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ABSTRACT 16 

Pavement condition assessment is a critical step in road pavement management. In contrast 17 

to the automatic and objective methods used for rural roads, the most commonly used method 18 

in urban areas is the development of visual surveys usually filled out by technicians that leads 19 

to a subjective pavement assessment. While most previous studies on automatic identification 20 

of distresses focused on crack detection, this research aims not only to cover the identification 21 

and classification of multiple urban flexible pavement distresses (longitudinal and transverse 22 

cracking, alligator cracking, raveling, potholes, and patching), but also to quantify them 23 

through the application of Convolutional Neural Networks. Additionally, this study also 24 

proposes a methodology for an automatic pavement assessment considering the different 25 

stages developed in this research. This methodology allows for a more efficient and reliable 26 

pavement assessment, minimizing the cost and time required by the current visual surveys.27 
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INTRODUCTION 28 

Road maintenance is crucial to minimize transportation costs and vehicle emissions (Bull 29 

2003; Setyawan and Kusdiantoro 2015) as well as to avoid cost overruns associated with late 30 

maintenance that leads to pavement reconstruction (Hajj et al. 2010). Therefore, it is essential 31 

to promote proper pavement management that provides suitable pavement conditions for 32 

road users at the lowest life cycle cost (AASHTO 2011). In fact, this is why various highway 33 

agencies have developed Pavement Management Systems (PMS) which could superintend 34 

the life cycle of existing road infrastructures (Hicks et al. 2011). These systems perform a 35 

variety of functions in which pavement condition assessment plays a critical role. 36 

In general, these systems employ two types of road condition surveys: (i) automatic and (ii) 37 

visual. While automatic surveys employ objective indexes such as the International 38 

Roughness Index (IRI) and standard procedures, in visual surveys the assessment is always 39 

carried out by individual technicians whose personal interpretations are subjective and solely 40 

justified based on previous experience in the field. 41 

Nonetheless, still the most commonly used method in urban areas has seen to be the visual 42 

survey, primarily due to the difficulty of obtaining objective indexes in such environments 43 

characterized by numerous intersections, high speed variability, and important traffic flow 44 

changes (Reggin et al. 2008; Wang et al. 2013). In addition, the most common urban 45 

pavement distresses and their influence on road safety and operation differ from those on 46 

rural roads. 47 

To reduce the subjectivity associated with the visual method, a survey should be based on 48 

simple and straightforward criteria (Kraemer et al. 2004). Although there is yet no standard 49 

guideline to classify and quantify pavement distresses based on their type, severity, and 50 

extent, different researchers and agencies have proposed guidelines for use in a certain region 51 



or country (Miller and Bellinger 2003). The Long-Term Pavement Performance (LTPP) 52 

program of the Federal Highway Administration (FHWA) aims to collect data about 53 

pavement condition and maintenance and rehabilitation activities in the United States and 54 

Canada (Perera and Kohn 2001). The highway administrations of France and Switzerland 55 

have also developed systematic approaches to identify pavement distresses, and the Irish 56 

highway administration has incorporated an approved procedure of pavement condition 57 

assessment into their national road design guideline (Ragnoli et al. 2018). 58 

In the last decade, image processing has been practicing by researchers to make pavement 59 

condition assessment more and more objective. The relative studies can be categorized based 60 

on their approach to image processing: (i) histogram analysis, (ii) mathematical 61 

morphological tools, (iii) Machine Learning techniques, (iv) filtering, and (v) analysis of a 62 

model (Chambon and Moliard 2011). Nevertheless, these studies focused primarily on crack 63 

detection and, in addition, did not provide a second algorithm or method for an automatic 64 

quantification of the predicted distresses. 65 

In this context, the development of an automated procedure that can simultaneously identify 66 

and quantify the most common distresses affecting urban flexible pavement is of great 67 

interest in pavement management. Such a procedure would allow pavement engineers to 68 

perform more efficient and reliable pavement assessments and thus reduce the cost and time 69 

required by the current visual evaluation methods. 70 

LITERATURE REVIEW 71 

The first researchers addressing the automatic identification of cracks quickly discarded the 72 

use of Machine Learning techniques because of the computational and economic costs; 73 

instead, they proposed combining techniques from histogram analysis, mathematical 74 

morphological tools, and filtering procedures (Chambon and Moliard 2011). The Minimal 75 



Path Selection (MPS) algorithm (Zou et al. 2012) and the CrackTree method (Amhaz et al. 76 

2016) were the most promising techniques to automatically detect cracks in asphalt 77 

pavements. 78 

Thanks to innovations and technological progress in the field of computational image 79 

processing, several studies have recently considered Machine and Deep Learning techniques 80 

to identify not only cracks but also other types of pavement distresses (Oliveira and Correia 81 

2012; Radopoulou and Brilakis 2017; Shi et al. 2016; Hadjidemetriou et al. 2018). The most 82 

common Machine Learning techniques applied to the identification and classification of 83 

pavement distresses are: (i) Support Vector Machines, (ii) Decision Trees, (iii) Random 84 

Forest, and (iv) Neural Networks (NN). 85 

CrackIT, the integrated system for automatic crack detection developed by Oliveira and 86 

Correia (2012), was one of the first methods based on Machine Learning techniques. This 87 

model relies on unsupervised learning and consists of two stages: (i) crack detection and (ii) 88 

crack characterization. Although its performance showed good results generally, it had 89 

difficulty detecting thin cracks (< 2 mm) and returned many false positives. 90 

Radopoulou and Brilakis (2017) developed a low-cost method based on Decision Trees to 91 

identify longitudinal and transverse cracks, patches, and potholes from images gathered by 92 

those video cameras that assist in parking individual cars. Their method uses the Semantic 93 

Texton Forests (STF) algorithm as a supervised classifier and achieves an overall accuracy 94 

greater than 82%. 95 

Shi et al. (2016) developed a new method called CrackForest to identify and classify 96 

pavement cracks based on Random Structured Forests that led to an even more accurate 97 

classification comparing to CrackTree, CrackIT, and MPS. Moreover, Hadjidemetriou et al. 98 



(2018) proposed a method for patch identification and quantification based on Support 99 

Vector Machine (SVM) classification techniques. 100 

Deep Learning for automatic crack detection by applying Convolutional Neural Networks 101 

(CNNs) has become very popular in the last few years (Zhang et al. 2016; Wang and Hu 102 

2017; Xia 2018; Jenkins et al. 2018; Carr et al. 2018; Maeda et al. 2018; Park et al. 2019). A 103 

Convolutional Neural Network is a deep neural network with two or more hidden layers that 104 

operates in two stages: (i) base model or feature extraction and (ii) top model or classification 105 

(Figure 1). The main objective of the convolutional layer is to reduce the computational 106 

workload of the system by reducing the number of elements and detecting certain 107 

characteristics that can be useful when analyzing the image. This process is carried out by 108 

applying a filter to the input image and storing the result in the activation matrix. The pooling 109 

layer aims to decrease further the computational workload while characterizing the image by 110 

obtaining and locating its predominant features. Finally, the full connected layers deal with 111 

classification, i.e., indicate the probability that the input image displays a specific pavement 112 

distress. 113 

Most of the studies that applied deep learning to the identification of pavement distresses 114 

focused on crack detection and used images collected from standard smartphones and 115 

cameras (Coenen and Golroo 2017). These studies identified differences in image resolution 116 

as well as the size of the blocks into which each image was divided (Table 1). Although the 117 

architecture of the Convolutional Neural Networks also differed among studies, the 118 

application of this technique resulted in more accurate findings than those achieved by 119 

methods based on other machine learning techniques, such as Support Vector Machine or 120 

Random Forest (Zhang et al. 2016; Carr et al. 2018; Park et al. 2019). 121 



The deep neural network proposed by Maeda et al. (2018) was trained to identify not only 122 

cracks but also rutting, bumps, and potholes; however, the distresses identified in each image 123 

were labeled as cracks or other corruptions, which clustered the rest of the pavement 124 

distresses. In contrast, Xia (2018) did identify different road distresses (longitudinal, 125 

transverse, and alligator cracks; seam breaks; and potholes) through the application of CNNs. 126 

This research found the vehicle’s speed during data collection to be a critical factor. As this 127 

speed increased from 10 to 60 km/h, the accuracy were observed to be decreased by 10 to 128 

15%, depending on the type of road distress. 129 

Mohanraj et al. (2018) proposed a methodology to enhance the accuracy of crack detection 130 

in “noisy” conditions, which were introduced through the image gathering system (e.g., 131 

shadows, painted signs, or tire marks). They divided their method into three steps: (i) image 132 

preprocessing by applying filters, (ii) feature extraction, and (iii) detection and classification 133 

using k-mean clustering. 134 

GOAL OF THE RESEARCH 135 

Unlike most previous studies on automatic identification of distresses that focused on crack 136 

detection, this research aims not only to identify and classify multiple urban flexible 137 

pavement distresses (longitudinal and transverse cracking, alligator cracking, raveling, 138 

potholes, and patching), but also to quantify them through the application of Convolutional 139 

Neural Networks. Specifically, this study proposes a two-step method consisting of two 140 

concatenated CNNs, the first one for distresses identification and the next one to quantify the 141 

predicted distresses. It also proposes an innovative data collection methodology using video 142 

cameras located at the rear of passenger cars to assess pavement condition automatically. 143 

RESEARCH METHOD 144 



The research method used for this study consisted of five steps: (i) data collection, (ii) video 145 

filtering and image preprocessing, (iii) data augmentation, (iv) Convolutional Neural 146 

Network training, and (v) Convolutional Neural Network training validation. A video camera 147 

at the rear of a passenger car conducted data collection in an urban environment. Researchers 148 

filtered the collected videos to extract the images of the pavement and processed them to 149 

remove areas of each image that did not contain relevant information for the detection and 150 

classification of pavement distresses and to divide each image into three blocks of 256 x 256 151 

pixels. These processes created a database of images classified by types of pavement 152 

distresses. Researchers considered different data augmentation techniques because of the 153 

large amount of data required for training and decided on a two-step procedure consisting of 154 

two concatenated Convolutional Neural Networks (CNN). 155 

Data collection 156 

To obtain a comprehensive database of pavement distresses, researchers collected data along 157 

a total of 140 km of streets in the city of Valencia (Spain) under favorable weather conditions 158 

using a Garmin Virb Ultra 30 video camera. This video camera was mounted on the rear of 159 

a passenger car by a camera gripper suction system that ensured a zenithal position – at 1.4 160 

m high – to avoid image distortion (Figure 2). 161 

Traveling at 50 km/h maximum speed (as required in the urban areas of the city) and using 162 

“1080p” recording mode and “wide” view angle, researchers recorded approximately 350 163 

minutes of video at 24 pixels per inch resolution (1920 x 1080 pixels). 164 

Video filtering and image preprocessing 165 

The video filtering stage extracted certain frames of the recorded video. Given that the width 166 

of each filtered image was approximately one meter (w) and the maximum traveling speed 167 

was 50 km/h, the required video frame rate was approximately 15 frames per second (fps) 168 



(𝑓 = 𝑣 𝑤⁄ ). However, the frame rate during the data collection was 30 fps, so researchers 169 

extracted one of every two frames for a total of 361,381 images. 170 

Researchers cropped each image to remove the part of the vehicle captured in the frame and 171 

split each image into three blocks, resized to 256 x 256 pixels each (Figure 3). This last step 172 

minimized the likelihood of having different types of distress in each block and consequently 173 

enhanced the accuracy of the classification procedure. Automated scripts programmed in 174 

Python carried out both the video filtering and image preprocessing stages. 175 

To ensure as objective a classification as possible, three experts identified the diverse road 176 

distresses included in each image considering the following categories: (i) longitudinal 177 

cracking, (ii) transverse cracking, (iii) alligator cracking, (iv) raveling, (v) potholes, (vi) 178 

patching, (vii) road markings, (viii) manholes, and (ix) no pavement distress. The resulting 179 

supervised database contained 29,846 images and the number of images in which each type 180 

of distress was present was: 5,697 for longitudinal cracking, 3,467 for transverse cracking, 181 

595 for alligator cracking, 622 for raveling, 1,231 for potholes, 3,420 for patching, 9,047 for 182 

road marking, 1,149 of manholes, and 18,002 with no evidence of pavement distress – 183 

including images with only road markings and/or manholes –. In this way, the number of 184 

images with only one category of distress was 9,186. The amount of images containing two, 185 

three, four, and five types of distress was 2,202, 388, 62, and 6, respectively. 186 

Data Augmentation 187 

A common problem for applying deep learning techniques is the large amount of data 188 

required for training to arrive at a particular level of generalization. To address this problem, 189 

this study used various data augmentation techniques. These techniques consist of making 190 

slight transformations to the training images to create new images that were similar enough 191 

to the original ones to maintain the original class of pavement distress but that also introduced 192 



some variations that might not be significantly represented in the original dataset. These 193 

transformations are performed by iterating over the training dataset. These modified images 194 

were used for network learning and then discarded. 195 

The employed data augmentation techniques included: (i) Random Crop, which consists of 196 

selecting a random part of the original image; (ii) Horizontal Flip, which flips the image 197 

horizontally; and (iii) Color Jitter, which introduces slight modifications in brightness, 198 

contrast, and saturation to simulate lighting variations. The random crop technique produced 199 

images of 224 x 224 pixels, the size required by the ImageNet configuration, which is an 200 

ongoing research effort to provide researchers around the world with an easily accessible 201 

image database (Russakovsky et al. 2015). The other data augmentation techniques did not 202 

modify the size of the images. 203 

Convolutional Neural Network 204 

The study employed two complemented methods for image characterization and damage 205 

quantification: 206 

• A Convolutional Neural Networks (CNN1) that identified all types of distress 207 

included in an image (longitudinal cracking, transverse cracking, alligator cracking, 208 

raveling, potholes, and patching) (Figure 4). 209 

• Four CNNs (CNN2) that quantified the severity of each type of distress classified by 210 

CNN1. These CNNs determine the geometric features – area, length, and width – of 211 

longitudinal cracks, transverse cracks, potholes, and patches. In the case of alligator 212 

cracking and raveling, the whole image was considered as damaged because these 213 

types of distress usually took up a large area of the image (>80%). 214 



Both methods are based on a ResNet architecture introduced by He et al. (2016) and applied 215 

to a variety of image classification problems with excellent results (Carr et al. 2018). During 216 

the training stage, researchers considered the Adam optimization algorithm, which calculates 217 

an exponential moving average of the gradient and the squared gradient, while having the 218 

parameters beta1 and beta2 to control the decay rates of these moving averages, providing an 219 

optimization algorithm that can handle sparse gradients on noisy problems (Kingma and Ba 220 

2015). Cross-entropy loss function, which increases as the predicted probability diverges 221 

from the ground-truth label, is used. The pre-trained weights of the ResNet were used as 222 

initial values for training on ImageNet, which is an ongoing research effort to provide 223 

researchers around the world with an easily accessible image database (Russakovsky et al. 224 

2015). Images were then resized to 256 x 256 pixels to meet the requirements of ImageNet. 225 

A learning rate of 0.0001 was selected and a 5-fold cross-validation procedure was used to 226 

estimate the accuracy of the model on new data. 227 

Particularly, this study used the ResNet34 architecture. The first step on the ResNet before 228 

entering the common layer behavior is a block (Conv1) consisting of a convolution, batch 229 

normalization, and max pooling operation based on a kernel size of 7 and a feature map size 230 

of 64. Taking these parameters into account, the output size of that operation will be a 231 

(112×112) volume. Since each convolution filter (of the 64) is providing one channel in the 232 

output volume, the result is (112x112x64) output volume. The next step is the batch 233 

normalization, which is an element-wise operation and therefore does not change the size of 234 

the volume. In this way, a (3x3) max pooling operation with a stride of 2 is applied. 235 

The ResNet consists of four blocks following the same pattern. Each block performs a 3x3 236 

convolution with a fixed feature map dimension (64, 128, 256, 512) respectively, bypassing 237 

the input every 2 convolutions. Furthermore, the width and height dimensions remain 238 



constant during the entire layer. The process yields 32 hidden layers, which along with the 239 

initial 2 hidden layers total 34 hidden layers. Finally, an average pooling layer and a dense 240 

layer are used to extract the final features and classify the image. The total number of 241 

floating-point operations per second (FLOPS) is 3.6 x 10⁹. 242 

CNN1 addressed a multi-label classification problem that aimed to identify all distress 243 

instances that appear in a single image. To do so, all images were labeled using one-hot 244 

encoding using ones to denote the presence of determined distress. The Network was trained 245 

using binary cross entropy loss. After training the network, researchers selected a desirable 246 

threshold rate for false positives by using the Receiver Operating Characteristic (ROC) curve. 247 

A ROC curve displays the performance of a classification model at all classification 248 

thresholds. This curve plots two parameters, the True Positive Rate (TPR) and the False 249 

Positive Rate (FPR), from which researchers selected a threshold aimed at minimizing FPR 250 

and ensuring a high TPR. After the multi-label classification provided by CNN1, the second 251 

CNN (CNN2) assessed only those images with distresses as the objective of this stage was 252 

to measure the severity of each damage in terms of geometric dimensions – length, width, 253 

and area –. 254 

This study implemented all experiments using the Pytorch framework and two NVIDIA RTX 255 

2080 GPUs. The Python code, models, and full results are available at 256 

https://github.com/MarioProjects/MnMsCardiac (Parreño-Lara et al. 2021). 257 

RESULTS 258 

Training 259 

Deep Learning requires a great amount of data to train a model so that removing a part of the 260 

database for validation poses a problem of underfitting. By reducing the training data, a risk 261 

of losing important patterns/trends in data set exists, which in turn increases error induced by 262 

https://github.com/MarioProjects/MnMsCardiac


bias. In this context arises K-Fold cross-validation which is a method that provides a wide 263 

dataset for training the model and also leaves a wide dataset for validation. In K-Fold cross 264 

validation, the data is divided into k subsets. The holdout method is repeated k times, such 265 

that each time, one of the k subsets is used as the test set/validation set and the other k-1 266 

subsets are put together to form a training set. The error estimation is averaged over all k 267 

trials to get total effectiveness of the model. 268 

This study employed a 5-fold cross-validation procedure to obtain more reliable results. To 269 

conduct this procedure, researchers split the available sample into five parts, using four parts 270 

for training and the fifth part for validation. Excluding the validation fold from the training 271 

task, the researchers calculated the global metrics by averaging the results of varying the 272 

validation fold among the five possible combinations. 273 

The accuracy of the trained Convolutional Neural Networks was assessed through four 274 

parameters: (i) Precision; (ii) Recall; (iii) F1 score; and (iv) Intersection over Union (IoU). 275 

Precision is the ratio of correctly predicted positive observations to the total predicted 276 

positive observations (Eq. 1), whereas Recall is the ratio of correctly predicted positive 277 

observations to all observations (Eq. 2). F1 score is the weighted average of Precision and 278 

Recall, considering, therefore, both false positives and false negatives (Eq. 3). Finally, 279 

Intersection over Union (IoU) is an evaluation metric used to measure the accuracy of an 280 

object detector on a particular dataset. This parameter compares the ground-truth pixels (i.e., 281 

the hand labeled pixels from the testing set that specify where in the image the distress is) 282 

and the predicted pixels (Eq. 4). 283 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (2) 



𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 · 𝑅𝑒𝑐𝑎𝑙𝑙 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(3) 

𝐼𝑜𝑈 =
𝐶𝑜𝑚𝑚𝑜𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑛𝑑 − 𝑡𝑟𝑢𝑡ℎ 𝑎𝑛𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐺𝑟𝑜𝑢𝑛𝑑 − 𝑡𝑟𝑢𝑡ℎ 𝑝𝑖𝑥𝑒𝑙𝑠 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠
 

(4) 

where True Positives (TP) are the correctly predicted images with distresses; True Negatives 284 

(TN) are the correctly predicted images without distresses; False Positives (FP) are images 285 

predicted as damaged but actually there is no distress; and False Negatives (FN) are images 286 

with distresses predicted as without damage. 287 

The first multi-label classification network (CNN1) yielded results of 0.9317 precision, 288 

0.9252 recall,  and 0.9262 F1 score. Figure 5 shows the ROC curve for CNN1. This result 289 

led to the choice of a threshold of 0.8% for false positives, which meant that four of every 290 

1,000 images that did not contain distresses were classified with at least one “damage”, 291 

leaving the precision for true positives still very high at 92.35%. CNN2, which focused on 292 

distress quantification via image segmentation, yielded a global intersection over union (IoU) 293 

of 0.6821 for longitudinal cracks, 0.6709 for transverse cracks, 0.8760 for patches and 0.6870 294 

for potholes. 295 

Table 2 shows the results for each class for CNN1, where the precision for each of the 296 

different types of distresses is higher than 0.9. These high values are a result of the quality of 297 

the data: the collected images for training have the same lighting conditions, the video camera 298 

was set at a constant position, and damages were sufficiently distinct. Pavement inspections 299 

can replicate this uniformity easily by conducting data collection under the proper weather 300 

and lighting conditions. Doing so produces a high-quality dataset with minimal variability 301 

among the classes, resulting in highly accurate and reliable classifications. 302 

Among the incorrect classifications, 1.6% of transverse cracking images, mainly presenting 303 

wide crack widths, were mislabeled as potholes, while some images initially classified as 304 



raveling and potholes were actually longitudinal cracks. These latter improper classifications 305 

usually occurred when the distress was at the edges of the image. Additionally, some potholes 306 

that occupied a large area of the image were wrongly classified as raveling and patching. 307 

Researchers also measured fold training times and inference times. The average Resnet34 308 

inference time was 0.005 seconds, and the training time per fold was 2.5 hours, while this 309 

training time for distress quantification was around 1.25 hours per fold. 310 

Validation 311 

The performance of the proposed method was assessed considering an unseen dataset, i.e., 312 

images not used in training. This dataset, consisting of a total of 12,788 images, was obtained 313 

from a 4.262 km road section of the data collection that was not considered for training. 314 

Particularly, these images were used to validate only CNN1 that aims to identify and classify 315 

the diverse types of distress existing in an image or block. To determine the accuracy of the 316 

proposed method, the parameters of Precision, Recall, and F1 score were estimated resulting 317 

in 0.9733, 0.9146, and 0.9431, respectively. Comparing these values with those obtained in 318 

training, it can be concluded that the method proposed in this study is able to accurately 319 

identify and classify urban pavement distresses. 320 

DISCUSSION 321 

Currently, urban pavement assessment is performed through visual inspections that leads to 322 

a subjective evaluation of pavement condition. To minimize this subjectivity and achieve a 323 

more efficient pavement assessment, various studies have recently considered using image 324 

processing techniques to identify distresses. 325 

The most accurate, reliable, and efficient methods are those based on Deep Learning, 326 

particularly through the application of Convolutional Neural Networks (Zhang et al. 2016; 327 

Wang and Hu 2017; Jenkins et al. 2018; Carr et al. 2018; Park et al. 2019), but most of these 328 



studies focused only on crack detection. By contrast, this research presents a two-step 329 

procedure consisting of two concatenated Convolutional Neural Networks to automatically 330 

identify and quantify not only longitudinal and transverse cracks, but also alligator cracking, 331 

raveling, potholes, and patching. As a result, the proposed procedure allows pavement 332 

engineers to identify and classify pavement urban distresses with an precision of more than 333 

0.93 on average. 334 

This study also used a total of 29,846 pavement images, many more than the number of 335 

images considered in previous studies (Table 1). This research required a greater number of 336 

pavement images because it included more types of distresses, and this high-quality and 337 

extensive dataset led to a highly accurate classification of the different urban pavement 338 

distresses. 339 

The findings of this research yielded a new methodology for assessing urban pavement 340 

condition automatically (Figure 6). This procedure consists mainly of the four steps of the 341 

research method defined in this study and an additional stage focused on pavement condition 342 

estimation. The main strength of this methodology is that it allows pavement engineers to 343 

perform a more efficient and reliable pavement assessment, minimizing the cost and time 344 

required for the current visual surveys. 345 

A recent pilot study in the city of Valencia surveyed a total of 50 km of urban roads. The 346 

data collection took approximately 5 hours, and the data reduction and distress classification 347 

and quantification took 18 hours (corresponding with stages 1-4). This automatic inspection 348 

took a full-time expert approximately three days, while a manual visual inspection of these 349 

same urban roads might have taken the same full-time expert up to four weeks. 350 

The first stage of the proposed methodology is the automatic pavement data collection 351 

through video cameras installed on a specific vehicle or even on public vehicles, such as 352 



police cars or public transport buses. It is required to record the pavement from a zenithal 353 

position – at 1.4 m high – to avoid image distortion and, additionally, to set the camera to 30 354 

fps to ensure the recording of the entire road length at the maximum urban speed – 50 km/h 355 

–. The second stage involves processing the video to extract the pavement images and 356 

dividing each frame into blocks of 256 x 256 pixels. A script programmed in Python performs 357 

this stage automatically, removing duplicated images when the vehicle stops – e.g., at traffic 358 

lights –. The third stage consists of identifying and classifying pavement distresses by 359 

analyzing each block through the first CNN (CNN1) proposed in this study. This technic is 360 

able to predict all types of distress included in each image, i.e., it consists in a multi-labeling 361 

task. After their identification, the different distresses must be quantified – length and width 362 

of cracks and area of raveling, potholes, and patching –. This task is developed by the second 363 

CNN trained in this study (CNN2). Finally, the last step of the proposed methodology aims 364 

at estimating the condition of the pavement. Among the diverse indexes proposed in the 365 

literature, the Pavement Condition Index (PCI) (ASTM 2003) is the most commonly used. 366 

Although this index depends on a total of 19 types of distresses, it might be used to estimate 367 

urban pavement condition because the method proposed in this study is able to identify the 368 

most common urban pavement distresses. Nevertheless, other indexes such as the Urban 369 

Pavement Condition Index (UPCI) (Osorio et al., 2014) might be used. Regardless the used 370 

index, the most important contribution of this research is that the proposed method provides 371 

the data needed to estimate these indexes, i.e., pavement distress identification and 372 

quantification. 373 

CONCLUSIONS AND FURTHER RESEARCH 374 

A critical step in managing road pavement is the assessment of pavement condition. Although 375 

diverse objective indexes (e.g., IRI) are collected automatically to assess pavement condition 376 



on rural roads, the most commonly used method in urban environments is the visual survey 377 

conducted by a technician, which introduces a certain degree of subjectivity into the 378 

assessment. 379 

To minimize this subjectivity, this study proposes a new two-step procedure to identify and 380 

quantify road distresses through the application of Convolutional Neural Networks. While 381 

most previous research focused only on crack detection, this method can classify the most 382 

common urban road distresses (longitudinal, transverse, and alligator cracks, raveling, 383 

potholes, and patches) and quantify their severity – geometric features –. 384 

This procedure consists of two concatenated CNNs. The first one identifies all urban 385 

pavement distresses that an image contains with 0.9317 precision, 0.9252 recall, and 0.9262 386 

F1 score. The second CNN quantify the severity of each predicted distress in those images 387 

containing longitudinal cracks, transverse cracks, potholes, and/or patches. As a result, the 388 

IoU of the distresses quantification is more than 0.65 for all cases. Therefore, the proposed 389 

two-step procedure consisting of two concatenated convolutional neural networks yields a 390 

highly accurate and reliable classification of urban pavement distresses. 391 

Finally, a new methodology to automatically assess pavement condition is proposed, 392 

consisting of five stages: (i) pavement data collection by video cameras installed at the rear 393 

of a vehicle to ensure a zenithal position, (ii) automatic video filtering and image 394 

preprocessing to produce 256-x-256-pixel images, (iii) classification of pavement distresses, 395 

(iv) quantification of pavement distresses, and (v) an estimation of pavement condition. 396 

A pilot study based on stages i-iv of this methodology showed that this approach allows 397 

pavement engineers to perform a more efficient and reliable pavement assessment, 398 

minimizing the cost and time required by the current visual surveys. 399 



Although the findings of this study are encouraging, further research is needed to cover some 400 

limitations of this study. The trained Convolutional Neural Networks can only identify those 401 

distresses associated with changes in the image properties, i.e., texture, contrast, brightness, 402 

and so on. However, those distress types that do not present a deterioration on the pavement 403 

surface, such as shoving or rutting, cannot be detected by using the proposed procedure 404 

focused on two-dimensional images. Three-dimensional image processing and the analysis 405 

of z-acceleration experienced by the vehicle may help to solve this issue. One interesting 406 

solution might be to embed an accelerometer in the video camera (Coenen and Golroo 2017). 407 

The images used for training in this study were collected under favorable weather and 408 

lighting conditions, but underexposed or overexposed images might not be classified 409 

properly. These images usually occur when the vehicle moves from darkness into light and 410 

vice versa, yielding a sudden large lighting variation. Therefore, researchers need to collect 411 

additional images under non-favorable conditions to extend the testing and application of the 412 

proposed procedure. Applying this methodology to rural roads would require the use of a 413 

more sophisticated video camera to avoid blurred images during pavement data collection. 414 
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Table 1. Studies using CNNs for pavement crack detection 520 
Study Camera Resolution (pixels) # images Block (pixels) 

Zhang et al. (2016) Smartphone 3264 x 2448 500 99 x 99 

Wang and Hu (2017) iPhone 6 960 x 704 510 32 x 32 

64 x 64 

Jenkins et al. (2018) iPhone 5 480 x 320 118 572 x 572 

Carr et al. (2018) iPhone 4000 x 3000 118 480 x 340 

Maeda et al. (2018) LG Nexus 5X 600 x 600 9,053 600 x 600 

Park et al. (2019) Black Box Camera 1920 x 1080 664 40 x 40 

521 



Table 2. Per-class multi-label metrics 522 
Distress  Precision Recall F1 Score 

Road Marking 0.9872 0.9824 0.9833 

Manhole 0.9562 0.9504 0.9513 

Longitudinal cracking 0.9124 0.9111 0.9115 

Transverse cracking 0.9189 0.9177 0.9179 

Alligator cracking 0.9200 0.9194 0.9194 

Raveling 0.9056 0.9044 0.9046 

Potholes 0.9134 0.9122 0.9122 

Patching 0.9128 0.9125 0.9128 

523 



FIGURE CAPTIONS 524 

Fig. 1. Convolutional Neural Network structure. 525 

Fig. 2. Instrumented vehicle for data collection. 526 

Fig. 3. Image preprocessing: (a) raw image; (b) filtered image; (c) division of the image into 527 

blocks. 528 

Fig. 4. Two-step CNN procedure. 529 

Fig. 5. ROC Curve for classification task. 530 

Fig. 6. Methodology for pavement condition assessment. 531 


