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Abstract
Two subgroups A and B of a group G are cosubnormal if A and

B are subnormal in their join 〈A,B〉 and are strongly cosubnormal if
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every subgroup of A is cosubnormal with every subgroup of B. We
find necessary and sufficient conditions for A and B to be strongly
cosubnormal in 〈A,B〉 and, if Z is the hypercentre of G = 〈A,B〉, we
show that A and B are strongly cosubnormal if and only if G/Z is
the direct product of AZ/Z and BZ/Z. We also show that projectors
and residuals for certain formations can easily be constructed in such
a group.

Two subgroups A and B of a group G are N-connected if every
cyclic subgroup of A is cosubnormal with every cyclic subgroup of B.
Though the concepts of strong cosubnormality and N-connectedness
are clearly closely related, we give an example to show that they are
not equivalent. We note however that if G is the product of the N-
connected subgroups A and B, then A and B are strongly cosubnor-
mal.

1 Introduction and statements of results

In the sequel it is understood that all groups are finite.
Following Wielandt [6], we say that two subgroups A and B of a group

G are cosubnormal in G if A and B are subnormal subgroups of their join
〈A, B〉.

More recently, Knapp [5] introduces the notion of strong cosubnormality :
two subgroups A and B of a group are called strongly cosubnormal if every
subgroup of A is cosubnormal with every subgroup of B. We write A cs B if
A and B are cosubnormal and A scs B if A and B are strongly cosubnormal.

Notice that if A and B are N-connected, then every cyclic subgroup of A
is cosubnormal with every cyclic subgroup of B.

Knapp proves in [5] the following characterisation of strong cosubnormal-
ity in terms of the hypercentre:

Theorem 1 ([5, Theorem 3.3]). Let A, B be subgroups of a group G.
Then the following are equivalent:

1. A and B are strongly cosubnormal.

2. [A, B] ≤ Z∞(〈A, B〉).

Here Z∞(G) denotes the hypercentre of a group G.
A natural sequel of Knapp’s work would be the study of groups generated

by strongly cosubnormal subgroups.
On the other hand, Carocca [3] introduces the concept of N-connected

subgroups: two subgroups A and B of a group G are N-connected when for
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every a ∈ A and b ∈ B, the subgroup 〈a, b〉 is nilpotent (N denotes the class
of nilpotent groups).

It is very easy to show that if A and B are two strongly cosubnormal
subgroups of a group G, then they are N-connected: if a ∈ A and b ∈
B, then 〈a〉 and 〈b〉 are nilpotent subnormal subgroups of 〈a, b〉, and so
〈a, b〉 is nilpotent. However, N-connection and strong cosubnormality are
not equivalent in general, as we will show in the Example at the end of
Section 2.

We prove the following characterisation theorem:

Theorem 2. Let A and B be two subgroups of G such that G = 〈A, B〉 and
let Z = Z∞(G). The following statements are equivalent:

1. A scs B.

2. A cs B and A and B are N-connected.

3. A cs B and if p and q are two different primes, x is a p-element of A
and y is a q-element of B, then [x, y] = 1.

4. [A, B] ≤ Z.

We observe from that cosubnormality and N-connection are closely re-
lated concepts. In the important case of products, they are indeed equivalent.

Theorem 3. If a group G is the N-connected product of its subgroups A and
B, then A and B are strongly cosubnormal.

Our next result describes the groups generated by strongly cosubnormal
subgroups.

Theorem 4. Let G = 〈A, B〉 and Z = Z∞(G). Then the following state-
ments are equivalent:

1. A scs B.

2. G/Z = AZ/Z ×BZ/Z.

In [1], Ballester-Bolinches and Pedraza-Aguilera proved that soluble N-
connected products behave well with respect to saturated formations contain-
ing N. Following this idea, we study the behaviour of strongly cosubnormal
subgroups in the finite (not necessarily soluble) universe with respect to for-
mations.

Recall that a formation F is a class of groups which is closed under taking
epimorphic images and subdirect products. Every group G has a smallest
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normal subgroup GF (called the F-residual of G) such that G/GF ∈ F (see
[4, II.2] for details). If X is a class of groups, a subgroup E of G is an X-
projector of G if EN/N is X-maximal in G/N for all normal subgroups N
of G. If F is a formation, then every group G has F-projectors if and only
if F is saturated, that is, if G/Φ(G) ∈ F, then G ∈ F (see [4, Chapter 4] for
further details). Note that N is a saturated formation.

The following results show that finite (not necessarily soluble) groups
generated by strongly cosubnormal subgroups behave well with respect to
(not necessarily saturated) formations containing N.

Theorem 5. Let F be a formation containing N such that either F is sat-
urated, or F is contained in the class of soluble groups. Suppose that G =
〈A, B〉 and A scs B. Then GF = 〈AF, BF〉.

Theorem 6. Let F be a saturated formation containing N. Suppose that
G = 〈A, B〉 with A scs B. Let A1 be an F-projector of A and let B1 be an F-
projector of B. Then 〈A1, B1〉 is an F-projector of G. Moreover, A permutes
with B if and only if A1 permutes with B1.

2 Proofs of the results

We begin with the following Lemma, whose proof is already contained in
Knapp’s paper.

Lemma 1. Suppose that A and B are subgroups of a group G such that the
following conditions hold:

1. G = 〈A, B〉 and

2. if p and q are two different primes, x is a p-element of A and y is a
q-element of B, then [x, y] = 1.

Then:

1. if p is a prime, then Op′(B) ≤ CG

(
Op(A)

)
and Op′(A) ≤ CG

(
Op(B)

)
and

2. BA ≤ CG(AN) and AB ≤ CG(BN).

In particular, AN and BN are normal subgroups of G.

Proof. Let p and q be two different prime numbers. Let Ap be a Sylow p-
subgroup of A and let Bq be a Sylow q-subgroup of B. Then [Ap, Bq] = 1 by
hypothesis.

4



Since Bq ≤ CG(Ap) for every q 6= p, we have that Ap ≤ CG

(
Op(B)

)
.

Analogously, Bp ≤ CG

(
Op(A)

)
. This proves the first claim.

Since AN =
⋂

p prime Op(A), we obtain that Bp ≤ CG(AN) for all primes

p, and hence B ≤ CG(AN). Bearing in mind that AN is a normal subgroup
of A, we get BA ≤ CG(AN). Analogously, we have that AB ≤ CG(BN).

Proof of Theorem 2. 1 implies 2 has been already noted in the introduction,
whereas 4 implies 1 is just one of the implications of Knapp’s result.

2 implies 3. Let p and q be two different prime numbers. Let x be a
p-element of A and let y be a q-element of B. Since 〈x, y〉 is nilpotent, it
follows that [x, y] = 1.

3 implies 4. We argue by induction on |G|. We have that [A, B] is a
normal subgroup of 〈A, B〉 = G. Suppose that [A, B] 6= 1, and let N be a
minimal normal subgroup of G contained in [A, B]. If N ∩GN = 1, then N is
central in G. Hence, by induction, [A, B]/N ≤ Z∞(G/N), which is equal to
Z/N because N is central in G. Consequently [A, B] is contained in Z and
the theorem is proved. Therefore we may assume that every minimal normal
subgroup of G contained in [A, B] is also contained in GN.

Since [A, B] centralises AN and BN by Lemma 1, it follows that [A, B]
centralises 〈AN, BN〉, which is equal to GN by [5, Theorem W]. This implies
that N is central in [A, B]. Now [A, B]/N ≤ Z∞(G/N) by induction. Hence
[A, B]/N is nilpotent and so is [A, B].

Suppose that there exists a minimal normal subgroup C of G, C 6= N ,
and C ≤ [A, B]. Then, by induction, CN/N ≤ Z∞(G/N). Thus C is
central in G. We can argue as in the previous case to conclude [A, B] ≤ Z.
Consequently, [A, B] contains a unique minimal normal subgroup of G. Since
[A, B] is nilpotent, we have that [A, B] is a p-group for some prime p.

Assume that there exists a minimal normal subgroup N1 of G, N1 6= N .
By induction, [A, B]N1/N1 ≤ Z∞(G/N1), and so NN1/N1 is centralised by
every p′-subgroup of G/N1. In particular, [N, Op(A)] ≤ N1 and [N, Op(B)] ≤
N1. Since [N, Op(A)] and [N, Op(B)] are both contained in N , it follows that
[N, Op(A)] = [N, Op(B)] = 1. This means that N ≤ CG

(
〈Op(A), Op(B)〉

)
=

CG

(
Op(G)

)
, because Op(G) = 〈Op(A), Op(B)〉 ([5, Theorem W]). This im-

plies that N ≤ Z. Since [A, B]/N ≤ Z∞(G/N) and Z∞(G/N) = Z/N , we
have that [A, B] ≤ Z and so [A, B] ≤ Z.

Consequently we may assume that G has a unique minimal normal sub-
group, N say, and N ≤ [A, B]. Note that AB = A[A, B] is a normal sub-
group of G and Op(AB) = Op(A) because [A, B] is a p-group. Analogously
Op(BA) = Op(B). In particular, Op(A) and Op(B) are normal in G. Suppose
that Op(A) 6= 1. Then N ≤ Op(A) and so Op(B) ≤ CG(N) by Lemma 1. If
Op(B) 6= 1, we also have Op(A) ≤ CG(N). This means that Op(G) ≤ CG(N)
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and N ≤ Z.
Therefore we may suppose that Op(B) = 1 and B is a p-group. Then

N ≤ BA and BA ≤ CG

(
Op(A)

)
by Lemma 1. Since Op(A) = Op(G), it

follows that N ≤ CG

(
Op(G)

)
and then N ≤ Z. Arguing as above, we have

that [A, B] ≤ Z and the theorem is proved.

Proof of Theorem 3. By Theorem 2, we need only prove that A cs B provided
that A and B are N-connected and G = AB. Assume that this is not true
and let G be a counterexample of minimal order. Note that the hypotheses
of Lemma 1 hold for N-connected subgroups. Consequently, AN and BN are
normal subgroups of G. Suppose that A is not subnormal in G. It is clear
that G/BN is the N-connected product of ABN/BN and B/BN. Hence, if
BN 6= 1, we have that ABN is subnormal in G by the minimality of G. Since
A ≤ CG(BN) by Lemma 1, it follows that A is normal in ABN. Therefore A
is subnormal in G, a contradiction. Consequently, B is nilpotent. If AN 6= 1,
we have that A/AN is subnormal in G/AN by the minimal choice of G. Hence
A is subnormal in G, a contradiction.

Therefore A and B are nilpotent. By [3], G is nilpotent, a contradiction.

Proof of Theorem 4. 1 implies 2. Suppose that A scs B. Since A ∩ B scs B1

for every B1 ≤ B, we have that A ∩ B ≤ Z∞(B) by [5, Theorem 2.6].
Since A1 scs A ∩ B for every A1 ≤ A, we have that A ∩ B ≤ Z∞(A) by [5,
Theorem 2.6]. Consequently A∩B ≤ Z∞(A)∩Z∞(B), which is contained in Z
by [5, Proposition 3.2]. On the other hand, [AZ/Z, BZ/Z] ≤ [A, B]Z/Z = 1,
by Theorem 2, whence G/Z = AZ/Z ×BZ/Z.

2 implies 1. Suppose that G/Z = AZ/Z×BZ/Z. Let A1 be a subgroup of
A and let B1 be a subgroup of B. Since A1 is subnormal in A1Z and A1Z/Z
is centralised by B1Z/Z, it follows that A1 is subnormal in T = 〈A1Z,B1Z〉.
Analogously, B1 is subnormal in T . Hence A1 cs B1, as desired.

The proofs of Theorem 5 and 6 depend on the following Lemmas:

Lemma 2. Let F be a formation containing N. Suppose that G = 〈A, B〉
and A scs B. If A and B belong to F, then G ∈ F.

Proof. Suppose that the theorem is false. Let G = 〈A, B〉 be a counterexam-
ple with |A| + |B| minimal. We can assume without loss of generality that
A is not nilpotent. Then we can write A = ANC, where C is an N-projector
of A. On the other hand, AN is a normal subgroup of G by Lemma 1 and
Theorem 2 and B ≤ CG(AN). This implies that D = B〈B,C〉 ≤ CG(AN). By
[2, Lemma 1], bearing in mind that G = AN〈C, B〉, there exists an epimor-
phism θ : X = [AN]〈C, B〉 −→ G. Let us prove that X ∈ F. We have that
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X/AN ∈ F, because 〈C, B〉 ∈ F by minimality of G. Now D is a normal
subgroup of X, because D is centralised by AN. Moreover

X/D ∼= [AN](CD/D) ∼= [AN](C/D ∩ C).

We see that Y = [AN]C ∈ F. By [2, Lemma 1], there exists an epimor-
phism α : Y −→ ANC = A such that Ker α ∩ AN = 1. Now, Y/ Ker α ∈ F

and Y/AN ∈ F. Since F is a formation, it follows that Y ∈ F. It is clear
that X/D is isomorphic to a quotient of Y . Therefore X/D ∈ F. Since F is
a formation, we have that X/AN ∩ D = X ∈ F. This implies that G ∈ F,
because G is an epimorphic image of X.

Lemma 3. Let F be a formation containing N. Assume that either F is
saturated or F consists only of soluble groups. If A and B are strongly co-
subnormal subgroups of G, G = 〈A, B〉 and G belongs to F, then A and B
belong to F.

Proof. Assume that F is a saturated formation. Let G be a counterexample
of minimal order to the theorem. If Z = Z∞(G) = 1, then A ∩ B = 1 by
Lemma 4 and G = A × B. In particular, A and B belong to F. Hence
Z 6= 1. Let N be a minimal normal subgroup of G. Since G/N satisfies the
hypotheses of the theorem, it follows that AN/N ∈ F and BN/N ∈ F. In
particular, A/A ∩ N and B/B ∩ N belong to F. If G has more than one
minimal normal subgroup, we have that A and B belong to F. Hence G has
a unique minimal normal subgroup. Thus N ≤ Z, whence N ≤ Z(G). In
particular, A ∩ N ≤ Z(A) and B ∩ N ≤ Z(B). This implies that A and B
belong to F, as desired.

Assume now that F is a formation of soluble groups. Let G = 〈A, B〉
be a minimal counterexample with |A| + |B| minimal. If, for example, B is
nilpotent, then G = AF (G). By Bryant, Bryce and Hartley’s Theorem ([4,
IV.1.14]), it follows that A ∈ F.

Hence we can assume that AN 6= 1 and BN 6= 1. Since G is soluble,
it follows that there exist a maximal subgroup A0 of A such that AF (G) =
A0F (G) and a maximal subgroup B0 of B such that BF (G) = B0F (G). Note
that G = 〈A, B0〉F (G) = 〈A0, B〉F (G). From Bryant, Bryce and Hartley’s
Theorem ([4, IV.1.14]), we have that 〈A, B0〉 and 〈A0, B〉 belong to F. On
the other hand, bearing in mind that A scs B0 and A0 scs B, the minimality
of |A|+ |B| implies that A ∈ F and B ∈ F, a contradiction.

Proof of Theorem 5. Since N ⊆ F, we have that GF ≤ GN, AF ≤ AN and
BF ≤ BN. Hence BA ≤ CG(AN) implies that B ≤ CG(AF). Thus AF and,
analogously, BF are normal subgroups of G. Since G/GF = 〈AGF/GF, BGF/GF〉
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belongs to F, we have that AGF/GF ∈ F by Lemma 3. Hence A/A∩GF ∈ F.
This implies that AF ≤ A ∩ GF. In particular, AF ≤ GF. Analogously,
BF ≤ GF. This proves that 〈AF, BF〉 ≤ GF.

We prove that GF = 〈AF, BF〉 by induction on |G|. If AF = BF = 1,
then A, B ∈ F and, by Lemma 2 we have that G = 〈A, B〉 ∈ F. Con-
sequently we can assume that N = AF 6= 1. Moreover, N ≤ GF. Hence
GF/N = (G/N)F = 〈(A/N)F, (BN/N)F〉 ≤ BFN/N = 〈N, BF〉/N , because
A/N scs BN/N , G/N = 〈A/N, BN/N〉 and (BN/N)F ≤ BFN/N . Conse-
quently GF ≤ 〈AF, BF〉, and the proof is complete.

Proof of Theorem 6. Assume that the theorem is false. Let G be a coun-
terexample of minimal order.

The result is clear if Z = Z∞(G) = 1 by [4, III.6.3] and Theorem 4.
Moreover, if AF = BF = 1, then we have that A, B ∈ F and, by Theorem 2,
we obtain that 〈A, B〉 = G is an F-projector of G. Therefore we can assume,
without loss of generality, that AF 6= 1. From Lemma 1, it follows that there
exists a minimal normal subgroup N of G such that N ≤ AF. Let A1 be an
F-projector of A and let B1 be an F-projector of B. Then 〈A1, B1〉N/N is an
F-projector of G/N by minimality of G. Let X = 〈A1, B1〉N = 〈A1N, B1〉.
Since A1N ≤ A, we have that A1N scs B. Assume X < G. From [4, III.3.14]
and [4, III.3.18], it follows that A1 is an F-projector of A1N . Hence, by
minimality of G, we get that 〈A1, B1〉 is an F-projector of X and, by [4,
III.3.7], we obtain that 〈A1, B1〉 is an F-projector of G. Therefore X =
〈A1, B1〉N = G.

Now 〈A1, B1〉 ∈ F by Theorem 2. Therefore GF ≤ N and, since AF ≤ GF

by Theorem 5, we have that N = GF. Assume that N is abelian. Then
〈A1, B1〉 is a maximal subgroup of G. Hence 〈A1, B1〉 is an F-projector of G,
a contradiction.

Now assume that N is not abelian. Assume that BF 6= 1. Then N =
BF = AF ≤ A ∩ B ≤ Z∞(G) by Theorem 4. In particular, N is abelian, a
contradiction. Hence BF = 1 and B ∈ F. Moreover N is the unique minimal
normal subgroup of G, because the argument above shows that if T is a
minimal normal subgroup of G, then 〈A1, B1〉T = G and so GF ≤ T , whence
N = T . Since B ≤ CG(AF), we have that B ≤ CG(N). If CG(N) 6= 1, then
there exists a minimal normal subgroup T of G contained in CG(N) and so
N ≤ CG(N), a contradiction, because N is not abelian. Hence CG(N) = 1
and so B = 1. In particular, G = A and A1 = 〈A1, B〉 is an F-projector of
G, a contradiction.

Assume now that A1 and B1 permute. We know that GF = AFBF by
Theorem 5 and AF and BF are normal subgroups of G. On the other hand,
A = AFA1 and B = BFB1. Consequently we have that G = 〈AFA1, B

FB1〉 =
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AF〈A1, B1〉BF = (AFA1)(B
FB1) = AB. Hence A and B permute.

Suppose now that the converse is false. Let G be a counterexample of
minimal order. We have that G = AB, but A1 is an F-projector of A and
B1 is an F-projector of B such that A1 and B1 do not permute. We can
assume that Z∞(G) 6= 1, because otherwise G = A × B and so A1 would
be centralised by B1. Let N be a minimal normal subgroup of G contained
in Z∞(G). It is clear that N ≤ Z(G). We know that X = 〈A1, B1〉 is an
F-projector of G. Since XN/N ∈ F and N ≤ Z(G), we have that XN ∈ F.
From the maximality of X, we conclude that N ≤ X. From the minimality
of G, we have that A1N/N and B1N/N permute. Hence X = (A1N)B1.

If A and B belong to F, we have that A1 = A and B1 = B, a contradiction
to the choice of G.

Suppose that A does not belong to F. Since AF is a non-trivial normal
subgroup of G, we can consider a minimal normal subgroup T of G contained
in AF. Assume that Y = 〈A1, B1〉T is a proper subgroup of G. From the
minimality of G, since G/T = (A/T )(BT/T ) and A1T/T is an F-projector of
A/T and B1T/T is an F-projector of BT/T , we have that A1T/T permutes
with B1T/T . This implies that A1T permutes with B1. Since Y = 〈A1T,B1〉,
A1T and B1 are strongly cosubnormal in Y , A1 is an F-projector of A1T by
[4, III.3.14] and [4, III.3.18], and B1 is an F-projector of B1, the minimality of
G yields that A1 permutes with B1, a contradiction. Hence 〈A1, B1〉T = G.
This implies that GF = T , because if G ∈ F, we would have that A1 = A
and B1 = B and A1 and B1 would permute.

Assume that BF 6= 1. Since BF ≤ GF = T , we have that BF = T and
hence T ≤ A ∩ B ≤ Z∞(G) by Theorem 4. The above argument shows
that T ≤ X. Thus X = (X ∩ A)B. But G = XT and, since T is abelian,
we have that X ∩ T = 1 by [4, IV.5.18]. Moreover, X ∩ A = X ∩ A1T =
A1(X ∩ T ) = A1. Consequently X = A1B = A1B1 and A1 permutes with
B1, final contradiction.

Example. Let X = 〈x〉 be a cyclic group of order 8. Let Y = 〈z, y〉 be a
direct product of two cyclic groups of order 2. The group Y acts on X via
xy = x−1, xz = x5. Let H be the corresponding semidirect product. The
group H has an irreducible and faithful module V = 〈v1, v2, v3, v4〉 over the
field of 3 elements of dimension 4, given by

vx
1 = v2

3, vy
1 = v1v2, vz

1 = v1,

vx
2 = v2

3v4, vy
2 = v2, vz

2 = v2,

vx
3 = v1v2, vy

3 = v2
3, vz

3 = v2
3,

vx
4 = v2

2, vy
4 = v2

3v4, vz
4 = v2

4.

9



Let us consider now the corresponding semidirect product G = [V ]H. Let
w = (xy)v1 , A = 〈w〉 and B = 〈y, z〉. In the dihedral group 〈x, y〉, we have
that xy has order 2. Now we prove that A and B are N-connected. Since B
has order 4, it is enough to prove that 〈w, y〉, 〈w, z〉 and 〈w, yz〉 are nilpotent
groups. First of all, we note that vx−1

1 = v3v4, vx−1

2 = v−1
4 , vx−1

3 = v−1
1 ,

vx−1

4 = v−1
1 v2. We can check that the element wy = v−1

1 v3x has order 8 and
(wy)y(wy) = 1. Hence 〈w, y〉 = 〈wy, y〉 is a dihedral group of order 16. On
the other hand, wyz = v−1

1 v3xz has order 8 and (wyz)yz(wyz) = 1, whence
〈w, yz〉 = 〈wyz, yz〉 is a dihedral group of order 16. To conclude, we have that
wz = v−1

1 v3xyz has order 4 and (wz)z(wz) = 1, therefore 〈w, z〉 = 〈wz, z〉 is
a dihedral group of order 8. This shows that A and B are N-connected. But
A and B are not cosubnormal. In order to show this, we prove that 〈A, B〉
is not a 2-group. We have that (wy)3(wy)z = v1v3v4 is an element of order 3
contained in 〈A, B〉. Hence A and B are not cosubnormal.

A minimal counterexample must have the structure of this example. We
are grateful to Stewart Stonehewer for suggesting that we try groups like this
one and to Mike Newman for performing the calculations for us.
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