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Abstract: Atrial fibrillation (AF) is the most common cardiac arrhythmia, and in response to increasing
clinical demand, a variety of signals and indices have been utilized for its analysis, which include
complex fractionated atrial electrograms (CFAEs). New methodologies have been developed to
characterize the atrial substrate, along with straightforward classification models to discriminate
between paroxysmal and persistent AF (ParAF vs. PerAF). Yet, most previous works have missed
the mark for the assessment of CFAE signal quality, as well as for studying their stability over time
and between different recording locations. As a consequence, an atrial substrate assessment may
be unreliable or inaccurate. The objectives of this work are, on the one hand, to make use of a
reduced set of nonlinear indices that have been applied to CFAEs recorded from ParAF and PerAF
patients to assess intra-recording and intra-patient stability and, on the other hand, to generate a
simple classification model to discriminate between them. The dominant frequency (DF), AF cycle
length, sample entropy (SE), and determinism (DET) of the Recurrence Quantification Analysis are
the analyzed indices, along with the coefficient of variation (CV) which is utilized to indicate the
corresponding alterations. The analysis of the intra-recording stability revealed that discarding noisy
or artifacted CFAE segments provoked a significant variation in the CV(%) in any segment length for
the DET and SE, with deeper decreases for longer segments. The intra-patient stability provided large
variations in the CV(%) for the DET and even larger for the SE at any segment length. To discern
ParAF versus PerAF, correlation matrix filters and Random Forests were employed, respectively,
to remove redundant information and to rank the variables by relevance, while coarse tree models
were built, optimally combining high-ranked indices, and tested with leave-one-out cross-validation.
The best classification performance combined the SE and DF, with an accuracy (Acc) of 88.3%, to
discriminate ParAF versus PerAF, while the highest single Acc was provided by the DET, reaching
82.2%. This work has demonstrated that due to the high variability of CFAEs data averaging from
one recording place or among different recording places, as is traditionally made, it may lead to an
unfair oversimplification of the CFAE-based atrial substrate characterization. Furthermore, a careful
selection of reduced sets of features input to simple classification models is helpful to accurately
discern the CFAEs of ParAF versus PerAF.

Keywords: atrial fibrillation; atrial arrhythmia; nonlinear indices; classification models; complex
fractionated atrial electrogram; catheter ablation
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1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical
practice, with an estimated prevalence of about 1–2% of the general population and above
10% in the elderly [1]. Moreover, its prevalence is likely to double in the next 50 years
as the population ages [2]. At least 15% of the budget in cardiac disease healthcare is
earmarked to AF [3,4]. This disease is associated with an increased risk of stroke and
congestive heart failure, so that AF patients have twice the risk of death as compared
with healthy persons [5]. These facts make AF a major public health challenge, and its
medical and economic aspects could worsen in the future [2]. From an electrophysiological
viewpoint, AF is characterized by rapid and chaotic contractions of the atria, originating
in disorganized atrial electrical activation [6]. As with many other arrhythmias, AF may
require therapeutic intervention, even in patients who suffer no subjective discomfort [7].
Since Haissaguerre et al. reported the paramount relevance of the pulmonary veins (PV) in
the initiation and maintenance of AF [8], the procedure of catheter ablation (CA) targeting
PV foci, namely pulmonary vein isolation, has become such an effective therapy for AF [9],
it is considered the first-line therapeutical alternative to pharmacological treatments.

Despite its high prevalence, the physiological mechanisms underlying AF are still
pending to be completely understood, and the present therapeutic approaches to AF have
major limitations [10]. During recent years, many efforts have addressed personalizing
CA treatments by mapping the atrial electrophysiological substrate [11] and have been
introduced with the aim to identify the arrhythmogenic atrial sites responsible for AF
generation [12]. In this respect, atrial substrate characterization has been one of the most
recent approaches aimed at reducing the limited clinical efficacy of the current therapeutic
intervention, due to the major knowledge gaps in the mechanisms for sustaining AF [13].

In clinical practice, one of the goals for the characterization of the atrial substrate
aims at discerning patients with paroxysmal AF (ParAF) versus persistent AF (PerAF) [14],
as statistics have shown that the success rate of CA is dependent on the area of ablation
and the AF type [15]. In fact, a high success rate is reached in ParAF just ablating the
pulmonary veins (PVs), while for PerAF, the use of further ablations is required to achieve
similar results [12]. This defines a challenge for the precise characterization of the atrial
substrate aimed at optimally guiding the CA, where methodologies to distinguish between
the complex fractionated atrial electrograms (CFAEs) of ParAF versus PerAF would be very
interesting and useful for fast and efficient atrial substrate mapping methods [16]. CFAEs
can be identified by the presence of multiple electrogram deflections without interruption,
a baseline perturbation with continuous deflection [17], or a cycle length ≥120 ms that
includes isoelectric intervals between deflections [18].

In the attempt to personalize AF treatment, nonlinear indices have been applied to
CFAEs, which is aimed at quantifying atrial remodeling and the atrial electrophysiological
substrate, supporting clinical management decisions, and suggesting the most appropriate
approach for ablation procedures [19]. In this regard, different works have been pub-
lished proposing several classification strategies based on nonlinear metrics as assessed
via statistical tests, aimed at classifying ParAF versus PerAF via a CFAE analysis. In this
respect, Ciaccio et al. measured the CFAE repetitiveness [16] and quantified the degree of
morphological heterogeneity in CFAE deflections [20]; Acharya et al. adopted recurrence
plots, the Recurrence Quantification Analysis, and entropy measures, proving that the
underlying signal generation process of CFAEs in AF is somehow repetitive, even for
sequences as short as one second [21]; Ndrepepa et al. and Ravi et al. used the AF cycle
length to show that patients with persistent AF had shorter cycle lengths and a higher
degree of disorganized activity than patients with paroxysmal AF [22,23]; and Sanders et al.
employed a spectral analysis to identify localized sites of high-frequency activity, reporting
different distributions in paroxysmal versus permanent AF [24].

However, the aforesaid prior studies do not respond to the clinical demand for easy
and intuitive interpretation methods for CFAEs [25]. In fact, clinicians demand the use of
straightforward classification models which are readily understandable, fed with features
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easily applicable to CFAEs. Furthermore, previous methods do not provide any signal
quality or stability assessment applied to the variables and recordings used to develop
the introduced models to discriminate between AF types, so that the robustness of the
approaches previously introduced can be compromised. In fact, the prior reported results
miss the assessment of the intra-recording and intra-patient stability of the analyzed data,
as well as the CFAE signal quality. By omitting the study of the stability and the signal
quality evaluation, two main issues may arise: first, averaging among recording places and
AF types without having previously checked the intra-recording and intra-patient stability
may lead to an oversimplification of the processes taking place at different regions of the
atria; second, the inclusion of artifacted or noisy segments unlinked to the AF mechanism,
such as drifts or very distorted recordings, due to bad contacts of the recording electrode
on the atrial walls, may lead to biased and unreliable results in the characterization of the
atrial electrophysiological substrate.

The present work has two principal objectives. On the one hand, to assess the stability
of CFAEs with nonlinear indices, both intra-recording and intra-patient, and, on the other
hand, to exploit nonlinear strategies and straightforward models to discriminate between
the CFAEs of ParAF and PerAF from patients undergoing catheter ablation of the AF.

In the first part of the manuscript, the intra-recording and intra-patient stability of
CFAEs have been assessed with the nonlinear indices of determinism (DET) of a Recurrence
Quantification Analysis (RQA) and sample entropy (SE). Furthermore, the presence of
artifacted or noisy segments in CFAEs has been considered as well, evaluating the conse-
quences of their discarding in the final outcome. The idea behind it is that a discarding
process to remove poor quality segments may benefit the intra-recording and intra-patient
stability assessment. Moreover, this approach may decrease the differences in the DET and
SE between the intra-patient recording places, thus helping to quantify the atrial substrate
with reliable and representative values.

In the second part of the study, the exploitation of nonlinear strategies and the devel-
opment of straightforward models to discriminate between ParAF and PerAF from the
CFAEs of patients undergoing a CA of AF has been performed using, besides the nonlinear
indices of DET and SE, the widely accepted indices of dominant frequency (DF) and the AF
cycle length (AFCL). The indices extracted from CFAEs were processed and selected prior
to being converted into features for coarse tree classification models. The assumption is
that a thoughtful selection of reduced sets of indices, feeding straightforward classification
models, would enable a more accurate discernment of ParAF versus PerAF CFAEs, thus
providing a more understandable insight for atrial substrate evaluation and improved
therapeutic decision for AF management.

2. Material and Methods
2.1. Database and Preprocessing

A total number of 212 electrograms of 16 s in length were acquired from ParAF and
long-standing PerAF patients who were not under arrhythmic drug therapy, undergoing ra-
diofrequency catheter ablation therapy at the cardiac electrophysiological laboratory of the
Arrhythmia Unit in the General University Hospital Consortium of Valencia. The hospital’s
Internal Review Board (IRB) approved acquisition and analysis of these retrospective data
and informed consent was obtained from all individual participants included in the study.
A total of 108 and 104 CFAEs were recorded from 27 patients for ParAF and 26 patients for
PerAF, respectively, which were identified by observing the published criteria [16], from
the four pulmonary veins (PV)—left superior (LSPV), left inferior (LIPV), right superior
(RSPV), and right inferior (RIPV)—and the anterior (ANT) and posterior (POS) free wall of
the left atrium.

If AF persisted for more than 10 min, then the electrograms were included for analysis
and subjected to rectangular one-, two-, and four-second-length windowing, thus creating
three distinct datasets. The first dataset consisted of 212 non-overlapping one-second-
length sequences; the second dataset consisted of 212 non-overlapping two-second-length
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sequences, and the third dataset consisted of 212 non-overlapping four-second-length
sequences. In the cases of ParAF with a baseline on sinus rhythm, AF was induced by
rapid pacing at the coronary sinus or at the lateral wall of the right atrium, with a coupling
interval range of 250–200 ms [16].

The used catheter for signal acquisition was a 3.5 mm irrigated-tip radiofrequency
ablation catheter and the procedure used 3D electroanatomic mapping (CARTO, Biosense-
Webster Inc., Diamond Bar, CA). The protocol involved placing multipolar catheters in
the right atrium and in the coronary sinus and a steerable circular catheter and “lasso”
in the left atrium through transseptal puncture. All signals were band-pass filtered by
the acquisition system (0.2–500 Hz) and digitized at a sampling frequency of 1 kHz by a
Labsystem™ PRO EP recording system (Boston Scientific, Marlborough, MA, USA). The
process applied to the analyzed signals is summarized in Figure 1. Finally, in order to
remove the most relevant source of signal contamination from the cardiac electrophysiology
laboratory, which is the ubiquitous powerline interference, a new method based on the
stationary wavelet transform has been applied [26]. The use of this algorithm provided
improved and truthful evaluation of CFAEs because it preserved signal morphology and
did not add artificial fractionation to the electrograms [26].
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Figure 1. Flowchart describing the steps of operation of the proposed classification modeling.
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2.2. CFAE Segment Discarding Process

CFAEs were visually inspected to evaluate their signal quality with two main purposes.
On the one hand, it was to distinguish artifacts from real atrial activations, and, on the
other hand, to identify very noisy CFAE segments that were useless for later stages. Signal
segments of both these types were discarded via their corresponding quality information,
as indicated in Figure 1.

The segment quality information of the i-th CFAE, with i = 1, 2, . . . , 212, was stored in
vector q(i)w , being w the segment length, which in this analysis can take the values of 1, 2,
and 4, and having a dimension of 16

w . Thus, each element of q(i)w represented one segment
of the length w of the i-th CFAE and could take one of two values: a value of 1 if the
corresponding CFAE sequence had acceptable signal quality, and the value 0 if the segment
had low quality. By building the vector in such a way, it was readily possible to turn off or
discard low-quality segments by simply multiplying elements of q(i)w for each i-th CFAE.

Initially, the quality of 1 s length sequences was manually assessed, as they belong
to the smallest window length (w = 1), thus creating vector q(i)1 . The process followed
consisted of two steps: First, to detect low-frequency artifacts, the Welch spectrum of
the 1 s length segments, using averaged modified periodograms [27], was computed and
visualized, so that those segments presenting low-frequency peaks in the range of 0–2 Hz
were observed in the time domain: the segments having an atrial activation with abnormal
amplitude and/or shape were discarded, as shown in Figure 2a. Second, to recognize
CFAE components lacking atrial activity, the amplitude ranges of each sequence were
extracted and the segments presenting ranges near zero mV were discarded, as shown in
Figure 2b. Clinicians participating in the study evaluated the quality of each segment with
a double-check procedure, so that one of them marked the quality of a segment and other,
randomly chosen, ratified the decision. Only segments with the two coincident opinions
were considered in the study. The percentage of discards was assessed for each window
length, recording place, and AF type.

Next, the goodness of the 2 s length sequences was derived from q(i)1 , thus creating

vector q(i)2 . Consecutive elements of q(i)1 were regrouped to create mutually exclusive
subsets of 2 elements. Then, the elements within each subset were multiplied and the
outcome represented a new element of q(i)2 . The subsets were created by following the
time order of the segments, so that there was a time correspondence between datasets of
different length. In such a way, for example, the first (q(1)1 ) and the second (q(2)1 ) elements

of vector q(i)1 were multiplied to obtain the first element of q(i)2 (q(1)2 ), the third (q(3)1 ) and

the fourth (q(4)1 ) elements of vector q(i)1 were multiplied to obtain the second element of q(i)2

(q(2)2 ), and so on. The same process was repeated also for the 4 s length datasets to obtain

vector q(i)4 .
Regrettably, with this method, some good but short sequences were discarded because

just a part of the full 4 s length segment provoked its identification as a bad quality segment,
causing a consequent reduction in available segments. The percentage of discarded seg-
ments was assessed for each window length dataset by counting the number of low-quality
segments and dividing it by the total number of segments of the considered dataset. In
addition, the embedded loss of information was quantified for the 2 and 4 s length datasets.
Furthermore, the percentage of discarded segments and the consequent loss of information
were assessed for the different recording places and types of AF analyzed.
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Figure 2. Examples of time-domain visual inspection to evaluate CFAE signal quality and the
discarding process applied to 1, 2, and 4 s length segments. (a) First 8 seconds of a CFAE with an

abnormal amplitude (drift) in the sixth second. The 1 s length element q(6)1 has been discarded. The

goodness of the 2 s and 4 s length were derived and, respectively, elements q(3)2 and q(2)4 were also
discarded. (b) First 8 seconds of a CFAE with signal lost, indicated by amplitude ranges near 0 mV.

Elements q(6)1 , q(7)1 , and q(8)1 were discarded. The goodness of the 2 s length was affected and elements

q(3)2 and q(4)2 were discarded. Finally, the 4 s length element q(2)4 was discarded as well.

2.3. Sample Entropy

The SE index assigned a non-negative value to the corresponding data series, reflecting
the complexity of each sequence, with larger values corresponding to more irregularity
in the data [28]. Mathematically, SE is defined as the negative natural logarithm of the
probability that two sets similar for m data points are also similar for m + 1 data points,
given a tolerance distance r, with the exception of self-matches. Thus, given a time-
series dataset of length N = {x(n), n = 1, . . . , N}, the k = 1, . . . , N − m + 1 vectors of
length m are formed as Xm(k) = {x(k + i), i = 0, . . . , m − 1}. As a distance function
d[Xm(i), Xm(j)], (i 6= j) we used the Euclidean distance, computed as the maximum
absolute distance between the scalar elements of the vectors. If the distance between the
elements is below a tolerance r, then is counted as Bi. The counting element of different
vectors is calculated and normalized as

Bm(r) =
1

N −m

N−m

∑
i=1

Bi
N −m− 1

. (1)
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The repetition of the described process for vectors of length m + 1 makes it possible to
calculate Bm+1(r); hence, SE can be defined as

SE(m, r, N) = − ln

[
Bm+1(r)

Bm(r)

]
. (2)

The maximum template length m was set to 2 samples and the tolerance r to 0.35 times
the standard deviation of the segment. This setup was selected taking into consideration
previous studies with an in-depth analysis of SE parameters, testing other combinations of
m and r to achieve optimized classification of AF events, which are directly dependent on
AF organization [29]. SE was applied to 1, 2, and 4 s length sequences datasets. The results
are reported with range, mean, and standard deviation.

2.4. Recurrence Plots and Recurrence Quantification Analysis Measures

Recurrence plots (RPs) make possible the visualization of the recurrence behavior
or states of the phase-space trajectory of natural processes, considered as dynamical sys-
tems [30]. Periodic signals, such as the electrocardiogram, are examples of recurrence [31],
in which patterns are repeated over time. Mathematically, RPs can be defined as

R(i, j) = Θ(ε− ‖~x(i)−~x(j)‖), (3)

where Θ is the function Θ: R→ (0, 1) and ε is a predefined distance.
In this work, RPs were used to visualize recurrent patterns within 1, 2, and 4 s

length sequences. The phase-space reconstruction from a time series uk could be obtained
following Takens’ embedding theorem [32] by using an embedding dimension d and a time
delay τ. For the study, we selected the embedding dimension and the time delay using
the False Nearest Neighbors (FNN) [33] and the mutual information (MI) [34] strategies,
respectively. FNN and MI were applied to every segment of the subsets analyzed. In
particular, after applying FNN and MI to every CFAE segment, we chose to reconstruct the
phase space of all segments of a given length using the most frequent values as embedding
dimension d and the time delay τ. Thus, given a CFAE, considered as a time series,
its trajectory {si}N

i=1, with N the number of considered states, was projected into a d-
dimensional phase space in which the i-th point of the trajectory was represented as s(i).
The vector of reconstructed state ~s(t) in the phase space at the time t is defined as

~s(t) = ~si = (ui, ui+τ , . . . , ui+(d−1)τ), t = i∆t (4)

Next, the RP was produced too. As shown in equation (3), the RP was represented as
an N × N array, where each element (i, j) is assigned a value of 1 if the distance between
the point i and the point j of the trajectory ~s(t) is less than a specified threshold ε. For
the study, we set the threshold ε as 10% of the mean of the phase-space diameter, and 0
otherwise, in accordance with previous works [35].

The Recurrence Quantification Analysis (RQA) measure selected for this study is the
determinism [30], which quantifies the sequence predictability by measuring the percentage
of recurrence points that belong to diagonal lines of a minimum length lmin = 50.

2.5. Atrial Fibrillation Cycle Length

The AFCL is defined as the time gap between two consecutive atrial depolarizations,
generally expressed in milliseconds [18]. The AFCL has been computed as the average dis-
tance between two consecutive atrial activations and serves to estimate the depolarization
frequency of a certain region [36]. In this study, the AFCL was measured using a modified
Botteron’s approach [37], decreasing its low cut-off frequency from 40 to 20 Hz, thus bene-
fiting slow local activation detection. Moreover, high- and low-amplitude activations of
CFAEs were equalized, thus facilitating the detection of low-amplitude activations [38].
The AFCL was computed on the 16 s length CFAEs at all the recording sites.
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2.6. Dominant Frequency

The DF was measured by identifying the highest spectral peak in the electrophysio-
logical frequency range of interest of 3–12 Hz from CFAE power spectra [39]. The power
spectrum typically exhibits a distinct peak whose location determines the most common
fibrillatory rate of nearby endocardial sites [40]. Most studies make use of Fourier-based
spectral analysis, in which the signal is divided into shorter, overlapping segments, each
segment subjected to windowing [27]. The global power spectrum is obtained by aver-
aging the power spectra of the respective segments. In the present work, the DF was
calculated using the Welch periodogram [27]. A Hamming window of 4096 points in
length, a 50% overlapping between adjacent windowed sections, and an 8192-points Fast
Fourier Transform (FFT) were used as computational parameters as suggested by previous
works [41]. The largest amplitude frequency within the 3–12 Hz range was selected as the
dominant frequency. The DF has been proven to be generally higher in PerAF, in accord
with prior works [20]. Finally, the DF was computed on the 16 s length CFAEs at the
different recording sites.

2.7. Intra-Recording and Intra-Patient Stability Assessment

The stability of the indices, both intra-recording and intra-patient, was checked for
the 1, 2, and 4 s length datasets, using the coefficient of variation (CV) as a measure of the
dispersion [42], as shown in Figure 1. The coefficient of variation, expressed as %, was
calculated as CV = σ/µ, with σ the standard deviation and µ the mean of the index under
study. The analyses were repeated, discarding artifacted or noisy CFAE segments, and any
increase/decrease in the CV was assessed.

Furthermore, the Kruskal–Wallis test was selected to assess whether the index at the
different recording places of a given patient originated from the same distribution [43].
Prior, the assumption of homoscedasticity was verified with the Breush–Pagan test [44]. The
method was supported by comparing the median values of the groups both numerically
and graphically, so that any inaccuracy could have been detected. The null hypothesis (H0)
tested was that the mean ranks of DET (or SE) among the intra-patient recording places
is the same. The acceptance of H0 proved that the atrial electrophysiological substrate
condition is similar at different sites of the left atrium, as has been previously reported [21].
Contrarily, the rejection of H0 led to the conclusion that averaging among recording places
provokes an oversimplification of the AF substrate taking place in the left atrium. The
Kruskal–Wallis test was performed on the one-, two-, and four-seconds-length datasets,
with and without discarded CFAE segments.

2.8. Statistical Feature Assessment

The Mann–Whitney test verified the null hypothesis that the indices were similar for
ParAF and PerAF, with significance value set at 0.05 [45], as indicated in Figure 1. The test
was performed for the indices at each recording site. For the three datasets, the p-values
returned were averaged for recording places, and the resulted values are reported later in
Section 3.

2.9. Feature Selection

In the present work, the features studied are the nonlinear indices of SE, DET, AFCL,
and DF, computed in the PVs and in the anterior and posterior free wall of the left atrium.
With the aim to remove data containing redundant or irrelevant variables without losing
information, a feature selection procedure was applied to the data [46]. The adopted
strategy combined two main techniques: the filters method, which selected the features
independently from the predictor choice in a preprocessing step, and the wrapper method,
which selected the features with machine learning techniques for classification, see Figure 1.
For the filters method, we applied a filter to the correlation matrix, removing the most
redundant variables with respect to the others, with a cut-off value of 0.60.
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After correlation matrix filtering, the wrapper method selected was the Recursive
Feature Elimination, which has been implemented via Random Forest (RF) for variable
importance, providing a ranking of the most relevant features for classification [47]. The RF
assigned to each variable a ranking from 0 to 100 based on the mean decrease Gini score, a
measure that defines the contribution of each variable to the homogeneity of nodes and
leaves in the RF. The higher the value of the Gini coefficient, the more important the feature
and its value. As a trade-off empirical decision, the variables having scores higher than 40
were selected.

2.10. Classification of ParAF and PerAF with the Models

The classification of ParAF and PerAF was performed using coarse tree models to-
gether with leave-one-out cross-validation, as depicted in Figure 1. Each coarse tree model
was built using one possible combination of the variables that passed the features selection
process. In particular, for all segment lengths, all the possible subsets of features were used
to determine the coarse tree providing the highest accuracy. Furthermore, aimed at further
simplification of the classification process, a coarse tree model for each variable was created,
having just one input feature. Regarding the cross-validation strategy, any recording of the
patient under test was previously removed from the training set. Accuracy values obtained
with the classification process were reported as percentages.

3. Results

As a result of the application of the CFAE quality assessment, 5.2% of the one-second-
length segments were discarded, while for the two- and four-second-length segments,
the percentages were slightly higher, respectively, 8.6% and 12.5%, due to the aforesaid
increased loss of discarded segments. Figure 3 shows the discarded segments distribution
along the recording places in the datasets. In particular, the number of discards in the LSPV
is quite low as compared with the other recording places and in contrast with the RSPV,
in which the discards are more frequent. The proportion of the discarded segments in the
paroxysmal and persistent AF patients is similar: for 1 s length segments, 46.4% of the
discarded segments were in ParAF and 53.6% in PerAF; for the 2 s length segments, 44.4%
were in ParAF and 55.6% in PerAF; and finally, for the 4 s length segments, 43.8% were in
ParAF and 56.2% in PerAF.

5%

11%

20.8%

19%

17%

27.2%

6.1%

19.1%

16.5%

14.2%

27.1%

17%

LSPV LIPV RSPV RIPV ANT POS

6.7%

15.2%

19.1%

14.3%

17.1%

27.6%

Figure 3. From left to right, discarding segments percentages distribution among recording places in
1 s length dataset, 2 s length dataset, and 4 s length dataset.

Regarding the results of the stability, the averaged statistical descriptors (range, mean,
and standard deviation) resulted by applying SE to the 1, 2, and 4 s length datasets, with
and without discards, reported in Table 1. With the discards, the ranges were reduced as
the lower boundary took greater values mainly due to the removal of the drifts, which
generally presented high amplitude and low SE values. As a consequence, the standard
deviations also diminished with the discards.
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Table 1. Sample entropy statistical descriptors analysis results for 1, 2, and 4 s length datasets, with
and without discards. The values reported were obtained by averaging among CFAE.

Length
No Discard Discard

Range Mean ± std Range Mean ± Std

h [0.004–0.362] 0.137 ± 0.033 [0.013–0.362] 0.138 ± 0.032
2 s [0.007–0.312] 0.134 ± 0.025 [0.018–0.312] 0.135 ± 0.023
4 s [0.008–0.300] 0.132 ± 0.017 [0.020–0.300] 0.134 ± 0.014

The statistical descriptors of the DET were computed in the same way as the SE, and
the results are reported in Table 2. For the DET, the ranges were reduced with discards due
to the upper boundary that took lower values, thus also decreasing the standard deviations.
In fact, the DET and SE are complementary measures; one measures predictability, and the
other, complexity.

Table 2. Determinism statistical descriptors analysis results for 1, 2, and 4 s length segments, with
and without discards. The values reported were obtained by averaging among CFAE.

Length
No Discard Discard

Range Mean ± Std Range Mean ± Std

1 s [0.075–0.998] 0.561 ± 0.120 [0.075–0.963] 0.559 ± 0.113
12 [0.122–1.000] 0.600 ± 0.101 [0.122–0.958] 0.595 ± 0.091
4 s [0.092–1.000] 0.631 ± 0.072 [0.124–0.942] 0.621 ± 0.058

The intra-recording analysis showed a significant variation in the CV(%) in any seg-
ment length, both for the SE and DET, as shown in Table 3. Discarding the segments
benefited the stability, decreasing the CV, with deeper decreases for longer segments. These
variations were on average of greater magnitude for PerAF (DET = 29.1%, SE = 37.6%)
versus ParAF (DET = 19.6%, SE = 31.8%).

Table 3. Intra-recording CV of DET and SE for 1, 2, and 4 s length segments, and the respective
variation of the CV (∆CV) introduced by discarding low-quality segments.

1s ∆CV 1 s 2 s ∆CV 2 s 4 s ∆CV 4 s

DET 23.3% −15.6% 19.1% −22.8% 13.3% −47.9%
SE 26.6% −16.1% 20.5% −20.1% 13.9% −42.2%

The intra-patient stability also provided large variations in the CV(%) for the DET and
even bigger for the SE at any segment length, as shown in Table 4. In this case, discarding
segments was useless and the CV provided similar variations.

Table 4. Intra-patient CV of DET and SE for 1, 2, and 4 s length segments and the respective variation
of the CV (∆CV) introduced by discarding low-quality segments.

1s ∆CV 1 s 2 s ∆CV 2 s 4 s ∆CV 4 s

DET 23.9% +2.0% 24.8% +3.5% 24.1% +7.7%
SE 34.2% +0.5% 34.8% −0.1% 35.9% −0.3%

The results of the Kruskal–Wallis test, as well as the visual inspection of the box plots
computed for every recording place, every window length, and every index (72 plots not
included here), suggests that the atrial electrophysiological substrate mostly differs at the
recording places analyzed, and shows a great variability in the intra-patient indexing. For
the 1 s length datasets, H0 was always rejected for the SE, while for the DET, it was accepted
only once with no discard. For the 2 s length, H0 was still always rejected for the SE, while
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for the DET, it was accepted in two cases with no discard and in one case with discard.
For the 4 s length, the null hypothesis was accepted in seven cases (one for the SE with
discard, one for the DET with no discard, and five for the DET with discard); however, once
the box plots were visualized to verify the accuracy of the results, the median values had
demonstrated differences. The inaccuracy found for the 4 s length datasets are justified by
the fact that the sample size is small, and therefore, the test does not follow a χ2 distribution.

With respect to the results for the discrimination between the CFAE of the ParAF
versus PerAF, the mean and standard deviation values resulted by applying the SE and
DET to the 1, 2, and 4 s length datasets, reported in Table 5 and organized by the AF type.
The AFCL and the DF obtained from the 16 s length CFAEs demonstrated values of AFCL
with an average and standard deviation of 7.75 ± 1.56 in ParAF and 7.01 ± 1.46 in PerAF,
while the DF had, respectively, an average and a standard deviation of 5.59 ± 1.36 in ParAF
and 6.20 ± 1.08 in PerAF.

Table 5. Sample entropy and determinism mean and standard deviation values for datasets of 1, 2,
and 4 s length segments. The values reported were obtained by averaging among CFAE.

Length
SE DET

ParAF PerAF ParAF PerAF

1 s 0.123 ± 0.042 0.148 ± 0.057 0.608 ± 0.135 0.524 ± 0.160
2 s 0.120 ± 0.043 0.145 ± 0.056 0.656 ± 0.140 0.556 ± 0.177
4 s 0.117 ± 0.043 0.143 ± 0.057 0.688 ± 0.135 0.585 ± 0.179

As shown in Table 6 for the SE and DET, the Mann–Whitney test rejected the null
hypothesis in most of the recording places, with particularly low p-values in the right
superior pulmonary vein (RSPV), while in the right inferior pulmonary vein (RIPV), the
null hypothesis was accepted, which suggests the presence of a similar atrial electrophysio-
logical substrate in both AF types. For the AFCL, the p-values were always higher than the
significance level of 0.05, except for the RSPV. Finally, the statistical tests run for the DF
showed no differences between ParAF versus PerAF except in the left superior pulmonary
vein (LSPV) and in the posterior free wall of the left atrium (POS).

Table 6. Mann–Whitney test p-values obtained, for each recording place, by averaging the p-values
returned in the test performed for the three segment-length datasets.

Recording Place SE DET AFCL DF

LSPV p = 0.0006 p = 0.0001 p > 0.0500 p > 0.0500
LIPV p = 0.0253 p = 0.0080 p > 0.0500 p = 0.0287
RSPV p < 0.0001 p < 0.0001 p = 0.0192 p = 0.0007
RIPV p > 0.0500 p > 0.0500 p > 0.0500 p = 0.0035
ANT p = 0.0035 p = 0.0016 p > 0.0500 p = 0.0387
POS p = 0.0002 p = 0.0006 p > 0.0500 p > 0.0500

The correlation matrix obtained by averaging the correlation values of the 1, 2, and 4 s
length datasets is shown in Figure 4. In particular, a strong negative correlation between
the index pairs of the SE-DET and AFCL-DET recorded at the same recording places
was observed, while a strong positive correlation appeared between the paired SE-AFCL
measured at the same recording place.

The application of the correlation matrix filter to 1 and 2 s length datasets removed the
indices DFLIPV and entirely removed the indices of the DET and AFCL, due to their strong
correlation with the SE. For the 4 s length dataset, the subset of indices kept was SELSPV,
SELIPV, SERSPV, SERIPV, SEPOS, AFLCANT, DFLSPV, DFRSPV, DFRIPV, DFANT, and DFPOS.
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Figure 4. Correlation matrix showing the degree of bound between indices, applied to the considered
recording places. The variable TYPE was assigned a value 0 if the patient is paroxysmal, and 1 if the
patient is persistent AF.

For the three datasets, the variables scoring provided by the Random Forest is pre-
sented in Figure 5. For the 1 and 2 s length datasets, the variables ranked with a score
higher than 40 were DFLSPV, DFRSPV, DFRIPV, SELIPV, and SEpos, while in the 4 s length
dataset, the AFLCANT was also included as it surpassed the threshold value.
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Figure 5. Variable importance ranked with the Random Forest algorithm for 1, 2, and 4 s length
analyses. The cut-off value of 40 is shown in red.

After testing all the possible combinations of the high-ranked features, the group SEPOS,
DFLSPV, DFRSPV, and DFRIPV provided the best classification performance to discriminate
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between the CFAE of ParAR and PerAF with an accuracy of 88.3% for all the segment
lengths. The same accuracy was reached by also adding SELISP to the group. However, in
order to simplify the model as much as possible, it was decided to consider the minimal
set of features as optimal. The accuracy values of the models built with the other possible
combinations of the highest-ranked features (score > 40) had a mean and standard deviation
of 70.7 ± 8.7% for the 1 s length, 70.8 ± 8.3% for the 2 s length, and 69.2 ± 8.8% for the
4 s length, which is a significant reduction in the accuracy. Finally, the highest accuracy
achieved by a single index was provided by DETLIPV with 82.2% for any segment length as
well, while the averaged single accuracies reached by the other indices were 60.2 ± 11% for
the 1 s length, 54.7 ± 13.7% for the 2 s length, and 57.3 ± 11.4% for the 4 s length.

4. Discussion and Conclusions

The present work demonstrates that the intra-recording and intra-patient stability
assessment of CFAEs is significantly benefited by the exclusion of artifacted or noisy
segments, thus helping to quantify the atrial electrophysiological substrate with reliable
and representative values. By contrast, previous studies may lead to an oversimplification
of the processes taking place at different regions of the atria, thus providing biased and
unreliable results in the characterization of the atrial substrate.

To this respect, the stability of the CFAE and their corresponding nonlinear indices
are significantly influenced by the length of the analyzed segment, and specifically by the
recording site within the left atrium (see Figure 3). In this regard, the number of discards
in the LSPV have been quite low compared to the other recording places. In contrast, the
RSPV has been the recording site in which the discards have been more frequent. This fact
could be due to the difficulties in reaching the RSPV using a LassoTM catheter (Biosense-
Webster, Diamond Bar, CA, USA), such as in the present study, in comparison with basket
catheterization. In fact, catheters such as the ConstellationTM (Boston Scientific, Natick,
MA, USA) have the advantage to better fit in most veins, adapting to size and anatomical
form [48], their main disadvantage being the higher cost [49,50].

The introduction of discards provoked the reduction in ranges and standard deviations
both in the SE and DET (Tables 1 and 2), thus showing that mapping CFAE with contact
catheters on a beating heart is a delicate task [48]. Furthermore, the discarding process
benefited more the intra-recording stability (Table 3) than the intra-patient stability (Table 4),
so that the CV varied more significantly in the first case. Nonetheless, the continued high
variability of the CV suggests that averaging data in the same recording (intra-recording),
as well as among recording places (intra-patient), may lead to an unfair oversimplification
of the CFAE-based atrial electrophysiological substrate characterization, which has not
been considered in many previous studies. In particular, in the intra-patient analyses,
the visualized box plots exhibited many instances in which just a part of the recording
places presented similar atrial electrophysiological properties as identified by like DET
and SE values, enhancing the conclusion that averaging causes a loss of singularity of
the electrophysiological substrate at the different atrial sites, which is the basis for the
development of personalized catheter ablation procedures for AF treatment.

Unlike other complicated previously published models, this work has also proved that
it is possible to develop straightforward solutions for clinical practice able to discriminate
between ParAF and PerAF from the CFAEs of patients undergoing catheter ablation, thus
providing a more understandable insight for atrial substrate evaluation and improved
therapeutic decisions for AF management. To this respect, the SE mean values diminished
with the segment length (Table 5), with greater values in PerAF as compared to ParAF,
thus reflecting a higher degree of disorganization in PerAF, which is in agreement with a
previous study [22]. Similarly, the DET values increased with the segment length, show-
ing greater values in ParAF versus PerAF, thus highlighting ParAF as more predictable
than PerAF.

The computation of the AFCL from the 16 s length CFAEs resulted in higher values
for ParAF than for PerAR, as well as in lower values of DF for ParAF than for PerAF,
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as has been reported in prior work [40]. However, the discussion remains open in this
respect, because other studies have reported DF peak frequencies higher in ParAF than in
PerAF [51].

The study of the correlation between the indices and recording sites is illustrative (see
Figure 4) because it showed a high correlation between the SE and DET in the same record-
ing site. Similarly, a high correlation was also observed between the AFCL and SE, and
the AFCL and DET, thus indicating that these three indices maintain a strong relationship
between each other, linking the linear and the nonlinear domain. Finally, as expected, the
AFCL and DF were also highly correlated. Altogether, these high correlations indicate that
the selection of such indices for a substrate assessment is the right choice because they have
been able to capture the essence of the atrial electrophysiological substrate.

The study of the discriminatory power of DFRIPV using statistical tests led to the wrong
conclusion that the index is not discriminative, as the null hypothesis of no differences
between ParAF and PerAF was accepted. Contrarily, the feature selection ranked the
DFRIPV, together with SEPOS, DFLSPV, and DFRSPV, as the set of most important variables
to discriminate between the CFAEs of the ParAF and PerAF, reaching the highest accuracy
of 88.3%. Therefore, the careful selection of limited sets of indices feeding straightforward
classifiers are able to discriminate accurately between the CFAE of different AF types.
Furthermore, the use of just one nonlinear index, such as DETLIPV, provided a classification
accuracy as high as 82.2% for any segment length. This result can serve as a starting point
to prove that simple classification models, which are readily understandable, can be built
to provide improved methodologies for atrial substrate characterization in AF.

The proposed analysis has also some limitations that merit consideration. Firstly, the
study has been carried out using a limited set of data which, lately, has been reduced
more due to the discarding process. Obviously, in order to obtain more generalizable
results, a wider database with many more patients would be desirable. In this regard, our
group is now working toward the expansion of the database for future studies. Secondly,
regarding the creation of the classification models, the generalization of the results for the
classification between the ParAF and PerAF could provoke model overfitting, especially
using the Random Forest algorithm. However, given that the accuracy obtained with a
single index has been high enough (82.4%) with respect to the accuracy provided by the
most performing model (88.2%), it is reasonable to consider that overfitting has a reduced
effect in overall classification performance.

As an overall conclusion, the observed high variability of the CFAE has shown that
averaging data in one recording place or among different recording places may lead
to an unfair oversimplification of the CFAE-based atrial electrophysiological substrate
characterization. Furthermore, a thoughtful selection of the limited combinations of features
feeding straightforward classification models are able to discriminate accurately between
the CFAEs of the ParAF and PerAF, thus providing improved therapeutic decision making
for AF management, as well as clearer insight concerning the evaluation of the atrial
substrate.
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