ÍNDICE

Resumen	i
1. JUSTIFICACIÓN DEL TRABAJO	1
2. OBJETIVOS Y PLAN DE TRABAJO	5
CAPÍTULO I. CARACTERIZACIÓN FISICO-QUÍMICA Y	
ESTRUCTURAL DE LAS FIBRAS.	
I.1. INTRODUCCIÓN	13
I.1.1. La fibra dietética	13
I.1.2 Composición de la fibra dietética y funcionalidad	14
I.1.3. Efectos de la fibra dietética en la salud	20
I.1.4. Fuentes de fibra dietética.	23
I.1.5. Obtención industrial de fibra dietética	24
I.1.6. Tratamientos utilizados para mejorar la funcionalidad de las fibras	27
I.1.6.1. Tratamientos con peróxido de hidrógeno en medio alcalino	27
I.1.6.2. Modificaciones por medio de extrusión	28
I.1.6.3. Modificaciones enzimáticas.	29
I.1.7. Desarrollo de alimentos funcionales por medio de fibras dietéticas	29
I.2. MATERIALES Y MÉTODOS	35
I.2.1. Materias Primas.	35
I.2.2. Análisis del contenido en sólidos solubles e insolubles	36
I.2.3. Contenido de humedad de las fibras estudiadas	38
I.2.4. Análisis de la pectina total (PT) y de la pectina hidrosoluble (PHS)	38
I.2.4.1 Tratamiento de la muestra para obtener los extractos de PHS	S y
PT	39

I.2.4.2. Determinación del ácido galacturónico (AGU) en los extractos de
PHS y PT40
I.2.4.3. Curva de calibración para la determinación del AGU41
I.2.5. Determinación de la capacidad de retención de agua (CRA)41
I.2.6. Observación microscópica de las preparaciones utilizando tinciones con azul
de toluidina
I.3. RESULTADOS Y DISCUSIÓN
I.3.1. Evaluación de las características físico-químicas (humedad, sólidos
insolubles, sólidos solubles, capacidad de retención de agua, pectina total, pectina
hidrosoluble) de las fibras de limón, naranja y manzana
I.3.2. Observaciones mediante el uso de microscopio óptico de los diferentes tipos
de fibra estudiados
I.3.2.1. Fibra de limón en seco
I.3.2.2. Preparación de fibra de limón al 3% en disolución de agua y
sacarosa52
I.3.2.3. Preparación de fibra de naranja a una concentración del 5,5% con
un 2% de pectina53
I.3.2.4. Preparación de fibra de manzana a una concentración del 8% con
un 2% de pectina55
L4 CONCLUSIONES 59

CAPÍTULO II. CARACTERIZACIÓN REOLÓGICA DE LAS SUSPENSIONES DE FIBRA DE FRUTA

II.1. INTRODUCCIÓN	63
II.1.1 Caracterización del comportamiento reológico de los alimentos	63
II.1.2 Estructura del alimento y su relación con las medidas reológicas	70
II.1.3. Influencia de la fibra en el comportamiento reológico de los alimento	os76
II.2 MATERIAL Y MÉTODOS	81
II.2.1. Preparación de las suspensiones de fibra	81
II.2.1.1. Fibra de Limón	81
II.2.1.2. Fibras de Naranja y Manzana	83
II.2.2. Caracterización reológica.	85
II.2.2.1. Obtención de los reogramas a 25°C.	85
II.2.2.2. Estudio de la influencia de la temperatura en el reograma	85
II.2.2.3. Estudio de la dependencia del comportamiento reológico con el tie	mpo de
cizalla	86
II.2.3. Análisis estadístico de los datos	86
II.3 RESULTADOS Y DISCUSIÓN	87
II.3.1 Estudio del efecto del método de preparación en el comportamiento	
reológico de suspensiones de fibra de limón	87
II.3.2 Estudio del efecto de la temperatura en el comportamiento reológico	de una
suspensión de fibra de limón al 2,5 %	96
II.3.3. Estudio del efecto de la concentración y del tiempo de almacenamien	nto en el
comportamiento reológico de suspensiones de fibra de limón, naranja y ma	nzana a
25 °C	100

II.3.4. Estudio de la influencia del tiempo en el comportamiento reológico d	le las
suspensiones de fibra de limón, naranja y manzana a 25 °C	.115
II.4. CONCLUSIONES	.123
CAPÍTULO III. CARACTERIZACIÓN DE PROPIEDADES TEXTURA	LES
DE LAS SUSPENSIONES DE FIBRA.	
III.1. INTRODUCCIÓN	.129
III.1.1. Concepto de textura y técnicas para su evaluación	.129
III.1.2 Herramientas estadísticas en la evaluación de resultados sensoriales	138
III.1.3 Las relaciones entre respuestas sensoriales e instrumentales	.144
III.2. MATERIALES Y MÉTODOS.	.151
III.2.1. Caracterización instrumental de propiedades relacionadas con la	
textura	.151
III.2.1.1. Materias Primas.	.151
III.2.1.2 Preparación de las suspensiones de fibra de fruta	.151
III.2.1.3 Caracterización instrumental de propiedades texturales de las	
fibras	.152
III.2.1.3.1 Medidas por medio de un viscosímetro de fluido	
infinito	.152
III.2.1.3.2 Medidas por medio de un consistómetro	.152
III.2.1.3.3. Medidas por medio de un reómetro	.153
III.2.2. Evaluación sensorial de las propiedades de textura	.153
III.2.2.1. Selección de los atributos sensoriales a evaluar	.153
III.2.2.2. Evaluación sensorial de las formulaciones de fibra en base a	los
atributos seleccionados	.156

III.2.2.3. Análisis estadístico de los resultados obtenidos en la e	valuación
sensorial	158
III.2.3 Correlación entre las medidas sensoriales y las instrumentales	158
III.3. RESULTADOS Y DISCUSION	159
III.3.1. Caracterización instrumental de algunas propiedades texturales o	de las
suspensiones de las fibras.	159
III.3.1.1 Caracterización instrumental por medio de reómetros	
rotacionales	159
III.3.1.2 Caracterización instrumental por medio de viscosímetr	o
Brookfield (VB) y consistometro Bostwick (CB)	162
III.3.2. Evaluación sensorial de algunas propiedades texturales de las s	uspensiones
de las fibras	174
III.3.2.1. Selección de los atributos de textura a evaluar	174
III.3.2.2. Evaluación sensorial de los atributos de textura	
seleccionados en las suspensiones de fibra	177
III.3.3. Correlación entre los resultados sensoriales y las medidas	
instrumentales.	191
III.4. CONCLUSIONES.	201
3. BIBLIOGRAFÍA	205