , v

(m)
j+1}.

By induction on m it follows that for every m ∈ N and every ε ∈ (0, 1/mm) there

are arbitrarily long bounded intervals I such that v
(m)
j > ε for every j ∈ I ∩ N.

Hence, V = (v(m))m∈N does not satisfy the sufficient condition for topological
ergodicity of B from Theorem 3.2 d).

On the other hand, let I ⊆ N be infinite. In case there is a finite F ⊆ N with
I ⊆ ϕ(N× F ) we select m ∈ N such that m > k for every k ∈ F so that

v
(m)
j ≤ v̂(m)

j = (ml)−m if j = ϕ(l, k),

i.e. infj∈I v
(m)
j = 0. In case that there is no finite F ⊆ N with I ⊆ ϕ(N × F )

there are sequences of natural numbers (ln)n∈N, (kn)n∈N, where (kn)n∈N is strictly

increasing, such that ϕ(ln, kn) ∈ I for every n ∈ N. Since v
(2)
ϕ(ln,kn) ≤ 2−kn we

obtain infj∈I v
(2)
j = 0. Hence, by Theorem 3.2 c) B is mixing on kp(V ). 2

Remark 4.6. Most of our main results can be generalized to bilateral shifts on
sequence LF-spaces over Z, and to certain weighted composition operators on more
general function LF-spaces. These results will be presented in a forthcoming paper.

4.4. Open problems

In this final subsection we mention the following natural questions which arise from
our results.

(1) In Proposition 2.9 we gave a sufficient condition for topological ergodicity.
However, this condition is not necessary by Proposition 4.5. Which condition
completely characterizes topological ergodicity of B?

(2) Is there a nuclear Köthe coechelon space kp(V ) on which the backward
shift B is topologically ergodic but not sequentially hypercyclic? Such an example
would be a strengthening of both Propositions 4.3 and 4.4.
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