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Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica
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Abstract. Anomalous diffusion occurs at very different scales in nature, from
atomic systems to motions in cell organelles, biological tissues or ecology, and
also in artificial materials, such as cement. Being able to accurately measure the
anomalous exponent associated to a given particle trajectory, thus determining
whether the particle subdiffuses, superdiffuses or performs normal diffusion, is of
key importance to understand the diffusion process. Also it is often important to
trustingly identify the model behind the trajectory, as it this gives a large amount
of information on the system dynamics. Both aspects are particularly difficult
when the input data are short and noisy trajectories. It is even more difficult if one
cannot guarantee that the trajectories output in experiments are homogeneous,
hindering the statistical methods based on ensembles of trajectories. We present
a data-driven method able to infer the anomalous exponent and to identify the
type of anomalous diffusion process behind single, noisy and short trajectories,
with good accuracy. This model was used in our participation in the Anomalous
Diffusion (AnDi) Challenge. A combination of convolutional and recurrent neural
networks was used to achieve state-of-the-art results when compared to methods
participating in the AnDi Challenge, ranking top 4 in both classification and
diffusion exponent regression.
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1. Introduction

Randomly moving particles, in some cases, diffuse
anomalously in their surrounding medium. The
concept of anomalous diffusion is defined in opposition
to normal diffusion: since the movement is random,
that is stochastic, the probability P (x, t) of finding
a particle at time t and position x ∈ Rd, d =
1, 2, 3 determines the dynamics. For normally diffusing
particles, its width 〈x2〉, known as Mean Squared
Displacement (MSD), grows linearly with time. This
occurs e.g. in the traditional Brownian motion and
is described by a partial differential diffusion equation
(e.g. see a beautiful modern discussion on Fick,
Einstein, and Smoluchowski Diffusion Equations in
[1, 2]). If the MSD does not grow linearly with time,
that is 〈x2〉 ∝ tα, with α 6= 1, then the particles
following such movement are said to anomalously
diffuse in their medium. The coefficient α is known
as the anomalous diffusion coefficient.

A great variety of systems can show anomalous
diffusive behavior. Furthermore, the theoretical
models best explaining such systems are also extremely
heterogeneous. For example, some of the models
describe particle motion as a sequence of displacements
of random lengths occurring at stochastic times, as in
Brownian motion. Hence, both positions and times are
stochastic variables whose behavior is determined by
their corresponding Probability Distribution Functions
(PDFs). This behavior occurs in a wide class of models
termed as continuous-time random walks (CTRWs) [3].
A kind of CTRW showing anomalous diffusion is that
in which the PDF describing the random time intervals
between successive jumps is a power-law distribution
ψ(t) ∼ t−σ, and displacements are sampled from
a Gaussian PDF with variance D and zero mean.
Another class of models is obtained when, on top
of a power-law PDF for the waiting times, the PDF
for displacements is not Gaussian [4]. These models
are known as Lévy walks, and here the stochastic
times are known as flight times. For example, in one
dimension the displacements length is |∆x| = |xi+1 −
xi|, where xi is the position at time ti, are correlated
with the flight times with the conditional probability
Ψ(∆x|t) = 1

2δ(|∆x| − vt) where v is the velocity. A
model which results from the motion of a Brownian
particle whose diffusion coefficient varies in time is the
annealed transient time motion (ATTM) model [5].
Other models are obtaining considering a variety of
situations and geometries, like the bouncing of a
particle in a set of regions with partially transmitting
boundaries of stochastic heights [6], interactions
between heterogeneous partners [7], the movement of
a particle in an environment with critical behavior [8],
etc. Another class of models can be defined from the
Langevin equation: the stochastic differential equation

governing the movement of a single particle with
stochastic noise driving its movement (and modeling an
environment interacting with the particle). Here, one
may consider that the noise is non-white (termed as
fractional Gaussian noise), with a normal distribution
with zero mean but power-law correlations between
the noise at different times. The resulting models are
known as fractional Brownian motion (FBM) models
[9,10]. Yet another class of models is obtained when, in
the Langevin equation, one considers time-dependent
diffusivity, even with white Gaussian noise [11]. This
is known as scaled Brownian motion (SBM). For the
anomalous diffusing case, the diffusivity has power-
law dependence with respect to t. See a review of
anomalous diffusion models in e.g. [12].

The anomalous diffusing behavior is diverse and,
indeed, it can be best explained with many different
theoretical models. The behavior is very different
attending at the anomalous diffusion coefficient, α. A
limiting behavior occurs when α is close to 0, as then
the width of the PDF describing the position and times
of particles does not change in time, being regarded as
a trapping situation. If α lies in the interval 0 < α < 1,
the diffusion is called subdiffusive, while if α > 1,
it is called superdiffusive. The larger α we consider
here is α = 2, which is conventionally called ballistic
motion and, of course, α = 1 corresponds to normal
diffusion. We do not consider here values of α larger
than two, which are of course possible, and correspond
to stochastic acceleration.

Then, a diffusing process of which one has
access to the series of positions and times of a
randomly moving particle, can be characterized by the
anomalous diffusion coefficient and the model which
betters explains its behavior. The tools which permit
to do this characterization depend strongly on the
availability of data. First, a possible situation is
that we can guarantee the following two conditions
in the experiment: i) a large quantity of long-enough
trajectories can be obtained; ii) one can assure a
homogeneity condition. This last condition means
that all particles correspond to the same process over
the whole experiment and can be assigned the same
model and anomalous diffusion coefficient. In such
a case, one can characterize the system performing
an ensemble average between all trajectories [12, 13].
A second possible situation is that one can assure
the following conditions: i) one can obtain a very
long trajectory; ii) one can assure that the particle’s
behavior does not change during the whole experiment;
iii) one can assure that the behavior is ergodic, that
is, that, with sufficient time, one realization of the
experiment explores all possible configurations of the
system. In such a case, one can use time averages
to extract information of the process. But a third
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possible scenario is that in which the experiment is
such that it may happen one or more of the following:
i) the trajectories one can access are short; ii) one
cannot assure that all trajectories of different particles
are homogeneous; iii) one can only access to one or
a few trajectories. In such case, to assign a single
short trajectory to a diffusion process characterized
by a theoretical model and an α one has to find
alternative tools to ensemble and time averages of high-
quality data. One possible route is to use an approach
based on a machine learning tool. In this paper, we
present a high accuracy tool based on a particular
kind of artificial recurrent neural network that has
shown its utility and good performance when dealing
with time series: the Long short-term memory (LSTM)
architecture [14,15].

Large theoretical efforts have built a battery
of statistical techniques to find out the anomalous
exponent given these difficulties. A non-comprehensive
list includes Ref. [16] where a method based on the
mean maximal excursion method was proposed, Refs.
[17,18] where a Bayesian estimation was proposed and
tested for FBM processes, Ref. [19] where a method
based in a fractionally integrated moving average was
introduced, Ref. [20] where the large deviation theory
of time-averaged statistics [21] was used to find some
stochastic properties of measured trajectories, Ref.
[22] where a statistical inference approach designed to
find interactions between moving particles was used in
experimental data, and Ref. [23, 24] where a method
based in the information contained in the power
spectral density of a single trajectory was proposed
(for reviews and other methods see also [25–27]). Also,
a Bayesian approach to test among different types of
motion, which includes free motion (normal diffusion)
and subdiffusion, was proposed in [28]. This paper
considers other two types of motion: (i) confined
diffusion, where particles cannot exit some structure,
say a sphere in three dimensions [29]; and (ii) directed
motion, where there is some flow in the ensemble
of Brownian particles, for example, due to Brownian
motors [30], which results in a ballistic MSD. On the
other hand, statistical methods have been used to
distinguish among models. For example in [31, 32]
methods were introduced to distinguish among FBM
and CTRW; in [33] an algorithm to identify and
characterize FBM was introduced; Ref. [34] presents
a Bayesian method to distinguish among Brownian
motion, SBM and FBM (see also [35]); finally in
Refs. [36, 37] it is discussed a method to distinguish
among different physical origins for subdiffusion, which
in turn point out to the different possible theoretical
models.

Very recently, there has been a sudden growth of
proposals that face this same problem with machine

learning tools. A random forest classification algorithm
was used to distinguish among directed motion, normal
and anomalous diffusion was introduced in [38] and
extended to include confined motion in [39]. A
random forest was also used to classify trajectories
as CTRW, ATTM, FBM, and LWs in [40] and also
to assign an α single trajectories (see also [41, 42]
where random forest and gradient boosting is used
to classify among normal, super- and subdiffusion).
In [43] a recurrent neural network was used to extract
the exponent from a single short trajectory, even when
the trajectory is sampled at irregular times. Also,
in [44] a recurrent neural network is used to classify
between the five models described above (CTRW,
FBM, ATTM, LW, SBM) and obtain the anomalous
exponent. In [45] a recurrent neural network was
used to estimate the Hurst exponent of an FBM. A
set of convolutional neural networks used to classify
among Brownian motion, FBM, and CTRW, with
simultaneous estimation of Hurst exponent H (which
is related to the anomalous exponent α as H = α/2)
for FBM and the diffusion coefficient for Brownian
motion, was presented in [46]. A convolution neural
network was also used in [47] to classify trajectories as
normal diffusion, anomalous diffusion, directed motion,
or confined motion, and compared with random forest
and gradient boosting. A combination of classical
statistics analysis with supervised deep learning (a
deep feed-forward neural network to cluster parameters
extracted from the statistical features of individual
trajectories) was used to classify among FBM, ATTM,
CTRW, SBM, and LWs, and infer α was introduced
in [48]. A recent review on machine learning in the
nearby field of active matter can be consulted in [49]

This research effort was the reason why the
Anomalous Diffusion (AnDi) Challenge was launch in
March 2020 (http://www.andi-challenge.org) [50, 51].
Similarly, as References [44,48], the research described
in this paper was a response to this challenge. In this
challenge of the tasks were, for short, noisy trajectories
either in one-, two- or three dimensions: i) to propose
and test a method able to distinguish among FBM,
CTRW, ATTM, SBM, and LWs; ii) to propose and
test a method to get the anomalous exponent. Here
we present the tool which performed among the best
ones in all these tasks and was best in the first task
in one dimension. After a brief discussion of the
experimental context for anomalous diffusion in next
subsection, we describe in Sec. 2 the details of the
method. In Sec. 3 we present the results obtained for
both tasks, that is, inference of anomalous diffusion
and classification according to theoretical model. We
offer our conclusions in Sec. 4.
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Figure 1. Schematic of the methods. Top: Schematic of the method used for regression. Down: Schematic of the method used for
classification.

1.1. Anomalous diffusion in experiments

Anomalous diffusion occurs in a plethora of experimen-
tal situations, ranging all scales [52, 53]. The smallest
scale we are aware of occurs at the level of atoms, par-
ticularly in experiments with ultracold atoms [54–56]
and also of quantized vortices in Bose-Einstein conden-
sates [57]. Also, examples exist for ions in solutions
[58]. Many experiments show anomalous diffusion in
biological systems. For example, transient anomalous
diffusion occurs for telomeres motion in the nucleus of
cells [24, 59, 60]. Generally speaking, the recent de-
velopments in single-particle tracking techniques have
boosted a revolution in cell biology [61], and several ex-
periments have found anomalous diffusion, e.g. in the
plasma membrane [62,63] or in the cytoplasm [64–67].
Also, anomalous diffusion occurs in larger systems, like
in worm-like micellar solutions [68], yeast cells [69], wa-
ter in porous biological tissues [70–72], in cement-based
materials [73], or ecology (see e.g. [74]).

The characterization of the kind of model that
better explains the data obtained in an experiment
and the associated anomalous exponent takes on
key importance in many of these systems. For
example, there has been large discussion on the
underlying diffusion model and ergodicity which occurs
in the experiments in [69, 75] (see [31, 76–78]). Also,
since diffusion is the central transport mechanism in
biological cells, if it is anomalous, it impacts how the
system works. For example, it has been discussed
that it may have an impact in chemical reactions

[79]. Also, anomalous diffusion is compatible both
with ergodic behaviors and non-ergodic behaviors,
where a single realization does not explore all possible
configurations (realizations) of the system. In the
context of diffusion, one has weak ergodicity breaking
if the averages taken over a single realization in
infinite time do not equal ensemble averages over
many realizations [12]. Also, for ultra-weak ergodicity
breaking time and ensemble averages differ by a
constant factor [80, 81]. Processes like CTRW, ATTM
and SBM show weak ergodicity breaking [5, 63, 82],
whereas Brownian motion and FBM are ergodic (this
should be taken with care, as for example, it is shown
in [83–85], the ergodicity of FBM requires a closer
analysis). This is thus an important feature that
may mark the ability to distinguish between models.
Experimental signals are always noisy (e.g. in single-
particle tracking, due to localization precision [86]).
Often noise hides non-ergodic behavior [87] and hinders
statistical analysis. Also, experimental trajectories are
often short, depending of the kind of experiment [88].
Finally, one may not be able to assure that, in a
biological system, that the measure trajectories are
homogeneous. Therefore, a tool able to characterize
diffusion from a single trajectory which is the output
of an experiment, which is short and noisy, will find a
great utility in a plethora of applications.
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2. Description of the method

2.1. Generation of training and validation sets

The performance of a supervised machine-learning
technique depends greatly on the quality of the data
used to train. In this subsection, we discuss how
we designed the training and validation sets, with
the goal to have an homogeneous enough training
set, that is, containing enough instances of all five
models and a variety of anomalous coefficients, α, and
trajectories lengths, yet being not too big, and hence
computationally tractable.

To build the training and validation data set,
we used the code provided in the AnDi Challenge
[50, 51] that is freely available at https://github.

com/AnDiChallenge on GitHub. We thus considered
trajectories generated by the five classes (ATTM,
CTRW, FBM, LW and SBM), with lengths ranging
from 10 to 1,000. Considering steps of size 10, it
makes 100 possible different trajectory lengths. Taking
into account that in some models, a change in the
regime is likely to show at some point in the trajectory,
multiplying by a factor of 100 we can ensure at
least one trajectory of each type in each part of the
trajectory. Not all models can cover the whole range
of diffusion coefficients. We considered values of α in
the range of 0.02 and 1.95 with increments of 0.05,
which means 19 different possible values for α. Note
that the resulting set is imbalanced with respect to the
models (e.g. CTRW is more represented than FBM in
the subdiffusive regime, and LW is more represented
than FBM in the superdiffusive regime). Putting all
together, a data set of size 106 to ensure that, on
average, at least one trajectory of each possible type
will be present in the data set. We also consider
trajectories with signal-to-noise ration (SNR) equal to
1 and 2, so this increases the recommended dataset
size up to 2 · 106. We use then sizes equal or larger
than this number. As it can be seen in [51, Fig.2]
the performance of the models is not improved if we
increase the SNR from 2 to 10.

In Table 1 we show the number of trajectories
used for regression. In both tasks, we split available
training data into training (90%) and validation (10%)
independently at each epoch. The models are trained
until no improvement was achieved after 10 consecutive
epochs. We point out that when training and testing
models were imbalanced. The reason is that when
testing our models against the validation set provided
by the organizers and some other validation datasets
generated by us, we notice an improvement in the
performance with the size of the training dataset.
Moreover, it is worth mentioning that the validation
dataset provided by the organizers contained only 10k
trajectories, and in our case, our validation datasets

Task Trajectory length 1D 2D 3D
Regression L ∈ [10, 20[ 8 4 4
Regression L ∈ [20, 50[ 18 12 12
Regression L ∈ [20, 100[ 4 3 3
Regression L ∈ [100, 1000] 2 2 2
Classification L ∈ [10, 1000] 4 2 2

Table 1. Number of trajectories per task, dimension, and
length used as data set. Number of trajectories scaled in millions,
×106.

were at least of size 200k trajectories.

2.2. Architecture of the method

The basic architecture used both for classification and
regression consists of two convolutional layers used
to extract spatial features from the trajectories. An
initial convolutional layer is set with 32 filters with
a kernel size of 5, making a sliding window of size 5
which slides through each trajectory extracting spatial
features from them.

A second convolutional layer is used with the
number of filters increased to 64 to extract higher-
level features. Depending on the task, we reduce
the dimensionality by applying a maxpool layer (in
the classification task, not in the regression task)
after each convolutional layer. The resulting encoded
trajectories are fed in three stacked bidirectional
LSTMs to learn the sequential information, with a
drop-out layer of the 10% of the nodes to avoid
incurring into overfitting. Different levels of dropout
were considered while experimentation was in process,
ranging from 5% to 20%, being the selected 10%
the one which outperformed the rest. Finally, we
use several fully connected dense layers to predict
the desired information (exponent regression or model
classification).

2.2.1. Particularities of the method used for regression
We have used a trajectory length dependent approach
by building models for different trajectory lengths.
The following bins have been used based on trajectory
length: [10, 20], ]20, 30], ]30, 40], ]40, 50], ]50, 100],
]100, 200], ]200, 300], ]300, 400], ]400, 500], ]500, 600],
]600, 800] and ]800, 1000], what makes a total of 12
different models, all sharing the same architecture.
We set two convolution layers followed by 4 stacked
bidirectional LSTM layers. During experimentation
having 4 stacked LSTM layers outperformed the 3
stacked LSTM option. We have two convolutional
layers followed by 4 bidirectional LSTM blocks. After
each block, a dropout layer is set. The output of the
last one feeds a one node fully connected dense layer
with linear activation function to get the estimated
diffusion exponent (see Fig. 1, top panel).

https://github.com/ AnDiChallenge
https://github.com/ AnDiChallenge
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2.2.2. Particularities of the method used for
classification Here we use a single model for all
possible trajectories lengths and apply lead padding
to each trajectory to make them of the same length
(1,000). During the experimentation we found that
applying dimensionality reduction layers (maxpool)
at the output of each convolutional layer helped the
LSTM layers to extract better sequential information
to classify the trajectories, since doing so allowed to
reduce the level of noise in the extracted features. The
output of the last LSTM layer feeds a fully connected
twenty-nodes dense layer with Relu activation function
to capture non-linearity. This layer is followed by the
final five nodes dense layer with softmax activation
function to obtain five different probabilities for each
trajectory to belong to one of the five possible models
(see Fig. 1, right panel).

3. Results

3.1. Inference of the anomalous diffusion exponent

Here we present the results for one dimensional
trajectories, while this tool was also used in two
and three dimensions. The results in two and
three dimensions are qualitatively similar, so for
clarity and brevity we choose to discuss only the one
dimensional-case. The tool is available in the web
site of the AnDi Challenge http://andi-challenge.

org/ and therefore results in all dimensions can be
accessed there. Additionally, the code is available
in https://github.com/AnDiChallenge/AnDi2020_

TeamM_UPV-MAT.
To evaluate the accuracy of our results, we

calculate the Mean Absolute Error (MAE) between
predicted numerical αnum and the ground truth value
αGT. For N trajectories in the test set we compute the
MAE as

MAE =
1

N

N∑
j=1

|αj,num − αj,GT|, (1)

where the subindex j refers to the j-th trajectory.
In the test set we included N = 2000 trajectories of
increasing length L ∈ {20, 30, 40, 50, 100, 200, 300, 400,
500, 600, 800, 1000}, resembling the binning carried out
in the training (see Figures).

We used a pool of models: trajectories generated
with a CTRW, FBM, LW, SBM, and ATTM. The
trajectories produced with ATTM and CTRW are
subdiffusive, i.e. 0 < α ≤ 1 while the trajectories
produced with LWs model are only superdiffusive, i.e.
1 ≤ α ≤ 2. Those produced with SBM and FBM cover
the whole range of anomalous exponents, 0 < α ≤ 2.
Each trajectory is corrupted with some noise. To
this end we consider the standard deviation of the

displacements σD and add some Gaussian noise, with
a standard deviation σnoise, which is some portion of
the σD. The SNR is thus SNR = σD/σnoise. We
evaluate moderate and high noise, that is SNR = 2
and SNR = 1, which therefore means that σnoise is
half of σD or coincides with it. In Fig. 2 we plot the
MAE as a function of length for different lengths of the
trajectory and the two different noise levels.

20 200 400 600 800 1000
Trajectory length

0.10

0.20

0.30

M
A
E SNR = 2

SNR = 1

Figure 2. Inference of the anomalous exponent α as a function
of length. MAE as a function of length for SNR = 2 and SNR = 1
(that is σ = 0.5 and σ = 1).

As expected, the MAE gets better as the trajec-
tories get larger. Mean absolute error improvement
stabilizes around L = 500. Also as expected the
results for SNR = 2 (σ = 0.5) are better than for
SNR = 1 (σ = 1), for all lengths. For the length
L = 20, with the current architecture, MAE between
0.3 and 0.45 are reached, which we set as a validity
limit of the model. In Fig. 3 we plot the MAE as a
function of length for the different models and those
above two different levels of noise.

The results show an abrupt change in accuracy
in the range 20 < L < 300 for the SBM model for
both levels of noise. For short trajectories (L < 50)
and lower level of noise, SNR = 2, ATTM and SBM
behave similarly but worse than CTRW, FBM, and
LW. We recall that, by definition, both models display
diffusive properties that vary with time and, therefore,
they are the most challenging models to be determined.
It seems that the deterministic time-dependent changes
in the diffusivity of the SMB can be captured when
trajectories are long enough L > 300. However, the
ATTM is worse identified than the others, for L > 200,
due to the random diffusion coefficient changes in
time. This is probably because deterministic changes
can be better identified and random changes as long
as enough information is provided. Surprisingly, for
larger noise (SNR = 1) and short trajectories (L <
50), ATTM have similar performance as the rest of
models, while SBM keeps performing worse than any

http://andi-challenge.org/
http://andi-challenge.org/
https://github.com/AnDiChallenge/AnDi2020_TeamM_UPV-MAT
https://github.com/AnDiChallenge/AnDi2020_TeamM_UPV-MAT
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20 200 400 600 800 1000
Trajectory length

0.10

0.20

0.30

M
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ATTM
CTRW
FBM
LW
SBM

(a)

20 200 400 600 800 1000
Trajectory length

0.10

0.20

0.30

0.40

(b)

M
A
E

ATTM
CTRW
FBM
LW
SBM

Figure 3. Inference of the anomalous exponent α as a function
of length for different theoretical models. MAE as a function of
length for (a) SNR = 2 and (b) SNR = 1. Vertical dotted lines
signal results at L = 50, 100, 200, to help discussion.

model. Nevertheless, ATTM reduces MAE as L is
increased quite slowly (L > 50). Conversely, FBM,
LW and CTRW quickly improve their MAE for short
trajectories (L < 50), showing already reasonably good
MAEs starting at lengths around L = 100. Finally,
since ATTM, FBM, LW and CTRW show quite stable
MAEs in the range 100 < L < 300, we note that most
of MAEs change in Fig. 2 in this range is due to the
trajectories generated with the SBM model.

It is interesting to fix length, and have a closer
look on how the model works for different values of the
anomalous exponent. This is what we show in Fig. 4.
Here, given a length L and a SNR value, we perform
calculations for ground truth values of the anomalous
exponent in the interval αGT ∈ [0.1, 1.9], in discrete
increments of ∆α = 0.1. Here, we have also calculated
the f1-score, which is defined as f1 = TP/N, that is,
the ratio of true positives (TP) over the total number
of trajectories in the test set, N . We consider a TP
when the predicted value of α, αnum, lies in the interval

0.3 0.7 1.31 1.7

0.4

0.6

0.8

f1
-s
co
re (a)

0.3 0.7 1.31 1.7

0.4

0.6

0.8

f1
-s
co
re (b)

0.3 0.7 1.31 1.7

0.1

0.2

0.3

0.4

M
A
E (c)

0.3 0.7 1 1.3 1.7

.0.1

0.2

0.3

0.4

0.5

M
A
E Length 20

Length 50
Length 200
Length 500
Length 1000

(d)

Figure 4. Inference of the anomalous exponent α for different
values of the ground truth. f1-score and MAE for SNR = 2
(a) and (c) and SNR = 1 (b) and (d), for L = 20, 50, 200, 500
and 1000 (see legend) and trajectories in one dimension. Dotted
vertical line signals normal diffusion.
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Figure 5. Distribution of the predicted anomalous diffusion
coefficient as a function of the ground truth, for all models. In
(a) and (b) we plot the distributions for L = 20 and SNR = 2
and SNR = 1, respectively. In (c) and (d) we plot them for
L = 500 and again SNR = 2 and SNR = 1, respectively.

[αGT −∆α/2, αGT + ∆α/2].
With regards to the f1-score, we observe that there

is an abrupt change at normal diffusion, where α = 1,
which is more abrupt for long trajectories. We remark
that not all models are used at all values of α (as
we commented, ATTM and CTRW are restricted to
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α ≤ 1 and LW to α ≥ 1). We note then that at
α = 1 calculations are made with all five models.
Also, the results are slightly better for α > 1, which
is also due to the existence of three models in this
range, instead of the four models in the range α < 1.
Also, notice that below α = 1 we consider the ATTM
model, which as shown in Fig. 3 has a lower accuracy.
We also appreciate, that the longer the trajectory is,
the higher the f1-score is. However, from L = 500
up to L = 1000 it seems that the gain is very small
when increasing the trajectory length. Respect to the
MAE, the results are more or less stable around α = 1
and get worse for shorter trajectories. Nevertheless,
it shows pronouncedly that for short trajectories and
closer to α = 0 and α = 2 the error increases. This also
occurred in the figures for f1-score, but only for α < 1.
For longer trajectories this effect is reduced and even
inverted close to α = 2.

We plot in Fig. 5 the distribution of α predicted
as a function of the ground truth α, for the pool
of models and two different lengths and noise levels.
Since the dataset is generated with an equal number
of trajectories of each model, and there are 4 models
in the subdiffusive regime and 3 in the superdiffusive
one, there are more trajectories in the left part of the
pictures. The spread around the correct value in the
diagonal is similar at both sides of α = 1. Also, the
distribution is wider for shorter trajectories than for
longer trajectories (top panels versus bottom panels).
Noise seems not to have a large impact in the results
shown here. Finally, the decrease in the performance
around α = 1 agrees with the results in Figure 4.

To get further insight, we fix the length and SNR
and we plot, for each model, the MAE and f1-score
for different values of the α in the interval [αGT −
∆α/2, αGT+∆α/2], for L = 20 and two different levels
of noise (see Figs. 6 and 7). Notice that the range of α
covered by each model is different.

In Fig. 6, we observe that the anomalous exponent
inference of ATTM and SBM is poorer that in the
rest of models. Similarly, the MAE gets worse as long
as we approach to the limits of the exponent range:
α = 0 and 1 for ATTM and α = 0 and 2 for SBM.
On the contrary, the CTRW and LW, that they not
cover the whole exponent range, respond better when
approaching to the limits away different from α = 1.
Lastly, the anomalous exponent is easier to identify for
the FBM in the subdiffussive regime.

In Fig. 7 we plot the same for L = 500. Here,
the better predictions are obtained for the CTRW
and LW models. The worst results are exhibited
for the FBM and SBM around the normal diffusion
regime. This is probably due to the fact that around
α = 1 we can find trajectories of all models, which
confuses the predictions of the models that really
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Figure 6. Inference of the anomalous exponent α for different
values of the ground truth and for different theoretical models.
For L = 20, F1-score and MAE for different values of ground
truth anomalous exponent for SNR = 2 in (a) and (c); and the
same for SNR = 1 (b) and (d).
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Figure 7. Inference of the anomalous exponent α for different
values of the ground truth and for different theoretical models.
(a) F1-score and (c) Mean absolute error for different values of
ground truth anomalous exponent for L = 500 and SNR = 2;
(b) and (d) same for SNR = 1.

exhibit trajectories with this diffusion exponent. We
also see that the performance of the FBM decreases a
lot around α = 0 with high noise. Lastly, an increase
of the length neither helps to improve the performance
of the ATTM around α = 0.

We finally plot in Fig. 8 the average of the
α predicted as a function of the ground truth α
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Figure 8. Average of the predicted amomalous diffusion
coefficient as a function of the ground truth, for each models.
In (a) and (b) we plot the average for L = 20 and SNR = 2 and
SNR = 1, respectively. In (c) and (d) we plot them for L = 500
and again SNR = 2 and SNR = 1, respectively.

for each model and two different lengths and noise
levels, which disaggregates the results shown in Figure
7. Interestingly, in short trajectories, the predicted
values of α in the subdiffusive regime tend to be
higher than the ground truth. Conversely, in the
superdiffusive regime, they tend to be slightly smaller
ground truth. Nevertheless, we only find a clear bias
for long trajectories in the ATTM model, which tends
to predict smaller values than the real ones close to
α = 0, and in the LW around α = 1.

3.2. Diffusion model classification

The second task is to predict the model which explains
better the trajectory at hand. In Fig. 9 we plot the
f1 score as a function of trajectory length, showing the
expected behavior (better results for longer trajectories
and less noise). Similarly to the previous task there is
a stabilization of the improvement of f1 score around
L = 400.

We also plot the f1 score as a function of trajectory
length for the different models and two noise levels in
Fig. 10. Here, one can observe that the f1 score is
always larger for LWs and stabilizes in a large value
for both levels of noise even at shorter lengths. Again,
ATTM is the one that behaves the worst for all lengths.
Finally, SBM also behaves worst than all other models
except ATTM but, reminiscently of previous task, it
improves faster than the rest of models for the larger
level of noise.

We plot some exemplary confusion matrices in Fig.
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Figure 9. Diffusion model classification as a function of
length f1 score as a function of length for to levels of noise in
one dimension.
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(a) SNR = 2 and (b) SNR = 1 for one dimension.
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11, for different lengths and noise levels. As shown
before, the identification of the LW is very clear, even
in short trajectories. In this case, the short trajectories
of the rest of the models are often confused with the
FBM. Again, the CTRW and FBM are more accurately
classified than the ATTM and SBM models. Finally,
for long trajectories, we also observe that the ATTM
is the worst classified method. We also note that the
performance of the SBM was equally bad as the ATTM
in short trajectories but increases quite a lot when the
trajectories length increases.

Finally, we note that the results showed in Fig. 2
gave some hints on the model classifier. As commented,
for moderate noise, SNR = 2, ATTM and SBM follow
the same behavior (abrupt change below L = 300 and
stabilization for L > 300). As we see now, the SBM
is harder to identify with smaller noise than ATTM in
short trajectories. However, the model classifies a little
better ATTM. We can see that for short trajectories,
with a larger SNR, the confusion between ATTM and
SBM decreases.

4. Conclusions

We presented the computational tool we used to
participate in the AnDi challenge, which took place in
2020 (http://www.andi-challenge.org) [50, 51]. In
the challenge the tools presented here ranked among
the top 4 in all tasks, being the best in the regression
task in one dimension. Besides, in the classification
task, it ranked fourth in one dimension. With a
similar model used with vectors containing all the
trajectory coordinates, the model ranked third in two
dimensions and second in three dimensions. The tool
is a combination of convolutional and recurrent neural
networks based on bidirectional LSTM blocks.ional
layers, and we

For task 1, i.e. inferring the anomalous exponent
for a single trajectory, we obtain good MAEs below
0.2 for trajectories over length L = 200, even for
the largest level of noise considered here. Also, for
shorter trajectories we obtain reasonably good MAEs,
finding a limit around L = 50. No further information
is supposed to be at disposal when analyzing a
single trajectory, if one wants to infer the associated
anomalous coefficient. Anyhow, it is illustrative to
study whether the MAE is different if we test the model
only with trajectories generated with one model. We
found that the worst performing for short trajectories
are ATTM and SBM. Also, it is informative to see if
the behavior error is larger if the analyzed trajectory
has an α close to say one or zero. We found that
error is larger close to normal diffusion, as expected,
and in some cases close to the limit of very trapped
trajectories (α = 0) and close to ballistic motion

(α = 2). Also, we showed that the dispersion on the
values of α predicted is larger for shorter trajectories,
as expected.

For task 2, i.e. classification of trajectories, the
code should be able to assign a theoretical model to a
given trajectory with large accuracy. We found that
again we are able to obtain f1-scores above 0.8 for long
enough trajectories, with the accuracy dropping down
for shorter trajectories and finding again a limit around
L = 50. Again, no further information is supposed
to be associated to the trajectory. But for academic
information, we studied how f1-score changes if we
consider only trajectories of one of the models. We
found again that the worst behaving models are ATTM
and SBM. Finally, the confusion matrices show LW is
easily identified and not confused with other models.
This is to be expected as this model has peculiarities
very different to other models, i.e. the correlation
between step length and time waited. Also, all models
are often confused with FBM. Finally, CTRW and
FBM are more accurately classified than the ATTM
and SBM models, and for long trajectories, the ATTM
is the worst classified method.

In summary, the tool presented here offers good
accuracies in both tasks. Dimensions two and three
have not been discussed here, but the results are
shown in [51]. The model shows, in higher dimensions,
similar performances as the best performing methods
in the challenge. As an outlook, we aim at using
this tool in the task 3 of AnDi-Challenge, where one
has a trajectory which changes behavior (anomalous
coefficient or diffusion model) in an intermediate point,
and the goal is to find accurately this point. First trials
with our tool showed good results, and we will explore
this in the future.
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Parajo, M. Lewenstein, and G.J. Lapeyre Jr. Nonergodic
subdiffusion from brownian motion in an inhomogeneous
medium. Phys. Rev. Lett., 112(15):150603, 2014.
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