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Abstract: Aggregation is a mathematical process consisting in the fusion of a set of values into a
unique one and representing them in some sense. Aggregation functions have demonstrated to
be very important in many problems related to the fusion of information. This has resulted in the
extended use of these functions not only to combine a family of numbers but also a family of certain
mathematical structures such as metrics or norms, in the classical context, or indistinguishability
operators or fuzzy metrics in the fuzzy context. In this paper, we study and characterize the functions
through which we can obtain a single weak fuzzy (quasi-)norm from an arbitrary family of weak
fuzzy (quasi-)norms in two different senses: when each weak fuzzy (quasi-)norm is defined on a
possibly different vector space or when all of them are defined on the same vector space. We will
show that, contrary to the crisp case, weak fuzzy (quasi-)norm aggregation functions are equivalent
to fuzzy (quasi-)metric aggregation functions.
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1. Introduction

In mathematics, an aggregation procedure amounts to a method for merging a family
of structures of the same type into the only structure of this type. For example, the union
or the intersection of subsets of a nonempty set X gave rise to another subset of X by
aggregating the family of sets. On the other hand, given a finite family {di : i = 1, . . . , n}
of metrics on X, then max{d1, . . . , dn} is also a metric on X that is obtained by merging the
original family of metrics. This metric can be constructed by means of the composition of
the following functions:

• d : X× X → [0,+∞)n given by d(x, y) = (d1(x, y), . . . , dn(x, y));
• f : [0,+∞)n → [0,+∞) given by f (x1, . . . , xn) = max{x1, . . . , xn}.

In the literature, we can find other schemes of merging mathematical structures. If
{(Xn, dn) : n ∈ N} is a countable collection of metric spaces then d(x, y) = ∑∞

n=1
min{dn(xn,yn),1}

2n

is a metric on ∏n∈N Xn, which is compatible with product topology. In this case, the new
metric on ∏n∈N Xn can be obtained with the composition of the following functions:

• d̃ : ∏n∈N Xn ×∏n∈N Xn → [0,+∞)N given by d̃(x, y) = (dn(xn, yn))n∈N;

• f : [0,+∞)N → [0,+∞) defined as f (x) = ∑∞
n=1

min{xn ,1}
2n .

In a similar manner, the sup norm ‖ · ‖∞ on Rn can be viewed as the aggregation of the
absolute value norm on R. This means that this norm is the composition of the following
functions:

• ãbs : Rn → [0,+∞)n given by ãbs(x1, . . . , xn) = (|x1|, . . . , |xn|);
• f : [0,+∞)n → [0,+∞) given by given by f (x1, . . . , xn) = max{x1, . . . , xn}.

In all the above cases, a function f is involved in the aggregation process, so it is
natural to study which functions allow making these kinds of aggregations. This research

Symmetry 2021, 13, 1908. https://doi.org/10.3390/sym13101908 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5880-0102
https://orcid.org/0000-0001-5141-9977
https://doi.org/10.3390/sym13101908
https://doi.org/10.3390/sym13101908
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13101908
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13101908?type=check_update&version=1


Symmetry 2021, 13, 1908 2 of 16

has already been carried out for some mathematical structures. Concretely, Borsík and
Doboš [1,2] have analyzed when, given a function f : [0,+∞)I → [0,+∞) and an arbitrary
family {(Xi, di) : i ∈ I} of metric spaces, the function f ◦ d̃ : (∏i∈I Xi) × (∏i∈I Xi) →
[0,+∞) given by f ◦ d̃(x, y) = f ((di(xi, yi))i∈I) is a metric on the cartesian product ∏i∈I Xi.
The corresponding study for quasi-metric spaces was made by Mayor and Valero [3].
Related results appear in the papers [4–6], where the authors characterize functions f :
[0,+∞)k → [0,+∞) that allow combining a finite collection of pseudometrics (with respect
to metrics and quasi-metrics) {di : i = 1, . . . , k} defined over the same set X into a single
one pseudometric (with respect to metric and quasi-metric) on X given by f ◦ d(x, y) =
f (d1(x, y), . . . , dk(x, y)) for all x, y ∈ X.

In addition to functions that merge metrics, some researchers have characterized
functions that aggregate other mathematical structures, such as norms. Thus, Herburt
and Moszyńska [7] studied the functions f : [0,+∞)2 → [0,+∞) which produces the
function ‖ · ‖ f : V1 ×V2 → [0,+∞) given by ‖(v1, v2)‖ f = f (‖v1‖1, ‖v2‖2) be a norm on
V1 ×V2, where (V1, ‖ · ‖1), (V2, ‖ · ‖2) are two normed vector spaces. A similar study for
asymmetric norms was developed by Martín, Mayor and Valero [8]. Recently, Pedraza
and Rodríguez-López [9] have addressed the problem of the aggregation of norms on the
same set.

Until now, we have only mentioned crisp mathematical structures. Nevertheless,
several authors have considered the aggregation of fuzzy structures. Saminger, Mesiar and
Bodenhofer [10] characterized the aggregation functions that preserve ∗-transitive fuzzy
binary relations, where ∗ is a t-norm. Later on, a related problem about the preservation
of ∗-transitivity of fuzzy binary relations was studied by Drewniak and Dudziak [11]
(see also [12,13]). Moreover, Mayor and Recasens [14] obtained a characterization of the
functions through which we can fuse indistinguishability operators, which are a special
kind of ∗-transitive fuzzy binary relations (see also [15,16]).

Recently, Valero, Pedraza and Rodríguez-López [17] have studied the functions that
permit the generation of a unique fuzzy (quasi-)metric from a collection of fuzzy (quasi-
)metrics. They proved that, compared to the classical case, the functions aggregating fuzzy
metrics are exactly the same than compared to the functions that aggregate fuzzy quasi-
metrics. They also proved some results about the aggregation of other fuzzy structures
such as fuzzy preorders and indistinguishability operators.

In this article, we continue the study of functions that aggregate a particular fuzzy
structure: weak fuzzy (quasi-)norms [18]. This fuzzy structure is a generalization of the
concept of fuzzy norm considered by Goleţ [19], and it is useful when studying duality
in the fuzzy context [18]. Here, we characterize the functions that can afford to obtain
a weak fuzzy (quasi-)norm starting from an arbitrary family of fuzzy quasi-norms. We
consider two types of aggregation: on sets and on products (see Definition 4). We are able
to characterize these functions with two methods: on the one hand, using the properties
of ∗-supmultiplicativity (see Definition 7) and isotonicity; on the other hand, using the
property of conservation of asymmetric ∗-triangular triplets (see Definition 5). These results
can be considered, in some sense, similar to those obtained in the crisp case. Surprisingly,
and in contrast with the crisp case, functions that aggregate weak fuzzy (quasi-)norm are
the same as the functions that aggregate fuzzy (quasi-)metrics (see Corollaries 1 and 2).

2. Aggregation of Metrics and Norms

In this section, we compile some results about the aggregation of metrics and norms
that constitute a necessary antecedent of our study. We first establish some notations.

We will denote by I an arbitrary index set. The elements of the Cartesian product
[0,+∞)I will be written down in bold letters a. Moreover, and for the sake of simplicity,
given a ∈ [0,+∞)I , its ith coordinate a(i) will be denoted by ai for any i ∈ I.

We notice that we can endow the set [0,+∞)I with a partial order � defined as a � b
if ai ≤ bi for all i ∈ I. Furthermore, 0 represents the element of [0,+∞)I such that 0i = 0
for all i ∈ I.
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As we have sketched, in the Introduction, that classical constructions of metrics in a
Cartesian product are obtained by composing an appropriate function with a Cartesian
product of metrics. The study of these functions, called metric preserving functions, has been
mainly developed by Borsík and Doboš [1,2]. The corresponding study for quasi-metrics
was made by Mayor and Valero [3], who characterized the so-called quasi-metric aggregation
functions. In both cases, the underlying idea is to construct a (quasi-)metric in the Cartesian
product of a family of (quasi-)metric spaces.

Another related problem was addressed by Pradera and Trillas [6], who studied how
to merge a family of pseudometrics defined over the same set into a single one. This
question for metrics has been also considered recently by Mayor and Valero [4]. Therefore,
we have two different but related problems, which gave rise to two different families of
functions that we next define using the terminology of [9,17,20].

Definition 1 ([1,3,4]). A function f : [0,+∞)I → [0,+∞) is called the following:

• A (quasi-)metric aggregation function on products if given an arbitrary family of (quasi-
)metric spaces {(Xi, di) : i ∈ I} then f ◦ d̃ is a (quasi-)metric on ∏i∈I Xi where d̃ :
(∏i∈I Xi)× (∏i∈I Xi)→ [0,+∞)I is defined as

(d̃(x, y))i = di(xi, yi)

for all i ∈ I, x, y ∈ ∏i∈I Xi;
• A (quasi-)metric aggregation function on sets if given a family of (quasi-)metrics {di : i ∈

I} on an arbitrary nonempty set X, then f ◦ d is a (quasi-)metric on X where d : X× X →
[0,+∞)I is defined as follows:

(d(x, y))i = di(x, y)

for all i ∈ I, x, y ∈ X.

Recall that a triplet (a, b, c) ∈ ([0,+∞)I)3 is a triangular triplet if ai ≤ bi + ci,
bi ≤ ai + ci and ci ≤ ai + bi for all i ∈ I (see [2]). As we next observe, this con-
cept was introduced in [1] for characterizing metric aggregation functions on products.
Moreover, if (a, b, c) solely verifies that ai ≤ bi + ci for all i ∈ I, then it is called
an asymmetric triangular triplet ([3]). A function f : [0,+∞)I → [0,+∞) is said to pre-
serve (asymmetric) triangular triplets if given an asymmetric triangular triplet (a, b, c) ∈
([0,+∞)I)3, then ( f (a), f (b), f (c)) is an asymmetric triangular triplet.

Borsík and Doboš [1] characterized metric aggregation functions on products in the
following manner.

Theorem 1 ([1]). A function f : [0,+∞)I → [0,+∞) is a metric aggregation function on
products if and only if f−1(0) = {0} and f preserves triangular triplets.

On its part, Mayor and Valero [3] proved the next result which characterizes the
functions merging quasi-metrics on products.

Theorem 2 ([3]). Consider a function f : [0,+∞)I → [0,+∞). Then, the following statements
are equivalent:

(1) f is a quasi-metric aggregation function on products;
(2) f−1(0) = {0} and f preserves asymmetric triangular triplets;
(3) f−1(0) = {0}, f is subadditive and isotone.

The two previous theorems bring to light that every quasi-metric aggregation func-
tion on products is a metric aggregation function on products. However, the reciprocal
implication does not hold in general [3] (Example 8).

On the other hand, if you consider (asymmetric) normed vector spaces rather than
(quasi-)metric spaces, the concepts of (asymmetric) norm aggregation function on products
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and (asymmetric) norm aggregation function on sets can be considered in a natural manner.
The former has been characterized in [7,8], while the latter has been studied in [9]. As the
main objective of this paper is to study this problem in the fuzzy context, we recall the
known results for crisp (asymmetric) norms. In the following, a function f : [0,+∞)I →
[0,+∞) is said to be positive homogeneous if f (λ · x) = λ f (x) for all λ ≥ 0, x ∈ [0,+∞)I .

We first recall the following result showing that the family of asymmetric norm
aggregation functions on products is equal to the family of norm aggregation functions
on products.

Theorem 3 ([7–9]). Given a function f : [0,+∞)I → [0,+∞), the following statements are
equivalent:

(1) f is an asymmetric norm aggregation function on products;
(2) f is a norm aggregation function on products;
(3) ((R2)I , ‖ · ‖ f ) is a normed space where ‖x‖ f = f ((‖xi‖)i∈I) and ‖ · ‖ is the Euclidean norm

for all x ∈ (R2)I ;
(4) f−1(0) = 0, f is positive homogeneous, and it preserves asymmetric triangular triplets;
(5) f−1(0) = 0, f is positive homogeneous, and it preserves triangular triplets;
(6) f−1(0) = 0, f is positive homogeneous, subadditive and isotone.

From Theorems 1, 2 and 3, we have it that every (asymmetric) norm aggregation
function on products is also a (quasi-)metric aggregation function on products. However,
the reciprocal implication does not hold in general. We can provide an easy example.

Example 1. Let f : [0,+∞)→ [0,+∞) be given by f (x) = min{x, 1}. It is straightforward to
check that f−1(0) = 0, and f is subadditive and isotone. Therefore, f is a (quasi-)metric aggregation
function on sets. However, f is not positive homogeneous since, for example, f

(
4 · 1

2

)
= 1 6= 2 =

4 f
(

1
2

)
. Hence, f is not an asymmetric norm aggregation function on products.

In the case of the aggregation on sets, norm aggregation functions and asymmetric
norm aggregation functions are different classes of functions.

Theorem 4 ([9]). Let f : [0,+∞)I → [0,+∞) be a function and let g be the restriction of f to
(0,+∞)I ∪ {0}. The following conditions are equivalent:

(1) f is a norm aggregation function on sets;
(2) For every family of norms {ni : i ∈ I} on R2, (R2, f ◦ n) is a normed space;
(3) g−1(0) = 0, g is positive homogeneous, and it preserves asymmetric triangular triplets;
(4) g−1(0) = 0, g is positive homogeneous, and it preserves triangular triplets;
(5) g−1(0) = 0, g is positive homogeneous, subadditive and isotone.

Theorem 5 ([9]). Let f : [0,+∞)I → [0,+∞) be a function. The following statements are equivalent:

(1) f is an asymmetric norm aggregation function on sets;
(2) For every family of asymmetric norms {ni : i ∈ I} on R2, (R2, f ◦ n) is an asymmetric

normed space;
(3) f (0) = 0; if a, b ∈ f−1(0) then there exists j ∈ I such that aj = bj = 0; f is positive

homogeneous, and it preserves asymmetric triangular triplets;
(4) f (0) = 0; if a, b ∈ f−1(0) then there exists j ∈ I such that aj = bj = 0; f is positive

homogeneous, and it preserves triangular triplets;
(5) f (0) = 0; if a, b ∈ f−1(0) then there exists j ∈ I such that aj = bj = 0; f is positive

homogeneous, subadditive and isotone.
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3. Weak Fuzzy (Quasi-)Norms

As the goal of the paper is to study in the fuzzy context those functions that aggregate
fuzzy norms in the spirit of the results of the previous section, in the following, we present
the basic definitions about fuzzy norms and some examples. First, we remind the reader of
the well-known notion of a triangular norm.

Definition 2 ([21]). We say that a binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a triangular
norm or a t-norm if, for every a, b, c, d ∈ [0, 1], it satisfies the following properties:

• a ∗ (b ∗ c) = (a ∗ b) ∗ c;
• a ∗ b = b ∗ a;
• a ∗ 1 = a;
• a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

A t-norm ∗ is said to be continuous if ∗ is a continuous function.

Example 2 ([21]). Some of the most renowned examples of triangular norms are the following:

• x ∧ y := min{x, y}; (minimum t-norm)
• x ∗P y := x · y; (product t-norm)

• x ∗D y :=


x if y = 1,
y if x = 1,
0 otherwise.

(drastic t-norm)

The origins of fuzzy normed spaces can be found in the concept of probabilistic
normed space and Šerstnev space [22,23]. This notion was first adapted to the fuzzy
context by Katsaras [24]. Later on, Cheng and Mordeson [25] introduced a new definition
of a fuzzy norm, which induces a fuzzy metric in the sense of Kramosil and Michalek [26].
Bag and Samanta considered a more general concept of fuzzy norm [27] by removing the
left-continuity condition (see next definition). In this paper, we use the concept of fuzzy
norm as considered by Goleţ [19] as well as the terminology of [18,28] relative to (weak)
fuzzy (quasi-)norms.

Definition 3 ([18,19,28]). A weak fuzzy quasi-norm on a real vector space V is a pair (N, ∗)
such that ∗ is a continuous t-norm and N is a fuzzy set on V × [0,+∞) such that, for any vectors
x, y ∈ V and for any parameters t, s > 0, it satisfies the following conditions:

(FQN1) N(x, 0) = 0;
(FQN2) N(x, t) = N(−x, t) = 1 for all t > 0 if and only if x = 0V ;
(FQN3) N(λx, t) = N

(
x, t

λ

)
for all λ > 0;

(FQN4) N(x, t) ∗ N(y, s) ≤ N(x + y, t + s);
(FQN5) N(x, ·) : [0, ∞)→ [0, 1] is left-continuous.

If N also satisfies the following:

(FQN6) limt→+∞ N(x, t) = 1

then (N, ∗) is called a fuzzy quasi-norm.
A (weak) fuzzy norm on a real vector space V is a (weak) fuzzy quasi-norm (N, ∗) on V

such that the following is the case.

(FQN3’) N(λx, t) = N
(

x, t
|λ|

)
for all λ ∈ R\{0}.

A (weak) fuzzy (quasi-)normed space is a triple (V, N, ∗) such that V is a real vector space
and (N, ∗) is a (weak) fuzzy (quasi-)norm on V.

Remark 1. Notice that the definition of fuzzy norm that we have considered is that of Goleţ. It
differs slightly from that defined in [25] by Cheng and Mordeson since they considered a real or
complex vector space V. They allow that the parameter t also takes negative values by considering
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that N(x, t) = 0 for every t < 0, and they only create the definition for the minimum t-norm. The
above definition is equal to that given in [18,28].

There are also other notions of a fuzzy norm that modify the previous conditions as the
elimination of (FQN5) [27].

Remark 2. The definition of a (weak) fuzzy (quasi-)normed space (V, N, ∗) given above requires
the continuity of the triangular norm ∗. This property is used for ensuring that (N, ∗) endows
the vector space V with a classical topology τN (see [18,28]) having as its base, {BN(x, r, t) : x ∈
V, r ∈]0, 1[, t > 0}, where

BN(x, r, t) = {y ∈ V : N(y− x, t) > 1− r}.

Despite this, since we do not need (N, ∗) generating a topology, as we can suppose that ∗ is
an arbitrary t-norm rather than a continuous one.

Remark 3. If (V, N, ∗) is a (weak) fuzzy (quasi-)normed space then N(x, ·) : [0,+∞)→ [0,+∞)
is an isotone function for every x ∈ V. In fact, given x ∈ V, if t < s then, by (FQN2) and (FQN4),
we have that N(v, t) = N(v, t) ∗ 1 = N(v, t) ∗ N(0V , s− t) ≤ N(v + 0V , t + s− t) = N(v, s).
We will use this fact throughout the paper.

Example 3 (cf. [28,29] [Example 1]). Let (V, q) be a quasi-normed space. Let k, m, n ∈ R+ be
fixed. Define N : V × [0,+∞)→ [0, 1] as the following.

N(x, t) =

0 if t = 0
ktn

ktn + mq(x)
if t > 0

Then, (V, N, ∗) is a fuzzy quasi-normed space for every continuous t-norm ∗. If k = n =
m = 1 then (N, ∗) is called the standard fuzzy quasi-norm, and it will be denoted by (Nq, ∗).

Example 4. Let a ∈ [0, 1[ and consider Na : R× [0,+∞)→ [0, 1] defined as the following.

Na(x, t) =


1 if t > |x|
a if 0 < t ≤ |x|
0 if t = 0

.

We can easily prove that (R, Na, ∗) is a fuzzy normed space for every continuous t-norm ∗.

The reason for having chosen the definition of weak fuzzy (quasi-)norm as considered
in 3 instead of other definition of fuzzy norm is that every weak fuzzy (quasi-)norm (N, ∗)
on a vector space V induces a fuzzy (quasi-)metric (MN , ∗) on V (in the sense of the
paper [26]) given as MN(x, y, t) = N(y− x, t) for all x, y ∈ V and all t ≥ 0 (see [18]). Since
(quasi-)metric aggregation functions have been already characterized in [17] and we plan
to characterize here the functions that aggregate fuzzy (quasi-)norms, it is natural to select
a concept of fuzzy (quasi-)norm that allows constructing a fuzzy (quasi-)metric.

4. Aggregation of Weak Fuzzy (Quasi-)Norms

In Section 2 we have summarized the known results about the aggregation of (quasi-)metrics
and asymmetric norms on products and on sets. On the other hand, in [17], the functions
that aggregate fuzzy (quasi-)metrics on products and on sets were completely characterized.
Nevertheless, to the best of our knowledge, the problem for fuzzy (quasi-)norms has not
been already solved. The goal of this section is fill in this gap. We first set the definitions of
the functions that we intend to characterize.

Definition 4. A function F : [0, 1]I → [0, 1] is said to be the following:
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• A weak fuzzy (quasi-)norm aggregation function on products if given a t-norm ∗ and
a collection of weak fuzzy (quasi-)normed spaces{(Vi, Ni, ∗) : i ∈ I} then (F ◦ Ñ, ∗) is a
weak fuzzy (quasi-)norm on ∏i∈I Vi where Ñ : ∏i∈I Vi × [0,+∞)→ [0, 1]I is given by the
following:

(Ñ(x, t))i = Ni(xi, t)

for every x ∈ ∏i∈I Vi and t ≥ 0.
If the previous condition is only verified for a t-norm ∗, then F is called an ∗-weak fuzzy
(quasi-)norm aggregation function on products.

• A weak fuzzy (quasi-)norm aggregation function on sets if given a t-norm ∗ and a
collection of weak fuzzy (quasi-)norms {(Ni, ∗) : i ∈ I} defined on a real vector space V then
(F ◦ N, ∗) is a weak fuzzy (quasi-)norm on V where N : V × [0,+∞)→ [0, 1]I is given by
the following:

(N(x, t))i = Ni(x, t)

for every x ∈ V and t ≥ 0.
If the previous condition is only verified for a t-norm ∗, then F is called a ∗-weak fuzzy
(quasi-)norm aggregation function on sets.

Remark 4. It can be easily proved that a weak fuzzy (quasi-)norm aggregation function on products
F : [0, 1]I → [0, 1] is also a weak fuzzy (quasi-)norm aggregation function on sets. Trivially, if the
cardinality of I is one, then the two notions are equivalent. However, if the cardinality of I is greater
than one, the two concepts are different in general as we next illustrate with an example.

Example 5. Consider I an index set and j ∈ I is fixed. Denote by Pj the jth projection. It is obvious
that Pj is a weak fuzzy (quasi-)norm aggregation function on sets since if {(Ni, ∗) : i ∈ I} is a
collection of weak fuzzy (quasi-)norms on a vector space V, then (Pj ◦ N, ∗) = (Nj, ∗).

Nevertheless, if {(Vi, Ni, ∗) : i ∈ I} is a collection of nontrivial weak fuzzy (quasi-)normed
spaces, consider x ∈ ∏i∈I Vi such that xj = 0Vj and xi 6= 0Vi whenever i 6= j. Then F ◦ Ñ(x) = 0,
but x 6= 0∏i∈I Vi , so (F ◦ Ñ, ∗) is not a weak fuzzy quasi-norm on ∏i∈I Vi.

In the following, we will introduce several valuable concepts used in [17] for proving
a characterization of fuzzy (quasi-)metric aggregation functions which will be also useful
in our work. Actually, it will be shown that weak fuzzy (quasi-)norm aggregation functions
are exactly the fuzzy (quasi-)metric aggregation functions. Notice that this is not true in
the crisp context where norm aggregation functions are metric aggregation functions, but
the reciprocal implication does not hold in general [2,3,8,9].

We begin by recalling the notion of (asymmetric) ∗-triangular triplet [14,17] in which
we will use the operation ∗I on [0, 1]I defined as (a ∗I b)i = ai ∗ bi for every i ∈ I and every
a, b ∈ [0, 1]I .

Definition 5 ([14,17]). Consider an index set I and a t-norm ∗. A triplet (a, b, c) ∈ ([0, 1]I)3 is
said to be the following:

• ∗-triangular if
a ∗I b � c, a ∗I c � b and b ∗I c � a,

in other words,

ai ∗ bi ≤ ci, ai ∗ ci ≤ bi and bi ∗ ci ≤ ai, for every i ∈ I.

• Asymmetric ∗-triangular if a ∗I b � c.

If (a, b, c) is an asymmetric ∗-triangular triplet for every t-norm ∗, then (a, b, c) is called
a(n) (asymmetric) triangular triplet.
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Example 6. Consider a weak fuzzy (quasi-)normed space (V, N, ∗). Then (N(x, t), N(y, s), N(x+
y, t + s)) is an asymmetric ∗-triangular triplet for every vector x, y, z ∈ V and every t, s > 0 .

Definition 6 ([17]). Consider an index set I and a t-norm ∗. A function F : [0, 1]I → [0, 1]
is said to preserve ∗-triangular (asymmetric ∗-triangular) triplets if for every ∗-triangular
(asymmetric ∗-triangular) triplet (a, b, c) ∈ ([0, 1]I)3 then (F(a), F(b), F(c)) is a ∗-triangular
(an asymmetric ∗-triangular) triplet.

If F preserves ∗-triangular (asymmetric ∗-triangular) triplets for every t-norm ∗, then F is
said to preserve triangular (asymmetric triangular) triplets.

We next provide a concept that is a particular case of the concept of domination
as considered in [10]. Domination has been demonstrated to be useful in the study of
the preservation by means of aggregation functions of some properties of certain fuzzy
structures [10,17,30]. It has also been used for constructing other fuzzy structures such as
m-polar ∗-orderings [31].

Definition 7 ([10,17]). Given a triangular norm ∗, a function F : [0, 1]I → [0, 1] is
∗-supmultiplicative if the following is the case.

F(a) ∗ F(b) ≤ F(a ∗I b), for every a, b ∈ [0, 1]I .

We will say that F is supmultiplicative if F is ∗-supmultiplicative for every t-norm ∗.

∗-supmultiplicative functions and functions preserving (asymmetric) ∗-triangular
triplets can appear to be unrelated concepts. However, both have been used for character-
izing, in different senses, the functions preserving the property of ∗-transitivity of fuzzy
binary relations [10,14]. Its relationship has been disclosed in [17] in the following way.

Proposition 1 ([17] (Proposition 3.30)). Let F : [0, 1]I → [0, 1] be a function and ∗ be a t-norm.
Each of the following statements implies its successor:

(1) F preserves asymmetric ∗-triangular triplets;
(2) F preserves ∗-triangular triplets;
(3) F is ∗-supmultiplicative.

If F is isotone then all the above statements are equivalent.

We still need to recall two concepts that will be needed in our characterization.

Definition 8 ([32,33]). A function F : [0, 1]I → [0, 1] is called sequentially left-continuous if
F is sequentially continuous when [0, 1]I is endowed with the product topology of the upper limit
topology, and [0, 1] carries the usual topology. Recall that the upper limit topology on [0, 1] has as
base {(a, b] : a, b ∈ [0, 1], a ≤ b}.

Remark 5. Notice that if F is isotone then, for proving that F is sequentially left-continuous, it
is enough to consider nondecreasing sequences on [0, 1]I . In fact, let {tn}n∈N be a sequence in
[0, 1]I converging to t with respect to the product topology of the upper limit topology. For all
n ∈ N, define sn ∈ [0, 1]I as (sn)i = infk≥n(tk)i for all i ∈ I. It is obvious that {sn}n∈N is a
nondecreasing sequence and sn � tn for all n ∈ N. Moreover,

∨
n∈N tn =

∨
n∈N sn = t. Suppose

that {F(sn)}n∈N converges to F(t) = F(
∨

n∈N tn), that is,
∨

n∈N F(sn) = F(
∨

n∈N tn). Then,
the following is the case:

F(
∨

n∈N
tn) =

∨
n∈N

F(sn) ≤
∨

n∈N
F(tn) ≤ F(

∨
n∈N

tn)

since F is isotone. Therefore,
∨

n∈N F(tn) = F(
∨

n∈N tn) = F(t).
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Recall (see Section 2) that the characterizations of an asymmetric norm aggregation
function or a (quasi-)metric aggregation function f require the imposition of some condi-
tions on the set f−1(0). These conditions will be substituted by certain properties of the
core in the fuzzy framework.

Definition 9 ([17]). Given a function F : [0, 1]I → [0, 1], its core is the set F−1(1).
We say the following:

• F has a trivial core if F−1(1) = {1};
• The core of F is countably included in a unitary face if given {an : n ∈ N} ⊆ F−1(1)

there exists i ∈ I such that (an)i = 1 for all n ∈ N.

The following result characterizes the weak fuzzy (quasi-)norm aggregation functions
on products (compare with [17] (Theorem 4.15)).

Theorem 6. Let F : [0, 1]I → [0, 1] be a function and ∗ be a t-norm. The following statements
are equivalent:

(1) F is a (∗-)weak fuzzy quasi-norm aggregation function on products;
(2) F is a (∗-)weak fuzzy norm aggregation function on products;
(3) F(0) = 0, F is isotone, (∗-)supmultiplicative, sequentially left-continuous and F has trivial

core;
(4) F(0) = 0, F is sequentially left-continuous with trivial core, and F preserves asymmetric

(∗-)triangular triplets.

Proof. (1)⇒ (2) This implication can be easily observed. (2)⇒ (3) We begin showing that
F(0) = 0. Let (V, N, ∗) be a weak fuzzy normed space and x ∈ V. Let {(Vi, Ni, ∗) : i ∈ I}
be the family of weak fuzzy normed spaces such that (Vi, Ni, ∗) = (V, N, ∗) for all i ∈ I.
By assumption, (F ◦ Ñ, ∗) is a weak fuzzy norm on V I so 0 = F ◦ Ñ(x, 0) = F(0) where
xi = x for all i ∈ I.

Let us check that F has a trivial core. We first notice that if t > 0 then F(1) =
F((N(0V , t))i∈I) = F ◦ Ñ(0V I , t) = 1 by (FQN2).

In order to obtain a contradiction, suppose that there exists a ∈ [0, 1]I verifying that
F(a) = 1 but a 6= 1. Let J = {i ∈ I : ai 6= 1}, which is nonempty. Consider the family of
weak fuzzy normed spaces {(R, Ni, ∗) : i ∈ I} where the following is the case.

• If i ∈ J, then (Ni, ∗) = (Nai , ∗) is the fuzzy norm of Example 4;
• If i 6∈ J, then (Ni, ∗) = (N, ∗) is an arbitrary fixed weak fuzzy norm on R.

By assumption, (F ◦ Ñ, ∗) is a weak fuzzy norm on RI . Let x ∈ RI such that xi = 1 if
i ∈ J and xi = 0 otherwise. Then, given t > 0, we have the following:

F ◦ Ñ(x, t) = F((Ni(xi, t))i∈I) =

{
F(1) = 1 if t > 1
F(a) = 1 if 0 < t ≤ 1.

.

which contradicts (FQN2). Hence, F has trivial core.
We next show the isotonicity of F. Consider two elements a, b belonging to [0, 1]I

verifying a � b. Let us consider the real vector space R and, for every index i ∈ I, we
define Ni : R× [0,+∞)→ [0, 1] as follows.

Ni(x, t) =


0 if 0 ≤ t ≤ |x|,
ai if |x| < t ≤ 2|x|,
bi if 2|x| < t ≤ 3|x|,
1 if t > 3|x|.
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It is simple to show that (R, Ni, ∗) is a weak fuzzy normed space for every i ∈ I.
Furthermore, Ni(1, 2) = ai and Ni(1, 3) = bi for every i ∈ I. Since (F ◦ Ñ, ∗) is a weak
fuzzy norm on R, then F ◦ Ñ(1, ·) is increasing. Consequently, we have the following.

F ◦ Ñ(1, 2) ≤ F ◦ Ñ(1, 3)

F((Ni(1, 2))i∈I) ≤ F((Ni(1, 3))i∈I)

F((ai)i∈I) ≤ F((bi)i∈I)

F(a) ≤ F(b)

Thus, F is isotone.
Now, we show the ∗-supmultiplicativity of F. Let a, b ∈ [0, 1]I . Define L1 = {(x, y) ∈

R2 : x 6= 0, y = 0}, L2 = {(x, y) ∈ R2 : x = 0, y 6= 0} and L3 = R2\(L1 ∪ L2 ∪ {(0, 0)}).
For each i ∈ I, define a function Ni : R2 × [0,+∞)→ [0, 1] as follows:

Ni(x, t) =



0 if 0 ≤ t ≤ ‖x‖,
ai if x ∈ L1 and t > ‖x‖,
bi if x ∈ L2 and t > ‖x‖,
ai ∗ bi if x ∈ L3 and t > ‖x‖,
1 if x = 0 and t > 0,

where ‖ · ‖ is the Euclidean norm. Then (Ni, ∗) is a weak fuzzy norm on R2 for all i ∈ I.
We only verify that (Ni, ∗) satisfies (FQN4). Let x, y ∈ R2 and t, s > 0. If x + y = 0,
the inequality is trivially true. If x = 0 or y = 0, we also obtain the inequality since
Ni(z, ·) is isotone for every z ∈ R2. Thus, let us suppose that x + y 6= 0, x 6= 0 and
y 6= 0. Let j ∈ {1, 2, 3} such that x + y ∈ Lj. If x ∈ Lj or y ∈ Lj, then it is clear that
Ni(x, t) ∗ Ni(y, s) ≤ Ni(x + y, t + s). If x 6∈ Lj and y 6∈ Lj, we distinguish the following
three cases:

• If j = 3, then x ∈ L1 and y ∈ L2 or viceversa. If t ≤ ‖x‖ or s ≤ ‖y‖, then Ni(x, t) = 0
or Ni(y, s) = 0. so the inequality holds. Otherwise t > ‖x‖ and s > ‖y‖, which
implies that t + s > ‖x‖ + ‖y‖ ≥ ‖x + y‖. Hence, Ni(x, t) ∗ Ni(y, s) = ai ∗ bi ≤
Ni(x + y, t + s) = ai ∗ bi;

• If j = 2, then at least one of x, y belongs to L3. Without loss of generality, we can
suppose that x ∈ L3. As above, if t ≤ ‖x‖ or s ≤ ‖y‖, then Ni(x, t) = 0 or Ni(y, s) =
0, so the inequality holds. Otherwise t > ‖x‖ and s > ‖y‖, which implies that
t + s > ‖x‖+ ‖y‖ ≥ ‖x + y‖. Hence, Ni(x, t) ∗ Ni(y, s) = ai ∗ bi ∗ Ni(y, s) ≤ bi =
Ni(x + y, t + s).

• If j = 1, we can reason as in the previous case.

Since (F ◦ Ñ, ∗) is a weak fuzzy norm on (R2)I , it verifies (FQN4). By defining
(1, 0), (0, 1), (1, 1) ∈ (R2)I such that (1, 0)i = (1, 0), (0, 1)i = (0, 1) and (1, 1)i = (1, 1) for
all i ∈ I, we have the following.

F ◦ Ñ((1, 0), 2) ∗ F ◦ Ñ((0, 1), 2) ≤ F ◦ Ñ((1, 1), 4)

F((ai)i∈I) ∗ F((bi)i∈I) ≤ F((ai ∗ bi)i∈I)

Thus, F is ∗-supmultiplicative.
Finally, we demonstrate that the function F is sequentially left-continuous. By Remark 5,

let {sn}n∈N be a nondecreasing sequence in [0, 1]I having as limit s ∈ [0, 1]I in the product
topology of the lower limit topology.
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For each i ∈ I, define Ni : R× [0,+∞)→ [0, 1] as the following.

Ni(x, t) =


0 if 0 ≤ t ≤ |x|2 ,

(sn)i if |x|
(

1− 1
n+1

)
< t ≤ |x|

(
1− 1

n+2

)
, n ∈ N

si if 0 < |x| ≤ t,
1 if x = 0, t > 0.

Then, (R, Ni, ∗) is a weak fuzzy normed space for all i ∈ I. We only check (FQN4).
Let x, y ∈ R and t, s > 0. If Ni(x, t) = 0 or Ni(y, s) = 0, then the conclusion is obvious,
so we suppose that Ni(x, t) 6= 0 and Ni(y, s) 6= 0. We may also assume that x 6= 0, y 6= 0
and x + y 6= 0 (otherwise, the conclusion follows trivially). If |x| ≤ t and |y| ≤ s then
|x + y| ≤ |x|+ |y| ≤ t + s, so Ni(x + y, t + s) = si ≥ Ni(x, t) ∗ Ni(y, s) = si ∗ si.

Now suppose that |x| > t and |y| ≤ s. Since Ni(x, t) 6= 0 and x 6= 0, we also have it
that 0 < |x|

2 < t. Then, there exists nx ∈ N such that the following is the case.

|x|
(

1− 1
nx + 1

)
< t ≤ |x|

(
1− 1

nx + 2

)
.

Therefore, the following obtains.

t + s > |x|
(

1− 1
nx + 1

)
+ |y| > |x|

(
1− 1

nx + 1

)
+ |y|

(
1− 1

nx + 1

)
= (|x|+ |y|)

(
1− 1

nx + 1

)
≥ |x + y|

(
1− 1

nx + 1

)
.

From this and since {(sn)i}n∈N is nondecreasing, Ni(x+ y, t+ s) ≥ (snx )i = Ni(x, t) ≥
Ni(x, t) ∗ Ni(y, s).

If |x| ≤ t and |y| > s, we can reason as above.
Finally, let us suppose that |x| > t and |y| > s. Then, we can find nx, ny ∈ N such that

the following is the case.

|x|
(

1− 1
nx + 1

)
< t ≤ |x|

(
1− 1

nx + 2

)
and |y|

(
1− 1

ny + 1

)
< s ≤ |y|

(
1− 1

ny + 2

)
.

Then, we have the following.

|x + y|
(

1− 1
(nx ∧ ny) + 1

)
≤ |x|+ |y| − |x|

(nx ∧ ny) + 1
− |y|

(nx ∧ ny) + 1

≤ |x|+ |y| − |x|
nx + 1

− |y|
ny + 1

< t + s.

Hence, the following is the case.

Ni(x + y, t + s) ≥ (snx∧ny)i ≥ (snx )i ∗ (sny)i = Ni(x, t) ∗ Ni(y, s).

Consequently, (Ni, ∗) satisfies (FQN4).
Consider the collection of fuzzy normed spaces {(R, Ni, ∗) : i ∈ I}. By assumption,

(F ◦ Ñ, ∗) is a weak fuzzy norm on RI . Then F ◦ Ñ(1, ·) is left-continuous so {F ◦ Ñ(1, 1−
1

n+2 )}n∈N converges to F ◦ Ñ(1, 1). We observe that the following is the case:

F ◦ Ñ
(

1, 1− 1
n + 2

)
= F

((
Ni

(
1, 1− 1

n + 2

))
i∈I

)
= F(((sn)i)i∈I) = F(sn)
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for every n ∈ N and

F ◦ Ñ(1, 1) = F((Ni(1, 1))i∈I) = F((si)i∈I) = F(s).

Thus, F is sequentially left-continuous.
(3)⇒ (4) We are required to demonstrate that F preserves asymmetric (∗-)triangular

triplets. This was proved in [17] (Proposition 3.30), but we will reproduce it here. Let
(a, b, c) ∈ ([0, 1]I)3 such that a ∗I b � c. Since F is ∗-supmultiplicative and isotone, then
the following is the case.

F(a) ∗ F(b) ≤ F(a ∗I b) ≤ F(c).

Hence, (F(a), F(b), F(c)) is an asymmetric ∗-triangular triplet.
(4)⇒ (1) Let {(Vi, Ni, ∗) : i ∈ I} be a collection of weak fuzzy quasi-normed spaces.

We need to prove that (F ◦ Ñ, ∗) is a weak fuzzy quasi-norm on ∏i∈I Vi.
Given x ∈ ∏i∈I Vi, then F ◦ Ñ(x, 0) = F((Ni(xi, 0))i∈I) = F(0) = 0; thus, (FQN1)

holds.
Now, suppose that F ◦ Ñ(x, t) = F ◦ Ñ(−x, t) = 1 for all t > 0. F has trivial core this

is equivalent to Ñ(x, t) = Ñ(−x, t) = 1 for all t > 0, that is, Ni(xi, t) = Ni(−xi, t) = 1
for all i ∈ I and all t > 0. Since (Ni, ∗) is a weak fuzzy quasi-norm for all i ∈ I, then
x = (0Vi )i∈I = 0∏i∈I Vi ; thus, (FQN2) is true.

Obviously, F ◦ Ñ verifies (FQN3) since given λ, t > 0 and x ∈ ∏i∈I Vi, we the follow-
ing.

F ◦ Ñ(λx, t) = F((Ni(λxi, t))i∈I) = F
((

Ni

(
xi,

t
λ

))
i∈I

)
= F ◦ Ñ

(
x,

t
λ

)
.

Now, we verify (FQN4). Let x, y ∈ ∏i∈I Vi and t, s > 0. Since (Ni, ∗) is a weak fuzzy
quasi-norm for all i ∈ I, it is clear that the triplet ((Ni(xi, t))i∈I , (Ni(yi, s))i∈I , (Ni(xi + yi, t+
s))i∈I) is asymmetric ∗-triangular. By hypothesis, (F((Ni(xi, t))i∈I), F((Ni(yi, s))i∈I),
F((Ni(xi + yi, t + s))i∈I)) is an asymmetric ∗-triangular triplet, so the following is the case:

F((Ni(xi, t))i∈I) ∗ F((Ni(yi, s))i∈I) ≤ F((Ni(xi + yi, t + s))i∈I)

which means that F ◦ Ñ verifies (FQN4).
At last, we must prove (FQN5), that is, F ◦ Ñ(x, ·) is sequentially left-continuous

for every x ∈ ∏i∈I Vi. Let {tn}n∈N be a nondecreasing sequence on [0, 1] converging to
t. It is clear that {Ñ(x, tn)}n∈N is a nondecreasing sequence on [0, 1]I due to the fact that
Ni(xi, ·) is isotone for every i ∈ I. Furthermore, the sequence {Ni(xi, tn)}n∈N is convergent
to Ni(xi, t) for all i ∈ I. Thus, {Ñ(x, tn)}n∈N converges to Ñ(x, t). Since F is sequentially
left-continuous, the conclusion follows.

Observe that, in the crisp context, the norm aggregation functions on products also
coincide with the asymmetric norm aggregation functions on products [8,9]. Nevertheless,
these functions are different from the (quasi-)metric aggregation functions on products [2,3].
Surprisingly, this does not occur in the fuzzy framework.

Corollary 1. Let F : [0, 1]I → [0, 1] be a function and ∗ be a t-norm. Then F is a (∗-)weak
fuzzy (quasi-)norm aggregation function on products if and only if F is a (∗-)fuzzy (quasi-)metric
aggregation function on products.

Proof. This is a direct consequence of the previous theorem and [17] (Theorem 4.15) (notice
that, in that paper, sequentially left-continuity is called simply left-continuity).

Example 7.
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• Let F : [0, 1] → [0, 1] be an isotone and left-continuous function such that F(0) = 0 and
F−1(1) = {1}. Then, F is a ∧-weak fuzzy (quasi-)norm aggregation function on products
since it is a ∧-supmultiplicative function;

• Let F : [0, 1]n → [0, 1] be an isotone and left-continuous function such that F(0) = 0 and
F−1(1) = {1}. Then, F is a ∗D-weak fuzzy (quasi-)norm aggregation function on products
where ∗D is the drastic t-norm since it is a ∗D-supmultiplicative function;

• Given a continuous t-norm ∗ and n ∈ N, the function F∗ : [0, 1]n → [0, 1] given by
F∗(a1, . . . , an) = a1 ∗ . . . ∗ an satisfies the conditions of Theorem 6. Therefore, F is a ∗-weak
fuzzy (quasi-)norm aggregation function on products.

• Consider an index set I. Then, the function Inf : [0, 1]I → [0, 1] given by Inf(x) = infi∈I xi
satisfies the conditions of Theorem 6. Therefore, it is a weak fuzzy (quasi-)norm aggregation
function on products.

The following theorem, which must be compared with [17] (Theorem 4.19), provides
a characterization of the functions that aggregate weak fuzzy (quasi-)norm aggregation
on sets.

Theorem 7. Let F : [0, 1]I → [0, 1] be a function and ∗ be a t-norm. The following statements are
equivalent:

(1) F is a (∗-)weak fuzzy quasi-norm aggregation function on sets;
(2) F is a (∗-)weak fuzzy norm aggregation function on sets;
(3) F(0) = 0 and F(1) = 1. The core of F is countably included in a unitary face, and F is

isotone, (∗-)supmultiplicative and sequentially left-continuous ;
(4) F(0) = 0 and F(1) = 1. The core of F is countably included in a unitary face, and F is

sequentially left-continuous, and F preserves asymmetric (∗-)triangular triplets.

Proof. (1)⇒ (2) This is trivial.
(2) ⇒ (3) We first prove that F(0) = 0. Let (V, N, ∗) be an arbitrary weak fuzzy

normed space, v ∈ V and t > 0. Considering the collection of weak fuzzy normed spaces
{(V, Ni, ∗) : i ∈ I} where Ni = N for all i ∈ I, we have that (F ◦ N, ∗) is a weak fuzzy
norm on V so 0 = F ◦ N(v, 0) = F((N(v, 0))i∈I) = F(0).

On the other hand, F(1) = F((N(0V , t))i∈I) = F ◦ N(0V , t) = 1 by (FQN2).
For proving that F is ∗-supmultiplicative, we can proceed as in the proof of this fact in

the implication (2)⇒ (3) of Theorem 6.
Now, we check that the core of F is countably included in a unitary face.
Suppose, contrary to our claim, that we can find a sequence {an : n ∈ N} ⊆ F−1(1)

such that for any i ∈ I there exists ni ∈ N verifying (ani )i 6= 1. Let us consider the vector
space R and, for each i ∈ I, we define Ni : R× [0,+∞)→ [0, 1] as the following.

Ni(x, t) =


0 if t = 0,
1 if x = 0, t > 0,
(a1)i if x 6= 0, t > |x|,
(a1)i ∗ . . . ∗ (an+1)i if x 6= 0, |x|n+1 < t ≤ |x|n , n ∈ N.

Notice that (R, Ni, ∗) is a weak fuzzy normed space for all i ∈ I. Let us verify
this. It is obvious that (FQN1) is satisfied. On the other hand, let x ∈ R such that
Ni(x, t) = Ni(−x, t) = 1 for all t > 0. By assumption, we can find ni ∈ N such that
(ani ) 6= 1. Hence, if x 6= 0 then Ni(x, |x|ni

) = (a1)i ∗ . . . ∗ (ani+1)i ≤ (a1)i ∧ . . .∧ (ani+1)i < 1,
which is a contradiction. Therefore x = 0.

Furthermore, let x ∈ R and λ ∈ R\{0}. If x = 0, it is clear that Ni(λ0, t) = 1 =

Ni

(
0, t
|λ|

)
. If x 6= 0, the equality Ni(λx, t) = Ni

(
x, t
|λ|

)
follows from the equivalences of

the inequalities t > |λx| and |λx|
n+1 < t ≤ |λx|

n with t
|λ| > x and |x|

n+1 < t
|λ| ≤

|x|
n , respectively,

so (FQN3’) is proved.
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We next check (FQN4). Let x, y ∈ R and t, s > 0. If x + y = 0, it is obvious that
Ni(x, t) ∗ Ni(y, s) ≤ Ni(x + y, t + s) = 1. Moreover, if x + y 6= 0 and x = 0 or y = 0, the
inequality is also clear since if, for example, y = 0 then Ni(x, t) ∗ Ni(y, s) = Ni(x, t) =
(a1)i ∗ . . . ∗ (an+1)i for some n ∈ N. Since t < s+ t, the factors that appear in multiplication
by the t-norm ∗ in the value of Ni(x, t + s) are less or equal than the factors in Ni(x, t), so
Ni(x, t) ≤ Ni(x, t + s). Finally, suppose that x + y 6= 0 and x 6= 0, y 6= 0. If t + s > |x + y|,
the inequality is clear since Ni(x + y, t + s) = (a1)i. Otherwise, t + s ≤ |x + y| ≤ |x|+ |y|.
Then, t ≤ |x| or s ≤ |y|. We distinguish some of the following cases:

• t ≤ |x| and s > |y|. Then, there exists nx ∈ N such that |x|
nx+1 < t ≤ |x|

nx
. Then, the

following is the case.

t + s >
|x|

nx + 1
+ |y| > |x|+ |y|

nx + 1
≥ |x + y|

nx + 1

This means that the number of factors that appear in Ni(x + y, t + s) is less than or
equal to nx + 1, which is the number of factors that appear in Ni(x, t). Consequently,
Ni(x, t) ∗ Ni(y, s) ≤ Ni(x, t) ≤ Ni(x + y, t + s).

• t > |x| and s ≤ |y|. In this case, we can reason as above.
• t ≤ |x| and s ≤ |y|. Let nx, ny ∈ N such that the following is the case.

|x|
nx + 1

< t ≤ |x|
nx

and
|y|

ny + 1
< s ≤ |y|

ny
.

Then, we have the following.

t + s >
|x|

nx + 1
+
|y|

ny + 1
≥ |x|+ |y|

max{nx, ny}+ 1
≥ |x + y|

max{nx, ny}+ 1
.

This means that the number of factors that appear in Ni(x + y, t + s) is less than or
equal to max{nx, ny}+ 1. By reasoning as above, we obtain the desired inequality.

What remains is proving that Ni(x, ·) is left-continuous. If x = 0, it is obvious. Suppose
now that x 6= 0 and let t > 0. By construction, if {tn}n∈N is a sequence in (0,+∞) for which
its upper limit is t, we can find n0 ∈ N such that N(x, tn) is constant for every n ≥ n0; thus,
the conclusion follows. We conclude that (Ni, ∗) is a weak fuzzy norm on R for all i ∈ I.

Notice that if t > 1, then Ni(1, t) = (a1)i. Thus, we have the following.

F ◦ N(1, t) = F((Ni(1, t))i∈I) = F(((a1)i)i∈I) = F(a1) = 1.

If 0 < t ≤ 1, then we can find n ∈ N such that Ni(1, t) = (a1)i ∗ . . . ∗ (an+1)i for all
i ∈ I. Since F is ∗-supmultiplicative, then we have the following.

F ◦ N(1, t) = F((Ni(1, t))i∈I) = F(((a1)i ∗ . . . ∗ (an+1)i)i∈I) = F(a1 ∗ . . . ∗ an+1)

≥ F(a1) ∗ . . . ∗ F(an) = 1.

Therefore, F ◦ N(1, t) = 1 for all t > 0, which contradicts the fact that (F ◦ N, ∗) is a
weak fuzzy norm. Consequently, the core of F is countably included in a unitary face.

The proofs that F is isotone and the proof that F is sequentially left-continuous are
similar to the same proofs in the implication (2)⇒ (3) of Theorem 6.

(3)⇒ (4) This is similar to the implication (3)⇒ (4) of Theorem 6.
(4)⇒ (1) Let {(V, Ni, ∗) : i ∈ I} be a collection of weak fuzzy quasi-normed spaces.

Let us check that (F ◦ N, ∗) is a weak fuzzy quasi-norm on V.
Given x ∈ V, then F ◦ N(x, 0) = F((Ni(x, 0))i∈I) = F(0) = 0; thus, (FQN1) holds.
Now, suppose that there exists x ∈ V such that F ◦ N(x, t) = F ◦ N(−x, t) = 1 for all

t > 0. Since (Ni(x, t), Ni(−x, t), Ni(xi, t) ∗ Ni(−x, t)) is an asymmetric ∗-triangular triplet
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for all i ∈ I, by assumption (F((Ni(x, t))i∈I), F((Ni(−x, t))i∈I), F((Ni(x, t) ∗Ni(−x, t))i∈I))
is also an asymmetric ∗-triangular triplet. Thus, the following is the case.

1 = 1 ∗ 1 = F((Ni(x, t))i∈I) ∗ F((Ni(−x, t))i∈I) ≤ F((Ni(x, t) ∗ Ni(−x, t))i∈I).

Hence, F((Ni(x, t) ∗ Ni(−x, t))i∈I) = 1 for all t > 0. Let us define an = (Ni(x, 1
n ) ∗

Ni(−x, 1
n ))i∈I . Then, {an : n ∈ N} ⊆ F−1(1). Since the core of F is countably included in a

unitary face, then (an)j = 1 for some j ∈ I and for all n ∈ N, that is, Nj(x, 1
n ) ∗ Nj(−x, 1

n ) =

1 for all n ∈ N. Consequently, Nj(x, 1
n ) = Nj(−x, 1

n ) = 1 for all n ∈ N. Moreover, since
Ni(x, ·) and Ni(−x, ·) are isotone, we immediately obtain that Nj(x, t) = Nj(−x, t) = 1 for
all t > 0. Since (Ni, ∗) is a weak fuzzy quasi-metric on V, then x = 0V . Therefore, F ◦ N
satisfies (FQN2).

It is clear that F ◦ N verifies (FQN3) since, given λ, t > 0 and x ∈ V, we have the
following.

F ◦ N(λx, t) = F((Ni(λx, t))i∈I) = F
((

Ni

(
x,

t
λ

))
i∈I

)
= F ◦ N

(
x,

t
λ

)
.

In order to prove (FQN4), let x, y ∈ V and t, s > 0. Since (Ni, ∗) is a weak fuzzy quasi-
norm for all i ∈ I, it is obvious that ((Ni(x, t))i∈I , (Ni(y, s))i∈I , (Ni(x + y, t + s))i∈I) is an
asymmetric ∗-triangular triplet. By hypothesis, (F((Ni(x, t))i∈I), F((Ni(y, s))i∈I), F((Ni(x+
y, t + s))i∈I)) is an asymmetric ∗-triangular triplet. Thus, the following is the case.

F((Ni(x, t))i∈I) ∗ F((Ni(y, s))i∈I) ≤ F((Ni(x + y, t + s))i∈I)

Thus, F ◦ N verifies (FQN4).
To this end, (FQN5) follows in a similar manner as in the implication (4)⇒ (1) of

Theorem 6.

Corollary 2. Let F : [0, 1]I → [0, 1] be a function and ∗ be a t-norm. Then, F is a (∗-)weak fuzzy
(quasi-)norm aggregation function on sets if and only if F is a (∗-)fuzzy (quasi-)metric aggregation
function on sets.

Proof. This is a direct consequence of the previous theorem and [17] (Theorem 4.19) (notice
that in that, in the paper, sequentially left-continuity is called simply left-continuity).

We provide an example of a ∧-weak fuzzy (quasi-)norm aggregation function on sets
that are not a ∧-weak fuzzy (quasi-)norm aggregation function on products.

Example 8. Let I be a subset of [0, 1] having minimum greater than 0 with cardinality greater
than 1. Let F : [0, 1]I → [0, 1], given by the following:

F(x) = α · inf{i · xi : i ∈ I}

for all x ∈ [0, 1]I , where α = 1
min I .

It is obvious that F(1) = 1 and F(0) = 0. Moreover, F is clearly isotone. We prove that F is
∧-supmultiplicative. Let x, y ∈ [0, 1]I . Then, we have the following:

F(x) ∧ F(y) ≤ (α · i · xi) ∧ (α · i · yi) = α · i · (xi ∧ yi)

for all i ∈ I. Hence, F(x) ∧ F(y) ≤ α · inf{i · (xi ∧ yi) : i ∈ I} = F(x ∧I y).
Furthermore, if F(a) = 1, then amin I = 1. Otherwise, min I · amin I < min I, which implies

that inf{i · xi : i ∈ I} ≤ min I · amin I < min I. Thus, F(a) < 1 follows, which is a contradiction.
Consequently, the core of F is countably included in a unitary face. Thus, F is a ∧-weak fuzzy
(quasi-)norm aggregation functions on sets.
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However, the core of F is not trivial. In fact, given j ∈ I\{min I}, then F(b) = 1 where
b ∈ [0, 1]I is given by bi = 1 whenever i 6= j and bj =

min I
j .
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