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Abstract: Ferrando and Lüdkovsky proved that for a non-empty set Ω and a normed space X, the
normed space c0(Ω, X) is barrelled, ultrabornological, or unordered Baire-like if and only if X is,
respectively, barrelled, ultrabornological, or unordered Baire-like. When X is a metrizable locally
convex space, with an increasing sequence of semi-norms {‖.‖n ∈ N} defining its topology, then
c0(Ω, X) is the metrizable locally convex space over the field K (of the real or complex numbers) of
all functions f : Ω→ X such that for each ε > 0 and n ∈ N the set {ω ∈ Ω : ‖ f (ω)‖n > ε} is finite or
empty, with the topology defined by the semi-norms ‖ f ‖n = sup{‖ f (ω)‖n : ω ∈ Ω}, n ∈ N. Ka̧kol,
López-Pellicer and Moll-López also proved that the metrizable space c0(Ω, X) is quasi barrelled,
barrelled, ultrabornological, bornological, unordered Baire-like, totally barrelled, and barrelled of
class p if and only if X is, respectively, quasi barrelled, barrelled, ultrabornological, bornological,
unordered Baire-like, totally barrelled, and barrelled of class p. The main result of this paper is that
the metrizable c0(Ω, X) is baireled if and only if X is baireled, and its proof is divided in several
lemmas, with the aim of making it easier to read. An application of this result to closed graph
theorem, and two open problems are also presented.

Keywords: Banach disk; Baire-like; barrelled; metrizable; p-barrelled; ultrabornological; unordered
Baire-like

MSC: 46A08; 46B25

1. Introduction

Let Ω be a non-empty set, X a locally convex space over the fieldK (of real or complex
numbers), cs(X) the family of all continuous seminorms in X, `1(X) the space of all
absolutely summable sequences in X, namely

`1(X) :=
{
(xn)n∈N ∈ XN :

∥∥(xn)n∈N
∥∥

p = ∑∞
n=1 p(xn) < ∞, for all p ∈ cs(X)

}
endowed with the family of seminorms

{
‖·‖p : p ∈ cs(X)

}
, and c0(Ω, X) the locally convex

space over K of all functions f : Ω → X such that for each ε > 0 and p ∈ cs(X) the set
{ω ∈ Ω : p( f (ω)) > ε} is finite or empty, with the topology defined by the semi-norms
‖ f ‖p = sup{p( f (ω)) : ω ∈ Ω}, p ∈ cs(X).

In particular, c0(Ω) := c0(Ω,K) and for Ω = N, c0(X) := c0(N, X) and c0 := c0(N,K).
It was proved in [1] that c0(X) is quasibarrelled if and only if X is quasibarrelled and its
strong dual satisfies the condition (B) of Pietsch and that if, in addition, X is complete in
the sense of Mackey, then c0(X) is barrelled if and only if X is quasibarrelled and its strong
dual satisfies condition (B) of Pietsch. In this case, X is barrelled. Through a clever use of
a sliding-hump technique, it was proved in [2] that, even in the absence of completeness
in the sense of Mackey, c0(X) is barrelled if and only if X is barrelled and its strong dual
satisfies condition (B) of Pietsch. Recall that X has the property (B) of Pietsch if for any
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bounded set B in `1(X) there exists an absolutely convex bounded set B in X such that the
normed space XB formed by the linear hull of B endowed with Minkowski functional pB
of B verifies that B is contained in the unit ball of the normed space `1(XB), i.e.,

B ⊂
{
(xn)n∈N ∈ XN : ∑∞

n=1 pB(xn) < ∞
}

Metrizable locally convex spaces as well as dual metric locally convex spaces verify
the property (B) of Pietsch ([3]).

Ferrando and Lüdkowsky proved in [4] that for a normed space X the space c0(Ω, X) is
barrelled, ultrabornological, or unordered Baire-like (see [5]) if and only if X is, respectively,
barrelled, ultrabornological, or unordered Baire-like. It was proved in [6] that for a locally
convex metrizable space X the space c0(Ω, X) is quasi barrelled, barrelled, ultrabornologi-
cal, bornological, unordered Baire-like, totally barrelled, and barrelled of class p if and only
if X is, respectively, quasi barrelled, barrelled, ultrabornological, bornological, unordered
Baire-like, totally barrelled, and barrelled of class p. The normed space of all continuous
functions vanishing at infinity defined on a locally compact topological space with values
in a normed space and endowed with the supremum norm topology is barrelled if and only
if X is barrelled; this result was obtained in [7], answering a question posed by J. Horváth.

The linear subspace l∞
0 of the sequence space l∞ of finite-valued sequences in the field

K is of the first Baire category [8]. Independently, Dieudonné ([9], p. 133) and Saxon [10]
proved that l∞

0 is barrelled. Schachermayer extended this result by proving that the linear
hull l∞

0 (A) of the characteristic functions XA, with A ∈ A, and where A is a ring of subsets
of Ω, endowed with the supremum norm topology, is barrelled if and only if the vector
space ba(A), of all bounded finitely additive scalar measures defined on A equipped with
the supremum norm topology, verifies the Nikodým boundedness theorem, see ([11], p. 80).

Furthermore, if A is a σ-algebra, the space l∞
0 (A) is barrelled, see ([11], p. 80) and [12].

Valdivia [13] improved this result: If (En)n is an increasing sequence of vector subspaces
of l∞

0 (A) covering l∞
0 (A), then there is an En barrelled and dense in l∞

0 (A). From this
property, suprabarrelled spaces are defined, also known as (db) spaces in [14,15]. Interesting
applications of suprabarrelled spaces can be found in [13,16] and ([17], Chapter 9). A
natural generalization of suprabarrelled spaces are p-barrelled spaces. Let N≤p :=

⋃p
k=1N

k,
N<∞ :=

⋃∞
k=1Nk and recall, see [18] and ([19], Definition 3.2.1) that a p-net in a vector space

E is a familyW =
{

Et : t ∈ N≤p} of vector subspaces of E, such that E = ∪{En : n ∈ N},
En ⊂ En+1, Et =

⋃
{Et,n : n ∈ N}, Et,n ⊂ Et,n+1, for t ∈ N≤r, 1 ≤ r < p and n ∈ N.

Analogously, a linear web in E is a familyW = {Et : t ∈ N<∞} of vector subspaces of E,
such that E = ∪{En : n ∈ N}, En ⊂ En+1, Et =

⋃
{Et,n : n ∈ N}, Et,n ⊂ Et,n+1, for t ∈ N<∞

and n ∈ N.
All topological spaces are supposed to be Hausdorff and space will be used as an

abbreviation of locally convex space, when misunderstanding is not possible. A locally
convex space E is called p-barrelled if given a p-netW =

{
Et : t ∈ N≤p} there is a t ∈ Np

such that Et is barrelled and dense in E (see [19], Definition 3.2.2). Note that suprabarrelled
spaces are 1- barrelled spaces. We refer the reader to [20] for several applications of p-
barrelled spaces, particularly in vector measures. The locally convex space E is ℵ0-barrelled
if it is p-barrelled, for each p ∈ N (see [19], Definition 4.1.1) and E is baireled if each linear
webW = {Et : t ∈ N<∞} in E admits a strand formed by dense barrelled subspaces of E,
i.e., there exists a sequence (ni : i ∈ N) such that En1n2···ni is a barrelled and dense subspace
of E, for each i ∈ N (see [21], Definition 1 and Theorem 1). It was proved in [22] that for a
σ-algebra A the space l∞

0 (A) is baireled. Other related properties can be found in [23] and
references therein.

In this paper, it is assumed that the locally convex space X is metrizable, denot-
ing by {‖.‖n ∈ N} an increasing sequence of semi-norms defining the topology of X,
i.e., for every x ∈ X, we have that ‖x‖n ≤ ‖x‖n+1, n ∈ N. Then, the locally convex
space c0(Ω, X) is metrizable and its topology is defined by the semi-norms ‖ f ‖n =
sup{‖ f (ω)‖n : ω ∈ Ω}, n ∈ N and f ∈ c0(Ω, X). Now for every f ∈ c0(Ω, X), its
support, i.e., supp f := {w ∈ Ω : f (w) 6= 0}, is countable since {w ∈ Ω : f (w) 6= 0} =
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⋃∞
n,m=1

{
ω ∈ Ω : ‖ f (ω)‖n > 1

m

}
and, by definition, for each ε > 0 and n ∈ N the set

{ω ∈ Ω : ‖ f (x)‖n > ε} is finite or empty.
The aim of the paper is to characterize those spaces c0(Ω, X) which are baireled. We

will prove that c0(Ω, X) is baireled if and only if X is baireled (Theorem 2). In order to do
this, we need the characterization for c0(Ω, X) to be barrelled obtained in ([6], Corollary 2.4).
For the sake of completeness, we will remind readers of this characterization in Section 2.

If Γ is a subset of Ω, we denote by c0(Γ, X) the linear subspace of c0(Ω, X) consisting
of all functions f such that f (Ω \ Γ) = {0}. By 〈V〉, we denote the linear hull of a subset V
of a linear space X, and, if V is absolutely convex and bounded, then 〈V〉V is the normed
space formed by 〈V〉, endowed with the norm defined by the functional of Minkowski
of V.

Recall that an absolutely convex bounded set V in X is a Banach disk if the normed
space 〈V〉V is a Banach space, and that a locally convex space X is barrelled (quasibar-
relled) if every closed absolutely convex and absorbing (and bornivorous) subset of E is a
neighborhood of zero. Barrelled spaces are just the locally convex spaces that verify the
Banach–Steinhaus boundedness theorem. Todd and Saxon [5] discovered an applicable
and natural generalization of Baire spaces to locally convex spaces: A locally convex space
X is called unordered Baire-like, if every sequence of absolutely convex and closed subsets
of X covering X contains a member which is a neighborhood of zero. Finally, a locally
convex space X is totally barrelled if for every sequence of subspaces (Xn)n∈N of X covering
X, there is some Xp which is barrelled and its closure is finite-codimensional in X, see ([19],
Definition 1.4.1) and [24]. Note that Baire ⇒ Unordered Baire-like ⇒ Totally barrelled
⇒Baireled⇒ ℵ0-barrelled⇒ p + 1-barrelled⇒ p-barrelled⇒ Baire-like⇒ barrelled⇒
quasibarrelled.

Even for metrizable locally convex spaces, ℵ0-barrelled;Baireled;Totally barrelled ([21],
Theorems 2 and 3).

2. Revisiting Barrelledness in c0(Ω, X)

It is well known that, if ϕ : E → F is a continuous linear map from a Banach space
E into a locally convex space F and D is the open unit ball of E, then the normed space
〈ϕ(D)〉ϕ(D) is isometric to the quotient E/(ϕ−1(0)), hence ϕ(D) is a Banach disk. If B is the
closed unit ball of E, then the inclusions D ⊂ B ⊂ 2D imply that ϕ(B) is also a Banach disk.

This well known property is used in the following lemmas.

Lemma 1 ([6], Lemma 2.1). Let X be a metrizable locally convex space and ( fn)n a bounded
sequence in c0(Ω, X) such that the set {n ∈ N : fn(ω) 6= 0} is finite or empty for every ω ∈ Ω.
Then, ( fn)n is contained in a Banach disk. In particular, if Ω = N and supp( fn) ⊂ N�{1, 2, ..., n},
for each n ∈ N, then also ( fn)n is contained in a Banach disk.

Proof. The boundedness implies that Mp = sup
{
‖ fn‖p : n ∈ N

}
is finite for each p ∈ N.

Then, for each {ξn : n ∈ N} ∈ l1, the inequality∥∥∥∥∥ ∞

∑
n=1

ξn fn

∥∥∥∥∥
p

≤ Mp

∞

∑
n=1
|ξn|

implies the continuity of the map ϕ : l1 −→ c0(Ω, X) defined by ϕ({ξn : n ∈ N}) :=
∑∞

n=1 ξn fn. Hence, if B is the closed unit ball of l1, then ϕ(B) is a Banach disk that contains
the sequence ( fn)n.

From Lemma 1, it follows that, if T is an absolutely convex subset of c0(Ω, X) that
absorbs its Banach disks, then there exists in Ω a countable subset ∆ and a natural number
n such that T absorbs { f ∈ c0(Ω�∆, X) : ‖ f ‖n ≤ 1} because, if this is not the case, there
exists a sequence ( fn)n such that f1 /∈ T, fn ∈ c0(Ω�

⋃n−1
i=1 ∆i, X)�nT, for n ≥ 2, where

∆i := supp( fi), 1 ≤ i, and ‖ fn‖n ≤ 1 for n = 1, 2, ... The boundedness of { fn : n ∈ N} and
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Lemma 1 implies that there exists k ∈ N such that { fn : n ∈ N} ⊂ kT, which yields to the
contradiction fk ∈ kT.

Lemma 2 ([6], Lemma 2.1). Let T be an absolutely convex subset of c0(Ω, X) that absorbs its
Banach disks. Then, there exists in Ω a finite subset ∆ and a natural number n such that T absorbs
{ f ∈ c0(Ω�∆, X) : ‖ f ‖n ≤ 1}.

Proof. By the observation preceding this lemma, it is enough to prove that, if T is an
absolutely convex subset of c0(N, X) that absorbs its Banach disks, then there exists m ∈ N
such that T absorbs

{ f ∈ c0(N�{1, 2, ..., m}, X) : ‖ f ‖m ≤ 1}.

Otherwise, there exists fn ∈ c0(N�{1, 2, ..., n}, X)�nT, with ‖ fn‖n ≤ 1, for each
n ∈ N. By Lemma 1, there is h ∈ N such that { fn : n ∈ N} ⊂ hT and we reach the
contradiction fh ∈ hT.

The above lemmas nicely apply to get the following characterization of barrelled
co(Ω, X).

Theorem 1 ([6], Corollary 2.4a). Let X be a metrizable locally convex space and Ω a non void set.
Then, c0(Ω, X) is barrelled if and only if X is barrelled.

Proof. Fix p ∈ Ω. As the quotient c0(Ω, X)�c0(Ω�{p}, X) is isomorphic to X and bar-
relledness property is inherited by quotients, see ([25] [27.1 (4) and 28.4 (2)]), then, if
c0(Ω, X) is barrelled, we deduce that X is also barrelled.

Conversely, if T is a barrel in c0(Ω, X) and B is a Banach disk in c0(Ω, X), it is obvious
that T contains a neighborhood of zero in the Banach space 〈B〉B, hence there exists a
λ > 0 such that λB ⊂ T. Then, by Lemma 2, there exists in Ω a finite subset ∆ such
that T contains a neighborhood of zero in c0(Ω�∆, X). Hence, if X is barrelled, T also
contains a neighborhood of c0(Ω, X) because the space c0(Ω, X) is isomorphic to the
product c0(Ω�∆, X)× X∆, and X∆ is barrelled.

The analogous result of Theorem 1 for quasibarrelled, ultrabornological, bornological,
unordered Baire like, totally barrelled, and barrelled spaces of class p are provided in ([6],
Corollaries 2.4 and 2.5 and Theorem 3.7). The unordered Baire-like and the totally barrelled
results need in their proofs the preceding lemmas and the following nice result ([5], The-
orem 4.1): If the union of two countable families F and G of linear subspaces of a linear space
E covers E, then one of them covers E. In fact, assume that there exists x ∈ ∪{Fi : Fi ∈ F},
with x /∈ ∪

{
Gj : Gj ∈ G

}
, and there exists y ∈ ∪

{
Gj : Gj ∈ G

}
, with y /∈ ∪{Fi : Fi ∈ F}.

As the subset {x + t(y− x) : t ∈ R} is uncountable, we may suppose that there exists
Fim ∈ F and t1 6= t2 such that {x + tn(y− x) : n = 1, 2} ⊂ Fim . This inclusion implies that
{x + t(y− x) : t ∈ R} ⊂ Fim because Fim is a linear subspace. In particular, for t = 1, we
obtain that y ∈ Fim , in contradiction with y /∈ ∪{Fi : Fi ∈ F}.

The fact that c0(Ω, X) is barrelled of class p if and only if X is barrelled of class p, for
each p ∈ N, implies directly that c0(Ω, X) is ℵ0-barrelled if and only if X is ℵ0-barrelled.

3. Baireledness

In this section, we prove that the space c0(Ω, X) is baireled if and only if X is baireled.
Recall that a locally convex space E is baireled if each linear web in E contains a strand
formed by Baire-like spaces [26] and that, if E is metrizable, then E is baireled if each linear
web in E contains a strand formed by barrelled spaces.

Let T be a non-void subset of N<∞ := ∪{Ns : s ∈ N} and let t = (t1, t2, . . . , tp) be
an element of T. The element t(i) := (t1, t2, . . . , ti), if 1 6 i 6 p, and t(i) := ∅ if i > p,
and the set T(i) := {t(i) : t ∈ T} are named the section of length i of t and T, respectively.
With this notation, a sequence (tn : n ∈ N) formed by elements of N<∞ is a strand if
tn+1(n) = tn(n), for each n ∈ N. A non-void subset T of N<∞ is increasing if, for each
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t = (t1, t2, . . . , tp) ∈ T, there exists p scalars ti
i verifying ti < ti

i, for 1 6 i 6 p, such that
(t1

1) ∈ T(1) and (t1, t2, . . . , ti−1, ti
i) ∈ T(i), 1 < i ≤ p. If s = (s1, s2, . . . , sq) ∈ N<∞ then

(t, s) := (t1, t2, . . . , tp, s1, s2, . . . , sq)
The following definition provides a particular type of increasing subsets U of N<∞

considered in ([27], Definition 1) and named NV-trees, reminding readers of O.M. Nikodým
and M. Valdivia.

Definition 1. An NV-tree is a non-void increasing subset T of N<∞ without strands and such
that, for each t = (t1, t2, . . . , tp) ∈ T, the set {s ∈ N<∞ : (t, s) ∈ T} is empty.

The last condition means that elements of an NV-tree T do not have proper contin-
uation in T. An NV-tree T is an infinite subset of N if and only if T = T(1). The sets Ni,
i ∈ N\{1}, and the set ∪{(i,Ni) : i ∈ N} are non trivial NV-trees.

If T is an increasing subset of N<∞ and {Eu : u ∈ N<∞} is a linear web in a space
E, then (Eu(1))u∈T is an increasing covering of B, and for each u = (u1, u2, . . . , up) ∈ T
and each i < p the sequence (Bu(i)×n)u(i)×n∈T(i+1) is an increasing covering of Bu(i). In
particular, if T is an NV-tree, then E = ∪{Et : t ∈ T} because T does not contain strands.

By definition, a locally convex space E is non baireled if there exists a linear web
{Et : t ∈ N<∞} without a strand formed by Baire-like spaces. In particular, a metrizable
barrelled locally convex space E is non baireled if there exists a linear web without a
strand formed by barrelled spaces because a metrizable space is barrelled if and only if it is
Baire-like.

Note that, if (En1 , n1 ∈ N) is an increasing covering of a metrizable barrelled space E
then, since E is Baire-like, we may suppose, without loss of generality that all subspaces
En1 , n1 ∈ N, are dense in E. Consequently, again because of denseness, if En1 is barrelled,
then every Em1 , with m1 ≥ n1, is barrelled.

Therefore, for a linear web {Et : t ∈ N<∞} in a metrizable barrelled locally convex
space E that is not baireled, we may suppose that every En1 is dense and barrelled or that
every En1 is dense and not barrelled, for each n1 ∈ N. The preceding process continues
inductively only when we get barrelled spaces, i.e., if the dense subspace En1 is barrelled,
then we may suppose that En1n2 , n2 ∈ N, is a sequence of dense subspaces such that for
all En1n2 , n2 ∈ N, are not barrelled, or all En1n2 , n2 ∈ N, are barrelled; in the first case, the
inductive process stops and, in the second case, we continue with the increasing sequence
(En1n2n3 , n3 ∈ N). As the linear web {Et : t ∈ N<∞} does not contain a strand formed by
barrelled spaces, then this natural induction produces a NV-tree T, such that, for each
t = (n1, n2, · · · , np) ∈ T the space Et is dense in E and not barrelled, and Et(i) is barrelled,
for each i < p.

The following lemmas are part of the proof of Theorem 2. Therefore, those lemmas con-
sider that E = c0(Ω, X), with X metrizable. Moreover, we will suppose that the metrizable
space c0(Ω, X) is barrelled and not baireled, hence c0(Ω, X) has a linear web {Et : t ∈ N<∞}
without a strand formed by Baire-like spaces. With the preceding induction, we obtain
a NV-tree T, such that, for each t = (n1, n2, · · · , np) ∈ T, we have that En1n2...np is a non
barrelled dense subspace of c0(Ω, X), hence there exists a barrel Tn1n2...np in En1n2...np that it
is no neighborhood of zero in En1n2...np . With the barrels Tn1n2...np , with (n1, n2, · · · , np) ∈ T,
we form

Zn1n2...np :=
〈

Tn1n2...np
E
〉

and Sn1n2...np =
∞⋂

m=np

Zn1n2...np−1m, (1)

and

Zn1n2...np−1 :=
∞⋃

np=1

Sn1n2...np−1np and Sn1n2...np−1 :=
∞⋂

m=np−1

Zn1n2...np−2m, (2)

· · · and finally

Zn1 =
∞⋃

n2=1

Sn1n2 and Sn1 =
∞⋂

m=n1

Zm. (3)
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A NV-tree T1 contained in a NV-tree T is cofinal in T if T1(1) is a cofinal subset of
T(1) and for each (n1, n2, · · · , ni) ∈ T1(i) the set {m : (n1, n2, · · · , ni, m) ∈ T1(i + 1)} is a
cofinal subset of {m : (n1, n2, · · · , ni, m) ∈ T(i + 1)}. Note that, if T1 is cofinal in T and
F ⊂ Zt, for every t ∈ T1, then F ⊂ Sm1 , for every m1 ∈ T1(1).

In the following four lemmas, we suppose the following conditions hold:
(H): X is a metrizable locally convex space such that c0(Ω, X) is barrelled but not

baireled, being {Et : t ∈ N<∞} a linear web in c0(Ω, X) without a strand formed by
barrelled spaces and T the NV-tree such that for each t ∈ T there exists a barrel Tt in Et
which is not a neighborhood of zero in Et and Et is a dense subspace of c0(Ω, X).

With these barrels Tt, with t = (n1, n2, ..., np) ∈ T, we form the sets Zn1n2...np , Sn1n2...np ,
· · · , Zn1 and Sn1 , given in (1)–(3).

Lemma 3. Assume conditions (H) hold and let F be a linear subspace of E, τ a locally convex
topology in F finer (or equal) than the topology induced by E, and such that (F, τ) is baireled. Then,
there exists m1 ∈ N such that F ⊂ Sn1 for n1 ≥ m1.

In particular, if D is a Banach disk contained in E, there exists m1 ∈ N such that 〈D〉 ⊂ Sn1 ,
for n1 ≥ m1.

Proof. By definition of baireled, it follows that, if (En, n ∈ N) is an increasing covering
of a baireled space E, then there exists a set N1 cofinal in N such that En is baireled and
dense in E, for each n ∈ N1 (see ([21], Theorem 1) adding the trivial fact that, if a baireled
space H is dense in the space G, then G is baireled). Hence, there exists an NV-tree T1 that
is cofinal in T such that {F ∩ Et : t ∈ T1} is a family of baireled dense subspaces of (F, τ).
Then, for each t ∈ T1, the set F ∩ Tt is a neighborhood of zero in F ∩ Et endowed with the

topology induced by τ, hence, by denseness, F ∩ Tt
(F,τ) is a neighborhood of zero in (F, τ),

so F =
〈

F ∩ Tt
(F,τ)

〉
⊂
〈

Tt
E
〉
= Zt, if t ∈ T1. Then, if m1 ∈ T1(1), we have that F ⊂ Sn1

for n1 ≥ m1.

Lemma 4. If conditions (H) hold, there exists in Ω a countable subset ∆ (possibly empty) and
m1 ∈ N such that c0(Ω \ ∆, X) ⊂ Sn1 if n1 ≥ m1.

Proof. Assume the conclusion fails. Then, we can find f1 ∈ c0(Ω, X) such that ‖ f1‖1 ≤ 1
and f1 /∈ S1. Since the set ∆1 = supp( f1) is countable, we deduce that c0(Ω \ ∆1, X) * S2
and we find f2 ∈ c0(Ω \ ∆1, X) with ‖ f2‖2 ≤ 1 and f2 /∈ S2. Since ∆2 = supp( f2) is count-
able, c0(Ω \ (∆1 ∪ ∆2), X) * S3, which implies that there exists f3 ∈ c0(Ω \ (∆1 ∪ ∆2), X)
with ‖ f3‖3 ≤ 1 and f3 /∈ S3.

By induction, we obtain the sequence ( fn)n such that

{ fn : n ∈ N} *
∞⋃

m=1

Sm

and, by Lemma 1, this sequence is contained in a Banach disk D. Then, by Lemma 3, there
exists Sp such that

{ fn : n ∈ N} ⊂ D ⊂ Sp,

in contradiction with fp /∈ Sp.

Lemma 5. Assume conditions (H) hold. Then, there exists in Ω a finite subset ∆ (possibly empty)
and m1 ∈ N such that c0(Ω \ ∆, X) ⊂ Sn1 if n1 ≥ m1

Proof. Applying Lemma 4, it is enough to prove this lemma for Ω = N. It is necessary
to prove the existence of an i ∈ N such that c0(N�{1, 2, ..., i}, X) ⊂ Si. Suppose this
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is not true. Then, by induction, we find a sequence ( fn)n in c0(N, X) such that fi ∈
c0(N�{1, 2, ..., i}, X)�Si with ‖ fi‖i ≤ 1. It is clear that

{ fn : n ∈ N} *
∞⋃

m=1

Sm

and, by Lemma 1, this sequence is contained in a Banach disk D. By Lemma 3, there exists
Sp such that { fn : n ∈ N} ⊂ D ⊂ Sp, in contradiction with fp /∈ Sp.

Lemma 6. Let us suppose that conditions (H) hold. If X is baireled, then there exists a NV-tree
T1 cofinal in T such that c0(Ω, X) = Sn1n2...np , if

(
n1, n2, ....., np

)
∈ T1.

Proof. It is obvious that we only need to prove that there exists n1 such that c0(Ω, X) = Sn1 .
By Lemma 5, it is enough to show that, given a finite subset ∆ of Ω, there exists m1 such
that c0(∆, X) ⊂ Sm1 . However, this follows from Lemma 3 and the trivial facts that c0(∆, X)
and X∆ are isomorphic and that the finite product of baireled spaces is baireled ([21],
Proposition 7).

Theorem 2. Let X be a metrizable locally convex space and Ω a non void set. Then, c0(Ω, X) is
baireled if and only if X is baireled.

Proof. Assume that X is baireled and that the metrizable space c0(Ω, X) is not baireled.
Then, by Theorem 1, the space c0(Ω, X) is barrelled, hence there exists a linear T-web
W := {Et : t ∈ T(i), i ∈ N} in c0(Ω, X) consisting of dense subspaces such that, for each
t ∈ T, there exists a barrel Tt in Et which is not a neighborhood of zero in Et. By Lemma 6,
there is t ∈ T such that c0(Ω, X) =

〈
Tt

E
〉

and the barrelledness implies that Tt
E is a

neighborhood of zero in c0(∆, X). Then, we get the contradiction that Et ∩ Tt
E
= Tt is a

neighborhood of zero in Et. Therefore, the assumption that X baireled implies that c0(Ω, X)
is baireled.

The converse follows from the trivial facts that for p ∈ Ω the quotient

c0(Ω, X)�c0(Ω�{p}, X)

is isomorphic to X and that the baireledness is inherited by quotients ([21], 5 Permanence
properties of Baireled spaces).

We apply Theorem 2 to get the following closed graph theorem for baireled spaces.

Theorem 3. Let X be a metrizable baireled locally convex space and let F be a locally convex space
that contains a linear web {Ft : t ∈ N<∞} such that Ft admits a topology τt finer than the topology
induced by F so that (Ft, τt) is a Fréchet space, for each t ∈ N<∞. Let f be a linear map from
c0(Ω, X) into F with closed graph. There exists in N<∞ a strand (tn : n ∈ N) such that f is a
continuous mapping from c0(Ω, X) into (Ftn , τtn), for each n ∈ N.

Proof. Let Et := f−1(Ft) for each t ∈ N<∞. By Theorem 2, there exists a strand (tn : n ∈ N)
such that each Etn is barrelled and dense in c0(Ω, X). The map f restricted to f−1(Ft) has
closed graph. By ([28], Theorems 1 and 14), this restriction admits a continuous extension
U to c0(Ω, X) with values in (Ft, τt) and clearly f = U.

This theorem is correct if we replace “Fréchet space, for each t ∈ N<∞” by “Γr-space,
for each t ∈ N<∞” (see [28]). Recall that every Br-space, in particular every Fréchet space,
is a Γr-space. Reference [29] contains very interesting properties.

4. Open Problems

Problem 1. Let X be a metrizable Baire locally convex space. Is c0(Ω, X) a Baire space?
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The converse is true because, if X is not a Baire space, then X is not a space of the
second Baire category, and if (An)n is a sequence of closed subsets of X with empty interior
covering X and p is a fixed point of Ω the sets Bn = { f ∈ c0(Ω, X) : f (p) ∈ An}, n ∈ N,
define a cover of c0(Ω, X) of closed sets with empty interior. Hence, for such X, the space
c0(Ω, X) is not Baire.

Let Ω be a Hausdorff completely regular space and X be a locally convex space. Then,
Cc(Ω, X) denotes the linear space of continuous functions on Ω with values in X, endowed
with the compact-open topology. In 1954, Nachbin and Shirota characterized the spaces Ω
for which Cc(Ω) := Cc(Ω,R) is barrelled and bornological; in 1958, Warner characterized
the spaces Ω for which Cc(Ω) is quasibarrelled ([30], Propositions 2.15 and 2.16). Mendoza
solved in [31] the corresponding problems for barrelled and quasibarrelled spaces Cc(Ω, X),
proving that, if X contains an infinite compact subset, then Cc(Ω, X) is barrelled [resp.
quasibarrelled] if and only if Cc(Ω) and X are barrelled [resp. quasibarrelled] and such
that the strong dual of X has the property (B) of Pietsch.

Problem 2. Characterize when Cc(Ω, X) is p-barrelled, ℵ0-barrelled or baireled.
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