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A mathematical programming tool for an efficient decision-making on 

teaching assignment under non-regular time schedules 

 
 

 
Abstract In this paper, an optimization tool based on a MILP model to support the teaching 

assignment process is proposed. It considers not only hierarchical issues among lecturers but 

also their preferences to teach a particular subject, the non-regular time schedules throughout 

the academic year, different type of credits, number of groups and other specific characteristics. 

Besides, it adds restrictions based on the time compatibility among the different subjects, the 

lecturers’ availability, the maximum number of subjects per lecturer, the maximum number of 

lecturers per subject as well as the maximum and minimum saturation level for each lecturer, all 

of them in order to increase the teaching quality. Schedules heterogeneity and other features 

regarding the operation of some universities justify the usefulness of this model since no study 

that deals with all of them has been found in the literature review. Model validation has been 

performed with two real data sets collected from one academic year schedule at the Spanish 

University Universitat Politècnica de València (UPV). 

 

 

Keywords: Teaching assignment problem, non-regular schedules, time compatibility, type of 

credits, mixed integer linear programming  

 

 

1. Introduction 
 

According to Schaerf (1999), the creation of an academic schedule consists of determining who 

will teach a subject and in which time slot it will be taught, given a set of constraints. The large 

number of subjects/courses and lecturers and their multiple assignment combinations makes it 

complicated even to simply finding a feasible solution. This task automation, commonly known 

as automated timetabling, was due to the low performance of manually developed schedules.  

 

It began with Gotlieb (1963), cited in Schaerf (1999), and since then there have been numerous 

researchers having an increasing interest in automated university timetabling, with many works 

published on the topic, giving a view of the different approaches to solve this type of problems 

with optimal, heuristic and meta-heuristic methods (Burke and Petrovic 2002; McCollum and 

Ireland 2006; Landa-Silva and Obit 2008, ), or more recently (Kingston 2013; Kristiansen and 

Stidsen 2013; Sorensen and Dahms 2014; Salem et al. 2015; Babaei et al. 2015; Bettinelli et al. 

2015, Kristiansen et al. 2015; Pillay 2016; Dorneles et al. 2017; Tan et al. 2021). Not only that, 

but also some important groups and events have been held since the beginning of this century 

encouraging researchers to get deeper on this topic, such as the Unitime organization (Unitime 

2020), a comprehensive educational scheduling system that supports developing course and 

exam timetables or the recent fourth International Timetabling Competition (ITC 2019), 

devoted to university course timetabling.  

 

However, institutions peculiarities influence in the academic schedule, which prevents either 

creating a universal resolution model or comparing techniques in different scenarios (Al-

Yakoov and Sherali 2006). Among the various tools to approach, it stands out mathematical 

programming, which has been widely used in the literature to solve problems of 

assigning/allocating limited resources to activities. 

 

In this paper, a mixed integer linear programming (MILP) model to solve a real problem of 

university timetabling is proposed as well as checking its behavior within different scenarios by 

measuring the quality of the obtained results and its computational efficiency.  
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This real problem concerns to Universitat Politècnica de València (UPV), which is 

characterized by a matrix organization structured in faculties and departments. Each faculty 

offers different academic degrees in which multiple departments teaching different subjects are 

involved. Each subject has a number of credits of different nature: classroom theory, classroom 

practice, laboratory practice and field practice. In addition to that, each subject may differ in the 

types of credits and the number of groups, not only between different degrees but also in the 

same one. Moreover, the faculties establish the different schedules. 

 

Regarding the departments, they are structured in knowledge areas. Each lecturer only belongs 

to a department and knowledge area. There are different ranks and types of contracts for 

lecturers that define the minimal number of teaching hours, which in turn may be reduced by 

management issues, research performance, work tutoring recognition, etc. This causes each 

lecturer to have a different “effective” teaching load, that is, a real number of hours to teach. 

Finally, each department calculates its saturation level as the ratio of the total credits requested 

by the different university faculties and the sum of all its lecturers’ teaching loads. This 

department saturation index will become the target of individuals in order to level the teaching 

load of any of them.  

 

The teaching assignment is a complicated task, especially in those large departments where 

there are also a huge number of part-time lecturers with very limited time availability, as they 

must handle their work inside and outside the university. This difficulty is even greater since the 

faculties determine its academic schedules that are characterized by being non-regular both the 

weekly schedule and the start time and duration of each subject. 

 

In many cases, the process of teaching assignment among one-department lecturers is 

hierarchical, that is, senior lecturers have the highest priority to choose. It is clear that it may 

cause certain disadvantages and inefficiencies, being the most important that some teachers are 

assigned to subjects in which they are not expert or the fact that some subjects are assigned a 

high number of lecturers, both factors causing a decrease in the overall teaching quality. 

 

The proposed MILP model for optimizing the teaching assignment handles with specific 

characteristics non addressed in previous works such as: non-regular times either in the weekly 

schedules or the duration of the classes, subjects with different types of credits and groups for 

every credit, different ranks for lecturers with different teaching loads and availability time 

intervals, inclusion of lecturer preferences (due to time availability or subjects contents) to teach 

each group of each type of credit for each subject, as well as lecturers’ maximum and minimum 

saturation restrictions and limitations of the number of lecturers per subject and subjects per 

teacher. 

 

Finally, a resolution approach is proposed to solve and validate the model. The model is solved 

by a two-steps procedure, that does preserve optimality in a reasonable computational time, 

solving each step with a general MILP solver. Two cases are considered from real data collected 

from one academic year schedule in two of the departments of the Universitat Politècnica de 

València (UPV).  The first one is a real case corresponding to the teaching assignment of the 

ETSII faculty to the Applied Linguistics department. The aim is to validate and analyze the 

quality of the obtained solutions and the computational efficiency under different scenarios. The 

second one is also a real case corresponding to the teaching assignment of the Industrial 

Management Engineering Degree to the Business Organization department with the aim of 

giving some insights on the scalability and speed characteristics of the resolution methodology 

in a larger problem. 

 

The rest of the paper is structured as follows: in section 2 a structured revision of the relevant 

research to our problem is conducted in order to show how the paper fits in the current literature 

as well as highlight its contributions. Section 3 includes a detailed description of the problem in 

order to facilitate subsequent mathematical programming modeling in section 4. In section 5, 
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the previous model is solved with the objective of validating, analyzing the amount of solutions 

obtained and the computational efficiency of different scenarios, using the developed tool for its 

application to a real problem. Besides, the model is also solved for a larger real problem in order 

to measure the computational efficiency. Finally, in section 6, some conclusions and future 

research lines are outlined, performing a subjective evaluation of results as well as a proposal of 

possible improvements to model similar problems. 

 

2. Literature review 
 

In a first stage, the literature search was focused on mathematical programming models for the 

teaching assignment process. However, due to the lack of papers addressing that issue, it was 

decided to extend the literature review to some related ones such as the setting of university 

schedules, and particularly academic schedules, whose content may be transferred to some of 

the characteristics of the studied problem. 

 

The references have been categorized in order to accelerate the process of identifying the type 

of problem addressed by each reviewed work and which features of the studied problem have 

previously been modeled or not. The classification has been made using the following 

dimensions: scheduled event, problem type, model, resolution method, resolution procedure, 

objectives, distinction of credits types, timetable, lecturer availability, lecturer preferences, rank 

and saturation. 

 

Regarding the "schedule event", Schaerf (1999) distinguishes the following cases, depending 

on the institution and/or the events to be scheduled (classes or exams): 

 

• Setting of school schedules: the focus of this type is to prevent a lecturer to have two 

classes at a time. 

• Setting of university schedules: the main difference with the previous one is that 

university students may be enrolled in subjects belonging to different academic years. 

Therefore, it has to be ensured as much as possible that in no case a student would have 

to attend different classes at the same time. This also includes those school schedules in 

which electives subjects are also offered. 

• Setting of exam schedules: the focus is to ensure that no student will have two exams on 

the same day and have all of them uniformly spread over the exam period. 

 

Regarding the "problem type", a classification based on which elements among lecturers (L), 

subjects (S), time periods (T) and classrooms (C)) are scheduled. This proposal classifies 

problems into three types: 

 

• Lecturer-subject (L-S): these problems consist of assigning lecturers once all the 

subjects are scheduled. 

• Subject-period (S-T): these problems consist of determining in which period of time 

each subject is taught, being just an input its lecturer assignment or simply not 

addressed. 

• Lecturer-subject-period (L-S-T): these problems consist of combining the above two 

types as in this case must be determined which lecturers are assigned to each subject as 

well as the period of time each subject is taught.  

 

In the last two types it is possible the location (classroom) to be addressed as an additional 

aspect, leading to S-T-C and L-S-T-C, respectively. In these cases, classrooms capacity and 

availability for the assignment of subjects to the different time slots are also taken into account. 
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Another dimension refers to the "model" used to address the problem, which distinguishes 

between linear programming (LP), integer programming (IP), binary programming (BP), mixed 

integer linear programming (MILP) and nonlinear programming (NLP). 

 

In the dimension regarding the "resolution method" of the former mathematical programming 

model it is distinguished between exact (search for the best/optimal solution) or heuristic 

(finding a feasible/good solution) methods. 

 

Regarding the "resolution procedure", when the problem is too large it is often divided into 

two subproblems where the solution obtained in the first one becomes the input of the second 

one. Two steps resolution reduces the computational time while keeping a good solution quality, 

as corroborated by Daskalaki and Birbas (2005) comparing with the study of Daskalaki et al. 

(2004). Therefore, this dimension leads to distinguish between one or two steps resolution. 

 

Table 1 shows the reviewed literature according to the above dimensions. 

 

[Table 1 near here] 

 

The dimension "objectives" shows which ones are aimed to be optimized in the search for a 

solution (Table 2). 

 

[Table 2 near here] 

 

The dimension "timetable" refers to whether it is regular or non-regular in either the start times 

or the duration of the subjects. 

 

The dimension "credit type" refers to whether different credits types within a subject (e.g. 

theory and practice credits) are distinguished as well as if various groups for each type of credit 

exist (e.g. one single group of theory and three of practice). 

 

The dimension "availability" refers to the fact that each lecturer has a limited time availability 

due to their teaching duties in other university faculties or professional works outside the 

academic field. Therefore, a subject might be assigned to a lecturer only if it fits into the lecturer 

availability schedule. 

 

Each lecturer may also have a "preference", which can be taken into account during the 

teaching assignment. 

 

Besides, each lecturer may have a "rank" and therefore certain priorities. For example, higher 

priority could be given to meet the preferences of lecturers with "Professor" ranks rather than 

those who are just "Associate Professor". 

 

Finally, the dimension "saturation" refers to the ratio between the workload assigned to each 

lecturer and their available time capacity. In order to make a fairer teaching assignment, it may 

be aimed the final lecturer workload to be between a minimum and a maximum percentage 

(saturation margins) of their total assigned workload so that the teaching quality and lecturers’ 

satisfaction can be improved.  

 

These dimensions are also collected in Table 3, as in the two previous Tables. 

 

[Table 3 near here] 

 

With the aim of fitting our work in the current research and clearly present its novelties, in the 

following paragraphs a structured analysis of the literature reviewed is presented. As shown in 

Table 1, the problem approached in this paper is classified as lecturer-subject (L-S) since the 

subjects’ timetable as well as the different credit types and groups are previously scheduled by 
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faculties. It is aimed to make and efficient teaching assignment taking into account, among 

others, lecturers’ preferences as well as their rank and saturation margins. Some revised works 

deal either with the same problem type (L-S) such as Hultberg and Cardoso (1997) or include it 

in a broader one: L-S-T-C such as Badri (1996), Badri et al. (1998), Al-Yakoob and Sherali 

(2006), Skoullis et al. (2017) or L-S-T, such as Ismayilova et al. (2007), Tassopoulos and 

Beligiannis (2012), Katsaragakis et al. (2015), Fonseca et al. (2017) and Tassopoulos et al. 

(2020). However, as justified below, these works do not address some of the peculiarities of the 

problem under study.   

 

It can be observed in Table 1 that many mathematical programming-based approaches for 

university timetabling have been developed in the last decade, most of them using predefined 

sets of diverse instances such as XHSTT (Fonseca et al 2017), Brazilian high school, Lectio or 

Greek high school datasets (Katsaragakis et al. 2015, Tassopoulos et al. 2012, 2020), with the 

aim to improve on the solutions previously found in quality and/or computational efficiency. 

The Integer Programming and Binary Programming based methods are the current state-of-the-

art for many of those instances. The majority of them used a 1-step resolution procedure 

consisting of an exact resolution method (Badri et al.1998, Dimopoulou and Miliotis 2001, 

Daskalaki et al. 2004, Ismayilova et al. 2007, Santos et al. 2012, Fonseca et al. 2017, Savienic et 

al. 2020). Among them, some authors propose reformulations for already existing integer 

programming models including new cuts (e.g. Santos et al. 2012, Fonseca et al. 2017) or 

defining a column generation procedure (e.g. Santos et al. 2012, Saviniec et al. 2020) for 

improving dual bounds on hard combinatorial optimization problems. There are also an 

important number of approaches using heuristic and meta-heuristics procedures alone or jointly 

with exact methods that have obtained promising results in the last years, although to reach the 

optimal solution is not ensured (Tassopoulos and Beligiannis 2012, Katsaragakis et al. 2015, 

Skoullis et al. 2017). Other works exist that design resolution procedures composed by 2-steps 

mainly adopting a decomposition approach to reduce the computational effort dividing the 

original problem into linked smaller ones (Badri 1996, Al-Yakoob and Sherali 2006, Birbas et 

al. 2009, Ceschia et al. 2014, Fonseca et al. 2017, Tassopoulos et al. 2020).   

  

The proposed model in this paper does not use any of the above data instances, but collects a 

real-world problem presenting some unusual features that have not been covered in the 

predefined data sets and, to our knowledge, not simultaneously addressed by any work. This can 

be checked in Tables 1-3 where the most relevant characteristics of our paper are compared with 

those addressed by the revised literature. For this reason, the results obtained in this paper 

cannot be compared with other algorithms already published in the literature. More specifically, 

we adopt a two-step resolution procedure with an exact resolution method whose efficiency has 

been proven by its application to two real data sets from the UPV. Indeed, in recent years, 

advances in the computational efficiency of general-purpose MIP solvers have motivated 

researchers to investigate the potential of exact algorithms for these type of problems 

(Tassopoulos et al. 2020).  

 

On the other hand, the main objective of our paper is to find a feasible teaching assignment so 

that the lecturer satisfaction level is maximized. It should be noted that in the Table 2 and 

regarding the reviewed works the objective of satisfying the preferences lecturer-subject is 

described as "secondary" since, as corroborated by Tables 1-3, the few studies that do take it 

into consideration are multi-objective and aim to balance it with other objectives.  
 

Other relevant characteristics of the papers revised can be consulted in Table 3. As it can be 

observed, just a few works (Daskalaki   et al. 2004, Daskalaki and Birbas 2005, Al-Yakoob and 

Sherali 2006, Fontseca et al. 2017) consider different credit types within a subject, as they 

usually take them into account as different subjects. Unlike these works, different credit types 

within a subject, as well as different groups of each credit are considered in this paper.  

 

Besides, all the analyzed papers deal with regular timetables (Table 3) that simplifies the 

problem under study since only one planning period (e.g. week) should be scheduled. Indeed, 
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one of the main contributions of the proposed model in this paper is the non-regular nature of 

the academic schedule that makes it necessary to distinguish between weeks. However, most of 

the analyzed works split the planning horizon into periods and the time slots of each subject 

have the same duration. This means that if the duration of a class wants to be extended, then two 

consecutive slots have to be assigned. In our case, the schedule do not follow any pattern and 

daily change either in the number of classes or its duration. This is due to the fact that the 

teaching assignment of each individual department comes from different faculties, each of them 

with different schedules philosophies.  

 
Several papers take into account the limited lecturer availability such as Daskalaki et al. (2004), 

Daskalaki and Birbas (2005), Birbas et al. (2009), Santos et al. (2012), Tassopoulos and 

Beligiannis (2012), Katsaragakis et al. (2015), Fonseca et al. (2017), Skoullis et al. (2017), 

Saviniec et al. (2020), Tassopoulos et al. (2020). Nevertheless, the consideration of regular 

timetables by all the revised papers implicitly forces them to assume a regular lecturers` 

availability. Therefore, the most general case in which the lecturer time availability is non-

regular is also a contribution. It leads to different daily availability time slots that may also vary 

during each of the weeks of the horizon. This aspect is addressed by defining the start and end 

of each lecturer availability period. The non-regular nature of the schedule makes it relevant the 

inclusion of this feature since not all the subjects, type of credits and groups must be taught with 

the same timetable and/or duration during the planning period: even more, some of them must 

not be taught every week due to either scheduled activities at the University or calendar events 

(holidays). 

 

On the other hand, the majority of the reviewed works consider that the number of credits 

(teaching hours) is equivalent to the number of classes as they are considered with the same 

duration. However, such assumptions may not be transferred to our problem since the schedule 

does not follow any pattern so that the duration of the classes can vary not only between 

subjects but also among the credit types. Consequently, it is not possible to count the number of 

credits from the number of classes. This fact leads us to calculate each class credits by the 

difference between its end and start time. Moreover, setting the schedule from the subjects start 

and end times allows us to tackle the teaching assignment in a variable schedule environment.  

 

Lecturer preferences have been included in the literature related to time periods (Daskalaki  et 

al. 2004, Daskalaki and Birbas 2005, Dimopoulou and Miliotis 2001), working shifts (Birbas et 

al. 2009), preference resources (Fonseca et al 2017), assignment and time periods (Badri 1996, 

1998, Al-Yakoob and Sherali 2006, Ceschia et al. 2014) and assignment lecturer-subject-time 

slot (Ismayilova et al. 2007). However, unlike the previous papers, our model includes 

coefficients in the objective function to express the lecturers’ preference degree as regards not 

only to teach certain subjects in certain time periods but more specifically to teach each of their 

groups and credit types.  

 

It can be also observed from the analysis of the literature, that very few papers address some 

features regarding the rank or organizational hierarchy during the assignment: Al-Yakoob and 

Sherali (2006) restrict certain subjects to expert lecturers and Birbas et al. (2009) distinguish 

between full-time and part-time lecturers. However, in this paper, when maximizing the 

different lecturers´ preferences more priority is given to those lecturers in higher positions of the 

organizational hierarchy. For that, a rank not limited to a predefined number of hierarchy levels, 

such as the two ones addressed in the previous works, is considered. 

 

Finally, different papers include some features affecting in greater or lesser extent to the 

lecturers’ saturation: lecturers not wanting consecutive subjects (Al-Yakoob and Sherali, 2006), 

limits for lecturers’ teaching workloads (Ismayilova  et al., 2007), (Birbas et al. 2009, 

Katsaragakis et al. 2015,  Fonseca et al. 2017, Skoullis et al. 2017, Tassopoulos et al. 2020), 

upper limit regarding the number of daily lessons of a subject taught by a lecturer (Santos et al. 

2012), similar daily workload (Tassopoulos and Beligiannis 2012) and minimization of extra 

days of the teacher (Saviniec et al. 2020). As it can be seen, the most extended way to approach 
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lecturers´ saturation is to force their teaching workload to be inside a range composed by a 

lower and an upper limit. Our approach is similar to this last one, but due to the fact that each 

lecturer can present different maximum number of hours potentially assigned depending on 

several factors, the saturation is restricted by a maximum and minimum percentage of the load.  

 

Summarizing, in Table 4 the main differences between the model proposed in this paper and the 

reviewed works are presented to clearly show the novelty of our proposal. The focus on 

satisfying the lecturer-subject preferences by means a multi-objective approach, the different 

priority of lecturers when satisfying their preference based on a pre-defined hierarchy with any 

number of levels (rank), the inclusion of non-regular times in the weekly schedules, the duration 

of the classes and the lecturers´ availability, the definition of subjects with different types of 

credits and groups for every credit can be considered as the most relevant contributions of this 

paper.  

 

This set of differences from the revised papers represents a proof of the original and innovative 

model created to respond to the described problem. Besides these contributions, as it can be 

observed in Tables 1-3, other characteristics of our problem have been previously considered in 

other works, although to the best of our knowledge, there is no paper dealing with all of them 

simultaneously. For a better understanding of these aspects, a detailed description of our 

problem features is presented in the next section. 

 

[Table 4 near here] 

 

 

3. Problem description 

 

This paper aims to develop a mathematical programming model (MILP) for an efficient 

teaching assignment. This leads to the setting of an academic schedule in which all the subjects 

are assigned to certain lecturers, which in turn implies the definition of the individual lecturers’ 

schedules for each week of each semester within the academic year. The main elements of the 

problem are two, lecturers and subjects, each of them with specific characteristics. 

 

Regarding the first element, lecturers, the following characteristics are highlighted (Fig.1): 

 

• They initially have a teaching load, depending on their rank and type of contract, which 

may be reduced by research and teaching merits, leading to the so-called teaching 

effective load (measured in hours). 

• Their saturation level is given by the ratio between their assigned credits (hours) and 

their teaching effective load. 

• They express their preferences to teach a particular credit type (theory, laboratory, etc.) 

and group (english group, evening group, etc.) of each of the subjects based on a 

parameter called preference which depends on how eager is the lecturer to teach it. The 

preference parameter is defined on a scale from 1 to 10, in which 10 corresponds to the 

highest preference value. Normally, their preferred subjects match those found in their 

expertise knowledge area and are likely to be assigned to them. 

• They hold different ranks which will be taken into consideration. The model allows to 

weight the total satisfaction of the teaching assignment according to their rank.  

• They have a limited time availability prior to the teaching assignment. Each lecturer 

may have several availability time slots on the same day and it could be different for 

each day and each week of the horizon. Therefore, the start and end times for each of 

them for each day of each week of each semester are known beforehand. 

 

[Figure 1 near here]    
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Regarding the second element, subjects, the following characteristics are highlighted (Fig.2):  

 

• They are made up of a number of credits, equivalent to the number of taught hours, 

which in turn, may be of different nature: classroom theory, classroom practice, 

laboratory practice, computers practice and field practice. 

• Each type of credit can be given in different groups. For a given subject it might be just 

a single classroom theory credit but its laboratory practice ones being splitted into two 

or more groups. 

• The duration of each group of each credit type of each subject as well as its start and 

end times may be different; that is, it is a non-regular schedule. 

• The time slot in which each group of each credit type of each subject is taught is 

defined and known prior to the teaching assignment. 

 

[Figure 2 near here]    

 

The problem to be addressed consists of finding the most efficient teaching assignment so that 

all the credits are assigned and the overall preference is maximized. As aforementioned, the 

overall preference is calculated as the sum of the individual lecturer preferences regarding the 

teaching of a specific group of a credit type of a subject. 

 

The ideal outcome would be one in which each lecturer was assigned that group/credit 

type/subject with their highest preference. However, it is impossible to assign their preferred 

choice since a large number of elements must be considered. In this case, a balanced assignment 

must be achieved, so that the overall preference is maximized, while respecting the different 

restrictions. Besides, certain assignments will be prioritized depending on the lecturer rank. 

 

On the other hand, the proposed model reduces the search space for each lecturer to those 

subjects that could be assigned to them because their schedule is compatible with their time 

availability.  

 

Additionally, the assignment gets more complicated due to the fact that no overlap may exist 

between subjects taught by the same lecturer. Therefore, the start and end times of different 

groups of different credit types of different subjects must be compared to ensure that no overlap 

exists. It must also be ensured that the teaching load assigned to each lecturer does not exceed 

their capacity. Finally, to achieve a feasible solution all the subjects must be taught by the set of 

lecturers from the department. 

 

The above requirements represent the so-called hard constraints that must be included in the 

model in order to find a feasible solution. However, it is possible to include other aspects such 

as the consideration of different objectives and policies of each department. Such policies are 

the so-called soft constraints and are intended to ensure a minimum teaching quality either from 

the lecturers or the students’ points of view. They are as follows: 

• Limit the maximum and/or minimum saturation level of each lecturer. The teaching 

load assigned to each lecturer may not exceed a percentage α of their teaching effective 

load availability and not being below a minimum threshold.  

• Do not allow a lecturer to teach in more than a certain number of different groups in the 

same semester. This undoubtedly will benefit the students and lecturers. 

• Do not allow a group of a certain credit type of a subject to be taught by more than a 

certain number of lecturers. 
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4. Problem modeling 

 
To solve the above problem a mixed integer linear programming (MILP) model to maximize a 

multi-objective function related to the overall lecturers’ satisfaction and the teaching quality is 

proposed, subject to constraints such as lecturers’ availability, schedule compatibility and some 

departmental policies, as aforementioned. 

 

Regarding the nomenclature, the indexes, sets, parameters and decision variables are shown in 

Tables 5-11.  

 

[Tables 5-11 near here]    

 

Two objectives are initially approached in this model: maximize the overall lecturer´s 

satisfaction and the teaching quality. 

 

Equation (1) refers to the first one, being preflscg the weight (preference-related) assigned by a 

lecturer l to the fact of teaching a class in the group g of the credit type c of the subject s, and 

rankr the parameter which prioritizes the lecturers’ requirements satisfaction depending on their 

rank. Since the aim is to maximize the objective function, the greater the lecturers’ preference to 

teach a certain subject is and the higher their rank is, the higher are the value of the parameters 

preflscg and rankr. 

 
Max [�. �. 1 ] = 

� � � � � � � �  
 

 

�∈ 
��,�,�,�,�,�� 
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         � !"#$ ∗ &!'(���� ∗ )������� �  (1) 

 

Equation (2) refers to the second one and aims to minimize the number of different lecturers 

teaching in the same group. This new objective aims to improve the teaching quality by 

allowing lecturers to focus on a limited set of specific skills. Depending on the case, this 

objective could be formulated as a soft constraint of the problem. 

 

Min [�. �. 2 ] = 

� � � � +�����∈ ���,�,���∈ ���,��� ∈ ��������� ��,���
 (2) 

 

The objectives expressed in equations (1) and (2) may be combined from the weighted sum of 

scaled values method. This will be achieved by dividing each of the objectives between the 

maximum values that can reach so that the ratio is within the range [0-1]. Typically, this 

maximum value may be obtained in a simple manner ignoring the considered constraints. 

 

The parameters weight1 and weight2 are also included in the objective function in order to 

modify both parameters in the experimental phase to test the effect of prioritizing one or another 

objective and validate the model behavior. The following equation (3) represents the objective 

function obtained from the combination of the previous ones. 
 

Max [�. �. 3 ] = 

-'./ℎ11 ∗ �� � � � � � � �  
 2∈ 3�4,5,/,6,-,2� -∈ 7�6,-�6∈ 8�4,6�/∈ 9�4,5,/�5 ∈ :�4,5�4 ∈ ;&<44.=>' �>,4�> ∈ ?�>,!�!
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 @ABC∗D EF��GH∗I��GHJKL 
MNOPQR

 ) −     -'./ℎ1T ∗ (∑ ∑ ∑ ∑ V��GHHG��
MNTPQR

)    (3) 

 

Equation (4) prevents a group g of the credit type c of the subject s from being assigned more 

than a single lecturer in the same time slot of the day d of the week w of the semester z. That is, 

a class can not be taught by greater than one lecturer. 

 

� )�������
�

≤ 1 (4) 

 
∀ s, ∀ c ∈ C (s,c), ∀ g∈ G (s,c,g), ∀ z∈ Z (s,z), ∀ w∈ W (z,w), ∀ d∈ D (s,c,g,z,w,d) 

Equation (5) prevents a lecturer l from being assigned greater than λ different groups in the 

same semester z. 

 

� � � +���� ≤ Y
�∈ �(�,�,�)�∈ �(�,�)

 
� ∈ �(�,�)

         (5) 

 

∀ p, ∀ z 

Equation (6) limits to μ the number of lecturers teaching the classes of a group g of the credit 

type c of the subject s. It is aimed to improve the teaching quality. 

 

� +���� ≤ Z
�

 
       (6) 

∀ s,5 ∈  :(4, 5),  / ∈  9(4, 5, /) 

By means of equations (7) and (8), the decision variable representing the teaching assignment of 

subjects to lecturers are obtained (Ylscg). Through (7) it is assured that in case that group g of the 

credit type c of the subject s is assigned to lecturer l, then the value of Ylscg is 1, otherwise, the 

value is 0 (8). 

� � � )������� ≤ # ∗ +�����∈ 
(�,�,�,�,�,�)�∈ �(�,�)� ∈ �(�,�)
 (7) 

 

∀ l, ∀ s ∈ ;&<44.=>' (>)  , ∀  5 ∈  :(4, 5),  / ∈  9(4, 5, /) 

� � � )������� ≥ +�����∈ 
(�,�,�,�,�,�)�∈ �(�,�)� ∈ �(�,�)
 (8) 

 

∀ l, ∀ s ∈ ;&<44.=>' (>)  , ∀  5 ∈  :(4, 5),  / ∈  9(4, 5, /) 

Equations (9) - (11) prevent lecturers from being assigned a group g of a credit type c of a 

subject s if they are not available. This problem occurs if such a class begins earlier than the 

lecturer earliest availability time or ends later than their latest availability time.  

 

In equation (9), the value of the decision variable  3\]; �̂������_ is 1 if the class begins once the 

lecturer availability slot has already started, that is:  stassigefghij ≥ stavailhijm . 
 

no41"44./������ − 41"p".>����_q +  st ∗ o−1 + 2 ∗ 3\]; �̂������_q ≥ 0 (9)

 
          

∀ l, ∀ s ∈ ;&<44.=>' (>), ∀ c ∈ C (s, c), ∀ g ∈ G (s, c, g), ∀ z ∈ Z (s, z), ∀ w ∈ W (z, w), ∀ d∈ D (s, c, 

g, z, w, d) , ∀ t ∈ T(l, z, w, d, t) 

In equation (10), 3\]\v�������_ is 1 if the difference between  '#"p".>������ −  '#"44./����_ is 

greater than 0, that is, the class ends earlier than the lecturer latest availability time. It must be 
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noted that limits are also included, so that if such a difference is equal to 0 (the class ends at the 

same time than the lecturer latest availability time) then a feasible assignment exists and thus 

3\]; �̂������_  and 3\]\v�������_   are equal to 1. For this to happen and avoid ambiguity, a 

small positive increase has been included in the equation (10). This increase will be used in 

numerous equations presented here and always seeks to resolve the uncertainty associated with 

the fact that the difference is zero. 

 

no'#"p".>������ − '#"44./����_q +  st ∗ o−1 + 2 ∗ 3\]\v�������_q ≥ 0 (10) 

 

∀ l, ∀ s ∈ ;&<44.=>' (>), ∀ c ∈ C (s, c), ∀ g ∈ G (s, c, g), ∀ z ∈ Z (s, z), ∀ w ∈ W (z, w), ∀ d∈ D (s, c, 

g, z, w, d), ∀ t ∈ T(l, z, w, d, t) 

 

Equation (11) stablishes that the assignment will be possible ()�������  = 1) only if both 

3\]; �̂������_  "#2 3\]\v�������_ are equal to 1; that is, if the class of the group g of the credit 

type c of the subject s taught the day d of the week w of the semester z, takes place between the 

earliest and latest availability (time) slots t of the lecturer l. 

 

3\]; �̂������_  +  3\]\v�������_ ≥ 2 ∗ )�������  (11) 

 

∀ l, ∀ s ∈ ;&<44.=>' (>), ∀ c ∈ C (s, c), ∀ g ∈ G (s, c, g), ∀ z ∈ Z (s, z), ∀ w ∈ W (z, w), ∀ d∈ D (s, c, 

g, z, w, d), ∀ t ∈ T(l, z, w, d, t) 

 

Equation (12) determines the number of hours (teaching load) assigned to lecturer l. They are 

calculated from the sum of the different classes duration taught by the lecturer (period between 

the start 41"44./������  and the end '#"44./������  of the subject) during the model horizon. 

 

� � � � � �  
� ∈ 
(�,�,�,�,�,�)�∈ �(�,�)� ∈ �(�,�)�∈ �(�,�,�)� ∈ �(�,�)� ∈��������� (�)

 

∀ l 

Equation (13) expresses through the parameter w the maximum allowed saturation level. For 

example, if  w = 0.8 then the maximum allowed load to be assigned to lecturer p is the 80% of 

its effective teaching load (><"2�). 

CASSIG} ≤  w ∗  ><"2�   (13) 

 

∀ l 

On the contrary, equation (14) expresses through the parameter β the minimum allowed 

saturation level (also as a percentage of ><"2>). 
 

CASSIG} ≥  ~ ∗  ><"2�   (14) 

 

∀ l 

Equations (15) - (45) avoid overlaps in lecturers’ schedules, that is, a lecturer is assigned more 

than one subject in the same time slot. There are three types of overlapping cases:  

                                          o'#"44./������ − 41"44./������q ∗ )������� =   :�;;�9�  (12) 
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• If the subject s starts earlier than the subject s’ and ends later than the start of subject s´ 

(Fig.3). 

• If the subject s starts earlier than the subject s´ and ends later than the end of subject s´ 

(Fig.4). 

• If the end of subject s and the start of the subject s´ are at the same time. That´s a 

manner to consider the transition time between classes (Fig.5). 

 

[Figures 3-5 over here] 

 

In order to facilitate the reading and understanding of the above constraints, some of the 

equations (15)-(45) are grouped when defined for the identical indices and subsets (i.e. for the 

same ∀) in such a way that these common indices and subsets are written only for the last 

constraint. 

 

Equations (15) and (16) force �\v;\v;������������������  to be equal to 1 only if s´ starts later or 

at the same time than s. The first requires the decision variable to be equal to 1 if the difference 

is positive or zero while the second ensures the opposite case, that is, that the decision variable 

is 0 if the reverse difference (41"44./������ −  ′41"44./������������) gives a positive value, where 

M is a positive number equal to the difference between the latest and the earliest schedule time. 

Equations (17) and (18) force �;^;�\v;������������������ to be equal to 1 only if s ends later or 

at the same time than the start of s´. As in the previous case, equation (18) ensures that the 

variable is equal to 0 if the difference   '#"44./������ − 41"44./������������ is negative. So, 

equations (15), (16), (17) and (18) determine whether the first case of overlap (the start of s´ 

takes place between the start and end of s) or the third (end of s and start of s´ are the same) 

exist. 

 

′41"44./������������ −  41"44./������ ≤  � ∗ �;^;;^;������������������� (15) 

 

 41"44./������ −  ′41"44./������������ ≤  � ∗ (1 − �;^;;^;��
������������������) (16)

 

'#"44./������ − ′41"44./������������ + s ≤ � ∗ �;^;�\v;������������������  (17) 

 

′41"44./������������ −  enassigefghij ≤  M ∗ (1 − �;^;�\v;������������������) 

 

(18) 

 

∀  s, ∀  4�, ∀ c ∈  :(4, 5), ∀  5 � ∈  :�(4�, 5�), ∀ g ∈  9(4, 5, /), ∀ / � ∈  9�(4�, 5�, /�), ∀ z ∈
 8(4, 6), ∀  6 � ∈  8�(4�, 6�), ∀ w ∈  7(6, -), ∀ - � ∈  7�(6�, -�), ∀  2 ∈  3(4, 5, /, 6, -, 2), ∀ 

 2�  ∈  3�(4�, 5�, /�, 6�, -�, 2�) / s ≠ 4� ∩ z = 6� ∩ w =  -� ∩ d =  2� 
 

Equation (19) implies that, if both �;^;;^;�������������������  and �;^;�\v;������������������ are 

equal to 1, then only one of the subjects, s or s´, may be assigned to lecturer l the day d of the 

week w of the semester z in the time slot t. In other words, the first and third type of overlap 

occurs when both decision variables are equal to 1. 

 
)������� +  )������������� + 

+ �;^;;^;������������������� +  �;^;�\v;������������������ ≤ 3 (19) 
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∀ l, ∀  s, ∀  4�, ∀ c ∈  :(4, 5), ∀  5 � ∈  :�(4�, 5�), ∀ g ∈  9(4, 5, /), ∀ / � ∈  9�(4�, 5�, /�), ∀ z ∈
 8(4, 6), ∀ 6 � ∈  8�(4�, 6�), ∀ w ∈  7(6, -), ∀ - � ∈  7�(6�, -�), ∀  2 ∈  3(4, 5, /, 6, -, 2),  

∀  2�  ∈  3�(4�, 5�, /�, 6�, -�, 2�) / s ≠ 4� ∩ z = 6� ∩ w =  -� ∩ d =  2� 

Equations (20) and (21) force �;^;�\v;������������������ to be equal to 1 only when s´ ends 

after s starts, or when the end time of s´ and the start time of s are the same. Equations (22) and 

(23) force �\v;�\v;������������������ to be equal to 1 when s ends after or at the same time than 

s´. Equations (20) – (23) represent the second case of overlap (s´ occurs between the start and 

end of s). 

 

′'#"44./������������ − 41"44./������ +  s ≤  � ∗ �;^;\v;������������������� (20) 

 

41"44./������ −  ′'#"44./������������ ≤  � ∗ (1 − �;^;\v;�
������������������) (21) 

 

'#"44./������ −  ′'#"44./������������ +  s ≤  � ∗ �\v;�\v;������������������ (22) 

 

′'#"44./������������ − '#"44./������ ≤  � ∗ (1 − �\v;�\v;������������������) (23) 

 

∀  s, ∀  4�, ∀ c ∈  :(4, 5), ∀  5 � ∈  :�(4�, 5�), ∀ g ∈  9(4, 5, /), ∀ / � ∈  9�(4�, 5�, /�), ∀ z ∈
 8(4, 6), ∀  6 � ∈  8�(4�, 6�), ∀ w ∈  7(6, -), ∀ - � ∈  7�(6�, -�), ∀  2 ∈  3(4, 5, /, 6, -, 2),  

∀  2�  ∈  3�(4�, 5�, /�, 6�, -�, 2�) / s ≠ 4� ∩ z = 6� ∩ w =  -� ∩ d =  2� 
 

Equation (24) forces that only one of the two subjects, s or s´, may be assigned to lecturer l the 

day d of the week w of the semester z in the time slot t, if decision variables 

�;^;\v;������������������� and �\v;�\v;������������������ are equal to 1. 

 

 
)������� + )������������� + 

+ �;^;\v;������������������� +  �\v;�\v;������������������ ≤ 3 (24) 

 

∀  l, ∀ s ∈ ;D������E (>) , ∀  4� ∈  ;�D������E (>), ∀ c ∈  :(4, 5), ∀  5 � ∈  :�(4�, 5�), ∀ g ∈  9(4, 5, /),  

∀  / � ∈  9�(4�, 5�, /�), ∀ z ∈  8(4, 6), ∀ 6 � ∈  8�(4�, 6�), ∀ w ∈  7(6, -), ∀ - � ∈  7�(6�, -�),  

∀  2 ∈  3(4, 5, /, 6, -, 2), ∀  2�  ∈  3�(4�, 5�, /�, 6�, -�, 2�) /s ≠ 4� ∩ z = 6� ∩ w =  -� ∩ d =  2� 
 

It may be noted that an overlap in just one subject j may also occur: either between different 

credit types c or between different groups g corresponding to the same credit type c. The 

methodology used to solve this problem is identical to that used in the case of different subjects. 

The explanation of each constraint is similar to the equations (15) - (24). 

 

Equations (25) – (34) represent the overlap between different credit types c of a subject s. As 

the number of groups g may vary between the credit types c and c´, the groups g corresponding 

to type credit c and the groups g´ corresponding to credit type c´ must be distinguished. 

 

It is not imposed that g ≠ g´, since in case g and g´ coincided, that would imply an overlap in the 

students schedule, which is not possible since the teaching timetable is already an input where 

this problem has already been solved. 
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Equations (25) - (29) prevents the first and third type of overlap (previously described) from 

taking place. 

 

′41"44./������������ S 41"44./������ W  � ∗ �;^:;^:������������������� (25) 

 

41"44./������ S ′41"44./������������ W  � ∗ �1 S �;^:;^:�������������������� (26) 

 

'#"44./������ S ′41"44./������������ r   s W  � ∗ �;^:�;^:������������������ (27) 

 

′41"44./������������ S '#"44./������ W  M ∗ �1 S �;^:�\v:������������������ (28) 

 

∀  s, ∀  4�, ∀ c ∈  :�4, 5�, ∀  5 � ∈  :��4�, 5��, ∀ g ∈  9�4, 5, /�, ∀ / � ∈  9��4�, 5�, /��, ∀ z ∈
 8�4, 6�,∀6 � ∈  8��4�, 6��,∀w∈  7�6, -�,∀- � ∈  7��6�, -��,∀2 ∈  3�4, 5, /, 6, -, 2�,                              
 ∀ 2�  ∈  3��4�, 5�, /�, 6�, -�, 2�� / s ≠ 4� ∩ c ≠ 5� ∩ z = 6� ∩ w =  -� ∩ d =  2� 

 

)������� r )�������������� r 

r �;^:�;^:������������������ r �;^:�\v:������������������ W 3 (29)

 

∀  l, ∀ s ∈ ;D������E �>� , ∀  4� ∈  ;�D������E �>�, ∀ c ∈  :�4, 5�, ∀  5 � ∈  :��4�, 5��, ∀ g ∈  9�4, 5, /�,  
∀  / � ∈  9��4�, 5�, /��, ∀ z ∈  8�4, 6�, ∀ 6 � ∈  8��4�, 6��, ∀ w ∈  7�6, -�, ∀ - � ∈  7��6�, -��,  
∀ 2 ∈  3�4, 5, /, 6, -, 2�, ∀  2� ∈ 3�(4�, 5�, /�, 6�, -�, 2�� /s ≠ 4� ∩ c ≠ 5� ∩ z =6� ∩ w = -� ∩ d = 

 2� 

 

Equations (30) – (34) prevent the second type of overlap from occurring. 
 

′'#"44./������������ S 41"44./������ r  s W  � ∗ �;^:\v:�������������������  (30) 

 

41"44./������ S ′'#"44./������������ W  � ∗ �1 S �;^:\v:��������������������   (31) 

 

'#"44./������ S ′'#"44./������������ r  s W  � ∗ �\v:�\v:������������������ (32) 

 

′'#"44./������������ S '#"44./������ W  � ∗ �1 S �\v:�\v:������������������� (33) 

 

∀  s, ∀  4�, ∀ c ∈  :�4, 5�, ∀  5 � ∈  :��4�, 5��, ∀ g ∈  9�4, 5, /�, ∀ / � ∈  9��4�, 5�, /��, ∀ z ∈
 8�4, 6�,∀6 � ∈  8��4�, 6��,∀w∈  7�6, -�,∀- � ∈  7��6�, -��,∀2 ∈  3�4, 5, /, 6, -, 2�,                              
 ∀ 2�  ∈  3��4�, 5�, /�, 6�, -�, 2�� / s ≠ 4� ∩ c ≠ 5� ∩ z = 6� ∩ w =  -� ∩ d =  2� 
 

)������� r )������������� r 

r�;^:\v:������������������� r �\v:�\v:������������������ W 3 (34) 

 

∀  l, ∀ s ∈ ;D������E �>� , ∀  4� ∈  ;�D������E �>�, ∀ c ∈  :�4, 5�, ∀  5 � ∈  :��4�, 5��, ∀ g ∈  9�4, 5, /�,  
∀  / � ∈  9��4�, 5�, /��, ∀ z ∈  8�4, 6�, ∀ 6 � ∈  8��4�, 6��, ∀ w ∈  7�6, -�, ∀ - � ∈  7��6�, -��,  
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∀ 2 ∈  3(4, 5, /, 6, -, 2), ∀  2� ∈ 3�(4�, 5�, /�, 6�, -�, 2�) /s ≠ 4� ∩ c ≠ 5� ∩ z =6� ∩ w = -� ∩ d = 

 2� 
 

Equations (35) – (44) are similar to the aforementioned ones, although in this case the different 

groups schedules (g and g´) corresponding to the same credit type c of the subject s are 

compared. The first five equations (35) – (39) prevent the first and third type of overlap from 

taking place, while the equations (40) – (44) prevent the second one. 

 

′41"44./������������ −  41"44./������ ≤  � ∗ �;^9;^9������������������� (35) 

 

41"44./������ − ′41"44./������������ ≤  � ∗ (1 − �;^9;^9������������������� ) (36) 

 

'#"44./������ − ′41"44./������������ +   s ≤  � ∗ �;^9�\v9������������������  (37) 

 

′41"44./������������ −  '#"44./������ ≤  � ∗ (1 − �;^9�\v9������������������) (38) 

 

∀  s, ∀  4′, ∀ c ∈  :(4, 5), ∀  5 ′ ∈  :′o4′, 5′q, ∀ g ∈  9(4, 5, /), ∀ / ′ ∈  9′o4′, 5′, /′q, ∀ z ∈  8(4, 6),  

∀6 � ∈  8�(4�, 6�),∀w∈  7(6, -),∀ - ′ ∈  7′o6′, -′q,∀ 2 ∈  3(4, 5, /, 6, -, 2),                              

 ∀ 2�  ∈  3�(4�, 5�, /�, 6�, -�, 2�) / s = 4′ ∩ c = 5′ ∩ g ≠ /′ ∩ z = 6′ ∩ w =  -′ ∩ d =  2′
 

 

)������� + )������������� + 

+�;^9;^9������������������� +  �;^9�\v9������������������ ≤ 3 (39) 

∀  l, ∀ s ∈ ;&<44.=>' (>) , ∀  4′ ∈  ;′&<44.=>' (>), ∀ c ∈  :(4, 5), ∀  5 ′ ∈  :′o4′, 5′q, ∀ g ∈  9(4, 5, /),  

∀  / ′ ∈  9′o4′, 5′, /′q, ∀ z ∈  8(4, 6), ∀ 6 ′ ∈  8′(4′, 6′), ∀ w ∈  7(6, -), ∀ - ′ ∈  7′o6′, -′q,  

∀  2 ∈  3(4, 5, /, 6, -, 2),  ∀  2� ∈ 3�(4�, 5�, /�, 6�, -�, 2�) /s ≠ 4′ ∩ c =  5� ∩ g ≠ /′ ∩ z = 6′ ∩ w = 

 -′ ∩ d =  2′
 

 

′'#"44./������������ − 41"44./������ +  s ≤  � ∗ �;^9\v9�������������������  (40) 

 

41"44./������ − ′'#"44./������������ ≤  � ∗ (1 − �;^9\v9�������������������) (41) 

 

'#"44./������ −  ′'#"44./������������ +  s ≤  � ∗ �\v9�\v9������������������ (42) 

 

′'#"44./������������ − '#"44./������ ≤  � ∗ (1 − �\v9�\v9������������������) (43) 

 

∀  s, ∀  4′, ∀ c ∈  :(4, 5), ∀  5 ′ ∈  :′o4′, 5′q, ∀ g ∈  9(4, 5, /), ∀ / ′ ∈  9′o4′, 5′, /′q, ∀ z ∈  8(4, 6),  

∀6 � ∈  8�(4�, 6�),∀w∈  7(6, -),∀ - ′ ∈  7′o6′, -′q,∀ 2 ∈  3(4, 5, /, 6, -, 2),                              

 ∀ 2�  ∈  3�(4�, 5�, /�, 6�, -�, 2�) / s = 4′ ∩ c = 5′ ∩ g ≠ /′ ∩ z = 6′ ∩ w =  -′ ∩ d =  2′
 

 

)������� + )������������� + 

+�;^9\v9������������������� +  �\v9�\v9������������������ ≤ 3 (44) 
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∀  l, ∀ s ∈ ;&<44.=>' (>) , ∀  4′ ∈  ;′&<44.=>' (>), ∀ c ∈  :(4, 5), ∀  5 ′ ∈  :′o4′, 5′q, ∀ g ∈  9(4, 5, /),  

∀  / ′ ∈  9′o4′, 5′, /′q, ∀ z ∈  8(4, 6), ∀ 6 ′ ∈  8′(4′, 6′), ∀ w ∈  7(6, -), ∀ - ′ ∈  7′o6′, -′q,  

∀  2 ∈  3(4, 5, /, 6, -, 2),  ∀  2� ∈ 3�(4�, 5�, /�, 6�, -�, 2�) /s ≠ 4′ ∩ c =  5� ∩ g ≠ /′ ∩ z = 6′ ∩ w = 

 -′ ∩ d =  2′
 

 

In order to avoid ambiguity caused by the handling of two decision variables to refer to the 

same element, it must be ensured that they are both identical when all indices coincide as it is 

established in the following equation (45): 

)������� = )�������������  (45) 

∀  l, ∀ s ∈ ;&<44.=>' (>) , ∀  4′ ∈  ;′&<44.=>' (>), ∀ c ∈  :(4, 5), ∀  5 ′ ∈  :′o4′, 5′q, ∀ g ∈  9(4, 5, /),  

∀  / ′ ∈  9′o4′, 5′, /′q, ∀ z ∈  8(4, 6), ∀ 6 ′ ∈  8′(4′, 6′), ∀ w ∈  7(6, -), ∀ - ′ ∈  7′o6′, -′q,  

∀  2 ∈  3(4, 5, /, 6, -, 2),  ∀  2� ∈ 3�(4�, 5�, /�, 6�, -�, 2�) /s= 4′ ∩ c =  5� ∩ g = /′ ∩ z = 6′ ∩ w = 

 -′ ∩ d =  2′ 
 

Finally, it must be ensured that each group g of the credit type c of the subject s is assigned at 

least one lecturer. Equation (46) reflects that the summation of the credits (in hours) of the 

group g of the credit type c of the subject s has to be equal to the value of the parameter 

5!'2.14���. 

� � � �  
�∈ 
(�,�,�,�,�,�)�∈ �(�,�)�∈�(�,�) �

 

o'#"44./������ − 41"44./������q ∗ )������� =  5!'2.14��� (46) 

∀ s, ∀ c∈ C(c,s), ∀ g∈ G (s,c,g) 

All the described equations make the search space of the lecturer-subject assignment process 

narrower since it will only be possible to establish such a relationship in case that those 

restrictions allow )�������  to be equal to 1. 

 

5. Model validation: application to a real case 

 
The proposed model has been applied to a real case in order to validate it and analyze the 

quality of the obtained solutions and the computational efficiency under different scenarios. 

 

The input data comes from a real case corresponding to the teaching assignment of the ETSII 

faculty to the Applied Linguistics department for the German subjects for the academic year 

2015-16 (ETSII 2015). 

 

The main reason to choose such an assignment is due to the numerous groups that make up 

those German subjects, which in turn lead to multiple schedule overlaps. This fact makes the 

teaching assignment much more complicated. This will help to check whether the proposed 

model is managing those overlaps properly. In addition, different scenarios have been defined, 

in order to verify its proper execution. 

 

 The resolution methodology jointly with the obtained results are described in the following 

section  
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5.1. Resolution methodology 

 

The application of the model to the above real case had a too high “sparse time" (previous to the 

model resolution), approximately 4,000% minutes higher than the optimization one which could 

potentially leave the computer out of memory with larger problems. The “sparse time" is the 

time employed by the modelling language software to combine the parametric MILP model in 

an algebraically form with the input data generating all the decision variables, macros and 

constraints that integrate the specific model to be solved. The MPL modelling language used in 

this paper is able to handle very large matrices with millions of variables and constraints 

through its own memory manager. However, the only limitation the model developer faces is 

how much machine memory is available (Maximal Software, 2021)  

 

Therefore, in order to avoid the possibility of leaving the computer out of memory during the 

model generation with larger problems, a methodology resolution is proposed. This 

methodology is based on the fact that certain decision variables were identified as dependent, 

because once the start and end times of the subjects (parameters) are known, it is possible to 

calculate the value of the binary variables related to the overlap of the following subjects: 

 

�;^;;^;�������������������,  �;^;�\v;������������������, �;^;\v;������������������� , 

�\v;�\v;������������������ , �;^:;^:������������������� , �;^:�\v:������������������ , 

�;^:\v:������������������� , �\v:�\v:������������������, �;^9;^9�������������������, 

�;^9�\v9������������������ , �;^9\v9�������������������, �\v9�\v9������������������. 

Based on the above property, a resolution methodology in two stages is proposed, that reduces 

the “sparse time” in each step and, therefore, the memory requirements on the computer. This 

methodology is depicted in Fig.6.  

 

[Figure 6 near here]    

 

In the first step, the values of the above decision variables are calculated. For that, it is 

necessary to define an auxiliary model in order to obtain the value of the overlapping decision 

variables, taking as parameters the start and end time of each of the groups for each credit type 

for each subject in each week. In a second step, and taking the value of the above decision 

variables as parameters, the main model is solved and thus providing the solution for the 

teaching assignment problem. It has to be highlighted that splitting the model into two steps 

improves the reading time (sparse time) required for the optimization of each step, but it does 

not have any impact on the final optimal solution. The reason is that the solution obtained in the 

first step, i.e. the value of the decision variables related to the overlaps that passes as input data 

for the second step, will always be the same as long as the input data related to the start and end 

times of subjects are not changed. 

 

Finally, it may be noted that the computer used is a HP Pavilion DM4 Notebook PC model, 

Intel ® Core ™ i5, 4.00 GB of RAM, 64-bit Windows Operating System. Modeling software 

has been MPL Modeling System 4.2p (4.2.14.107). Access 2002-2003 has been used as input 

and exit data storage. The solver used for optimization has been Gurobi 6.0.3. The runtime for 

each scenario has been limited to 15 minutes. 

 

5.2. The case of the Teaching Assignment of German subjects from ETSII Faculty to 

the Department of Applied Linguistics 

 

5.2.1. Input data 

 
This real case concerns to the teaching assignment from the ETSII faculty to the department of 

applied linguistics. This assignment encompasses different subjects in German and are taught in 

different courses of different degrees of ETSII faculty. Data about these subjects (credit types, 
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number of groups and timetable) has been obtained from the website of the ETSII faculty 

(ETSII 2015). 

 

This example fits this paper purpose since there is a large number of overlaps among the groups 

of the different subjects, which will help to check whether the model properly works for the 

teaching assignment. It will be a good manner to check how the overlapping subjects are 

assigned to lecturers. 

 

The number of lecturers, their teaching load, as well as their time availability and preferences 

has been estimated. This aspect is not relevant since the objective is to validate the model and 

analyze its behavior in different scenarios. 

 

The data used to validate the proposed mathematical programming model are as follows: 

 

• The academic course is made up of 2 semesters A y B; z = (A, B). 

• Each semester is made up of 17 weeks; w = (w1, w2, …, w17). 

• Each week is made up of 5 working days; d = (MO, TU, WE, TH, FR). 

• 9 lecturers (l) must be assigned.  

• 3 lecturers ranks are considered; r = (r1, r2, r3). Such ranks will be more or less 

weighted. 

• Lecturers’ time availability is continuous, that is, only one time slot is considered (t = 

t1). This time slot starts at 7:30 a.m. and ends at 10 p.m. Therefore, each subject could 

potentially be assigned to any lecturer.  

• All the lecturers have the required competences to teach every subject.  

• 4 different subjects (s) are considered: German A1 (geA1), German A2 (geA1), German 

B1 (geB1) and German B2 (geB2). Each one is made up of a maximum of 2 credits 

types: c1 (theory) and c2 (practice).  

 

Table 12 shows the value of their main characteristics: 

 

[Table 12 near here] 

 

As it is shown in Table 13, each subject is made up of different groups, which are taught in one 

of the two semesters, as being determined by the second letter in g. 

 

[Table 13 near here] 

 

 

The following Figures 7 and 8 show the multiple overlaps among subjects in both semesters, 

which makes the teaching assignment more complex. In both semesters, just one representative 

week with the highest number of overlaps was chosen (w4 in semester A and w3 in semester B). 

In this problem, the schedule is stable and it hardly varies among weeks. 

 

[Figures 7-8 near here] 

 
Finally, all the lecturers’ preferences related data (pref) is shown in the following Table 14. 

(rating scales range from 1 to 10). 

 

[Table 14 near here]  
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5.2.2. Experimentation 

 

The objective of this section is to check the validity of the model, analyze its behavior within 

different scenarios and measure the quality of the obtained results as well as its computational 

efficiency. 

 

To achieve it, different scenarios are proposed: 

 

• “Basic” scenario: restrictions related to time compatibility among lecturers and 

students, all the credits assignment and the impossibility of lecturers to be assigned over 

their teaching load are considered. Regarding the objective function, lecturers’ 

satisfaction is maximized while meeting their preferences. This scenario execution aims 

to validate all the hard restrictions as well as checking that all the input data related to 

the overlapping of the different subjects is properly read.  

• “Lecturers maximum saturation” scenario: restrictions related to the impossibility of 

lecturers to be assigned credits over a α percentage of their teaching load availability are 

added to the first scenario. It may be seen that α is equal to 1 in the basic scenario. This 

scenario execution aims to analyze how the reduction of lecturers’ teaching load affects 

in comparison with the basic scenario. 

• “Lecturers minimum saturation” scenario: restrictions related to the impossibility of 

lecturers to be assigned credits under a percentage α of their teaching load availability 

are added to the first scenario. This scenario execution aims to analyze how the fact of 

sharing the credits among all the lecturers affects to their global satisfaction. 

• “Maximum number of lecturers per group” scenario: restrictions related to the 

impossibility of assigning more than μ lecturers for each group of each credit type of 

each subject are added to the first scenario. Teaching assignment obtained by the basic 

scenario could assign different lecturers for a certain group, leading to a teaching 

quality deterioration.  

• “Maximum number of groups per lecturer” scenario: it is limited to λ the maximum 

number of groups that may be assigned to a lecturer in a certain semester. This scenario 

execution aims to balance each lecturer teaching load by preventing them for being 

assigned all the credits in the same semester.  

 

These five scenarios have a unique objective function that, as aforementioned in the basic 

scenario, aims to maximize the global lecturers’ satisfaction while meeting their teaching 

preferences. 

 

A sixth scenario considering a multi-objective function was also experimented, although due to 

space restrictions, it is not included in this paper. However, in section 3 “Problem Modeling” is 

briefly indicated how to formulate it. The obtained escalated function (equation (3)) considers 

either maximizing the global lecturers’ satisfaction (equation (1)), used in the previous 5 

scenarios analysis, or minimizing the number of different groups assigned to a certain lecturer 

(equation (2)). 

 

The next Figure 9 summarizes which specific equations from all the ones defined in former 

sections are included in each of the five described scenarios: 

 

[Figure 9 near here] 

 

In the following, the obtained results for each scenario are shown in detail: problem size 

(number of decision variables and restrictions), solution quality (objective function and 

assignment) and the computational efficiency (execution time and gap). Finally, a comparison 

among them is conducted. 
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A. “Basic” scenario 

 

This first experiment aims to validate that lecturers are not assigned to two overlapping classes 

as well as all the credits of the subjects are distributed and that in no case lecturers are assigned 

over their teaching load availability. 

 

This model is solved in two stages. Table 15 shows the achieved improvements with the 

modification discussed above in the section “resolution methodology”. The column called 

"improvements" contains the various reductions incurred in deciding to solve the model in two 

steps instead of one. 

 

[Table 15 near here] 

 

It should be noted that in the case of the two-steps resolution, the data in the previous table refer 

to the second step, which is the one where the lecturers’ distribution is done. The first stage ends 

in 21.5 minutes. Therefore, the results show that modifying the resolution procedure saves 65% 

of time for the different running scenarios. 

 

The inefficiencies identified in the proposed solution are: 

 

• Lecturer l3 is not assigned any credit and l1, l2 and l5 lecturers are assigned most of 

them, instead. 

• Only 4 out of 23 groups are taught by a unique lecturer.  

 

In the following experiments these disadvantages will be overcome by adding some additional 

restrictions.  

 

B. “Lecturers’ maximum saturation” scenario 

 

In this scenario, a restriction regarding the maximum number of credits assigned to a lecturer is 

added to the first scenario. The parameter α determines the maximum percentage over the 

lecturers teaching load availability that may be assigned. In this case, a minimum number of 

credits that must correspond to each lecturer is not defined and therefore the parameter β 

(percentage of minimum teaching load) is equal to 0. 

 

The results obtained running the model with different values of α are shown in Table 16. 

Parameter α is not allowed to take values less than 0.7. This is because if the maximum teaching 

load of all the lecturers is reduced by 30%, the value of the sum of all of them is less than the 

sum of the credits of the subjects, that is, the number of teaching hours are greater than the 

lecturers’ available hours, leading to an infeasible solution. 

 

[Table 16 near here] 

 
Regarding the obtained solution, every lecturer is assigned at least some credit although a 

lecturer minimum saturation level of credits is not defined. This is due to the fact that in the 

“basic” scenario there are two lecturers who are assigned credits reaching their maximum 

saturation level. Now, by limiting this maximum load, these lecturers can not cover as many 

credits as in the “basic” scenario model. 

 

It is logical that the objective function has a decreasing trend since this restriction narrows the 

possibility of satisfying the lecturers’ preferences. For example, in the “basic” scenario lecturer 
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l6 is assigned credits of 9 different groups among which it is AB1B1. This lecturer is ranked 

"r1" and gives the group AB1B1 a preference of 8 points. Therefore, the satisfaction weighted 

preference is 1.5*8, that is, 12 points. On the other hand, lecturer l5 is ranked "r2" and gives to 

that group a preference of 9 points, in total, 1.2*9 = 10.8 points. Therefore, in order to maximize 

the overall lecturers’ satisfaction, such assignment would correspond to lecturer l6 as in the 

“basic” scenario. However, in this second scenario the lecturer l6 reaches its maximum 

saturation level and cannot teach in AB1B1, which is assigned to lecturer l5, being the one with 

the next highest satisfaction. 

 

C. “Lecturers’ minimum saturation” scenario 

 

Unlike the above experiment, in this case β is the parameter that varies, while α remains equal 

to 1. As in the previous case, a Table 17 is depicted to compare the results obtained with the 

various scenarios. The parameter α remains unchanged and takes the value of 1, that is, lecturers 

may be assigned credits until their maximum saturation level. 

 

In this case, β may not exceed the value of 0.65 since the solution is infeasible due to the same 

reasons as the previous experiment. 

 

[Table 17 near here] 

 

Regarding the value of the decision variables, the distribution has the following structure: all the 

lecturers are assigned at least some credits but there are still groups of the same subject and 

credit type that are assigned to 4 different lecturers what is considered detrimental to the 

teaching quality. This inefficiency is taken into account in the fourth experiment. 

 

 

D. “Maximum numbers of lecturers per group” scenario 

 

In this scenario, the behavior of the objective function with the restriction that limits the number 

of lecturers who may teach in the same group of a certain credit type of a subject is analyzed. 

 

As previously noted the schedule variability (non-regular time schedule) requires the lecturers’ 

assignment to subjects on a daily basis. This restriction aims to improve the teaching quality by 

preventing more than μ lecturers for being assigned to a particular group of a subject. This 

inefficiency was detected in previous experiments. Additionally, as it may be seen in the data, 

the maximum number of credits of a group is 72.5 hours and one lecturer assignable teaching 

load may be, in some cases, 200 hours. It makes any lecturer being able to teach all the classes 

of a specific group. 

 

[Table 18 near here] 

 

In the Table 18, the statistical data of the solution are shown. It may be seen how the objective 

function for μ = 2 and μ = 3 cases coincides with that obtained in the “basic” scenario. 

 

For example, in the basic scenario the AA1A1 group is assigned to three different lecturers 

while in the case μ = 2 is only assigned to two lecturers. This verifies how adding a few 

restrictions may improve the solution quality without affecting the value of the weighted overall 

lecturers’ satisfaction. 

 

E. “Maximum numbers of groups per lecturer” scenario 

As discussed in the “maximum number of lecturers by group” scenario, some of the results 

assign a lecturer more than 9 different groups. This is contrary to the objective of the proposed 
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model: the overall lecturers’ satisfaction while taking into account aspects that influence the 

structure and therefore the teaching quality. 

 

In this experiment λ, maximum number of groups per lecturer each semester, must take the 

values of 3 and 4, since higher values lead to a teaching quality reduction. 

 

As reflected in Table 19, the average lecturers’ satisfaction is higher when λ takes the value of 

3. This is because, by limiting the number of groups per lecturer, the distribution is fairer and is 

more likely to meet, on average, the lecturers’ preferences. However, overall satisfaction is 

lower in this scenario because it takes into account the lecturers ranks, and without such 

restrictions, the model will tend to assign as many groups as possible to higher ranks lecturers. 

 

[Table 19 near here] 

 

It is assumed in this scenario that the greater the number of assigned classes are the greater the 

satisfaction is. This fact explains why the “average preference” is not ranged between 1 and 10.  

 

5.2.3. Comparison of the results obtained with the different scenarios 

 
The best results of the values of the objective functions are collected in Table 20, after running 

the different experiments. These values represent the overall lecturers’ satisfaction, obtained in 

each of them.  

 

[Table 20 near here] 

 

It must be highlighted the minimum variation in the value of the objective function of the 

different scenarios. Furthermore, the obtained gap is in all the cases very small. Therefore, these 

results verify that minor modifications in the model in the form of restrictions have little impact 

on the objective of the problem (maximizing the overall lecturers’ satisfaction). Such variations, 

such as the limitation on the maximum number of lecturers per group or the maximum number 

of groups per lecturer, have a positive impact on the teaching quality of both lecturers and 

students: the first ones because they can focus their teaching on a limited number of groups and 

the second ones because they can benefit from that. Besides, the fact that one group is assigned 

to various lecturers results, in practice, in different classes taught by different lecturers, 

deteriorating the teaching quality. Therefore, the limitation on the number of lecturers per group 

forces the model to assign to a lecturer the greatest number of classes within a group. 

 

Based on all the above, it may be confirmed after the experimentation that the mathematical 

model has the expected behavior, therefore finishing the validation process. 

 

Finally, with the aim of giving some insights on the scalability and speed characteristics of the 

resolution methodology, the model has also been solved for a larger problem: the teaching 

assignment of the Industrial Management Engineering Degree to the Dept. of Business 

Organization at the UPV. The parameters of the model were set to the following values: α=1, 

ß=0.3 and µ=2. The higher size of this problem (26 lecturers, 21 subjects and 28 groups) 

implied: for the first step, 21776 binary variables, 43552 constraints and a sparse time (reading 

time) of 33,05 min and, for the second step, 83720 binary variables, 370385 constraints with a 

sparse time of 187,62 minutes and a resolution time of 4,15 minutes. As it can be observed, also 

for this more complex case, the parsing time is much higher than the resolution one that remains 

acceptable. To finish, it is important to highlight that splitting the solution process into two steps 

also presents great advantages as regards the computational time in case the decision-maker 

desires to run the model for different scenarios with the same start and end dates of the subjects. 

The reason is that for this situation, the first step should be executed only once, independently 

of the number of scenarios to be tested and, the second step should be solved, as many times as 

scenarios defined. Through this two-steps resolution methodology, the total computational time 
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is reduced as compared with solving the model in just one step since for this last one, the model 

should be entirely solved every time for each scenario with the corresponding increasing in the 

total sparse time. 

 

 

6. Conclusions 

This paper proposes a decision-making tool for an efficient teaching assignment. The developed 

tool is based on a mixed integer linear programming model whose one of the main novelty with 

respect to previous research is that such an assignment is done under a non-regular schedule. 

This fact makes this tool to be closer to reality features. In addition to the consideration of “non-

regular schedule” aspects, it may be noted, from the literature review, that no study featuring 

characteristics such as the teaching assignment per number of hours (credits) instead of number 

of classes or the distinction within each subject between the different groups and credit types 

has been found. While it is true that the objective of the model is to maximize the lecturers’ 

satisfaction while meeting their preferences about which subjects to teach, non-regular 

schedules have led to use creativity to get closer to the reality in the easiest manner. For this, 

both lecturers and subjects have been characterized by their start and end times to model both 

lecturers’ time availability and classes’ schedule. Moreover, the academic schedule is variable 

among weeks, so data must be detailed for each day. These features have made the problem 

modeling more difficult. However, the proposed model is versatile as it may also be used with 

regular time slots. 

 

Maximizing the lecturers’ satisfaction without considering other aspects can lead to an 

undesirable solution in which a subject is taught by many lecturers, which is detrimental to the 

teaching quality. Consideration of policies to increase the solution quality has been modeled 

through the inclusion of various restrictions and a new objective. These restrictions refer to the 

maximum and minimum saturation levels of each lecturer, the maximum number of lecturers 

who teach the same group and the maximum number of groups being taught by a lecturer in a 

semester. On the other hand, the additional objective seeks to minimize the number of lecturers 

assigned to each group. With the conducted experimentation, it has been proved how the 

inclusion of such restrictions greatly improves the quality of the solution while the value of the 

objective function has a minimum variation or even null. 

 

The resolution of the model has resulted in a lengthy data reading time that in some cases has 

led the computer to be ran out of memory. That is why a methodology of resolution in two steps 

has been developed to shorten it. In the first step, once the subjects’ schedules have been set, the 

value of the variables related to the existence of overlapping subjects in the schedule and those 

ones with a similar nomenclature are calculated. The values of these variables just depend on 

the start and end time of each group and the credit type of each subject, so that it is possible to 

obtain their values regardless of the objective function. In the second step, the original model 

has been run taking the value of the above decision variables as input data. The applied 

methodology shows a reduction of 65% in terms of reading time. This allows to speed up the 

experimentation of different scenarios after executing just once the first step for determining the 

existence of overlaps among subjects. 

 

In order to analyze and validate the behavior of the model in different scenarios, a real case 

corresponding to the teaching of the German subject that ETSII faculty requests to the 

linguistics department has been applied. In order to provide with a deeper analysis on the on the 

scalability and speed characteristics of the resolution methodology, a second real case 

corresponding to the teaching assignment of the Industrial Management Engineering Degree to 

the Business Organization department has been also conducted.  

 

Although the equations to contemplate the possibility of a multi-objective scenario were 

initially pointed out, just five scenarios have experimentally being considered, with just a single 

objective, aiming to maximize the overall lecturers’ satisfaction. The obtained results verify the 

need to include policies that increase the solution quality, through the addition of “soft” 
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constraints. Moreover, the value of the objective function in these cases hardly changes, which 

means that higher quality solutions without this negative impact on the overall lecturers’ 

satisfaction may be achieved. On the other hand, as this overall satisfaction is weighted by 

lecturers’ ranks, the higher the rank is the higher the probability is to assign credits to that 

lecturer. In this case, restrictions that limit the feasibility area are required which leads the 

solution to level the average teaching load assigned per lecturer. 
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AUTHORS 

(YEAR) 

SCHEDULED 

EVENT 

PROBLEM 

TYPE 
MODEL RESOLUTION METHOD RESOLUTION PROCEDURE 

Badri (1996) 
University 

Schedule 
L-S-T-C BP 

Exact: simplex extension 

for this type of models 

2-steps: 

Step 1: L-S 

Step 2: S-T 

Hultberg and 

Cardoso 

(1997) 

University 

Schedule 
L-S MILP 

Exact: solver CPLEX  

Heuristic: branch-and-

bound algorithm 

1-step 

Badri et al. 

(1998) 

University 

Schedule 
L-S-T-C BP 

Exact: simplex extension 

for this type of models  
1-step 

 Dimopoulou 

and Miliotis 

(2001) 

University 

Schedule 
S-T-C BP 

Exact: MPCODE and 

XPRESS-MP of Windows 
1-step 

Daskalaki   et 

al. (2004) 
University 

Schedule 
S-T-C BP Exact: solver CPLEX 5.1 1-step 

Daskalaki & 

Birbas (2005) 
University 

Schedule 
S-T-C BP Exact: solver CPLEX 5.1 

2-steps: 

Step I: initial solution 

Step II: multiperiod consecutive 

classes option is added after step 1  

Al-Yakoob &     

Sherali (2006) 
University 

Schedule 
L- S-T-C MILP 

Exact: solver CPLEX 

Heuristic:LP-based 

algorithm 

2-steps: 

Step I: S-T-S 

Step II: L-S, with the possibility of 

modify by 15% the step 1 solution  

Ismayilova  et 

al. (2007) 
University 

Schedule 
L-S-T BP Exact: solver CPLEX 1-step 

Birbas et al. 

(2009) 

School 

Schedule 
S-T BP Exact: solver CPLEX 10.1 

2-steps: 

Step I: lecturers shift-assignment 

Step II: specify shifts-periods  

Santos et al. 

(2012) 

University 

Schedule 
S-T MILP 

Exact: CPLEX 10.1 solver 

cutting and column 

generation algorithm 

1-step 

Tassopoulos & 

Beligiannis   

(2012) 

School 

Schedule 
L-S-T IP 

Heuristic: particle swarm 

optimization (PSO) 
1-step 

Ceschia et al. 

(2014) 

University 

Schedule 
S-T IP 

Exact: CPLEX 12.2 solver 

Heuristic: Simulated 

annealing 

2-steps 

Katsaragakis 

et al. (2015) 

School 

Schedule 
L-S-T MIP 

Heuristic: Particle Swarm 

Optimization & Artificial 

Fish Swarm  
1-step 

Mühlenthaler 

& Wanka 

(2016) 

University 

Schedule 
S-T-C NLP 

Heuristic: Simulated 

annealing, with man-mix 

fairness and Jain’s fairness 

index application 

1-step 

Fonseca et al. 

(2017) 

School & 

University 

Schedules 

L-S-T 

  

IP 

 

Exact: Cuts and 

reformulation of the 

originals IPs 

2-steps: 

Step I. IP Model with all hard 

constraints 

Step II: IP model with all soft 

constraints. The solution process 

warm-started from its previous state  
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Table 1 Review of works based on the dimensions “scheduled event”, “problem type”, 

“model”, “resolution method” and “resolution procedure” 

 

  

Skoullis et al. 

(2017) 

School 

Schedule 
L-S-T MIP  

Heuristic: hybrid cat 

swarm optimization based 

algorithm 
1-step 

Saviniec et al. 

(2020) 

School 

Schedule 
S-T 2 MILPs 

Exact 

Parallel metaheuristic 

based algorithm 

1-step: MILP 1 Fenchel cuts 

1-step: MILP 2 Column generation 

framework 

Tassopoulos et 

al. (2020) 

School  
Schedule 

L-S-T MIP Exact: Gurobi & CPLEX 

1-step (monolithic method) 

2-steps (decomposition method) 

Step I. Model with all hard and 

some soft constraints 

Step II: 5 submodels (one per week 

day) with the rest of soft constraints 

OUR PAPER 
University 

Schedule 
L-S MILP 

 

Exact: Gurobi 6.0.3 

 

2-steps: 

Step I: calculation of dependent 

variables of input data  

Step II: main model is solved 
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 Table 2 Review of works based on the dimension “objectives”  

 

AUTHORS (YEAR) OBJECTIVES 

Badri (1996) 

Meet the teaching load assigned to each lecturer. 

Maximize the lecturer preferences regarding which subjects to teach and when. 

Do not exceed the maximum nº of classes in the last hours of the day, allowed to each lecturer 

Hultberg & Cardoso (1997) Minimize the average number of different subjects taught by each lecturer.  

Badri et al.(1998) 

Schedule of the required subjects.  

Meet the teaching load assigned to each lecturer.                   

Maximize the lecturer preferences regarding which subjects to teach and when. 

Fit daily classrooms availability. 

Dimopoulou & Miliotis (2001) Maximize the lecturer preferences regarding when to teach the subjects. 

Daskalaki  et al. (2004) 

Minimize the times in which a subject is taught in an unwanted period, taking into account 

lecturer preferences 

Minimize gaps in the students' schedule as well as the number of classroom changes. 

Minimize the number of multi-period classes that are scheduled on unwanted days. 

Daskalaki &Birbas (2005) 

Minimize the times in which a subject is taught in an unwanted period, taking into account 

lecturer preferences 

Minimize gaps in the students' schedule as well as the number of classroom changes. 

Minimize the number of multi-period classes that are scheduled on unwanted days. 

Al-Yakoob & Sherali (2006) 

Minimize the individual dissatisfaction of lecturers regarding subjects and periods of time. 

Minimize the difference between lecturer dissatisfactions with the same workload. 

Minimize the nº of multi-period classes exceeding the max. nº of consecutive periods allowed. 

Minimize the nº of conflicts between subjects intended to be scheduled in the same period. 

Ismayilova et al. (2007) 
Maximize the satisfaction regarding the lecturer-subject and subject-period of time. 

Minimize the deviation for exceeding the upper workload limit assigned to a lecturer 

Birbas et al. (2009) Maximize lecturer shift preferences  

 Santos et al. (2012) 

Maximize the schedule compatibility and the time availability of every lecturer.   

Minimize the schedule gaps. 

Minimize the number of double classes required for a lecturer and not met.  

Tassopoulos and Beligiannis   

(2012) 

Minimize the nº of gaps in lecturer schedules.  

Minimize the nº of gaps in lecturer schedules, which are not uniformly distributed among their 

available time. 

Minimize the class hours of lecturers not uniformly distributed among their availability. 

Minimize the  nº of subjects which are assigned more than once in the same day. 

Ceschia et al. (2014) 

Minimize the deviation between the ideal and the obtained credit distribution among periods.  

Maximize the preferences satisfaction of the lecturers regarding to time periods.  

Minimize the heterogeneity of students from different academic years attending the same class. 

Katsaragakis et al. (2015) 

Minimize the dispersion in the distribution of the hours of the same lesson for each class in the 

days it’s taught expressed as a cost. 

Minimize the dispersion in the distribution of each teacher’s hours in the days he/she is available 

expressed as a cost. 

Minimize the number of idle hours each teacher has available between his/her teaching hours 

expressed as a cost. 

Mühlenthalerand   Wanka 

(2016). 

Balance the penalty assigned to the timetables distributing it among the different curricula, based 

on its “fairness”. 

Fonseca et al. (2017) 

Three alternative formulations:  

Linear: Minimize the sum of constraints deviations 

Quadratic: Minimize the sum of the squares of constraints deviations 

Step: Minimize the penalizations of the number of deviations, regardless their magnitudes 

Skoullis et al. (2017) 

Minimize the dispersion in the distribution of the hours of the same lesson for each class in the 

days it’s taught expressed as a cost. 

Minimize the dispersion in the distribution of each teacher’s hours in the days he/she is available 

expressed as a cost. 

Minimize the number of idle hours each teacher has available between his/her teaching hours 

expressed as a cost. 

Saviniec et al. (2020) Minimize violations of soft requirements 

Tassopoulos et al. (2020) 
The soft constraints have been incorporated in the objective function, the value of which we aim 

to minimise under the hard constraints: teacher idle periods, teacher dispersion, class dispersion.  

OUR PAPER 
Maximize the overall lecturer´s satisfaction and the teaching quality. 

Minimize the number of different lecturers teaching in the same group. 
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Table 3 Review of works based on the dimensions “timetable”, “credit type”, “lecturers´ 

availability time”, “preferences”, “ranks” and “saturation” 

 

 

 

AUTHOR 
CREDIT TYPE 

DISTINCTION 
TIMETABLE AVAILAB 

LECTURER 

PREFERENCES 
RANK SATURATION 

Badri (1996) No Regular No Yes No No 

Hultberg and 

Cardoso (1997) 
No Regular No No No Yes 

Badri et al.(1998) No Regular No Yes No No 

Dimopoulou and 

Miliotis (2001) 
No Regular No Yes No No 

Daskalaki   et al. 

(2004) 
Yes Regular Yes Yes No No 

Daskalaki and 

Birbas (2005) 
Yes Regular Yes Yes No No 

Al-Yakoob and     

Sherali (2006) 
Yes Regular No Yes Yes Yes 

Ismayilova  et al. 

(2007) 
No Regular No Yes No Yes 

Birbas et al. 

(2009) 
No Regular Yes Yes Yes Yes 

 Santos et al. 

(2012) 
No Regular Yes No No Yes 

Tassopoulos and 

Beligiannis   

(2012) 

No Regular Yes No No Yes 

Ceschia et al. 

(2014) 
No Regular No Yes No No 

Katsaragakis et 

al. (2015) 
No Regular Yes No No Yes 

Mühlenthaler & 

Wanka (2016) 
No Regular No No No No 

Fontseca et al. 

(2017) 
Yes Regular Yes Yes No Yes 

Skoullis et al. 

(2017) 
No Regular Yes No No Yes 

Saviniec et al. 

(2020) 
No Regular Yes No No Yes 

Tassopoulos et al. 

(2020) 
No Regular Yes No No 

Yes 

 

OUR PAPER Yes Non-regular Yes Yes Yes Yes 
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FEATURES  REVIEWED WORKS PROPOSED MODEL 

Objective: meeting the preferences 

regarding the assignment lecturer - subject  
Secondary Principal 

Rank Restricted to two levels Hierarchical with any number of levels 

Academic schedule and Lecturers’ 

availability 

Regular (just one week is 

scheduled) 

Non-regular (it is necessary to 

distinguish between weeks) 

Comparison: lecturer availability and 

academic schedule 

Restricted to the number of daily 

uniform time periods 
Exact time slots are compared 

Credit types distinction Not considered Considered 

Table 4 Differences between the reviewed works and the proposed model 
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l Lecturers   d Days  

r Ranks       2� Days  

s Subjects   w Weeks  

4� Subjects      -� Weeks  

c Credit types   z Semesters  

5 Credit types         6� Semesters  

g        Groups         t       Available time intervals  

/ �       Groups    

Table 5 Indexes 
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Table 6 Sets 

 

 

 

 

 

 

 

 

 

 

 

 

R (l, r)    Rank r of the lecturer l  

C (s,c)    Credit types c of the subject s  

:� (4�,5�)    Credit types c´ of the subject s´  

G(s,c,g) Groups g from credit type c of the subject s  

9�(4�, 5�, /�) Groups g´ from credit type c´ of the subject s´ 

;D������E(l,s)  Set of subjects s that lecturer l could be assigned  

;D������E� (l,4�)     Set of subjects s´ that lecturer l could be assigned 

W(w, z)     Weeks w corresponding to semester z 

7�(-�, 6� )     Weeks w´ corresponding to semester z´  

Z(s, z)     Set of subjects s taught in semester z   

8�(4�, 6� )    Set of subjects s´ taught in semester z´ 

D(s, c, g, z, w, d) 
   Set of groups g from credit type c of the subject s taught the day d                           

of the week w of the semester z   

3�(4�, 5�, /�,6�, -�, 2�) Set of groups g´ from credit type c´ of the subject s´ taught the 

day d´ of the week w´ of the semester z´   

T(l, z, w, d, t) 
Available time intervals t of lecturer l the day d of the week w of 

the semester z   
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41"44./������  
Starting time of group g from credit type c of the subject s the day d of 

the week w of the semester z    

′41"44./������������  
   Starting time of group g´ from credit type c´ of the subject s´ the day d´ 

of the week w´ of the semester z´    

'#"44./������  
   Ending time of group g from credit type c of the subject s the day d of 

the week w of the semester z    

′'#"44./������������ 
   Ending time of group g´ from credit type c´ of the subject s´ the day d´ 

of the week w´ of the semester z´    

41"p".>����_ 
   Starting time of lecturer l the day d of the week w of the semester z in the 

available time interval t  

'#"p".>����_ 
   Ending time of lecturer l the day d of the week w of the semester z in the 

available time interval t 

s 
  This parameter will take value of the duration of the shortest span between 

classes throughout the academic schedule  

Table 7 Parameters (I) 
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5!'2.14��� 
   Number of credits corresponding to group g from credit type c of the 

subject s  

><"2�     Maximum number of credits (hours) potentially assigned to lecturer l  

w    Maximum saturation level: maximum percentage of ><"2�  

β    Minimum saturation level: minimum percentage of ><"2�  

&!'(���� 
   Preference degree expressed by lecturer l to teach the group g from 

credit type c of the subject s (values rank from 1 to 10).   

!"#$  
   Factor prioritizing the satisfaction of lecturers preferences depending 

on the rank r   

λ 
Maximum number of different groups from any credit type c of a 

subject s which might be assigned to a unique lecturer in a semester 

μ  
Maximum number of lecturers’ teaching classes from any group g of 

credit type c of the subject s    

n Maximum number of classes (credit types * groups) of any subject 

M 

Value indicating the difference between the latest time of the last class 

and the start time of the earliest class, throughout the academic 

schedule  

Table 8 Parameters (II) 
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Table 9 Decision variables (I) 

 

 

 

 

 

 

 

 

 

 

 

 

 

)�������  
Binary variable with a value of 1 if the lecturer l teaches the group g 

from credit type c of the subject s the day d of the week w of the 

semester z, and 0 otherwise.  

)������������� 
Binary variable with a value of 1 if the lecturer l´ teaches the group g´ 

from credit type c´ of the subject s´ the day d´ of the week w´ of the 

semester z´, and 0 otherwise. 

+���� 
Binary variable with a value of 1 if the lecturer l teaches a group g from 

credit type c of the subject s, without regard the value of g.  

:�;;�9� 
Continuous variable indicating the number of credits (hours) assigned to 

lecturer l.  

3\]; �̂������_  

Binary variable with a value of 1 if the group g from credit type c of the 

subject s scheduled the day d of the week w of the semester z, starts later 

or at the same time than the start time of the lecturer l in the available 

time interval t  (41"44./������ ≥  41"p".>����_ �, and 0 otherwise.  

3\]\v�������_ 

Binary variable with a value of 1 if the group g from credit type c of the 

subject s scheduled the day d of the week w of the semester z, ends 

earlier or at the same time than the end time of the lecturer l in the 

available time interval t  �'#"44./������ W '#"p".>����_�, and 0 

otherwise. 
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Table 10 Decision variables (II) 

�;^;;^;������������������� 

 

Binary variable with a value of 1 if the subject s starts earlier or at the 

same time than the subject s´ scheduled the day d of the week w of the 

semester z  (41"44./������ ≤ ′41"44./������������), and 0 otherwise. 

This variable is only calculated when the value of s is not the same as 

s’, z is equal to z’, w is equal to w’ and d is equal to d’. 

�;^;�\v;���BB�������������  

 

Binary variable with a value of 1 if the subject s´ starts earlier or at the 

same time than the end time of the subject s scheduled the day d of the 

week w of the semester z (41"44./������������ ≤  '#"44./������), and 

0 otherwise. This variable is only calculated when the value of s is not 

the same as s’, z equal to z’, w equal to w’ and d equal to d’. 

�;^;\v;�������������������  

Binary variable with a value of 1 if the subject s starts earlier or at the 

same time than the end time of the subject s´ scheduled the day d of 

the week w of the semester z ( 41"44./������ ≤  '#"44./������������), 
and 0 otherwise. This variable is only calculated when the value of s is 

not the same as s’, z equal to z’, w equal to w’ and d equal to d’. 

�\v;�\v;������������������ 

Binary variable with a value of 1 if the subject s´ ends earlier or at the 

same time than the subject s scheduled the day d of the week w of the 

semester z (′'#"44./������������ ≤ '#"44./������), and 0 otherwise.  

This variable is only calculated when the value of s is not the same as 

s’, z equal to z’, w equal to w’ and d equal to d’. 

�;^:;^:�������������������  

Binary variable with a value of 1 if the credit type c starts earlier or at 

the same time than the credit type c´ of the subject s scheduled the day 

d of the week w of the semester z (41"44./������ ≤
′41"44./������������), and 0 otherwise. This variable is only calculated 

when s is equal to s’, c is not the same as c’, z equal to z’, w equal to 

w’ and d equal to d’.  

�;^:�\v:������������������ 

Binary variable with a value of 1 if the credit type c´ starts earlier or at 

the same time than the end time of credit type c of the subject s 

scheduled the day d of the week w of the semester z 

(′41"44./������������ ≤ '#"44./������), and 0 otherwise. This 

variable is only calculated when s is equal to s’, c is not the same as 

c’, z equal to z’, w equal to w’ and d equal to d’. 

�;^:\v:������������������� 

Binary variable with a value of 1 if the credit type c starts earlier or at 

the same time than the end time of credit type c´ of the subject s 

scheduled the day d of the week w of the semester 

z ( 41"44./������ ≤ ′'#"44./������������), and 0 otherwise. This 

variable is only calculated when s is equal to s’, c is not the same as 

c’, z equal to z’, w equal to w’ and d equal to d’. 

�\v:�\v:������������������  

Binary variable with a value of 1 if the credit type c´ ends earlier or at 

the same time than the credit type c of the subject s scheduled the day 

d of the week w of the semester z ( ′'#"44./������������ ≤
'#"44./������), and 0 otherwise. This variable is only calculated 

when s is equal to s’, c is not the same as c’, z equal to z’, w equal to 

w’ and d equal to d’. 
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Table 11 Decision variables (III) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

�;^9;^9�����������������

Binary variable with a value of 1 if the group g starts earlier or at the 

same time than the group g´ from the credit type c of the subject s 

scheduled the day d of the week w of the semester z (41"44./������  ≤
′41"44./������������), and 0 otherwise. This variable is only calculated 

when s is equal to s’, c is equal to c’, g is not the same as g’, z equal to 

z’, w equal to w’ and d equal to d’. 

�;^9�\v9����������������

 

Binary variable with a value of 1 if the group g´ starts earlier or at the 

same time than the end time of group g from the credit type c of the 

subject s scheduled the day d of the week w of the semester z ( 

′41"44./������������ ≤ '#"44./������), and 0 otherwise. This variable is 

only calculated when s is equal to s’, c is not the same as c’, z equal to z’, 

w equal to w’ and d equal to d’. 

�;^9\v9����������������

Binary variable with a value of 1 if the group g starts earlier or at the 

same time than the end time of group g´ from the credit type c of the 

subject s scheduled the day d of the week w of the semester 

z  ( 41"44./����� ≤ ′'#"44./������������ ), and 0 otherwise. This 

variable is only calculated when s is equal to s’, c is not the same as c’, z 

equal to z’, w equal to w’ and d equal to d’. 

�\v9�\v9���������������

Binary variable with a value of 1 if the group g´ ends earlier or at the 

same time than the group g from the credit type c of the subject s 

scheduled the day d of the week w of the semester 

z ( ′'#"44./������������ ≤ '#"44./�����), and 0 otherwise. This variable 

is only calculated when s is equal to s’, c is not the same as c’, z equal to 

z’, w equal to w’ and d equal to d’. 
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Table 12 Lecturers teaching load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lecturer l1 l2 l3 l4 l5 l6 l7 l8 l9 

Rank r1 r2 r3 r1 r2 r1 r3 r1 r3 

Load 

(hours) 
100 150 200 100 150 200 100 150 200 
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Subject Credit Group Credits (hours) 

geA1 (13762) c1 AA1A1 60 

geA1 (13762) c1 AA1A2 15 

geA1 (13762) c2 AA1A2 45 

geA1 (13762) c1 AA1A3 45 

geA1 (13762) c2 AA1A3a 15 

geA1 (13762) c2 AA1A3b 15 

geA1 (13762) c1 AA1A4 43.5 

geA1 (13762) c2 AA1A4a 21 

geA1 (13762) c2 AA1A4b 21 

geA1 (13762) c1 AA1A5 32 

geA1 (13762) c2 AA1A5 28 

geA1 (13762) c1 AA1B1 57.5 

geA1 (13762) c1 AA1B2 32.5 

geA1 (13762) c2 AA1B2 27.5 

geA2 (13763) c1 AA2A1 60 

geA2 (13763) c1 AA2AB 60 

geA2 (13763) c1 AA2B2 60 

geB1 (13764) c1 AB1A1 72.5 

geB1 (13764) c1 AB1B1 45 

geB1 (13764) c2 AB1B1 15 

geB2 (13765) c1 AB2A1 32.5 

geB2 (13765) c2 AB2A1 27.5 

geB2 (13765) c1 AB2B1 60 

Table 13 Data about the subjects 
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Lecturer Subject Credit     Pref Lecturer Subject Credit Pref 

l1 geA1 (13762) c1 10 l5 geB1 (13764) c2 9 

l1 geA1 (13762) c2 10 l5 geB2 (13765) c1 10 

l1 geA2 (13763) c1 7 l5 geB2 (13765) c2 10 

l1 geB1 (13764) c1 5 l6 geA1 (13762) c1 8 

l1 geB1 (13764) c2 5 l6 geA1 (13762) c2 8 

l1 geB2 (13765) c1 5 l6 geA2 (13763) c1 8 

l1 geB2 (13765) c2 5 l6 geB1 (13764) c1 8 

l2 geA1 (13762) c1 7 l6 geB1 (13764) c2 8 

l2 geA1 (13762) c2 7 l6 geB2 (13765) c1 8 

l2 geA2 (13763) c1 9 l6 geB2 (13765) c2 8 

l2 geB1 (13764) c1 9 l7 geA1 (13762) c1 5 

l2 geB1 (13764) c2 9 l7 geA1 (13762) c2 10 

l2 geB2 (13765) c1 10 l7 geA2 (13763) c1 5 

l2 geB2 (13765) c2 10 l7 geB1 (13764) c1 5 

l3 geA1 (13762) c1 5 l7 geB1 (13764) c2 10 

l3 geA1 (13762) c2 5 l7 geB2 (13765) c1 5 

l3 geA2 (13763) c1 8 l7 geB2 (13765) c2 10 

l3 geB1 (13764) c1 8 l8 geA1 (13762) c1 6 

l3 geB1 (13764) c2 8 l8 geA1 (13762) c2 10 

l3 geB2 (13765) c1 10 l8 geA2 (13763) c1 3 

l3 geB2 (13765) c2 10 l8 geB1 (13764) c1 3 

l4 geA1 (13762) c1 10 l8 geB1 (13764) c2 3 

l4 geA1 (13762) c2 10 l8 geB2 (13765) c1 3 

l4 geA2 (13763) c1 7.5 l8 geB2 (13765) c2 3 

l4 geB1 (13764) c1 7.5 l9 geA1 (13762) c1 5 

l4 geB1 (13764) c2 7.5 l9 geA1 (13762) c2 5 

l4 geB2 (13765) c1 2 l9 geA2 (13763) c1 5 

l4 geB2 (13765) c2 2 l9 geB1 (13764) c1 5 

l5 geA1 (13762) c1 3 l9 geB1 (13764) c2 5 

l5 geA1 (13762) c2 3 l9 geB2 (13765) c1 5 

l5 geA2 (13763) c1 8 l9 geB2 (13765) c2 5 

l5 geB1 (13764) c1 9     

Table 14 Lecturers’ preferences for German subjects of academic course 2015/2016 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

FACTORS 1 STEP 2 STEPS IMPROVEMENTS 

Objective Function 4964 4964 - 

Number of 

Variables 

Binaries 19292 13860 28% 

Continuous 9 9 - 

Number of Constraints 49549 38730 22% 

Reading Time 55.243 min 19.084 min 65% 

Optimization Time 6.65 s 2.08 s 69% 

Gap  0 % 0 % - 

Table 15 One-step & Two-steps resolution (experiment A) 
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α 0.9 0.8 0.7 

Objective Function 4856.4 4710 4454.2 

Number of 

Variables 

Binaries 13860 13860 13860 

Continuous 9 9 9 

Number of Constraints 38730 38730 38730 

Number of Iterations 91814 22886 135324 

Optimization Time 46.15 s 21.81 s 62 s 

Gap  0 % 0.0085% 0 % 

Table 16 Experiment B results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

β 0.2 0.4 0.6 0.65 

Objective Function 4871 4730.2 4488.6 4369.4 

Number of 

Variables 

Binaries 13860 13860 13860 13860 

Continuous 9 9 9 9 

Number of Constraints 38739 38739 38739 38739 

Number of Iterations 2905 6426 1087 1008 

Optimization Time 1.29 s 2.63 s 1.25 s 1.4 s 

Gap  0 % 0 % 0 % 0 % 

Table 17 Experiment C results 
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µ 1 2 3 

Objective Function 4898.80 4964 4964 

Number of 

Variables 

Binaries 14067 14067 14067 

Continuous 9 9 9 

Number of Constraints 39167 39167 39167 

Number of Iterations 478 592394 14907 

Optimization Time 1.85 s 900 s (time limit) 15.92 s 

Gap  0 % 0.0483% 0 % 

Table 18 Experiment D results 
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λ=3 λ=4 

Lecturer 
Average 

satisfaction 
Lecturer 

Average 

satisfaction 

l1 196.7 l1 107.5 

l2 165 l2 137.5 

l3 160 l3 105 

l4 133.3 l4 127.5 

l5 159 l5 123.5 

l6 183.3 l6 160 

l7 60 l7 60 

l8 130 l8 132.5 

OVERALL AVERAGE 

SATISFACTION  = 148.4125 

OVERALL AVERAGE 

SATISFACTION   =  119.18 

Table 19 Experiment E results 
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SCENARIOS 
Parameter/s 

Values 

Objective 

Function 

Optimization 

Time 
Gap 

Basic α = 1 4964 2.08 s 0 % 

Lecturers 

maximum 

saturation 

α = 0.9 4856.4 46.15 s 0 % 

Lecturers 

minimum 

saturation 

α = 1 ; β = 

0.2 
4871 1.29 s 0 % 

Maximum number 

of lecturers per 

group 

α = 1 ; μ = 3 4964 15.92 s 0 % 

Maximum number 

of groups per 

lecturer 

α = 1 ; λ = 4 4867.8 286.8 s 0.0082% 

Table 20 Comparison of the best results obtained with the different scenarios 
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FIGURES CAPTIONS 

 

Fig.1 Lecturer´s main characteristics 

Fig.2 Subject´s main characteristics 

Fig.3 Type 1 of subjects overlapping 

Fig.4 Type 2 of subjects overlapping 

Fig.5 Type 3 of subjects overlapping 

Fig.6 Two-Steps Resolution Methodology 

Fig.7 German subjects schedule in the ETSII for semester A of academic year 

2015/2016 

Fig.8 German subjects schedule in the ETSII for semester B of academic year 

2015/2016 

Fig.9 Comparison of different scenarios 

 


