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Collusion Detection in Public Procurement Auctions  

with Machine Learning Algorithms 

 

Abstract 

Collusion is an illegal practice by which some competing companies secretly agree on the prices 

(bids) they will submit to a future auction. Worldwide, collusion is a pervasive phenomenon in 

public sector procurement. It undermines the benefits of a competitive marketplace and wastes 

taxpayers’ money. More often than not, contracting authorities cannot identify non-competitive 

bids and frequently award contracts at higher prices than they would have in collusion’s 

absence. This paper tests the accuracy of eleven Machine Learning (ML) algorithms for 

detecting collusion using collusive datasets obtained from Brazil, Italy, Japan, Switzerland and 

the United States. While the use of ML in public procurement remains largely unexplored, its 

potential use to identify collusion are promising. ML algorithms are quite information-intensive 

(they need a substantial number of historical auctions to be calibrated), but they are also highly 

flexible tools, producing reasonable detection rates even with a minimal amount of information. 

 

Keywords: Auction; collusion; contracting; construction; machine learning; procurement. 
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1. Introduction 

Public procurement is a common form of public spending whose purpose is to provide works, 

goods or services to a purchasing entity [1]. Within the context of procuring capital works, 

companies compete to be awarded a contract to build, improve or maintain a capital asset. Such 

contracts can vary in nature and may require the construction of new civil (e.g., roads and 

bridges) and social (e.g., schools and hospitals) infrastructures, the modification of existing 

assets or require maintenance [2]. 

 

Public procurement can be an intensive and complex process and thus can consume significant 

resources. For example, the European Union spends around 16% of its Gross Domestic Product 

on public procurement [3]. Collusion in these auctions (also called bid-rigging) refers to various 

illegal agreements among competing firms that aim to increase their profit margins. These 

collusive practices usually take the form of coordinated (non-competitive) price increases that 

are set between the companies (commonly referred to as cartels) [4]. Collusion is a recurring 

problem confronting the public sector, particularly when procuring capital works, with some 

being the most expensive items to be acquired [4]. Criminal investigations are regularly initiated 

to combat collusive activity, but being able to prosecute and obtain a conviction is challenging 

[5]. 

 

A major issue that stymies public institutions (e.g. contracting authorities, police bodies, 

competition commissions and courts of justice) from obtaining a conviction is detecting and 

proving that collusion has occurred [6]. However, the secrecy surrounding illegal agreements 

between firms tends to be underpinned by a carefully coordinated and sophisticated strategy, 

which is difficult to expose. In stark contrast, procurement authorities adhere to transparent and 

relatively stable purchasing patterns whereby they reuse awarding procedures, purchase 
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standard products, resort to similar service specifications and the like. The predictability of such 

procurement practices can facilitate illicit market sharing and coordinated action among 

collusive firms [7–9]. Against this contextual backdrop, it can be said that a reliable method for 

detecting the presence of collusion in public procurement auctions would significantly help 

procurement authorities and other institutions mitigate the adverse economic and social effects 

of collusion. 

 

A plethora of models for detecting collusion has been propagated in the normative literature. In 

this paper, the most relevant models, which we will review, have proven to flag long term 

collusive patterns among bidding cartels [10]. They have also helped in discover how these 

cartels dissuade companies from submitting competitive bids in markets dominated by them 

[11,12]. However, while the models have been able to detect collusion, their accuracy often 

comes into question as to the data that underpins them can contain noise or insufficient detail. 

It is common, for example, for developed models to rely on information from the bidder’s 

(private) costs structures and/or pre-tender cost estimates (PTE), though such information is 

generally confidential (and collusive firms are obviously not willing to share it) or simply does 

not exist [13,14]. 

 

Machine Learning (ML), a branch of artificial intelligence that focuses on building an 

application that can automatically learn and improve from experience, analyze and draw 

patterns of inference from auction information, even when it is scant (i.e., just the bid values 

and winning bidder from each auction) [15,16,17]. Yet, ML algorithms usually require a 

significant amount of reliable information obtained from previous auctions to calibrate them 

[16]. 
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This paper aims to examine the ability of various ML algorithms to detect collusive auctions 

accurately. Each algorithm is tested under different conditions (e.g., with access to more or less 

information and with/without the input of Screening Variables, SV). We refer to SV as those 

statistical indices (directly calculated from the bid values) whose preprocessing may help ML 

algorithms to increase their level of detection [17]. 

 

To test the performance of ML algorithms, we will analyze six procurement datasets from five 

different countries (i.e., Brazil, Italy, Japan, Switzerland and the United States, US). Access to 

such auction data is generally unavailable to researchers as it is deemed sensitive (e.g., contract 

cost estimates) [18], but access and permission have been given for the collusion detection 

research presented in this paper. Thus, our research demonstrates that ML algorithms can detect 

collusion and produce representative performance results by applying them to a wide variety of 

datasets from different countries boasting different types of data. To the best of the authors’ 

knowledge, this is the first time a transversal study of this nature has been undertaken in the 

domain of collusion detection. 

 

The paper commences reviewing the literature and identifying the research gap to be examined 

(Section 2). Then, the procurement datasets, the screening variables, the ML algorithms being 

compared and the error metrics adopted are described (Section 3). We next summarize the 

major quantitative results of the experimental analysis for identifying collusive auctions 

(Section 4). This summary is followed by identifying the significance and contribution of our 

study (Section 5). Finally, we conclude this paper by explicitly identifying the limitations and 

avenues for future research (Section 6). 
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2.  Literature Review 

Many studies in auction theory have proven that bidders’ cost structures strongly condition their 

competitive and/or collusive strategies [1,10,19–22]. McAfee and McMillan [23] were the first 

to analyze collusion in static bid rotation schemes when no compensation payments existed 

between cartel members. In McAfee and McMillan’s [23] auction model, the awardee is 

independent of previous (past) auctions. Building on the work of McAfee and McMillian [23], 

Aoyagi [24] and Skrzypacz and Hopenhayn [25] extended their model by considering repeated 

collusion in dynamic bid rotation schemes. 

 

Studies have also analyzed collusion’s occurrence and effect in real procurement auctions 

[26,27]. However, empirical-based collusion detection models are limited. One of the first 

attempts to develop an empirically-based model was Porter and Zona’s [19], who sought to 

measure the probability of a bidder winning when some observable cost factors are known. 

However, that model aimed not to determine collusion, per se, but rather to anticipate the range 

of prices of future (competitive) bids. Other empirical-based models have been proposed since 

the propagation of Porter and Zona’s [19] work. We will now summarize the four most relevant 

models in the remainder of this section. 

 

The first seminal model in collusion detection is also known as econometric screening and was 

proposed by Bajari and Ye [28]. This model attempts to anticipate how a standard (competitive) 

distribution of bids should look based on the participating bidders’ cost parameters. 

Unfortunately, these cost parameters constitute private data, which is generally difficult to 

gather and often disclosed by the bidders themselves. As a result, most data needs to be directly 

inferred by industry experts, resulting in a loss in accuracy. Bajari and Ye’s [28] model does 

flag systematic deviations from a reference scenario. In this instance, the industry experts have 
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to anticipate the reference scenario as they can assume the bidders submitting competitive bids 

want to be awarded the contract and will not cooperate with the cartel. 

 

Bajari and Ye [29] model was initially tested in highway repair contract auctions in the US 

Midwest in 1994-1998. It was implemented as a functional reduced-form of linear regression 

where additional pieces of information such as bidders’ past bidding history and pre-tender cost 

estimates (PTE) were needed (besides bidders’ financial data). As a result of including this 

additional information, Bajari and Ye [28] could make valid comparisons with the reference 

scenario. However, Bajari and Ye’s [28] model also has some important limitations: 

 

 over-reliance on the functional form chosen when implementing the regression analysis; 

 high sensitivity to missing information; and 

 it is easy to cheat when the cartel knows ‘how’ it works (e.g., coordinated cover bids). 

 

Considering the limitations above, the most important is the need for detailed data from each 

bidder and auction. The absence of such data precludes the model from being applicable in real 

bidding contexts. Fortunately, since Bajary and Ye’s [28] study, more public data is available 

on public contracts and competitors, which can be used in the near future to improve collusion 

detection with ML. 

 

The second model we examine is developed by Ballesteros-Pérez et al. [29], which focuses on 

analyzing possible abnormal dispersions in the distribution of bids, assuming they follow a 

Uniform distribution. In essence, the Ballesteros-Pérez et al. [29] model is an approximated 

collusion detection method used in conjunction with other approaches. It uses a simplified order 

statistics approach where the bids absolute order of magnitude is neglected and only the relative 
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distances are considered. This approach, of course, leaves the possibility of cheating the method 

by submitting cover bids that ‘emulate’ a uniformly distributed pattern, no matter they are still 

abnormally high on average. 

 

The third model has been proposed by Signor et al. [30], which is a Probabilistic method [2,34]. 

Signor et al.’s [30] model analyses submitted bids at two levels. Firstly, it analyses whether the 

bids overall distribution conform to a reference scenario (e.g., a Lognormal distribution). 

Additionally, the location of this distribution (i.e., absolute order of magnitude of the bids) can 

be closely approximated by historical auctions whenever data about their pre-tender estimates 

(PTE) is available. Hence, the model scrutinizes the distance of submitted bids from the PTE. 

 

Secondly, Signor et al.’s [30] probabilistic method analyze the lowest bid’s dispersion by 

drawing on order statistics theory. Put simply, it compares the probability of the lowest bid (i.e., 

the theoretical winner) being materialized as if it had been generated from the same reference 

distribution of the previous step. Hence, in Signor et al.’s [30] method, the actual winning bid 

observed is compared against the lowest order statistic (i.e., the minimum draw of n artificially 

generated bids) from a calibrated reference distribution. If the statistical deviation is significant, 

we can be confident that such a bid is unlikely to be truly competitive. Thus, the probabilistic 

method is robust, but it has the limitation of being strongly dependent on the availability and 

reliability of a PTE for a number of previous honest auctions and the auction being tested. 

 

Finally, the fourth model is that developed by Imhof [17,35]. This model has been the first to 

examine the application of ML to bidding and the detection of collusion by applying a small set 

of Screening Variables (SV) in a Swiss dataset of roads construction. We will use those SV and 

the same dataset in our study but assuming different levels of access to auction data. 
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Additionally, Imhof [17,35] utilized two ML algorithm types: (1) the Lasso regression and an 

‘Ensemble method’ consisting of a weighted average of several algorithms; and (2) bagged 

regression trees, random forests, and neural networks. In this research, we will consider a wider 

range of algorithmic options and various datasets to understand better the conditions leading to 

SV and ML algorithms performing better. 

 

3.  Materials and Methods 

This section describes the research methods adopted to detect collusion in auctions of public 

sector capital works. In Figure 1, we present a summary of the research process used in this 

study. 

 

3.1.  Datasets 

To assess the collusive detection capabilities of ML algorithms under different conditions (e.g., 

countries, types of auctions, time period, and the availability of data per auction), we acquired 

six public procurement datasets. These datasets are derived from five countries covering periods 

between 1980 to 2013. 

 

All datasets can be found in the Supplementary file attached to this paper so that others can 

replicate our results. A quantitative description of the datasets is presented in Table 1. At this 

juncture, no study that has examined collusion has had access to such an extensive dataset, 

which enables the suitability of ML to be explored as a detection approach.  

 

It is worth noting that all six datasets have been investigated and/or provided by public 

institutions [e.g. Swiss Competition Commission (COMCO), Brazilian Federal Police, 

Japanese Fair-Trade Commission (JFTC) and two courts of justice from the USA and Italy]. 
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Hence, we assume the data are reliable and trustworthy. While the datasets may contain minor 

contradictions, we are unable to judge the auctions’ bidding consistency. Actually, the datasets’ 

owners are also unable due to the secret nature of the agreements. For example, there are 

instances where an auction’s winning bidder was classified as collusive while other higher (not 

awarded) bids were not. Clearly, in the context of capital works procurement, collusion 

generally involves being awarded contracts at a higher-than-usual price. In the example above, 

all bidders may have facilitated this outcome. However, we can only assume the awarded bidder 

was flagged with a consistent abnormal bidding pattern through a series of auctions. Thus, 

without criminal proof, other companion bidders might have avoided being flagged as collusive 

and consequently avoided conviction, or even being honest competitors unwittingly involved 

in a case of partial collusion.  

 

Alternatively, these non-awarded bids may have been the result of estimation errors or were 

competitive bids with intentionally high mark-ups where evidence of coordinated action among 

bidders either did not exist or could not be determined. Coordinated action is a necessary 

condition for collusion to occur being the most difficult to prove. Despite some minor 

inconsistencies with the data, all auctions are treated being uniform in our study. Indeed, due to 

differing formats for collecting data the ability to ensure its calibration poses a challenge. 

However, it needs to be acknowledged this is the most comprehensive study undertaken to date 

that examines the detection of collusion in real-life auctions. We now proceed to briefly 

describe the datasets, whose main features are summarized in Table 1. 
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Figure 1. Flowchart summarizing the research approach for collusion detection 
 
 

1. Data pre-processing 
 
 

Data 
transformation 

Data 
cleaning 

6 datasets with collusive and 
competitive auctions from 

Brazil, Italy, Japan, 
Switzerland and the US.  

2. Structured datasets 
 
 FIELDS 

3. Calculate screening 
variables 

 
 

Datasets:  
Fields + Screening Variables 

FIELDS SCREENS 

4. Machine Learning algorithms (binary classifiers)  
to detect collusion 

1. For each dataset, train and test the 11 algorithms.  
This is a binary classification problem (each auction is either competitive 

or collusive) 
 

2. Evaluate each algorithm’s performance with error metrics: accuracy, 
false positives, false negatives, etc. 

 

3. Rank top performing algorithms for collusion detection 

… 

Common fields for all datasets 
and specific fields for each 

dataset 

9,781 auctions 
(64,348 bids) 
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Table 1. Description of the collusive datasets 
Topic Description Brazil Italy Japan Swiss–Ticino Swiss–SG&GR US 

General 
information 

Scope Oil infrastructure 
projects 

Road construction Building constr. 
and civil eng. 

Road 
construction 

Road construction and 
civil engineering  

School milk market 

Time period 2002 - 2013 2000 - 2003 2003 - 2007 1999 - 2006 14 years (over 2005) 1980 - 1990 

Nº auctions  101 278 1,080 224 4,344 3,754 

Nº bids 683 20,286 13,515 1,629 21,231 7,004 

Awarding criteria Lowest bid Average Bid Method Lowest bid Lowest bid Lowest bid Lowest bid 

Avg. nº of bids per auction 6.76 72.97 12.51 7.27 4.89 1.91 

Available 
information 
per dataset 

Common fields Auction code, bid values, winning bidder and number of bids per auction 

Auction date Yes N/A Yes N/A Yes Yes 

Pre Tender Estimate (PTE) Yes Yes Yes N/A N/A N/A 

Identity of bidders Yes. 272 Yes. 821 Yes. 1,665 N/A N/A Yes. 120 

Nº of different awardees  80 (29.41%) 19 (2.31%) 690 (41.44%) N/A N/A 91 (75.83%) 

Other fields (additional 
information) 

Location and 
Brazilian State 

Location, legal 
company type and 
economic size 

Location Consortium 
composition 

Contract type Inflation adjusted bid 
and inflation raw milk 
price adjusted bid 

Collusive vs 
competitive 

data 

Collusive auctions N/A N/A N/A 184 (82.14%) N/A N/A 

Competitive auctions N/A N/A N/A 40 (17.86%) N/A N/A 

Collusive bids 128 (18.74%) 8,085 (39.86%) 1,093 (8.09%) 1,332 (81.77%) 12,501 (58.88%) 866 (12.36%) 

Competitive bids 555 (81.26%) 12,201 (60.14%) 12,422 (91.91%) 297 (18.23%) 8,730 (41.12%) 6,138 (87.64%) 

Collusive bidders 47 (17.28%) 195 (23.75%) 230 (13.81%) N/A N/A 11 (9.17%) 

Competitive bidders 225 (82.72%) 626 (76.25%) 1,435 (86.19%) N/A N/A 109 (90.83%) 

Bids per 
auction 

1 ≤ bids ≤ 4 42 (41.58%) 0 0 29 (12.95%) 2,315 (53.29%) 3,727 (99.28%) 

5 ≤ bids ≤ 10 38 (37.62%) 5 (1.80%) 474 (43.89%) 171 (76.34%) 1,897 (43.67%) 27 (0.72%) 

11 ≥ bids 21 (20.79%) 273 (98.20%) 606 (56.11%) 24 (10.71%) 132 (3.04%) 0 

Awarding 
price 

Aggregated total €12,170,309,780 €11,520,750,772 €402,195,427 €514,972,754 €2,136,031,656 N/A (Bid values are 
unit price per half a 
pint of milk) 

 
 

Aggregated collusive €7,918,003,543 
(65.06%) 

€7,911,773,729 
(68.67%) 

€91,405,888 
(22.73%) 

€458,103,059 
(88.96%) 

€908,666,894 
(42.54%) 

Aggregated competitive €4,252,306,237 
(34.94%) 

€3,608,977,044 
(31.33%) 

€310,789,539 
(77.27%) 

€56,869,695 
(11.04%) 

€1,227,364,760 
(57.46%) 

Note: datasets used in this paper, apart from the Italian dataset, adopt the lowest bid wins awarding criterion 
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3.1.1 Brazil 

Between 2002 and 2013, the Brazilian Oil Company Petrobras (a publicly traded, State-

controlled company) was subjected to significant bid-rigging during the procurement of 

infrastructure projects. The dataset has been previously analyzed and made available by Signor 

et al. [18,30,33,34]. In 2014, a routine investigation by the Brazilian Federal Police into money 

laundering quickly turned into a very important anticorruption operation called “Operation Car 

Wash”. Signor et al.’s [18,30,33,34] dataset form part of an ongoing investigation where several 

collusive companies confessed to price-fixing and bid-rigging. It was shown that 16 of the 

largest Brazilian construction companies (a cartel referred to as the “Club of 16”) colluded in 

many of Petrobras’s auctions. 

 

3.1.2 Italy  

The Italian dataset comprises road construction auctions from the municipality of Turin [36]. 

The legal office of Turin collected the dataset as part of a legal case against several firms 

accused of bid-rigging between 2000 and 2003. This dataset employs the Average Bid Auction 

(ABA) method: the awardee is the bid closest to a trimmed average [36]. The ABA can be used 

to create incentives to coordinate bids among bidders with the intention of manipulating the 

bids distribution. In 2008, the Court of Justice of Turin convicted 95 construction firms that 

operated in eight cartels that had been successfully awarded contracts (<10% of the firms won 

>80% of the auctions). 

 

3.1.3 Japan 

The Japanese dataset comprises building construction and civil engineering contracts from 

Okinawa. Initially, the data was published in Ishii [37], and it was later analyzed in Imhof [38]. 

The dataset was obtained from the Okinawa Prefectural Government (OPG), covering the 
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period between 2003 and 2007. The construction market in Okinawa exhibits several features 

facilitating collusion: (1) geographic conditions (islands); (2) restricted invitation procedure 

(the buyer chooses those companies allowed to bid); and (3) contracts and bidders segmented 

into ranks. In June 2005, the Japanese Fair-Trade Commission (JFTC) filed a bid-rigging 

investigation against many firms involved in the auctioning process. The dataset covers three 

periods: 

 

1. Pre-inspection period: auctions before the opening of the JFTC investigation (June 2005). 

These auctions can be collusive or competitive, according to JFTC resolutions. 

2. Post-inspection period: auctions between the opening of the JFTC investigation (June 

2005) and the amendment of Japanese competition laws in January 2006. These auctions 

are not used in our analysis as it was a transition period without information from the 

JFTC. 

3. Post-amendment period: auctions after the amendment of Japanese competition laws. The 

JFTC sentenced and sanctioned the involved cartel participants at the beginning of the 

post-amendment period in March 2006. Therefore, all these auctions can be considered 

competitive as there has not been any proof of collusion ever since. 

 

3.1.4 Swiss – Ticino 

The Swiss dataset comprises road construction projects from the Canton of Ticino in 

Switzerland [35,39,40]. The cartel operating in this area of Switzerland had existed since the 

50s, but it was not until the mid-90s that collusion became more frequent. By then, competition 

pressure within cartel companies started to grow, reaching its peak in 1998. This motivated 

cartel members to reach a tacit agreement in 1998 to which they adhered until 2005. During 

this period, all cartel firms in the road construction sector rigged nearly all procurement 



Automation in Construction (Re-submission) 
 

 15

contracts. Therefore, this is undoubtedly one of the most severe bid-rigging cartels. As a result, 

local politicians went to the Swiss Competition Commission (COMCO) to investigate how 

awarding prices were exaggeratedly high in Ticino compared to other country regions. 

 

3.1.5 Swiss – St Gallen and Graubünden 

The next Swiss dataset covers the period between 2004 and 2010. It comprises the operations 

of two cartels specialized in road construction, asphalt paving, and civil engineering works in 

the Swiss cantons of St. Gallen and Graubünden [40]. In the first canton, eight firms participated 

in bid-rigging conspiracies. They met once or twice per month until 2009, when the Swiss 

Competition Commission (COMCO) launched house searches in the neighbor canton. In the 

second canton, another cartel was made up of a local trade association for road construction and 

asphalt paving operated until 2010. Both cartels were well organized and were awarded a very 

large share of auctions. As a result, the COMCO opened an investigation after the statistical 

anomalies identified in the procurement data until 2010. 

 

3.1.6 United States  

The US dataset was published in Porter and Zona [19] and also used in the study of Wachs and 

Kertész [41]. The dataset involves school milk procurement contracts in the State of Ohio 

between 1980 and 1990. School district officials independently solicited bids on annual supply 

contracts for milk and other products to regional milk producers (dairies). Typically, the lowest 

bidder was selected to supply milk in half pints to the schools during the following school year. 

In 1993 representatives of two dairies in Ohio confessed having bid-rigged these auctions 

during the 1980s. Thus, all bidding data were collected by the United States District Court of 

Ohio in 1994, and 30 dairies were charged with collusion. After careful analysis of these 

auctions, it was concluded that the estimated average effect of collusion on this market resulted 
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in a 6.5% price increase. The dataset is non-construction-related, but it is useful to analyze it as 

it serves as a frame of reference to better understanding bidding behaviors and patterns in other 

markets. 

 

3.2  Screening Variables 

Screening Variables, or just Screens, are specific indices derived from each auction's bid values 

distribution (prices offered by bidders). These screens can help ML algorithms process auction 

information more efficiently to detect collusion [17]. However, there have been limited studies 

that have investigated the performance of different screens in collusive datasets.  

 

Screens can be useful, not just for flagging possible collusion in a given auction but also for 

identifying sustained collusive patterns among specific bidders. Screens frequently consist of 

statistical indices calculated directly from the bid values of each auction (e.g. the bids standard 

deviation, skewness or kurtosis) or after removing or selecting some of the bids (e.g. the lowest 

and highest bid in an auction, or the lowest and second-lowest). They are generally easy to 

calculate and have proven to produce higher performance in ML algorithms. As a result, screens 

are usually beneficial when combined with ML algorithms and in our case, for detecting 

abnormally high bids. 

 

The process to create a screen commences by letting t be the t-th auction in a dataset. We will 

not use an additional subscript to refer to each of the six datasets for the sake of clarity. Let 𝑠𝑑  

be the (economic) bids standard deviation in auction t; 𝑏  the mean (average) of all bids 

submitted to auction t; 𝑏 ,  the maximum (most expensive) bid;  𝑏 ,  the minimum (lowest, 

cheapest) bid; 𝑏  is the second-lowest bid;  𝑠𝑑 ,  is the standard deviation of the non-

awarded bids (all but the winning bid); 𝑛  is the number of bids submitted to auction t; and 𝑏  



Automation in Construction (Re-submission) 
 

 17

is the i-th bid in auction t when ordered from lowest to highest. With this notation, the following 

screens are initially proposed to detect collusion better: 

𝐶𝑉                                                       [Eq.1] 

𝑆𝑃𝐷 ,   ,

 ,
                                                  [Eq.2] 

𝐷𝐼𝐹𝐹𝑃
  ,

 ,
                                           [Eq.3] 

𝑅𝐷
  ,

 ,
                                            [Eq.4] 

𝑆𝐾𝐸𝑊
    

∑    
                       [Eq.5] 

𝐾𝑈𝑅𝑇   

      
∑      

    
              [Eq.6] 

𝐾𝑆𝑇𝐸𝑆𝑇 𝑚𝑎𝑥 𝐷 ,𝐷 𝑤𝑖𝑡ℎ 𝐷 𝑚𝑎𝑥
  

,𝐷 𝑚𝑎𝑥
  

  [Eq.7] 

 

All previous screening variables have been proposed by different researchers in the context of 

collusion detection (e.g. [35,38–40,42]). The first screen is the Coefficient of Variation called 

𝐶𝑉  (1), a scale-invariant statistic calculated as the ratio of the bids’ standard deviation divided 

by the average of the bids. The second screen is the Spread (𝑆𝑃𝐷 ) represented in Equation 2. 

Equation 3 measures the relative difference between the two lowest bids in the auction 

(𝐷𝐼𝐹𝐹𝑃 ). An alternative screen to the latter is the Relative Distance (𝑅𝐷 ) which replaces the 

term in the denominator by the losing bids standard deviation (equation 4). Finally, the last 

three screens refer to the bid values’ Skewness (𝑆𝐾𝐸𝑊 ), Excess Kurtosis 𝐾𝑈𝑅𝑇  and 

Kolmogorov-Smirnov test 𝐾𝑆𝑇𝐸𝑆𝑇 . These three screens allow identifying possible bid 

distribution asymmetries (Equation 5), the condensation of bid values next to (or too far from) 

the average of the bids (Equation 6), and the similarity of the bid values for a uniform 

distribution (Equation 7), respectively. As the Excess Kurtosis requires at least four bids per 
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auction to its calculation and our datasets contain a significant number of auctions with less 

than four bids (see Table 1), this screen will not be adopted in our study. 

 

Other screening variables could have also been proposed, but a detailed exploration of their 

potential use remains outside the scope of this investigation. The ones used are the most 

common in other ML applications that work with statistically distributed values. Of note, it has 

been observed that the statistical distribution of bids is expected to become explicit when taking 

the log bids instead of their natural values (i.e., a lognormal distribution) [43,44]. In our 

experiments, we also tested the performance of these screens with log bids besides natural bid 

values. However, we found no improvement in the algorithms detection rates. Thus, a bids log 

transformation is not to be considered in this paper. 

 

The Scatter matrix of the screening variables above (Eq. 1 to 7) for all the datasets (64,348 bids 

in total) is shown in Figure 2. This matrix is frequently generated in ML applications to identify 

correlations between the screening variables. It is also useful for detecting the screens that 

differentiate between competitive and collusive bids. However, we can see from Figure 2 that 

it does not show any distinct relationship between the space dispersion of competitive (green 

dots) versus collusive bids (red dots). That is, we cannot find separated clusters of red versus 

green dots in any subgraph of Figure 2. This finding indicates that we will need to rely on each 

algorithm’s learning process (training) and performance (with and without the help of screens). 
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Coefficient of variation (CV), spread (SPD), two lowest bids differences in percentage (DIFFP), relative distance 
(RD), Skewness (SKEW), Excess Kurtosis (KURT) and Kolmogorov-Smirnov test (KSTEST). 

 
 

Figure 2. Screening variables scatter matrix from all datasets 
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3.3 Machine Learning Algorithms Settings 

The collusion detection capability of 11 algorithms is tested in this paper under different 

scenarios of information availability. It is assumed that each auction could be classified as either 

‘collusive’ or ‘competitive’. Hence, the algorithms have to perform a binary classification for 

each auction t. The following algorithms are utilized to perform this task: 

 
• Linear models: SGD (Stochastic Gradient Descent) [45]; 

• Ensemble methods: Extra Trees (Extremely Randomized Trees) [46], Random Forest 

[47], Ada Boost [48] and Gradient Boosting [49]; 

• Support Vector Machines: SVC (C-Support Vector Classification) [50]; 

• Nearest Neighbors: K Neighbors [51]; 

• Neural network models: MLP (Multi-Layer Perceptron) [52]; 

• Naive Bayes: Bernoulli Naive Bayes and Gaussian Naive Bayes [52]; and 

• Gaussian Process [53]. 

 

Ensemble methods are the top-performing algorithms in our study as shown later. They 

combine several models (multiple learning algorithms) that produce a single optimal predictive 

model. This model is also generally more robust from the prediction point of view. Decision 

tree is usually one of those learning algorithms integrated in the Ensemble methods. This 

algorithm resembles a flowchart-like structure where each node implements a test on an 

attribute. Hence, each branch represents the outcome of a test, and each leaf node represents a 

class label. Two families of ensemble methods are usually distinguished: 

• Averaging methods. The principle is to build several estimators independently and then 

to average their predictions. On average, the combined estimator is usually better than 

any of the single base estimator because its variance is reduced. For examples, Extra Trees 

and Random Forest. 



Automation in Construction (Re-submission) 
 

 21

• Averaging methods; they encompass several independent estimators and then average 

their predictions. On average, the combined estimator is usually better than any of the 

single base estimator because its variance is lower. Examples of averaging methods are 

Extra Trees and Random Forest algorithms. 

• Boosting methods; their base estimators are implemented sequentially which reduces the 

bias of a combined estimator in some cases. Broadly speaking, the objective of Boosting 

methods is to combine several weak models to produce a single, more powerful model. 

Ada Boost and Gradient Boosting are some examples of Boosting methods. 

 

These are common ML algorithms that have produced satisfactory results in many engineering 

applications, construction sector [54,55] and public procurement [56,57] included. All datasets 

and the algorithms’ code can be found in the Supplementary files (csv format) we have 

provided. This will facilitate the future replicability of our results. The Python (3.0) 

programming language and the ML library scikit-learn have been used in this research [58]. 

Details about the eleven ML algorithms have not been provided but they are freely available 

from the scikit-learn library. However, we do provide some additional information at the end 

of this section about the numerical settings (parameter values) adopted for those algorithms that 

performed better. For those readers interested in extending their knowledge on the inner 

workings of each algorithm, we suggest resorting to the references provided in the list above 

and referring to the Supplementary material we have provided. 

 

All the ML algorithms we have identified require calibration (training) before they are capable 

of differentiating collusive from competitive auctions. In conventional ML applications, 

training datasets typically comprise of thousands of entries. Algorithms generally use 80% of 

the data for training purposes and the remaining 20% to test their performance [59]. However, 
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in our study and even though some of these datasets are large compared to most auction datasets 

reported in the construction bidding literature [60–62], many are too small to train all algorithms 

properly (i.e., they ‘only’ comprise 9,781 auctions with 64,348 bids).  

 

To avoid collusion detection results being biased by the particular choice of training and test 

subsets, we performed 500 iterations with each algorithm. Thus, for each algorithm and dataset, 

we tested their detection performance while changing the specific subset of auctions used for 

training and testing (random choices). Noteworthy, the bids of each auction were either all used 

for training or testing; that is, they were not split for different purposes. This avoids the transfer 

of knowledge (rendering collusion detection harder for the algorithms, as they cannot use the 

same auction ID to flag an auction as collusive later), but provides a realistic scenario (as the 

bids of the same auction are generally known at once, not in different stages). Hence, our 

algorithms classify an auction as collusive or competitive based on each of the specific bids it 

contains. Markedly, all bids from the same auction were used as a single group of analyses. 

 

The performance of the algorithms was analyzed under four different settings (scenarios). Each 

setting represents access to different pieces of data per auction. We named these pieces of 

information as fields in Table 1. Naturally, a higher amount of data per auction should lead to 

better collusion detection results. However, in actual practice, some data is not always available. 

Yet, it is equally valuable for anticipating the detection rates of each algorithm in the absence 

of data. Hence, the algorithms were trained and tested individually for each dataset under the 

following settings: 

 

• Setting 1 (all fields). In this scenario, the algorithms used all the available data with one 

exception: the bidders’ identity (see Table 1 to identify the specific fields that were 
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available in each dataset). The ‘identity of bidders’ was not used to avoid the potential 

risk of a bidder being easily catalogued upfront as collusive in the training process, and 

later classify as collusive almost all the auctions where it was involved (during the testing 

stage). 

• Setting 2 (all fields + screens). Algorithms had the same data available as in setting 1 but 

with the assistance of the screening variables (CV, SPD, DIFFP, RD, SKEW and 

KSTEST). Theoretically, this should correspond to the scenario where ML algorithms 

perform better. 

• Setting 3 (common fields only). In this scenario, the algorithms were only allowed to use 

the data shared among all datasets: that is, the auction code, bid values, winning bidder 

and number of bids per auction. 

• Setting 4 (common fields only + screens). As in setting 2, this scenario assumed the data 

availability of setting 3 plus the aid of the screen variables described earlier. 

 

Finally, we summarize the configuration adopted for the four ensemble methods as they were 

the top-performing algorithms in our study. A preliminary exploratory analysis was conducted 

to set the values of the algorithm parameters. Namely, we fine-tuned them based on data from 

related algorithm [35,38–40] and our first implementation results. With this, the best detection 

results were obtained for this parameters configuration: 

 

• Extra Trees and Random Forest: The number of trees was 300; the function to measure 

the quality of a split was Gini; and the maximum depth of tree was until all leaves were 

pure or contained less than two samples. 
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• Ada Boost: The maximum number of estimators at which boosting terminated was 300. 

The base estimator was a decision tree classifier with 1 as the maximum depth of the tree 

with a learning rate also of 1. 

• Gradient Boosting: The number of boosting stages to perform was 300; deviance was the 

loss function; and the learning rate was 0.1. 

 

3.4 Error Metrics 

To compare the performance of the proposed algorithms for classification problems, it is 

necessary to initially define some error metrics. The most common error metrics in ML are 

accuracy, precision, recall, balanced accuracy and F1 score [63]. Each metric was calculated 

in our research, though all of them are reported in the manuscript. 

 

In this study, we are dealing with a binary classification performed at the auction level. This 

focus on auctions rather than bids was chosen to compare previous studies, which also classify 

auctions as collusive or not (as a full-colluded auction is more harmful than a small percentage 

of collusive bids among honest ones). However, as the algorithms must first analyze every bid, 

every auction will be classified as collusive or competitive. This classification depends on the 

ratio between its collusive and competitive bids. In our study, the minimum percentage of 

collusive bids to classify an auction as collusive was established as follows: Brazil (≥11%), 

Italy (≥44%), Japan (≥11.5%), Swiss – Ticino (≥10%), Swiss – SG&GR (≥10%), and US 

(≥10%). As stated earlier, most of these percentages correspond to those used by the courts of 

justice and/or researchers who published the datasets. We only increased the Italian percentage 

to present good results for two reasons: the average number of bids per auction was 

considerably high (72.92, which is about ten times higher than the average value of the other 

datasets), and it has a different awarding criterion (ABA). Overall, adhering to previous 
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percentages of collusive versus competitive bids allows us to benchmark the improvement of 

detection rates against previous research. 

 

Thus, let 𝑦  be the predicted value of the 𝑖 𝑡ℎ sample (1 𝑖 𝑛 , 𝑦  is the corresponding 

true value, and L is the set of classes (1 𝑙 𝐿 . In our case, L=2 has two possible classes: 

(1) collusive or (2) competitive bid. In this instance, the accuracy error metric is defined as the 

proportion of correct predictions over 𝑛 samples and expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  ∑ 1 𝑦 𝑦                              [Eq.8] 

 

where 1 𝑦  is the indicator function. The equation returns 1 if the classes match and 0 

otherwise. 

Precision, also called positive predictive value, is intuitively the ability of the classifier not to 

label as positive (collusive bid) a sample that is negative (competitive bid). Recall, also called 

sensitivity or true positive rate, represents the ability of the classifier to find all positive samples. 

Let 𝑦  be the subset of true values with class 𝑙, and 𝑦  the subset of true predicted values in the 

same class 𝑙: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 | ∩ |

| |
                                                     [Eq.9] 

𝑅𝑒𝑐𝑎𝑙𝑙 | ∩ |

| |
                                                    [Eq.10] 

 

The balanced accuracy avoids biased performance estimates in imbalanced datasets. Our 

collusion datasets are imbalanced as the number of competitive auctions in most datasets 

outnumber the number of collusive auctions (refer to Table 1 for the exact percentage of 

collusive and competitive bids in each dataset). This means, one of the two classes appears is 



Automation in Construction (Re-submission) 
 

 26

more frequent than the other. Hence, the balanced accuracy can be defined as the average of 

the true positive rates (recall) of each class, that is: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  ∑ 𝑟𝑒𝑐𝑎𝑙𝑙    ∑ | ∩ |

| |
                       [Eq.11] 

 

Finally, the F1 score can be interpreted as a weighted average of the precision and recall, where 

an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision 

and recall to the F1 score are equal and expressed as: 

𝐹1  2 ∙  ∙ 

  
                                                 [Eq.12] 

 

The aforementioned error metrics can be adapted to our specific problem. Our study involves a 

binary classification (two classes), thus a True Positive (TP) is a correctly identified collusive 

bid. Additionally, a True Negative (TN) is a competitive bid that has also been correctly 

identified. A False Positive (FP) implies the ML algorithm flags a bid as collusive even though 

it was competitive. Conversely, a False Negative (FN) implies that the method does not classify 

a bid as collusive when it is so. The FP and FN have worse consequences depending on the 

type of public institution being involved. From the perspective of police agencies and courts of 

justice, FP is the worst type of prediction error, as it could induce an unjustified investigation 

in a competitive (honest) bidder. From the perspective of contracting authorities, a high 

percentage of FN is worse as there are many collusive bidders that go unnoticed. Summarizing, 

we have TN = Correct (not collusion), FP = Unexpected collusion, FN = Missing collusion and 

TP = Correct (collusion), with: 

 

TN+FP+FN+TP = Total number of bids                                    [Eq.13] 
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Hence, the previous error metrics can be expressed into our binary classification problem as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  ∑ 1 𝑦 𝑦                                      [Eq.14] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛                                                [Eq.15] 

𝑅𝑒𝑐𝑎𝑙𝑙                                                         [Eq.16] 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  ∑ | ∩ |

| |
  1

2

𝑇𝑃

𝑇𝑃  𝐹𝑁

𝑇𝑁

𝑇𝑁  𝐹𝑃
                      [Eq.17] 

𝐹1  2 ∙  ∙ 

  
                                           [Eq.18] 

 

Hence, the eleven ML algorithms were trained and tested to detect collusion in six datasets from 

five countries. As mentioned earlier, each algorithm was run 500 times while randomly 

changing the training subset (80%) and the test subset (20%) from each dataset. For each 

repetition (run), the previous error metrics were calculated and recorded. The error metric 

values reported below correspond to the average values obtained from those 500 repetitions. 

 

4 Results 

Table 2 shows four of the most relevant error metrics (accuracy, FP, FN and balanced accuracy) 

when each dataset is used independently to detect collusion under the setting 1 (all fields) and 

2 (all fields + screens). Results from the other error metrics (precision, recall and F1 score) are 

included later and in our Supplementary material. Table 3 presents the same four error metrics 

but applying settings 3 (common fields) and 4 (common fields + screens). Additionally, and 

only because settings 3 and 4 share the same input parameters, it was also possible to aggregate 

all datasets and analyze them as a whole. These aggregated results are presented in the bottom 

rows of each error metric in Table 3 (values highlighted in bold). 
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Tables 2 and 3 show our major results - in facilitating the process of interpreting the results 

presented in Tables 2 and 3, we summarise key issues in Table 4. We also would like to point 

out that no single algorithm performs best in all datasets. Yet, we find the ensemble methods 

(Extra Trees, Random Forest, Ada Boost and Gradient Boosting) are generally better among 

the top performers. 

 

The screens improve the accuracy of collusion detection and decrease the rate of false positives 

(FP) and false negatives (FN) in almost every situation. The screens are especially effective 

when used with the ensemble methods. This can be readily appreciated when comparing the 

results of ‘setting 2 versus setting 1’ (Table 2) and ‘setting 4 versus setting 3’ (Table 3). A 

simple summary of this increase can be seen in the central block of Table 4. For example, 

Setting 2 (all fields + screens) provides evidence of the best percentages of balanced accuracy. 

This was expected as this is the scenario where ML algorithms have access to more auction 

information. For the best four algorithms (the ensemble methods) in setting 2, it is possible to 

see that: 

 

 accuracy is usually higher than 80%; 

 FP and FN are generally lower than 10%; and 

 balanced accuracy is usually higher than 70%. 

 

Comparing the top-performing algorithms’ detection rates and results reported in the literature 

(bottom row of Table 4), we can see some of our algorithms have outperformed previous 

empirical models’. We also reveal that the US dataset was the most difficult for detecting 

collusion as it shows the worst percentages of balanced accuracy (about 60%) for almost all 

settings and algorithms. This may have arisen due to the dataset containing the lowest number 
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of collusive bidders (11 bidders, 9.17% of the total). Similarly, the Swiss–SG&GR dataset had 

a low balanced accuracy (about 70%). This situation may have arisen due to the extremely high 

proportion of collusive versus competitive bids (59% vs 41%), rendering it difficult for the ML 

to differentiate between the varying bids. However, results are satisfactory when all the datasets 

are trained together (results in bold text in setting 4). The best algorithm, in this case, is the 

Extra Trees, which reaches a balanced accuracy of 86%. For this algorithm, the rate of FP is 

8%, and the rate of FN is 6%. 

 

The worst performing algorithms (SGD, SVC, K Neighbors, MLP, Bernoulli and Gaussian 

Naive Bayes and Gaussian Processes) hardly improve their detection results with the help of 

the screens. The implemented neural network algorithm (MLP, Multi-Layer Perceptron) has 

shown low percentages of balanced accuracy in all datasets and settings. Our MLP adopted four 

hidden layers with 240, 120, 70 and 35 neurons, respectively. However, a better combination 

of hidden layers and neurons might have reached better detection results. It should be 

acknowledged that combining hidden layers and neurons is an uphill task and is thus outside of 

the scope of this research. 
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Table 2. Average error metrics (accuracy, FP, FN and balanced accuracy) for each dataset in settings 1 (all fields) and 2 (all fields + screens). 

 

 

 

Algorithm  

 
SGD  

Extra 
Trees 

Random 
Forest 

Ada 
Boost 

Gradient 
Boosting 

SVC 
K 

Neighbors 
MLP 

Bernoulli 
Naive 
Bayes 

Gaussian 
Naive 
Bayes 

Gaussian 
Process Colour  

legend 
Error 

metrics 
               Setting 
Dataset 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

Accuracy 
(%) 

Brazil 65.2 65.1 84.9 91.2 84.9 89.8 82.4 88.1 85.2 92.4 79.3 82.7 83.2 83.5 84.0 83.5 76.9 76.5 78.6 79.6 78.5 75.9 100% 
Italy 51.3 51.1 84.4 87.4 82.5 83.1 79.5 80.8 76.1 80.2 50.8 52.4 57.2 57.5 57.4 57.1 57.4 64.8 54.4 54.4 58.1 58.5 75% 
Japan 87.8 87.8 94.7 94.5 93.1 93.0 93.5 93.1 90.5 89.2 87.8 87.9 92.5 92.5 88.7 88.8 88.7 88.6 94.6 94.6 89.5 88.9 60% 
Swiss - Ticino 74.7 74.5 79.4 90.8 77.4 86.7 73.8 91.4 77.4 87.6 60.2 55.1 75.6 76.0 81.5 81.3 81.6 80.0 81.5 81.2 19.2 16.3 45% 
Swiss - SG&GR 68.5 68.9 83.4 85.3 82.7 84.7 84.1 85.0 78.6 74.2 50.0 49.0 77.8 77.6 80.1 80.2 80.2 80.1 75.1 41.4 20.0 20.1 30% 
US 70.3 72.6 84.1 84.8 83.5 83.9 83.0 82.4 77.1 76.1 46.3 45.4 79.4 79.4 82.2 82.3 82.3 77.9 81.8 79.1 73.6 75.2 0% 

False 
positives 

(FP) 
(%) 

Brazil 23.6 23.8 4.7 2.6 6.7 5.5 8.1 6.3 4.7 4.0 12.1 10.5 6.3 5.9 4.8 5.0 1.7 6.5 14.2 13.8 0.0 0.0 100% 
Italy 23.8 24.1 9.7 6.2 9.0 8.5 11.7 9.3 13.2 11.3 37.6 39.7 17.0 17.2 0.0 0.0 2.2 8.2 34.1 32.3 0.1 0.1 75% 
Japan 5.6 5.6 0.9 0.8 2.6 2.6 2.4 2.5 4.8 5.8 9.4 9.3 3.7 3.6 0.1 0.0 0.0 0.0 0.7 0.7 0.0 0.0 60% 
Swiss - Ticino 16.0 16.0 13.9 7.5 13.1 7.7 14.6 5.8 14.3 8.5 2.9 2.8 13.6 13.5 18.5 18.7 18.4 12.8 18.5 18.8 0.0 0.1 45% 
Swiss - SG&GR 15.1 15.5 9.2 9.7 9.3 9.0 9.4 8.8 9.9 10.9 7.5 7.4 17.9 18.3 19.9 19.8 19.8 19.4 15.8 5.4 0.0 0.0 15% 
US 15.4 12.5 4.0 1.7 4.3 3.1 2.3 3.9 12.6 13.2 48.1 48.9 4.0 3.7 0.0 0.0 0.0 8.9 3.8 8.0 11.8 10.1 0% 

False 
negatives 

(FN) 
(%) 

Brazil 11.2 11.1 10.4 6.3 8.5 4.7 9.5 5.7 10.1 3.6 8.6 6.8 10.5 10.6 11.2 11.5 21.4 17.0 7.1 6.5 0.0 24.1 100% 
Italy 24.9 24.9 6.0 6.4 8.5 8.4 8.7 9.9 10.7 8.5 11.6 7.9 25.8 25.3 42.6 42.9 40.3 27.1 11.5 13.3 41.8 41.5 75% 
Japan 6.6 6.6 4.4 4.7 4.3 4.5 4.1 4.4 4.7 5.0 2.8 2.7 3.8 3.9 11.3 11.2 11.3 11.4 4.7 4.7 10.5 11.1 60% 
Swiss - Ticino 9.3 9.4 6.7 1.7 9.4 5.5 11.6 2.9 8.3 3.8 36.9 42.1 10.8 10.6 0.0 0.0 0.0 7.2 0.0 0.0 80.8 83.6 45% 
Swiss - SG&GR 16.5 15.7 7.4 5.0 7.9 6.3 6.6 6.2 11.4 14.9 42.5 43.6 4.3 4.1 0.0 0.0 0.0 0.5 9.1 53.2 80.0 79.9 15% 
US 14.3 14.9 11.9 13.6 12.2 13.0 14.6 13.6 10.4 10.7 5.6 5.7 16.7 16.9 17.8 17.7 17.7 13.1 14.4 12.9 14.7 14.7 0% 

Balanced 
accuracy 

(%) 

Brazil 59.5 59.8 74.0 84.6 77.0 86.0 74.3 83.7 75.5 90.6 74.2 77.5 72.9 72.7 71.3 71.5 48.9 58.7 74.0 75.3 50.0 50.0 100% 
Italy 50.5 50.4 84.7 87.2 82.3 82.7 79.5 80.3 76.4 80.3 53.5 56.4 55.5 55.6 50.0 50.0 50.8 61.0 57.2 56.7 50.7 50.4 75% 
Japan 67.6 67.9 79.8 78.7 79.3 78.6 80.4 79.2 76.3 75.3 82.9 83.1 80.7 80.7 50.0 50.1 50.0 50.1 78.3 78.7 50.0 50.0 60% 
Swiss - Ticino 50.0 50.0 57.7 78.6 58.2 75.6 52.7 82.7 61.3 76.9 69.7 66.8 56.2 56.5 50.0 50.0 50.0 61.5 50.0 50.0 50.3 50.0 45% 
Swiss - SG&GR 51.8 51.4 72.4 72.6 71.5 73.4 72.3 74.0 67.6 63.6 54.6 54.4 52.0 51.6 50.0 50.0 50.0 50.9 54.5 53.3 50.0 50.0 30% 
US 50.7 50.5 64.2 60.7 63.1 61.6 57.3 59.2 62.9 61.6 55.0 54.9 50.5 50.3 50.0 50.0 50.0 57.6 57.4 58.6 50.4 51.4 0% 
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Table 3. Average error metrics (accuracy, FP, FN and balanced accuracy) for each dataset in settings 3 (common fields) and 4 (common fields + screens). 
 

 

 

Algorithm  

 
SGD  

Extra 
Trees 

Random 
Forest 

Ada 
Boost 

Gradient 
Boosting 

SVC 
K 

Neighbors 
MLP 

Bernoulli 
Naive 
Bayes 

Gaussian 
Naive 
Bayes 

Gaussian 
Process Colour  

legend 
Error 

metrics 
               Setting 
Dataset 

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 

Accuracy 
(%) 

Brazil 65.4 64.8 87.8 89.6 86.7 89.1 87.9 86.5 85.6 89.3 84.2 80.6 84.8 85.1 86.3 85.5 81.1 77.3 56.0 46.5 81.2 80.5 100% 
Italy 51.3 50.7 78.9 86.8 79.9 81.9 77.3 79.5 74.7 72.4 54.5 50.8 56.6 56.5 57.7 57.0 57.4 65.0 53.8 53.4 57.5 60.5 75% 
Japan 83.9 83.7 94.5 94.5 93.2 93.4 93.3 92.3 90.7 87.9 85.5 82.5 92.3 92.4 88.2 88.7 88.8 88.8 94.0 94.3 88.7 88.9 60% 
Swiss - Ticino 73.8 73.3 78.1 90.9 77.0 86.9 73.7 91.4 74.4 90.3 53.6 55.1 76.0 75.6 81.8 81.9 81.9 79.9 82.0 81.4 18.9 18.0 45% 
Swiss - SG&GR 69.3 70.0 76.6 81.1 75.8 80.3 79.4 79.2 70.5 69.4 49.8 48.3 77.8 77.7 80.2 80.2 80.1 80.2 75.5 42.2 19.3 19.8 30% 
US 70.7 70.7 83.8 83.7 82.9 83.0 82.5 81.9 77.0 74.7 47.9 47.5 79.1 79.4 82.1 82.3 82.2 78.0 82.1 79.1 72.8 74.5 15% 
All datasets 48.7 48.5 82.0 86.3 80.5 84.0 81.6 81.8 75.6 72.0 48.1 47.8 59.2 59.5 52.5 52.6 53.7 58.8 53.6 53.1 53.3 52.6 0% 

False 
positives 

(FP) 
(%) 

Brazil 23.2 23.5 2.7 3.9 4.4 4.9 4.5 6.7 4.0 4.0 10.2 12.3 3.9 5.1 3.4 3.8 0.1 3.5 39.2 48.7 0.0 0.0 100% 
Italy 22.4 23.7 11.9 6.7 10.4 9.2 12.2 10.2 14.5 14.5 38.1 40.9 16.7 16.6 0.0 0.0 0.6 7.2 27.8 28.0 0.2 0.2 75% 
Japan 8.2 8.2 1.1 0.6 2.5 2.2 2.2 3.0 5.3 7.7 11.5 14.5 3.7 3.6 0.0 0.0 0.0 0.0 0.3 0.4 0.0 0.0 60% 
Swiss - Ticino 15.7 16.5 14.9 7.7 13.1 7.6 14.8 5.7 17.6 5.9 4.3 3.0 13.5 13.7 18.2 18.1 18.1 12.4 18.0 18.6 0.0 0.2 45% 
Swiss - SG&GR 15.2 15.7 15.2 16.4 15.1 14.6 17.9 15.6 12.6 12.5 7.4 7.3 17.9 18.1 19.8 19.8 19.9 19.3 16.0 5.6 0.0 0.0 30% 
US 14.8 15.1 3.8 1.7 4.6 3.3 2.2 4.1 12.2 14.2 45.7 47.1 3.9 3.8 0.0 0.0 0.0 8.8 3.8 8.0 11.5 10.9 15% 
All datasets 25.2 24.8 9.7 8.0 9.7 8.7 10.2 9.9 9.7 9.6 42.3 45.8 18.5 18.6 22.7 21.8 0.0 24.4 10.5 3.9 1.3 1.4 0% 

False 
negatives 

(FN) 
(%) 

Brazil 11.4 11.7 9.5 6.6 8.9 6.1 7.6 6.7 10.4 6.7 5.6 7.1 11.3 9.8 10.3 10.7 18.9 19.2 4.8 4.9 18.8 19.5 100% 
Italy 26.4 25.7 9.2 6.6 9.8 8.9 10.4 10.3 10.8 13.1 7.5 8.3 26.7 26.9 42.3 43.0 42.0 27.8 18.3 18.7 42.4 39.3 75% 
Japan 7.9 8.1 4.5 4.9 4.3 4.3 4.5 4.7 4.0 4.4 3.0 3.0 4.1 3.9 11.2 11.3 11.2 11.2 5.6 5.4 11.3 11.1 60% 
Swiss - Ticino 10.5 10.1 7.0 1.5 9.9 5.6 11.5 2.9 7.9 3.8 42.0 41.9 10.5 10.8 0.0 0.0 0.0 7.7 0.0 0.0 81.1 81.9 45% 
Swiss - SG&GR 15.5 14.3 8.2 2.5 9.1 5.1 2.7 5.2 16.9 18.1 42.9 44.3 4.3 4.1 0.0 0.0 0.0 0.5 8.5 52.2 80.6 80.2 30% 
US 14.5 14.2 12.4 14.6 12.5 13.8 15.3 14.1 10.8 11.1 6.4 5.3 16.9 16.8 17.9 17.7 17.8 13.2 14.0 12.9 15.6 14.6 15% 
All datasets 26.1 26.7 8.2 5.7 9.8 7.3 8.2 8.3 14.7 18.4 9.6 6.4 22.3 21.9 24.8 25.6 46.3 16.7 35.9 43.0 45.6 46.0 0% 

Balanced 
accuracy 

(%) 

Brazil 57.1 58.6 73.9 83.7 74.3 83.6 78.0 81.2 71.0 83.6 78.4 73.6 69.5 74.2 71.3 72.4 50.0 54.1 64.0 58.4 50.0 50.0 100% 
Italy 50.0 50.0 78.9 86.5 79.6 81.5 77.1 79.1 74.3 72.6 58.8 55.4 54.4 54.3 50.0 50.0 50.2 61.1 55.2 55.1 51.3 51.7 75% 
Japan 60.5 59.6 79.6 78.2 79.5 79.4 78.9 77.3 77.4 75.8 80.2 78.4 80.2 80.5 50.1 50.0 50.0 50.0 74.4 75.7 50.2 50.0 60% 
Swiss - Ticino 50.0 50.0 55.4 78.3 58.1 75.8 52.6 82.5 55.9 82.3 62.1 67.8 56.7 56.7 50.0 50.0 50.0 61.3 50.0 50.0 50.3 49.8 45% 
Swiss - SG&GR 51.8 51.5 56.5 56.9 56.2 59.9 53.1 57.3 57.1 57.5 54.6 53.7 51.9 51.6 50.0 50.0 50.0 50.9 54.3 53.4 50.0 50.0 30% 
US 50.3 50.5 62.7 58.0 62.0 59.2 55.6 58.0 62.0 59.9 54.1 56.3 50.2 50.3 50.0 50.0 50.0 57.6 57.9 58.7 50.3 50.8 15% 
All datasets 48.4 48.1 82.1 86.4 80.4 84.0 81.7 81.8 75.1 70.8 49.7 50.7 58.7 59.1 53.0 53.0 50.0 59.3 51.6 50.1 49.3 49.1 0% 

Note: In this table, an extra row named “All datasets” is included as settings 3 and 4 only use fields shared among all datasets. Hence, it is possible to combine the auctions 
from all datasets into one.
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 Table 4. Summary of collusion detection average results with ML algorithms. 

  Datasets 

Topic Description Brazil Italy Japan Swiss - 
Ticino 

Swiss - 
SG&GR 

US All 
datasets 

Fields 

Common 
fields 

Auction code, bid values, winning bid and number of bids per auction 

All fields in 
the dataset 

Common 
fields, PTE, 
difference 
Bid/PTE, 
location, 
Brazilian 
State and date 

Common 
fields, PTE, 
difference 
Bid/PTE, 
location, 
type and 
size of 
bidding 
companies 

Common 
fields, PTE, 
difference 
Bid/PTE, 
location 
and date 

Common 
fields and 
consortium 
composition 

Common 
fields, 
contract 
type and 
date 

 

Common 
fields, bid 
value with 
and without  
inflation 
and date 

Common 
fields only 

Num. of 
variables 

9 9 8 5 6 7 4 

Screens Coefficient of variation (CV), spread (SPD), percentage difference between the two lowest bids 
(DIFFP), relative distance (RD), skewness statistic (SKEW) and Kolmogorov–Smirnov test 

(KSTEST) 

Results. Best 
accuracy and 

top-
performing 
algorithm 

Setting 1 
All fields from 

each dataset 

85.2% 

Gradient 
Boosting 

84.4%  

Extra Trees 

94.7%  

Extra Trees 

81.6%  

Bernoulli 
Naive Bayes 

84.1%  

Ada Boost 

84.1%  

Extra Trees 

N/A 

Setting 2 
All fields from 
each dataset + 

screens 

92.4% 

Gradient 
Boosting 

87.4%  

Extra Trees 

94.6%  

Gaussian 
Naive 
Bayes 

91.4%  

Ada Boost 

85.3%  

Extra Trees 

84.8%  

Extra Trees 

N/A 

Setting 3 
Common fields 

87.9% 

Ada Boost 

79.9% 

Random 
Forest 

94.5% 

Extra Trees 

82.0% 

Gaussian 
Naive Bayes 

80.2% 

MLP 

83.8% 

Extra Trees 

82.0% 

Extra Trees 

Setting 4 
Common fields 

+ screens 

89.6% 

Extra Trees 

86.8% 

Extra Trees 

94.5% 

Extra Trees 

91.4% 

Ada Boost 

81.1% 

Extra Trees 

83.7% 

Extra Trees 

86.3% 

Extra Trees 

Average 
accuracy 

increase on 
including 

screens (for 
the four top-
performing 
algorithms) 

Best 
algorithms 

Ensemble methods: Extra Trees, Random Forest, Ada Boost and Gradient Boosting 

Setting 2  
from 1 

+6.0% +2.3% -0.5% +12.1% +0.1% -0.1% N/A 

Setting 4  
from 3 

+1.6% +2.5% -0.9% +14.1% +1.9% -0.7% +1.1% 

Detection 
rates 

reported in 
the literature 

Paper/s [30,34] [36] [38] [40] [40] [19] N/A  

Method Probabilistic 
methods 

Standard 
hierarchical 
clustering 
algorithm 

ML 
methods: 
Random 
Forest & 
Ensemble 
Method 

ML method: 
Random 
Forest 

ML 
method: 
Random 
Forest 

N/A N/A  

Accuracy 81% - 96% N/A 88% - 93% 77% - 86% 61% - 84% N/A N/A  

 
 
Finally, Figure 3 identifies three error metrics (precision, recall and F1 score) for settings 3 and 

4 for the dataset called ‘All datasets’ (auctions from all datasets merged into one). For each 

algorithm, the error metrics are denoted by a cross. The cutting point of the cross is the median 
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of the precision and the recall. The endpoints of the cross are the minimum and maximum 

values of the precision and the recall (remember, we performed 500 iterations with each 

algorithm, so there are 500 values of precision and the other 500 values of recall). As a result, 

the precision, recall, and F1 score values remain inside the rectangle formed by the cross with 

a high degree of confidence. The algorithms with <50% of precision and <50% recall are not 

shown in the figure. By comparing setting 3 (left graph) with setting 4 (right graph), it is seen 

how the screens improve the precision slightly and recall for the four top-performing algorithms 

(ensemble methods). Summarizing the graphical results from setting 4, we observe: 

 Extra Trees: 83%-86% precision, 86%-89% recall and 84%-87% F1 score. 

 Random Forest: 80%-84% precision, 82%-86% recall and 81%-85% F1 score. 

 Ada Boost: 78%-82% precision, 80%-84% recall and 79%-83% F1 score. 

 Gradient Boosting: 73%-81% precision, <50%-76% recall and <78% F1 score. 

 
Figure 3. Error metrics (precision, recall and F1 score) for the ‘All datasets’ combination in 
setting 3 (common fields) on the left and setting 4 (common fields + screens) on the right. 



Automation in Construction (Re-submission) 
 

 34

For additional detail with regard to the screens boxplot and the precision, recall and F1 scores 

of other settings and specific datasets, we refer the readers to our Supplementary material. 

 

5 Discussion 

Our research demonstrates that the amount of data available per auction is positively correlated 

with a higher collusion detection balanced accuracy in the majority of the tested ML algorithms. 

Yet, even with limited access to primary data, the ML algorithms were able to achieve 

satisfactory collusion detection rates. To this end, the research empirically demonstrates that 

ML tools can be implemented and be useful even when few pieces of information are available 

from a large number of auctions. In this case, this basic information was the bid values and the 

winning bid from each auction.  

 

The eleven ML algorithms have been tested extensively with four different settings (input data 

configurations). They have been analyzed with standard error metrics for binary classification 

problems: accuracy, false positive, false negative, balanced accuracy, precision, recall and F1 

score. The results from the previous section highlight that the four ensemble methods are the 

top-performing algorithms for the six collusive datasets. If the field ‘identity of bidders’ had 

also been considered in settings 1 and 2, the error metrics would have also significantly 

improved. 

 

Yet, we have observed some minor differences in the screen’s effectiveness across datasets. In 

this regard, the US dataset (non-construction) and (but to a lesser extent) the Japanese dataset 

did not augment their average accuracy when screens were applied. Still, it is expected that 

screens in construction datasets will help boost collusion detection rates. Furthermore, there are 

no significant differences between the two awarding criteria (lowest bid versus the average bid 
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method), at least not in accuracy for the top-performing algorithms or screens. Even though we 

only counted on a single dataset with different awarding criteria (the Italy dataset), hardly any 

differences have been found with other datasets results. 

 

Another interesting analysis would involve training the algorithms in all but one country and 

then predicting collusion in the excluded country [38]. Basically, one could iteratively change 

the country excluded from the training data but later use it for testing purposes. This analysis 

would provide additional evidence on how well the methods work in terms of transferability 

across countries. Still, this would be a highly time-consuming, and it can only be implemented 

when all datasets share the same fields. Instead, we performed a similar analysis thanks to the 

so-called ‘All datasets’ combination (combining the auctions from all datasets into one) with 

promising results. This combination was only possible for settings 3 and 4, though, as they were 

the only ones using shared information across all datasets. 

 

6 Conclusions 

Collusion has malevolent effects on public procurement, diminishes the confidence in a 

competitive market, and dissuades truly competitive competitors from submitting realistic bids.  

Research in collusion detection in construction has focused on producing both theoretical and 

empirical methods. However, theoretical models have been restricted to simple applications 

with few bidders and under the assumption of perfect information. In contrast, the accuracy of 

those of an empirical nature has come into question. Our research contributes to those based on 

empirical models and has used a comparison of ML algorithms to demonstrate their potential 

for improving the accuracy of detecting collusion. 

 



Automation in Construction (Re-submission) 
 

 36

The increasing availability of public procurement information and the recent development of 

ML techniques has made it much easier to develop alternative empirical models to detect 

collusion. While ML algorithms require large amounts of data for training, they can provide 

robust results with fewer input variables. Recognizing the potential of ML, we have compared 

the performance of eleven algorithms to detect collusion. We have provided evidence that these 

algorithms can work with a lot of limited pieces of information. We have also shown how 

detection rates can be improved with the help of some screening variables. The eleven ML 

algorithms were tested using an extensive dataset acquired from six public procurement datasets 

(a total of 9,781 auctions) from five countries: (1) Brazil; (2) Italy; (3) Japan; (4) Switzerland; 

and (5) the US.  

 

Our analyses' three top-performing ML algorithms have been the Extra Trees, Random Forest 

and Ada Boost (ensemble methods). In the scenario where all auction information was 

available, these algorithms’ accuracy (detection rates) ranged between 81% and 95%, with a 

balanced accuracy generally above 73% (excluding the US dataset). The algorithms can also be 

used with limited data, which poses a significant advantage over existing empirical methods. 

Once the algorithms are trained, they can be automatically updated with the latest auctions, and 

the user needs to make little effort in supervising their outcomes. 

 

The research has limitations, which also need to be acknowledged. It is widely known that ML 

algorithms are akin to a black box from which it is difficult to explain the inherent complexity 

of the problem being analyzed (at least not in a straightforward manner). Moreover, they need 

a substantial amount of reliable historical data, some of which (especially the collusion-related) 

may not always be made available by competition commissions or law enforcement agencies – 

this problem is shared by other detection methods. Future research is needed to address the 
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shortcomings of ML, specifically examining different algorithm types and fine-tuning their 

parameters. Access to data is critical for improving detection accuracy. A promising path for 

future research is to combine auction and company data (e.g., annual operating income, 

backlog, earnings before interest, taxes, depreciation, and amortization). By merging ML 

concepts with the economic theory first explored by Bajari and Ye [28] (driven by currently 

available data mining/scraping tools), we hope that the results will be even more accurate and 

their explanation better substantiated. Whereas the use of ML to detect collusion is in its 

infancy, we hope the research presented in this paper can foster future studies in this fertile and 

unexplored area. 

 

Data Availability: All auction datasets (in csv format) and algorithms code (in Python) are 

included as a Supplementary file. 
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