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ABSTRACT 34 

Phenolic compounds are secondary metabolites known to play crucial roles in important 35 

chemical reactions impacting the mouthfeel, colour and ageing potential of red wine. Their 36 

complexity has resulted in a number of advanced analytical methods, which often prevent 37 

routine phenolic analysis in winemaking. Fluorescence spectroscopy could be an alternative 38 

to current spectrophotometric techniques and its combination with chemometrics was 39 

investigated for its suitability in directly quantifying phenolic content of unaltered red wine and 40 

fermenting samples. Front-face fluorescence was optimised and used to build predictive 41 

models for total phenols, total condensed tannins, total anthocyanins, colour density and 42 

polymeric pigments. Machine learning algorithms were used for model development. The most 43 

successful models were built for total phenols, total condensed tannins and total anthocyanins 44 

with coefficient of determination (R2cal) and RMSECV of 0.81, 0.89, 0.80 and 5.71, 104.03 45 

mg/L, 60.67 mg/L, respectively. The validation results showed R2val values of 0.77, 0.8 and 46 

0.77, and RMSEP values of 7.6, 172.37 mg/L and 76.57 mg/L, respectively. A novel approach 47 

for the classification of South African red wine cultivars based on unique fluorescent 48 

fingerprints was also successful with an overall cross validation score of 0.8. The best 49 

classification ability (validation score = 0.93) was shown for the data set containing only 50 

fermenting wines for the most widely represented cultivars (>20 samples). This approach may 51 

provide a useful tool for authentication and quality control by regulatory bodies.  52 

 53 
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1. INTRODUCTION 71 

 72 

Phenolic compounds are a diverse group of secondary metabolites found in grapes and wine 73 

that can be classified into two families; flavonoids (flavonols, flavan-3-ols and anthocyanins) 74 

and non-flavonoids (phenolic acids and stilbenes) [1,2]. The final phenolic composition of a 75 

wine is dependent on numerous factors including viticultural aspects influencing grape berry 76 

development and ripening, the grape cultivar and chemical composition at harvest, as well as 77 

the winemaking practices implemented throughout fermentation and ageing [1]. Phenolic 78 

compounds have been widely studied for their crucial roles in various chemical reactions that 79 

greatly impact important wine attributes, such as mouthfeel, colour and ageing potential 80 

[2,3,4].  81 

 82 

The complexity and diversity of red wine phenolic compounds has resulted in numerous 83 

analysis methods being developed in order to simplify complex phenolic chemistry into the 84 

most relevant phenolic information. The basic spectrophotometric methods most often used 85 

are UV-Vis based and rely on the spectral properties of the aromatic ring present in all phenolic 86 

compounds, allowing for differentiation between phenolic groups according to characteristic 87 

wavelength peaks [5,6]. Alternatives such as high-performance liquid chromatography (HPLC) 88 

are highly sensitive but rarely used outside of research applications while infrared 89 

spectroscopies, specifically Fourier transform, have been reported as suitable in phenolic 90 

analysis [2,7,8,9]. Several of these existing methods may require expensive equipment and 91 

reagents as well as the need for trained personnel, preventing the routine analysis of important 92 

phenolic parameters during winemaking outside of phenolic research. Spectroscopy 93 

combined with chemometrics is becoming increasingly investigated in both academic and 94 

industry domains to meet growing demands for rapid, accurate, cost-effective and user-95 

friendly analysis techniques that may be applied on site as well as developed into process 96 

monitoring, optimisation and control systems. 97 

 98 

Fluorescence spectroscopy has been widely used in chemistry and biochemistry disciplines 99 

due to its success in analysing the structures, functions and reactivities of numerous 100 

compounds, thereby allowing it to become an important tool in the authentication and quality 101 

control of many food science disciplines [10]. The advantages of fluorescence spectroscopy 102 

include being non-destructive, user-friendly, cost effective and highly sensitive when 103 

compared to other spectrophotometric methods [10,11,12]. The fluorescent capabilities of the 104 

complex wine matrix have been investigated with polyphenols being identified as the largest 105 

concentration of naturally occurring fluorophores [11]. Previous research has been conducted 106 
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to analyse these fluorescent compounds both qualitatively and quantitatively, with Cabrera-107 

Bañegil et al. [13,14] able to quantify pure compounds including catechin, epicatechin, vanillic 108 

acid, caffeic acid and resveratrol. Classification tasks have, however, been the focus in wine 109 

fluorescence research, with wine authentication according to cultivar, appellation and vintage 110 

having been successful [11,15]. Understanding the limitations and principles of fluorescence 111 

instrumentation is important when conducting analysis, with sample geometry being a major 112 

consideration. The conventional right-angled technique traditionally used in fluorescence 113 

spectroscopy is used in the analysis of clear or diluted samples. Owing to the complexity of 114 

the wine matrix and the chemical interactions taking place within it, as well as the sensitivity 115 

of fluorophores to their surrounding environment, a front-face technique developed by Parker 116 

[16] overcomes the need for dilution and allows the analysis of unaltered samples while 117 

minimising sample absorbance and spectral distortions [11,12,17]. Front-face fluorescence 118 

therefore presents itself as a potential alternative for the direct and non-invasive analysis of 119 

samples during the winemaking process, directly from the fermentation vessel.     120 

 121 

Combining spectroscopy with chemometrics (multivariate statistical analysis) holds several 122 

advantages including the decomposition and interpretation of complex data sets in a 123 

considerably reduced analysis time, its non-destructive nature, and the simultaneous 124 

quantification of several analytes from a single spectral measurement [2,18]. The most 125 

commonly used multi-way techniques in fluorescence analysis have included parallel factor 126 

analysis (PARAFAC) as well as unfolded and N-way partial least squares (U-PLS and N-PLS) 127 

[13,19]. Modern machine learning techniques have previously not been investigated in this 128 

research area despite their success in complex data handling and ubiquitous use in current 129 

technologies.   130 

 131 

The need for real-time, rapid, cost-effective and accurate phenolic analysis methods is steadily 132 

increasing and routine implementation may aid in the decision-making of winemakers and 133 

producers during red wine production. The potential for automation and on-line systems as 134 

well as optical portable devices is possible due to the beneficial combination of spectroscopy 135 

and chemometrics [20]. The aim of this study was therefore to investigate the suitability of 136 

front-face fluorescence spectroscopy to quantify phenolic content of undiluted red wine 137 

samples. The five parameters of interest included total phenols, total condensed tannins, total 138 

anthocyanins, colour density and polymeric pigments. Previous wine fluorescence research 139 

has, to the best of our knowledge, not investigated the potential of fluorescence spectroscopy 140 

to quantify such broad phenolic parameters with a focus on the implications for real-time 141 

analysis during the winemaking process. Classification of South African red wine cultivars 142 
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using fluorescent excitation-emission matrices was also explored for its potential in 143 

authentication and quality control.  144 

2. MATERIALS AND METHODS 145 

 146 

2.1. REAGENTS 147 

Ammonium sulphate, hydrochloric acid (HCl 1 M), methyl cellulose, sulphur dioxide (SO2), 148 

ethanol (96%) and sodium metabisulfite (2.5 %) were purchased from Sigma-Aldrich Chemie 149 

(Steinheim, Germany). (-)-Epicatechin and malvidin-3-glucoside were purchased from 150 

Extrasynthese (Genay, France). 151 

 152 

2.2. SAMPLES 153 

The collection of 200 fermenting red wine samples took place over the 2019 vintage, following 154 

a diverse range of cultivars, vinification practices and terroirs. Both commercial and 155 

experimental scale conditions were included, with 91 samples collected from commercial 156 

cellars (Stellenbosch University Welgevallen Wine Cellar, Thelema Mountain Vineyards and 157 

Kanonkop Wine Estate) and 109 samples collected from the JHN Neethling experimental 158 

cellar at the Department of Viticulture and Oenology (Stellenbosch University). Samples were 159 

immediately frozen upon collection. During analysis, samples were thawed and immediately 160 

centrifuged at 5000 rpm for 2 min in an Eppendorf 5415D centrifuge (Hamburg, Germany). 161 

Additionally, 100 red wine samples from the Agricultural Research Council (ARC Infruitec-162 

Nietvoorbij, Stellenbosch) spanning several vintages (2007-2018) and cultivars were 163 

collected, stored at room temperature and centrifuged at 5000 rpm for 2 min on the day of 164 

analysis. The cultivars represented in the study, each with varying numbers of samples, 165 

included Shiraz (90), Pinotage (49), Cabernet Sauvignon (47), Merlot (36), Malbec (19), Petit 166 

Verdot (14), Grenache (9), Pinot noir (9), Mourvedre (6), Tempranillo (5), Cinsaut (4), 167 

Arinarnoa (4), a blend (Pinotage, Shiraz and Malbec) (4), Marselan (2), Cabernet Franc (1) 168 

and Sangiovese (1). 169 

 170 

2.3. SPECTROPHOTOMETRIC ANALYSIS 171 

All analyses were conducted with UV-Vis spectroscopy using a Multiskan GO Microplate 172 

Spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The total phenolics 173 

index and total anthocyanin contents were quantified using the methodology reported by Iland 174 

et al. [21]. One hundred μl of sample supernatant was diluted 50 times with 1 M HCl, vortexed 175 

and stored for 1 hour in a dark cupboard before the absorbances between 200-700 nm at 2 176 

nm intervals were recorded. The total phenolics index was calculated as the absorbance at 177 

280 nm multiplied with the dilution factor while total anthocyanin content was calculated in 178 
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mg/L malvidin-3-glucoside using the absorbance at 520 nm. Total condensed tannin 179 

concentration was determined using the methyl cellulose precipitable (MCP) tannin assay 180 

protocol developed by Sarneckis [22] and later modified by Mercurio et al. [23]. In 2 ml 181 

microfuge tubes, the treatment involved 50 μl of wine diluted with 600 μl of MCP solution 182 

(0.04% w/v), vortexed and left for 2-3 min before 400 μl of ammonium sulphate and 950 μl of 183 

distilled water was added. The control tubes contained no MCP solution but rather a total of 184 

1.55 ml distilled water. Both control and treatment stood for 10 min before being centrifuged 185 

in an Eppendorf 5415D centrifuge (Hamburg, Germany) at 10 000 rpm for 5 min. The tannin 186 

content was then calculated using the difference between control and treatment samples at 187 

280 nm and converted to mg/L using a calibration curve in epicatechin equivalents and a 188 

dilution factor of 40. Colour density was determined using the method reported by Glories [24] 189 

whereby 50 μl of wine was analysed against a blank of deionised water and the absorbance 190 

recorded at 420 nm, 520 nm and 620 nm. The sum of the three wavelengths was used to 191 

determine the colour density of the sample. Polymeric pigments were calculated using the 192 

modified Somers assay [23]. In 2 ml microfuge tubes, 200 μl of sample supernatant was diluted 193 

with 1.8 ml buffer solution (12% v/v ethanol, 0.5 g/L w/v tartaric acid at pH 3.4) containing 2.5 194 

% sodium metabisulfite, and vortexed. The samples were stored for 1 hour and then analysed 195 

at 520 nm. The polymeric or SO2 resistant pigments were then calculated in absorption units 196 

(AU) using a dilution factor of 10.  197 

 198 

2.4. FLUORESCENCE INSTRUMENTATION  199 

Parameters of a Perkin Elmer LS50B Spectrophotometer were investigated with regards to 200 

the intensity, excitation and emission ranges appropriate for wine analysis using diluted 201 

samples and conventional fluorescence analysis. A front-face accessory was thereafter 202 

investigated to ensure similarly appropriate parameters were obtained, and the optimal angle 203 

of incidence identified as that between the excitation beam and the sample perpendicular, was 204 

determined as 30 degrees. Inner filter effects were explored and deemed minor within the 205 

scope of the study. This calibration from conventional to front-face fluorescence was 206 

conducted using a Cabernet Sauvignon wine sample (2018) and validated with a Merlot wine 207 

sample (2018) (data not shown).  208 

 209 

2.5. FLUORESCENCE SPECTROSCOPY 210 

Front-face fluorescence analysis was conducted on all undiluted samples at room temperature 211 

within an air-conditioned area to minimise the effects of instrumental fluctuations. A 700 μl 212 

quartz cuvette (2 mm width) (Hellma Analytics, Germany) was used together with a 2 cm in 213 

diameter aperture fitted in the emission path in order to provide additional filtering of Rayleigh 214 
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scattering. The excitation-emission matrix (EEM) per sample was recorded as emission 215 

spectra between 245 nm and 500 nm at 0.5 nm intervals for excitation wavelengths between 216 

245 nm and 400 nm at 5 nm intervals. Scanning speed was set at 500 nm/min and the 217 

excitation and emission slit widths were set at 3 nm and 5 nm, respectively. The UV Winlab 218 

instrument software was used for data acquisition.  219 

2.6. DATA PRE-PROCESSING 220 

A single, complete dataset containing the combined 289 EEMs was created (11 samples were 221 

excluded due to unexplained oversaturation during fluorescence analysis). Once combined, 222 

spectral interferences were removed from the EEMs as described by Airado-Rodríguez et al. 223 

[11]. First and second order Rayleigh scatter were removed by excluding the excitation peaks 224 

on the identity line (λex = λem) and at (2λex = λem), respectively. The triangular non-chemical 225 

region below the identity line (λex > λem) was set to zero. The software used for data and image 226 

processing throughout the study include the open-source web-based user interface 227 

JupyterLab (Project Jupyter, USA) using the Python 3 language library scikit-learn [25] and 228 

Matlab version 9.5 (The Mathworks Inc., MA, USA). 229 

 230 

2.7. CHEMOMETRICS 231 

 232 

2.7.1. PARALLEL FACTOR ANALYSIS (PARAFAC) 233 

PARAFAC was performed in Matlab using the PLS_Toolbox (The Mathworks Inc., MA, USA) 234 

as described in literature [11,14,26]. The pre-treated EEMs of the 289 samples were stacked 235 

in a trilinear arrangement of I x J x K vectors (samples x excitation wavelengths x emission 236 

wavelengths) resulting in an initial 289 x 32 x 480 three-dimensional array. Spectral artifacts 237 

led to a reduction in EEM size from excitation and emission wavelengths between 245-400 238 

nm and 260-500 nm, to 245-340 nm and 265-500 nm, respectively. The final three-way array 239 

of 289 x 20 x 470 was obtained. The appropriate number of components was chosen based 240 

on the core consistency diagnostic (CORCONDIA) and explained variance for non-negativity 241 

constrained models. Split-half analysis was conducted for model validation. Linear regression 242 

was then performed in JupyterLab on the resulting score values to determine univariate 243 

calibration models. 244 

 245 

2.7.2. MACHINE LEARNING  246 

Conventional linear regression in the form of principal component regression and partial least 247 

squares regression (PCR and PLSR) were investigated in JupyterLab. The exploration of 248 

linear regression included specific region selection based on phenolic fluorescence as found 249 

in literature [11], data scaling and outlier removal. Machine learning was investigated as a data 250 
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modelling alternative and an exploration of the optimal pre-processing parameters focused on 251 

variable selection, data scaling, spectral region selection and choice of modelling technique. 252 

A machine learning pipeline was built in Python consisting of five consecutive steps namely, 253 

a column selector used to select for specific columns within the data and allow for spectral 254 

region selection between excitation 245-400 nm and emission 245-500 nm, a savgol transform 255 

used to apply a Savitzky-Golay filter for data smoothing [27], a pre-processing selector used 256 

to find the optimal scaling technique, principal component analysis (PCA) for data 257 

decomposition, and the XGBoost regressor to build a tree-based gradient boosted model [28]. 258 

Bayesian optimisation was used as the framework for automatically tuning the hyper-259 

parameters of the pipeline [29,30] and explored over 2 000 iterations and over 160 model 260 

configurations per model.  261 

 262 

Figure 1 is a graphical representation of the machine learning pipeline procedure. Briefly, the 263 

data was automatically and randomly split using the Kennard-Stone algorithm into train and 264 

test sub datasets, of which 20 samples were retained for model validation. Following this train 265 

and test split, a (Synthetic Minority Over-Sampling Technique for Regression) SMOTER 266 

algorithm was applied to the training set data. SMOTER makes use of interpolation of target 267 

samples identified as extreme cases or within the minority in order to create synthetic samples 268 

that improve upon model training [31]. A 99% threshold was used, identifying cases within the 269 

rare extreme and a k=3 value for k- Nearest Neighbours (KNN) was defined as the 270 

interpolation parameter to create the synthetic samples. The training data was thereafter 271 

passed through each consecutive step of the pipeline per phenolic parameter, with Bayesian 272 

optimisation automatically identifying the best hyper-parameters required for optimal 273 

prediction accuracy. Evaluation metrics including coefficient of determination (R2cal and 274 

R2val), root mean square error (RMSE) and mean absolute error (MAE) were reported for 10-275 

fold cross validation, whereby 10 randomly and equally sized sub datasets were partitioned, 276 

retaining 2 samples per sub dataset for internal test validation. RMSE was the key metric used 277 

by the Bayesian optimisation algorithm in order to improve upon each new hyper-parameter 278 

configuration it explored. The pipeline was repeated until an inflection point was reached and 279 

automatically recognised as no further improvement in validation via early stopping, and the 280 

parameters that resulted in the best cross validated RMSE over all the fits was then used to 281 

save a final model configuration. Lastly, the retained 20 sample test dataset was used to 282 

evaluate the final model’s performance on unseen data. 283 

 284 

In order to optimise the pipeline for each phenolic parameter (total phenols, total condensed 285 

tannins, total anthocyanins, colour density and polymeric pigments), four main tests were 286 

conducted including running the complete pipeline, the pipeline without synthetic samples, the 287 
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pipeline with synthetic samples but without region selection and lastly, the pipeline without 288 

region selection nor synthetic samples. The optimal pipeline parameters were chosen unique 289 

to each phenolic model. Each of the four tests were run several times in order to evaluate the 290 

optimal number of components in principal component analysis (PCA). The average train and 291 

test scores per number of PCA components were evaluated with a focus on optimal 292 

decomposition coupled with model stability. Six components were chosen due to this being 293 

consistently optimal for all phenolic models and was thereafter inserted into the pipeline as a 294 

fixed hyper-parameter (Figure 1).  Once the optimal parameters were obtained, further model 295 

development involved adjusting the phenolic ranges to eliminate minority sample groups from 296 

negatively impacting model accuracy, as well as outlier identification and removal. 297 

 298 
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 299 

Figure 1. Schematic diagram of the machine learning pipeline. 300 

 301 

 302 

 303 

 304 

 305 

 306 
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2.8. CLASSIFICATION 307 

 308 

PARAFAC performed in Matlab, and PCA and neighbourhood component analysis (NCA) 309 

performed in Python were the techniques used to evaluate the classification and discrimination 310 

abilities of fluorescence spectroscopy. PARAFAC scores obtained per component were 311 

plotted against each other [11] focusing on the four main cultivar types included in this study 312 

(Cabernet Sauvignon, Merlot, Pinotage and Shiraz) as well the sample state of either 313 

fermenting must or wine. PCA was conducted in a similar manner to PARAFAC. NCA was 314 

conducted using linear discriminant analysis (LDA) as the linear transformation initialisation 315 

method and due to the large variation in number of samples per cultivar, classification was 316 

conducted on cultivars with more than or equal to 5, 8, 14 and 20 samples, respectively. NCA 317 

was repeated with a focus on classifying according to the sample state of either fermenting 318 

must or wine as well as on fermenting musts and wine separately. Leave-one-out cross 319 

validation was conducted per set of NCA with score values used to determine classification 320 

accuracy. 321 

 322 

3. RESULTS AND DISCUSSION 323 

 324 

3.1. WINE EXCITATION-EMISSION MATRICES (EEMS) 325 

Figure 2 is an example of a pre-processed EEM belonging to a randomly chosen Cabernet 326 

Sauvignon sample from this study. Two different spectral regions can be observed as a result 327 

of the fluorescent properties of wine previously reported in literature [11,17].  Excitation 328 

between the more energetic wavelengths of 250 and 290 nm results in emission between 300 329 

and 430 nm, while excitation at wavelengths longer than 300 nm results in emission between 330 

360 and 450 nm [11,17]. Figure 3 is an integrated depiction adapted from literature indicating 331 

the characteristic excitation and emission wavelengths of important phenolic compounds [11]. 332 

The non-flavonoid family including phenolic acids (cinnamic-like and benzoic-like), phenolic 333 

aldehydes and stilbene-like compounds extends between the ranges of excitation 260-330 nm 334 

and emission 320-440 nm. Gentisic acid possesses a unique fluorescence in that it deviates 335 

further right of the EEM compared to the rest of the non-flavonoids. The flavonoid family is 336 

split into two unique regions with flavonols extending between excitation 260-268 nm and 337 

emission 370-422 nm, and flavan-3-ols occurring within excitation 278-290 nm and emission 338 

310-360 nm. Apart from polyphenols, other naturally occurring fluorescent compounds in 339 

fermenting musts and wine, such as vitamins and amino acids, have previously been reported 340 

[17,32]. The fluorescent properties of the amino acid tryptophan have been included, as 341 

reported [33]. Figure 3 is merely an approximate representation as the excitation-emission 342 
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regions illustrated below are reported for compounds in dilution measured using the 343 

conventional right-angled technique, and spectral shifts, band fluctuations and quantum yield 344 

changes may occur when measured within the unaltered wine matrix [11]. 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

Figure 2. Excitation-emission matrix of a fermenting Cabernet Sauvignon sample included in this study 360 
(Sample 1) with the scale bar representing fluorescence intensity. 361 
 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

Figure 3. Excitation-emission matrix of a fermenting Cabernet Sauvignon sample included in this study 375 
(Sample 1) indicating the fluorescent properties of wine fluorophores adapted from literature [11]. G and 376 
T represent gentisic acid and tryptophan, respectively. 377 
 378 

 379 

 380 

 381 

 382 
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 383 

 384 

 385 
Table 1. Maximum, minimum, standard deviation and average values per spectrophotometric analysis 386 
reference method. 387 
 388 

Table 1 illustrates the phenolic variability achieved during sample collection of both fermenting 389 

musts and wine samples. All spectrophotometric methods were performed within a coefficient 390 

of variation less than 5%, considered acceptable for reproducibility. The final wine phenolic 391 

profile is the result of complex chemical interactions influenced by numerous factors such as 392 

those influencing the chemical composition of the grape berry as well as the viticultural and 393 

oenological practices implemented throughout processing [1]. This naturally high variability 394 

obtained illustrates the importance of including an extensive dataset during model 395 

development in order to sufficiently challenge and train the model on diverse ranges of 396 

phenolic levels. Introducing high sample variability aids in building robust calibration models 397 

able to make accurate predictions on future samples. 398 

 399 

3.2. PARALLEL FACTOR ANALYSIS (PARAFAC) 400 

PARAFAC is a trilinear decomposition modelling technique resulting in components (score 401 

and loading vectors) that are representative of signals from individual fluorophores. The 402 

optimal number of components was chosen to be four, based on the core consistency 403 

diagnostic (CORCONDIA) and explained variance obtained for non-negativity constrained 404 

models [19] as well as corresponding with results from previous red wine PARAFAC analyses 405 

in which components were tentatively correlated with phenolic compounds [17,39]. Visual 406 

inspection of the loadings was performed to confirm the optimal number of components as 407 

well as to remove spectral artifacts interfering with the model stability, resulting in a reduced 408 

spectral region of 245-340 nm excitation and 265-500 nm emission with a final three-way array 409 

of 289 x 20 x 470 (samples x excitation wavelengths x emission wavelengths). Split-half 410 

analysis was conducted to validate the uniqueness and stability of the final model.  411 

 

Total 

Phenols 

Index 

Total 

Condensed 

Tannins 

(mg/L) 

Total 

Anthocyanins 

(mg/L) 

Colour 

Density 

(AU) 

Polymeric 

Pigments 

(AU) 

Maximum 126.10 2912.08 1306.44 42.52 8.09 

Minimum 5.11 731.44 9.26 1.89 0.24 

Average 44.50 1474.22 350.98 14.01 1.80 

Standard 

deviation 
18.02 425.74 194.71 6.06 1.13 



14 
 

 412 

Figure 4 shows the final model scores obtained per sample for each PARAFAC component, 413 

as well as the excitation and emission loadings per PARAFAC component. Score values are 414 

estimates of the relative concentrations of the responsible fluorophore and can be used to 415 

build univariate calibration models or determine relationships contained within the 416 

fluorescence information for potential clustering [17,19]. Components 1 to 4 have been 417 

tentatively assigned to their responsible fluorophores in literature by correlating the resulting 418 

PARAFAC component excitation and emission peaks with HPLC measurements and 419 

bibliographic information [11,39]. Component 1 is characterised by an excitation peak around 420 

260 nm with an emission shoulder at 370 nm and peak at 390 nm, and has been suggested 421 

as representing phenolic aldehydes, benzoic-like acids, myricetin and trans-resveratrol [11] 422 

and caffeic acid [39]. Component 2 is characterised by an excitation peak around 280 nm and 423 

emission peak around 320 nm. This second component has been consistently matched with 424 

monomeric flavan-3-ols, catechin and epicatechin, with high correlations achieved for catechin 425 

(R2 = 0.9221) and epicatechin (R2 = 0.8761) [17] as well as the sum of both (R2 = 0.8468) [13]. 426 

Component 3 consists of an excitation peak between 320-330 nm and an emission peak 427 

around 420 nm, while component 4 is characterised by an excitation shoulder at 270 nm and 428 

peak at 280 nm with an emission peak at 370 nm. Schueuermann et al. [39] proposed 429 

cinnamic-like acids, caffeic and p-coumaric, responsible for component 3 while p-coumaric 430 

acid, gentisic acid and stilbene-like non-flavonoids were proposed by Airado-Rodŕiguez et al. 431 

[17]. Component 4 has been suggested as benzoic-like acids as well as tryptophan [11,39]. 432 

The complexity of the wine matrix results in PARAFAC components most likely corresponding 433 

to several different fluorophores or those within the same chemical group rather than individual 434 

compounds. No correlations were found between the obtained score values and the reference 435 

data per phenolic parameter (Suplemmentary information S1). Despite the potential for 436 

component 2 to be well correlated with total condensed tannins, the best R2 value obtained 437 

after linear regression was 0.21. In the context of this study, PARAFAC was unsuccessful in 438 

building calibrations for such broad phenolic parameters such as total condensed tannins 439 

versus the successful correlations achieved for pure compounds of catechin or epicatechin 440 

[13,17]. The structural similarity of the phenolic classes and difficulty in separating them into 441 

their singular structures based on their PARAFAC components may be hindering the 442 

predictive ability of regression modelling. Conducting PARAFAC on fermenting musts and 443 

wine separately did not improve upon results.   444 

 445 

 446 
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Figure 4. Score values per sample (Mode 1), excitation loadings and emission loadings for the four component, non-negativity constrained PARAFAC model. 
Component 1(yellow), 2(red), 3(purple) and 4 (blue).
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3.3. MACHINE LEARNING 483 

Conventional linear regression in the form of principal component regression (PCR) and partial 484 

least squares regression (PLSR) was performed on the fluorescence excitation-emission 485 

spectra and reference data. These methods proved unsuccessful despite exploring 486 

fluorescent region selection, phenolic range manipulation and outlier removal, with poor 487 

calibration and validation scores (data not shown). This suggested a complex dataset (three-488 

dimensional fluorescence data configuration of intensity x emission x excitation against 489 

phenolic reference data) requiring more intensive data handling and the exploration of 490 

machine learning algorithms. The decision behind using a boosting modelling technique, such 491 

as XGBoost, involved the beneficial linear collection of numerous sequentially modelled 492 

regression trees rather than a single model of best fit as with simpler regression methods [28]. 493 

Each successive tree optimises on the residuals of the previous tree’s predictions and thereby 494 

minimises the loss of predictive ability from previously sub-optimal models [40,41]. Gradient 495 

boosting is a highly effective technique for classification and regression problems and a 496 

favoured option throughout the data science community. This can be seen in the preferred 497 

choice of machine learning algorithms used on Kaggle, the largest data science community 498 

platform and machine learning competitive scene [42]. 499 

 500 

Briefly, a five-step machine learning pipeline was built consisting of fluorescent region 501 

selection, data smoothing and scaling, data decomposition with PCA and lastly, the XGBoost 502 

regressor (Figure 1).  The minority over-sampling technique in the form of a SMOTER 503 

algorithm applied to the training sub dataset following the train/test split, proved useful in 504 

creating a more balanced training model for a widely variable input dataset of fermenting 505 

musts and wines. Six principal components showed the most optimal model stability and 506 

highest prediction accuracy for all phenolic parameters and was thereafter inserted as a set 507 

feature for further model development. Generally, calibration models should be cautiously 508 

considered with regards to overly optimistic results. Internal validation in the form of 10-fold 509 

cross validation as well as the evaluation of the final model on a retained validation dataset 510 

was therefore performed in order to reduce these risks. Each phenolic parameter was 511 

individually explored to determine the most optimal pipeline resulting in the highest prediction 512 

accuracy and model stability. Table 2 shows the prediction accuracy metrics and 513 

characteristics of the best models per phenolic parameter. Once the most optimal pipeline 514 

parameters were determined, the pipeline was re-run several times to allow for outlier removal 515 

and refinement.  516 

 517 

The best total phenols model depicted in Figure 5 (R2 = 0.81; RMSEV = 7.16; MAEV = 5.39) 518 

made use of region selection between 260-360 nm excitation and 370-400 nm emission which 519 
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overlaps the flavonols and stilbene-like regions as represented in Figure 3. Poor prediction 520 

accuracy and unstable models were found when trying to incorporate the entire phenolic 521 

region as referenced in literature. Due to a minority of samples with high phenolic values, 522 

samples above 80 index units were removed as the model struggled to predict above this 523 

threshold.  524 

 525 

The best total condensed tannins model (Figure 6) made use of region selection between 526 

285-340 nm excitation and 290-350 nm emission, overlapping with the flavan-3-ols region 527 

depicted in Figure 3. Samples with tannin levels above 2300 mg/L were removed as the model 528 

struggled to predict above this minority group of samples. An R2 of 0.89, RMSEV of 172.37 529 

and MAEV of 129.14 were obtained. The best total anthocyanins model (Figure 7) required 530 

removing samples with levels above 800 mg/L and made use of region selection between 280-531 

300 nm excitation and 330-380 nm emission which correlates well with the fluorescence of 532 

malvidin-3-glucoside. Prediction scores of R2 = 0.8, RMSEV = 76.57 and MAEV = 61.57 were 533 

obtained. Poorer but stable models were built for colour density (Figure 8) and polymeric 534 

pigments (Figure 9), the metrics of which are reported in Table 2. No ideal region could be 535 

selected for both models and little improvement was observed with outlier removal and range 536 

manipulation. Due to a minority of samples in the higher ranges, samples above 25 absorption 537 

units and above 4 absorption units were removed for colour density and polymeric pigments, 538 

respectively. The inability to develop a promising regression model for colour density may be 539 

due to the characteristics of colour density as a metric. Red wine colour experiences numerous 540 

transitions over time as a result of chemical reactions between anthocyanins and other 541 

phenolic compounds [5]. The widely used Glories method [24] is an estimation of total colour 542 

by using the sum of absorbances at three wavelengths, namely 420 nm (yellow colouration), 543 

520 nm (red colouration) and 620 nm (blue colouration). The excitation-emission matrix 544 

chosen for this study therefore may not have encompassed all responsible compounds, 545 

provided they possess fluorescent abilities, and a summation of fluorescent measurements at 546 

these absorbances should be considered for future modelling. The poorer prediction accuracy 547 

metrics obtained for the polymeric pigments model may be due to the chosen excitation-548 

emission matrix not encompassing the fluorescent regions of such pigments, as has been 549 

identified by the novel fluorescence approach developed using a fluorescence ratio of 550 

F700/F560 [34]. However, the unbalanced dataset of 190 fermenting musts and 110 wines 551 

may be affecting model calibration due to a minority group of samples with higher polymeric 552 

pigment levels (only 40 wine samples with levels above 3 absorption units).  553 

 554 
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 555 
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 564 
 565 
 566 
 567 
 568 
 569 
 570 
Figure 5. Total phenols regression plots, calibration model (left) and validation set (right). 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
Figure 6. Total condensed tannins (mg/L) regression plots, calibration model (left) and validation set 590 
(right). 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
 608 
Figure 7. Total anthocyanins (mg/L) regression plots, calibration model (left) and validation set (right). 609 
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 610 
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 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 
 622 
 623 
 624 
Figure 8. Colour density (AU) regression plots, calibration model (left) and validation set (right). 625 
 626 

 627 

 628 
 629 
 630 
 631 
 632 
 633 
 634 
 635 
 636 
 637 
 638 
 639 
 640 
Figure 9. Polymeric pigments (AU) regression plots, calibration model (left) and validation set (right). 641 
 642 

Cultivar based models were explored per phenolic parameter for the four main cultivars, 643 

Cabernet Sauvignon, Shiraz, Merlot and Pinotage. The only model with promising results was 644 

built for Cabernet Sauvignon and total condensed tannins with average R2 train and test 645 

scores of 0.78 and 0.81, respectively. This may be a result of high tannin levels characteristic 646 

of the cultivar as well as an equally balanced dataset of fermenting musts and wine. Only 45 647 

samples were used in the model and therefore only show promise as to the potential of building 648 

a cultivar-based model.  649 

 650 

Due to differences in fluorescence between fermenting musts and wine suggested in PCA 651 

(Figure 10), age-based models were explored and the prediction accuracy metrics reported 652 

in Table 3. Overall, models built using only fermenting musts for total phenols, total condensed 653 

tannins and polymeric pigments performed slightly better than those built with only finished 654 

wines. This could be a result of too few wine samples with too much variability creating large 655 

gaps unable to be adequately trained on despite implementing the SMOTER algorithm. The 656 

models built using finished wine samples also appear to be more unstable, specifically with 657 
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regards to large differences in coefficient of correlation (R2) between calibration and validation, 658 

as seen with total phenols and total condensed tannins (Table 3). The fermenting-based 659 

models for total condensed tannins and polymeric pigments in Table 3 possess slightly better 660 

prediction accuracy metrics than the models built using all samples and show potential for 661 

quantifying other fermenting samples more accurately. Interestingly, the wine-based models 662 

built for total anthocyanins and colour density seemed to perform slightly better when looking 663 

at RMSE and MAE, however the differences in R2 should indicate further validation is required. 664 

Differences in performance when modelling on fermenting musts and wine separately when 665 

compared to the best phenolic models reported in Table 2 may be a result of the random 666 

sampling technique used within the machine learning pipeline or the unique behaviour of 667 

specialised models built for a specific sub dataset. Overall, the best phenolic parameter 668 

models built using all samples may be more promising in terms of generalisability and the 669 

ability to predict any sample, regardless of the stage in red wine production, as opposed to 670 

more specialised models built for a specific task, such as fermenting or wine-based models, 671 

which may become over-fitted and perform poorly on unseen data. 672 

 673 

Several considerations are important for optimal model development and the acceptance of 674 

the subsequently obtained models. Including more samples per cultivar as well as a more 675 

balanced dataset of fermenting musts and wine may help in model development. Model 676 

considerations include over-fitting and over-validating. Cross validation is incorporated to 677 

reduce these risks, however, unidentified noise or influences from the fluorescence 678 

spectrophotometer may be fitted on during calibration. Additionally, the retained validation set 679 

may potentially be from the same cultivar, the same day of analysis or the same level of 680 

fermentation and therefore over confidently validate the model. 681 

 682 
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Table 2. Prediction accuracy metrics (R2, RMSE and MAE) and pipeline parameters for the best calibration model per phenolic parameter.  
 

 R2cal R2val RMSEC RMSEV MAEV Excitation/Emission Region (nm) 

Total Phenols 0.81 0.77 5.71 7.16 5.39 260-360/370-400 

Total Condensed 
Tannins (mg/L) 

0.89 0.80 104.03 172.37 129.14 285-340/290-350 

Total Anthocyanins 
(mg/L) 

0.80 0.77 60.67 76.57 61.57 280-300/330-380 

Colour Density (AU) 0.68 0.64 2.46 3.10 2.28 245-400/245-500 

Polymeric Pigments 
(AU) 

0.64 0.66 0.63 0.49 0.39 245-400/245-500 

R2cal: coefficient of determination in calibration; R2val: coefficient of determination in validation; RMSEC: root mean square error of calibration; RMSEV: root 
mean square error of validation; MAEV: mean absolute error of validation. 
 

 
Table 3. Prediction accuracy metrics (R2, RMSE and MAE) for fermenting musts and finished wine calibration models per phenolic parameter. 
 

R2cal: coefficient of determination in calibration; R2val: coefficient of determination in validation; RMSEC: root mean square error of calibration; RMSEV: root 
mean square error of validation; MAEV: mean absolute error of validation. 

 R2cal R2val RMSEC RMSEV MAEV 

Total Phenols 

Fermenting 0.70 0.66 6.56 7.45 5.74 

Wine 0.74 0.37 3.81 7.77 6.17 

Total Condensed Tannins (mg/L) 

Fermenting 0.82 0.78 95.81 128.24 103.20 

Wine 0.69 0.34 122.85 241.13 190.09 

Total Anthocyanins (mg/L) 

Fermenting 0.72 0.77 75.22 89.89 72.18 

Wine 0.71 0.55 36.51 60.06 51.28 

Colour Density (AU) 

Fermenting 0.78 0.53 2.65 4.20 3.34 

Wine 0.72 0.61 2.03 2.38 2.25 

Polymeric Pigments (AU) 

Fermenting 0.62 0.57 0.27 0.33 0.22 

Wine 0.60 0.79 0.49 0.42 0.35 
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3.4. CLASSIFICATION  689 

Unique fluorescent fingerprints of wine have been identified for their potential to classify 690 

samples based on cultivar type, wine style or appellation [11,15,43]. The three methods 691 

explored in this study for the classification of cultivar type and sample state (fermenting must 692 

or wine) included PARAFAC, PCA and NCA. PARAFAC scores were unsuccessful in 693 

distinguishing between cultivar or sample state. PCA did not clearly distinguish between 694 

cultivars but showed clear distinction between fermenting musts and wine (Figure 10). NCA 695 

was explored due to its success in achieving better classification results compared to other 696 

dimensionality reduction techniques, such as PCA and linear discriminant analysis (LDA), 697 

because of its explicit encouragement of local separation between classes [44]. Due to large 698 

variation in the number of samples per cultivar, classification was conducted on cultivars with 699 

more than or equal to 5, 8, 14 and 20 samples, respectively. Leave-one-out cross validation 700 

was conducted per set of NCA analysis with scores reported in Table 4.  701 

 702 

The two best cultivar classification scores were achieved for 9 different cultivars (> 5 samples) 703 

(Figure 11) and the four main cultivars (>20 samples) included in this study (Figure 12). When 704 

distinguishing between fermenting musts and wine, the highest cross validation score of 0.82 705 

was achieved for the four main cultivars (>20 samples) (Figure 13). Due to the difference in 706 

fluorescence suggested in the stretched appearance of the cultivar classes (Figure 12) and 707 

confirmed with PCA, NCA was conducted on fermenting musts and wines separately. Overall, 708 

the cultivar classification ability was stronger for fermenting musts compared to wine (Table 709 

4). Figures 14 and 15 show the best clustering and classification achieved by analysing only 710 

fermenting musts. This improved classification for fermenting musts compared to wines 711 

highlights the uniqueness of cultivar types before undergoing processing. The final phenolic 712 

composition of a wine is a complex chemical matrix influenced by several factors including 713 

viticultural practices, different terroirs and various winemaking techniques implemented 714 

throughout fermentation and ageing, and therefore clarifies the poorer results for classifying 715 

wines purely based on cultivar [1,17]. Additionally, the initial composition of grape must may 716 

possess higher levels of fluorescent compounds such as vitamins and amino acids before 717 

being metabolised by yeast cells during fermentation, while the phenolic composition changes 718 

occurring throughout fermentation may also suggest greater fluorescence of monomeric 719 

compounds compared to the polymerised compounds found later in wine. Spectral 720 

considerations include a reduced fluorescence intensity from darker samples, the result of 721 

which is obtained following increased anthocyanin extraction during fermentation [17,32]. 722 

Interestingly, the Pinotage, Malbec and Shiraz blend (PMS) in Figure 14 is situated relatively 723 

central to each of the corresponding pure cultivars included in the fermenting blend and 724 
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suggests the potential of fluorescence spectroscopy in determining the constituents of blends 725 

which may be helpful in authentication and quality control by industry bodies. 726 

 727 

Figure 15 is an integrated depiction of the highest cross validated cultivar classification for the 728 

four main cultivars (>20 samples) combined with three-dimensional EEMs of each cultivar. 729 

Each sample depicted was chosen based on their phenolic levels to illustrate the unique 730 

fluorescent fingerprint per cultivar despite possessing similar phenolic levels (Table 5). 731 

Although showing a similar general three-dimensional fluorescent shape, each cultivar has 732 

their own characteristic peak within the EEM and level of fluorescence intensity, with Pinotage 733 

having the lowest of the four. Pinotage also exhibits tighter clustering in Figures 11 to 15 734 

compared to other cultivars. This may be a result of a particularly unique phenolic composition 735 

compared to other cultivars [45]. When investigating the fluorescent intensities of Pinotage 736 

samples, more stable fluorescent levels between fermenting musts and wines were observed 737 

compared to other cultivars which experienced more extreme variations in fluorescent 738 

intensities, the cause of which has not been clearly identified and requires further investigation. 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

Figure 10. Principal Component Analysis (PCA) plot showing fermenting musts (red) and finished 747 
wines (grey). 748 
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Table 4. Leave-one-out cross validation scores per neighbourhood component analysis (NCA) 
conducted for cultivar classification, sample state classification, fermenting musts and wine 
classification. 
 

 

 

Number of samples per cultivar Cross Validation Score 

Cross validation scores for cultivar classification using all samples 

≥ 5 0.84 

≥ 8 0.80 

≥ 14 0.72 

≥ 20 0.86 

Cross validation scores for sample state classification (fermenting musts and wine) 

≥ 5 0.79 

≥ 8 0.78 

≥ 14 0.77 

≥ 20 0.82 

Cross validation scores for cultivar classification of fermenting musts only 

≥ 5 0.87 

≥ 20 0.93 

Cross validation scores for cultivar classification of wine only 

≥ 5 0.76 

≥ 20 0.79 
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 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

. 767 

 768 

 769 

 770 

 771 

 772 

 773 

Figure 11. Cultivar classification using NCA for cultivars with 5 or more 
samples (fermenting musts and wine) with a cross validation score of 0.84. 

 

Figure 12. Cultivar classification using NCA for cultivars with 20 or more samples 
(fermenting musts and wine) with a cross validation score of 0.86. 
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 774 

Figure 13. Cultivar classification using NCA for the four main cultivars (≥ 20 samples) 
distinguishing between fermenting musts and wine with a cross validation score of 0.82. 

 

Figure 14. Cultivar classification using NCA for cultivars with 5 or more samples 
on only fermenting musts with a cross validation score of 0.87. 

 



27 
 

 775 

 776 

 777 

 778 
Figure 15. Cultivar classification using NCA for the four main cultivars (≥ 20 samples) on only fermenting musts with a cross validation  score of 0.93. Three-779 
dimensional excitation-emission matrices of phenolically similar samples corresponding to each cultivar.780 
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Table 5. Spectrophotometric analysis measurements showing the phenolic similarity between wines 781 
made from different cultivars namely, Merlot, Shiraz, Cabernet Sauvignon and Pinotage (samples 293, 782 
209, 292 and 227). 783 
 784 

 785 

4. CONCLUSION 

 786 

Monitoring phenolic extraction throughout fermentation and ageing may aid in decision-787 

making during red wine production. This study showed the potential of front-face fluorescence 788 

spectroscopy coupled with chemometrics to quantify important phenolic parameters in 789 

fermenting musts and wine. PCR, PLSR and PARAFAC were explored but produced poor 790 

results and highlighted the need for more complex data handling techniques. Calibration 791 

models built using a gradient boosting technique, XGboost, were successful for the 792 

quantification of total phenols, total condensed tannins and total anthocyanins. The errors and 793 

coefficients of determination obtained in this study are in line with those previously reported 794 

for other spectroscopy applications such as UV-Visible or IR further validating the suitability of 795 

fluorescence spectroscopy for this application [2,46,47,48,49]. However, the incorporation of 796 

more samples within minority sample groups as well as obtaining a more balanced dataset of 797 

different cultivar types, fermenting musts and wines may improve upon model development 798 

and therefore the reported results. Additionally, the wide field of chemometrics allows for the 799 

use of other statistical analysis methods not explored in this study which may yield better 800 

results. The identification of fluorescent regions for each of the phenolic parameters optimises 801 

fluorescence analysis for a reduced analysis time and the development of accurate predictive 802 

models using front-face fluorescence spectroscopy may allow for their incorporation into future 803 

optical portable devices or automated systems, able to analyse samples directly from their 804 

 
Total 

Phenols 

Total 

Condensed 

Tannins 

(mg/L) 

Total 

Anthocyanins 

(mg/L) 

Colour 

Density 

(AU) 

Polymeric 

Pigments 

(AU) 

Merlot 59.95 1902.66 304.93 11.02 2.01 

Shiraz 59.50 1974.06 324.30 16.50 2.25 

Pinotage 59.15 1908.30 313.43 10.71 2.03 

Cabernet 

Sauvignon 
60.10 1901.09 231.44 16.67 3.14 

Average 59.53 1928.34 314.22 12.74 
 

2.10 

Standard 

deviation 
0.33 32.41 7.93 2.66 

 

0.18 
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fermentation vessels or barrels. This approach could serve as an alternative to IR portable 805 

devices that work similarly capturing the reflected light of the wine samples and proved to also 806 

quantify phenolic content successfully. Moreover, the fact that fluorescence signals rely on the 807 

excitation of the fluorophores with less expensive and well-developed UV-Visible technology 808 

makes this technology also cost-wise interesting. Additionally, this study provides a novel 809 

approach using NCA for the classification of South African red wine cultivars as well as 810 

proposing the potential for analysing and possibly determining the constituents of red wine 811 

blends, both of which may be useful in authentication and quality control.  812 
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