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Abstract
Bridge optimization can be complex because of the large number of variables involved in the problem. In this paper, two 
box-girder steel–concrete composite bridge single objective optimizations have been carried out considering cost and CO

2
 

emissions as objective functions. Taking CO
2
 emissions as an objective function allows to add sustainable criteria to com-

pare the results with cost. SAMO2, SCA, and Jaya metaheuristics have been applied to reach this goal. Transfer functions 
have been implemented to fit SCA and Jaya to the discontinuous nature of the bridge optimization problem. Furthermore, a 
Design of Experiments has been carried out to tune the algorithm to set its parameters. Consequently, it has been observed 
that SCA shows similar values for objective cost function as SAMO2 but improves computational time by 18% while also 
getting lower values for the objective function result deviation. From a cost and CO

2
 optimization analysis, it has been 

observed that a reduction of 2.51 kg CO
2
 is obtained by each euro reduced using metaheuristic techniques. Moreover, for 

both optimization objectives, it is observed that adding cells to bridge cross-sections improves not only the section behavior 
but also the optimization results. Finally, it is observed that the proposed design of double composite action in the supports 
allows to remove continuous longitudinal stiffeners in the bottom flange in this study.

Keywords  Swarm intelligence · Steel–concrete composite structures · Bridges · Optimization · Metaheuristics · 
Sustainability

1  Introduction

Traditionally, structural design processes depend on methods 
based on common practice. Once the analysis of this first 
design is done, the geometry of the sections and the grade 
of the materials are modified based on the experience of 
the technician (Yepes et al. 2008). Researchers have imple-
mented optimization methods to obtain structural designs 
through automated processes to reduce this need for exper-
tise. Optimization techniques can be classified into two large 

groups, the first of complete techniques and the second of 
approximate or incomplete methods. The exact or complete 
approaches are the ones that produce the best result regard-
less of the processing time. The most commonly used strate-
gies in integer programming are branch-and-cut and branch-
and-bound. Many combinatorial optimization problems can 
be expressed as mixed-integer linear programming problems 
(Otsuki et al. 2021). These exact algorithms have had good 
results solving complex problems, however, when the type 
of constraints does not meet certain conditions or the size 
of the problem is very large, these algorithms do not neces-
sarily work well. On the other hand, incomplete techniques 
are those that find a suitable solution that is not always the 
best but does so in a reasonable amount of time. Among 
these incomplete techniques are heuristic and metaheuristic 
algorithms.

These methods use heuristic or metaheuristic algorithms 
that allows to explore the space of possible solutions while 
considering both rules and randomness. A peculiarity of 
structural design problems is that the variables on which 
the problem depends are discrete, making the optimization 
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problem more complex. Optimization methods have been 
used extensively in structural problems, as can be seen in 
some of the literature reviews (Sarma and Adeli 1998; Hare 
et al. 2013; Afzal et al. 2020). These structures include rein-
forced concrete (RC) building frames (Liu et al. 2020), wind 
turbine foundations (Mathern et al. 2022), or bridge decks 
(Jaouadi et al. 2020). These methods have also been applied 
to beam (Camacho et al. 2020; García-Segura et al. 2017) 
and cable-stayed (Martins et al. 2020) bridges among others.

In bridges, some very complex structural optimization 
problems can arise due to the high number of variables. 
This complexity can be even greater in composite bridges, 
where the number of possible solutions increases due to 
a large number of variables (Payá-Zaforteza et al. 2010). 
Furthermore, steel–concrete composite bridges (SCCB) 
can be divided into three groups according to the cross-
section: plate-girder, twin-girders, and box-girder (Vayas 
and Iliopoulos 2017), and its behavior differs between these 
types. Consequently, literature review have collected the 
techniques used in SCCBs’ optimization (Martínez-Muñoz 
et al. 2020). In simplified problems, an Excel solver (Musa 
and Diaz 2007) or the fmincom MATLABⓇ function (Lv 
and Fan 2014) have been applied. Meanwhile, other meth-
ods have been used for more complex SCCBs, such as set-
based parametric design (Rempling et al. 2019), Harmony 
Search (HS; Kaveh et al. 2014), Genetic Algorithm (GA), 
or the Imperialist competitive algorithm (Pedro et al. 2017). 
In the optimization algorithms, there is a family that uses 
swarm intelligence methods. These algorithms have also 
been applied to SCCB, such as Cuckoo Search (CS), Parti-
cle Swarm Optimization (PSO; Kaveh et al. 2014), Colliding 
Bodies Optimization (CBO), Enhanced CBO (ECBO), or 
Vibration Particle System (VPS; Kaveh and Zarandi 2019). 
Methods such as GA or Simulated Annealing (SA) have 
been widely used in structural optimization problems due 
to their easy adaptation to discrete optimization problems. 
On the other hand, swarm intelligence methods are usually 
built to optimize on continuous spaces, such as the sine 
cosine algorithm (SCA; Mirjalili 2016) or Jaya (Venkata 
Rao 2016). Recent optimization research has applied trans-
fer functions to these algorithms to adapt them to binary 
(Hussien et al. 2020; Ghosh et al. 2021) problems, which is 
common in engineering optimization problems. These latest 
algorithms, under certain conditions, have made it possible 
to exceed the results of algorithms such as GA or SA.

To get an optimum, it is first necessary to define one 
objective function. In bridges, this objective function has 
traditionally been related to the cost or weight reduction. In 
SCCB optimization, the research objective function has cost 
in all studies (Martínez-Muñoz et al. 2020). Considering 
only cost as an optimization objective function means that 
other criteria, such as the environmental or social impact, 
have not been considered. In concrete bridges, many authors 

have applied objective functions to get more sustainable 
solutions, such as embodied energy (Penadés-Plà et al. 2019) 
or the bridge lifetime reliability (García-Segura et al. 2017).

In this study, as a first contribution, a bridge composed 
of steel and concrete with three sections and a single box-
girder of 60–100–60 m has been modeled and optimiza-
tion of costs and emissions CO

2
 has been carried out. Both 

optimization criteria have been considered as single-goal 
optimizations to compare the results. By incorporating CO

2

emissions, the impact has been analyzed from the point of 
view of economic resources and the sustainability of the 
infrastructure. Additionally, three optimization algorithms 
have been considered: Simulated Annealing with a Muta-
tion Operator (SAMO2), Sinus Cosinus Algorithm (SCA), 
and Jaya. The first is a traditional trajectory-based algorithm 
that has efficiently solved structural optimization problems 
(Payá-Zaforteza et  al. 2010). The other two algorithms 
implemented in this study are SCA and Jaya, these corre-
spond to swarm intelligence algorithms and naturally work 
in continuous search spaces. As a second contribution, a 
discretization method based on transfer functions (used to 
solve binary problems) has been proposed to adapt SCA and 
Jaya algorithms in order to solve the discrete optimization 
problem of the bridge. To evaluate the results of the dis-
cretizations, they were compared with SAMO2, which has 
efficiently solved structural design problems. We should also 
point out that this discretization method can be extended to 
solve other types of discrete problems. Finally, to perform 
the cost and emissions analysis, the SCA is used, which was 
the one that obtained the best result.

2 � Optimization: problem description

Optimization maximizes or minimizes one objective func-
tion. This search can be done by considering the objective 
functions separately or together; if the criteria are considered 
separate, the process is called single objective optimization. 
On the contrary, if all criteria are considered together it is 
known as multi-objective optimization. In this research, the 
optimization objective functions are cost and CO

2
 emissions 

considered as two different single objective optimizations. In 
Eq. 1, the cost objective function is defined by multiplying 
the unit cost of every material in the bridge by its measure-
ment. The CO

2
 emissions target function is formulated in 

Eq. 2. The data for CO
2
 emissions consider cradle-to-gate 

analysis. Thus, it is necessary to consider the emissions of 
every process to get bridge materials on-site and execute 
the project. The data of prices and CO

2
 emissions that are 

shown in Table 1 have been obtained from the Construction 
Technology Institute from Catalonia by the BEDEC data-
base (BEDEC 2021). Both optimization expressions need to 
fulfill, throughout the entire process, the constraints imposed 
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by the regulations or recommendations represented by Eq. 3 
in a general manner. The specific constraints for this optimi-
zation problem are defined in Sect. 2.3 and more concretely 
by Eq. 5 and Table 4 of the aforementioned section.

2.1 � Variables

A 220 m continuous steel–concrete composite box-girder 
three-span bridge is proposed for optimization. The prob-
lem variables correspond to each bridge element’s geometry, 
reinforcement, and concrete and steel grades. To reach a 
buildable solution, all of these variables have been discre-
tized, configuring a discrete optimization problem. The vari-
ables discretization has been defined in Table 2. Considering 
this variable discretization, the number of combinations for 
the optimization problem corresponds to 1.38 × 1046 . Due 
to many possible combinations, metaheuristic techniques 
are justified to obtain the optimum. In total, 34 variables 
are considered for the global definition of this bridge opti-
mization problem. These bridge variables have been repre-
sented in Fig. 1. According to the nature of the variables, 
they can be grouped into six categories. The first correspond 
to cross-section geometric variables, which are upper dis-
tance between wings (b), wings and cells angle ( �w ), top 
slab thickness ( hs ), beam depth ( hb ), floor beam minimum 

(1)C(�) =

n
∑

i=1

pi ⋅ mi(�),

(2)E(�) =

n
∑

i=1

ei ⋅ mi(�),

(3)G(�) ≥ 1.

high ( hfb ), top flange thickness ( tf1 ), top flange width ( bf1 ), 
top cells high ( hc1 ) and thickness ( tc1 ), wing thickness ( tw ), 
bottom cells high ( hc2 ), thickness ( tc2 ), and width ( bc2 ), and 
bottom slab thickness ( hs2 ). Beam depth bounds correspond 
to L/40 and L/25, being L, the largest span length.

SCCB can take advantage of materials to a greater extent 
because each material that makes it up is subjected to the 
stresses that best resist. This would be true in an SCCB 
working as an statically determinate girder. In this case, the 
upper concrete slab would be compressed along the entire 
length of the bridge. This upper slab is connected to the 
top flanges by shear connectors. This would also stiffen the 
flanges plate, which avoids buckling. Moreover, in the iso-
statics case, the lower flanges would be subjected to tensile 
stress, avoiding buckling instability phenomena. However, 
in the present case and with the usual loads to which the 
bridges are subjected (mostly gravitational), negative bend-
ing stresses will occur in supported areas. This will result in 
reversing the forces and tensile stresses in the upper concrete 
slab and the compression in the lower flange. In this case, 
to improve the behavior of the bridge cross-section, it has 
been decided to materialize a concrete bottom slab in these 
areas in addition to the usual increase of the top slab rein-
forcement. To optimize the top slab reinforcement, it has 
been divided into a base reinforcement that is the minimum 
required by regulations (CEN 2013a, b, c) and two more 
areas, in negative bending sections, where the reinforcement 
is increased. The bottom slab and reinforcement increasing 
area lengths are described in Sect. 2.2. Accordingly, the sec-
ond group of variables corresponds to base reinforcement, 
first reinforcement, and second reinforcement bar diameters 
( �base , �r1

 , �r2
 ), and the corresponding bar number of the 

reinforcement areas ( nr1 , nr2).
The next variable group corresponds to stiffeners. The 

elements considered in these work as stiffeners are half IPE 
profiles for wings ( sw ), bottom flange ( sf2 ), and the transverse 
ones ( st ). For bottom flange stiffeners, the number of stiffen-
ers ( nsf2 ) has also been considered as a variable. As can been 
seen in Fig. 1, there are two more variables that define the 
distance between diaphragms ( dsd ) and transverse stiffeners 
( dst).

The last categories correspond to floor beam variables 
geometry, the shear connector’s characteristics, and the 
materials’ grades. Floor beam variables are defined by the 
floor beam width ( bfb ), and the flanges ( tffb ) and wing ( twfb

 ) 
thicknesses. The shear connectors have been defined by their 
height ( hsc ) and diameter ( �sc ). Finally, the yield stress from 
rolled steel ( fyk ), concrete strength ( fck ), and reinforcement 
steel bars yield stress ( fsk ) complete the variable definition. 
The variables are the same for all the spans of the bridge.

Table 1   Cost and CO
2
 emission values

Unit Cost (€) Emissions 
(kg of 
CO

2
)

m3 of concrete C25/30 88.86 256.66
m3 of concrete C30/37 97.80 277.72
m3 of concrete C35/45 101.03 278.04
m3 of concrete C40/50 104.08 278.04
m2 of precast pre-slab 27.10 54.98
kg of steel B400S 1.40 0.70
kg of steel B500S 1.42 0.70
kg of rolled steel S275 1.72 4.33
kg of rolled steel S355 1.85 4.33
kg of rolled steel S460 2.01 4.33
kg of shear-connector steel 1.70 2.8
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2.2 � Parameters

To narrow down the problem, some variables or properties 
need to be fixed in every optimization problem. These fixed 
variables are named parameters, and they remain invariant 
during the whole optimization process. In this case, these 
parameters correspond to boundaries defined to some bridge 
elements, including dimension, thicknesses, reinforcement 
distributions, external ambient conditions, or density (among 
others). The values of these parameters are summarized in 
Table 3.

The bridge deck width (B) corresponds to 16 m, and the 
depth does not vary over the entire length of the bridge. In 
the cross-section, it has been defined by four cells: two on 

the upper side of the wings and two more on the bottom, as 
can be seen in Fig. 1. These cells allow these parts of the 
wing to be stiffened, creating a sheet of class one to three 
that does not need to be reduced according to Eurocodes 
(CEN 2013a, c). To allow the optimization process to define 
if these cells improve the structural behavior of the cross-
section (and consequently are relevant to obtain a minimum 
of the objective function), the minimum height of these 
cells is fixed to zero. The boundaries of all of the variables, 
including the cells heights ( hc1 , hc2 ), can be seen in Table 2. 
The variable’s boundaries have been defined following Mon-
león bridge design publication (Monleón 2017). The cell 
height ( hc1 , hc2 ) defines the floor beam depth in the zone of 
contact with the wings. If the cell height is smaller than the 

Table 2   Design variables and 
boundaries

*Following the standard series of IPE profiles (CEN 2017)

Variables Unit Lower bound Increment Upper bound Values number

b m 7 0.01 10 301
�w deg 45 1 90 46
hs mm 200 10 400 21
hb cm 250 (L/40) 1 400 (L/25) 151
hfb mm 400 100 700 31
tf1 mm 25 1 80 56
bf1 mm 300 10 1000 71
hc1 mm 0 1 1000 101
tc1 mm 16 1 25 10
tw mm 16 1 25 10
hc2 mm 0 10 1000 101
tc2 mm 16 1 25 10
bc2 mm 300 10 1000 71
tf2 mm 25 1 80 56
hs2 mm 150 10 400 26
nsf2

μ 0 1 10 11
dst m 1 0.1 5 41
dsd m 4 0.1 10 61
bfb mm 200 100 1000 9
tffb mm 25 1 35 11
twfb

mm 25 1 35 11
nr1 μ 200 1 500 301
nr2 μ 200 1 500 301
�base mm 6, 8, 10, 12, 16, 20, 25, 32 8
�r1

mm 6, 8, 10, 12, 16, 20, 25, 32 8
�r2

mm 6, 8, 10, 12, 16, 20, 25, 32 8
sf2 mm From IPE 200 to IPE 600* 12
sw mm From IPE 200 to IPE 600* 12
st mm From IPE 200 to IPE 600* 12
hsc mm 100, 150, 175, 200 4
�sc mm 16, 19, 22 3
fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2
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Fig. 1   Cross-section variables for SCC bridge

Table 3   Optimization problem 
main parameters Geometrical parameters

 Bridge deck width (W) 16 m
 Span number 3
 Central span length 100 m
 External span length 60 m
 Minimum web thickness ( twmin

) 15 mm
 Minimum flange thickness ( tf2 min) 25 mm
 Reinforcement cover 45 mm

Material parameters
 Maximum aggregate size 20 mm
 Concrete longitudinal strain modulus ( Ecm) 22 ⋅ ((fck + 8)∕10)3 MPa
 Concrete transverse strain modulus ( Gcm) Ecm∕(2 ⋅ (1 + 0.2)) MPa
 Steel longitudinal strain modulus ( Es) 210,000 MPa
 Steel transverse strain modulus ( Gs) 80,769 MPa

Regulation requirement parameters
 Regulations Eurocodes (CEN 2013a, b, c, 2019), IAP-11 

(MFOM 2011)
 Exposure environment XD2
 Structural class S5
 Service life 100 years

Loading parameters
 Reinforced concrete density 25 kN/m3

 Steel density 78.5 kN/m3

 Asphalt density 24 kN/m3

 Asphalt layer thickness 100 mm
 Bridge traffic protections 5.6 kN/m
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floor beam minimum depth ( hfb ), then it takes that minimum 
value for beam depth in that zone. Profiles placed to materi-
alize the diaphragm sections are 2 L 150 × 15. Furthermore, 
pre-slabs have been considered for use as a formwork. It 
should be noted that this element is designed to be part of 
the resistant section. Therefore, the measurement module of 
the software subtracts it from the total amount of concrete.

Base reinforcement for both the upper and the lower con-
crete slabs is obtained according to the minimum need for 
reinforcement defined in Eurocode 2 (CEN 2013a). The con-
nection between the steel beam and concrete slab is designed 
to resist the whole stress of the concrete slab considering the 
effective width that is given by Eurocode 4 (CEN 2013c) due 
to shear lag. Because the only width considered as resistant 
(both in the concrete slab and in the lower flange) is effec-
tive, the defined steel bar reinforcement is placed only in 
that width.

To optimize some materials in SCCB, it is usual to 
modify the thicknesses of webs and flanges to reduce their 
amount. In this work, the variation of thicknesses has been 
programmed by considering a theoretical bending and 
shear law for a distributed load over the entire surface of 
the bridge. In Fig. 1, the lower flange thickness is modified 
along the bridge, varying from a minimum value tf2min to the 
one defined as tf2 . This variation corresponds to the theo-
retical bending law. In contrast, the wing’s thickness varies 
according to the shear law from twmin

 to tw . The minimum 
value of these thicknesses has been defined according to 
recommendations in Monleón (2017).

Finally, steel bar reinforcements and lower slab areas 
are defined. The lower slab is placed in negative bending 
sections to mobilize the composite dual action. To define 
lengths where negative bending can be produced, it has 
been considered the distance defined by Eurocode 4 (CEN 
2013c) for shear lag stresses that correspond with one-third 
of the span length. It is necessary to increase the upper slab 
reinforcement to resist the tension stresses produced. In this 
case study, it has been considered two reinforcement areas. 
The first is placed in zones where the section can be sub-
jected to negative bending, and base reinforcement cannot 
resist the stresses. The second is placed on top of supports, 
corresponding to one-third of the distance between the sup-
port and the point of change of sign of the bending of the 
theoretical law. This decision is related to the position of the 
center of gravity of the parabola, which is at one-third of 
its total length. Figure 2 shows the top slab’s reinforcement 
distributions.

2.3 � Constraints

As mentioned in Sect. 2, optimization procedures must com-
ply about the constraints imposed on the problem. In bridge 
optimization, these constraints are set by the regulations 

(CEN 2013a, b, c) and recommendations (Vayas and Ili-
opoulos 2017; Monleón 2017).

Constraints imposed by regulations can be divided into 
two main groups: the Ultimate Limit States (ULS) and Ser-
viceability Limit States (SLS). All of the loads applied and 
their combination are defined in regulations (CEN 2019). 
Table 3 summarizes the structural checks and load values 
that have been considered.

To check ULS for all bridge elements, it has been consid-
ered both global and local analysis. The checks considered 
for global analysis include flexure, shear, torsion, and flex-
ure–shear interaction as defined in Table 4. A linear elastic 
analysis has been used to obtain the deflections and stresses. 
To get section resistance, the effective area has been con-
sidered by applying both reductions due to shear lag (CEN 
2013c) and section reduction of the steel plates classified as 
class 4 (CEN 2013b). This last reduction is carried out by 
an iterative process. This procedure produces a variation of 

Fig. 2   Longitudinal distribution of thicknesses and steel bar rein-
forcements
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the neutral fiber of the section due to the area reduction. This 
process must be repeated until the difference between the 
neutral fiber obtained between iterations is null or negligible. 
To attain this, a difference of 10−6 m has been imposed as 
termination criteria for the iterative process. To obtain the 
value of the mechanical characteristics of the homogenized 
section, the relationship (n) between the modulus of longitu-
dinal deformation of concrete ( Ecm ) and steel ( Es ) has been 
obtained according to Eq. 4. Concrete creep and shrinkage 
have been considered according to regulations (CEN 2013a, 
c). The procedure used for the time-dependent effects evalu-
ation of concrete is the Ageing coefficient method defined 
in the annex KK of EN 1992-2:2013 (CEN 2013a). Fur-
thermore, a local model has been considered to check ULS 
in-floor beams, stiffeners, and diaphragms by considering 
flexure, shear, buckling, and minimum mechanical charac-
teristics checks.

The SLS considered for the analysis are the stress limit 
for materials, fatigue, and deflection as defined in Table 4. 
There is no explicit limit for deflection in Eurocodes. Still, 
the IAP-11 Spanish road bridges regulation (MFOM 2011) 
gives a maximum of L/1000 for the frequent value of live 

(4)n =
Es

Ecm

.

loads deflection value, with L representing the span length. 
This frequent value is defined in the IAP-11 as �1Qk , where 
�1 is the simultaneity factor and Qk are the values of each 
live load. This loads value corresponds to the actions asso-
ciated with a 1-week return period. The values of this �1 
coefficients are: 0.75 for the concentrated traffic load 0.40 for 
the distributed traffic load, 0.2 for wind load, and 0.6 for the 
thermal loads MFOM (2011). This has been considered as 
the maximum value of the deflection. In addition, geometri-
cal and constructability requirements have been deemed.

A numerical model has been implemented in the Python 
(Van Rossum and Drake 2009) programming language to get 
the stresses and carry out all ULS, SLS, and geometrical and 
constructability checks defined in regulations (CEN 2013a, 
b, c, 2019) and recommendations (Monleón 2017; Vayas 
and Iliopoulos 2017) as defined in Table 4. To calculate the 
deflections and stresses, this software applies the displace-
ment method considering the vertical displacements ( Uz ) 
and the spins in y and x-axes ( �y , �x ), taking as input data the 
34 bridge variables defined in Sect. 2.1 and the loads speci-
fied in regulations. To obtain the effects due to the moving 
loads, all possible load combinations have been considered 
to get their envelope as defined in Sect. 2.3.1. This software 
divides every bridge span into a defined number of bars. 
In this case, the total number of bars is 44, distributed in 

Table 4   Structural checks and load values

Checkings

ULS Flexure MEd ≤ MRd =
Wel,minfy

1.05

Shear
VEd ≤ VRd =

Av

�

fy∕
√

3
�

1.05

Torsion
MT,Ed ≤ MT,Rd =

AT

�

fy∕
√

3
�

1.05

Flexure–shear interaction

MEd ≤ MRd =

Wel,min

(

1−

(

2VEd

Vpl,Rd
−1

)2
)

fy

1.05

Stiffeners
Ist ≥

�m

E

(

b

�

)4(

1 + w0
300

b
u
)

SLS Stress limitation �y ≤ fyk�c ≤ 0.6fck�s ≤ 0.8fsk

Fatigue �Ff Δ�E,2

Δ�C∕�Mf

≤ 1
�Ff Δ�E,2

Δ�C∕�Mf

≤ 1

Deflection L/1000

Loads

Dead Self-weight Depends on the geometry
Dead loads 46.72 kN/m

Live Traffic concentrated (300, 200, 100) kN
Traffic distributed (9, 2.5, 2.5) kN/m2

Thermal heating 18◦ C
Thermal cooling − 10◦ C
Win Fwz = 60.84 kN/m Fwy =10.78 

kN/m Fwx = 43.12 kN/m
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12–20–12 corresponding to the three spans of the bridge; 
thus, discretizing the bridge into 5-m length bars. Once the 
stresses have been obtained, the program performs structural 
checks and returns the measurements, cost, CO

2
 emissions, 

and checking coefficients. These checking coefficients cor-
respond to the quotient between the design values of the 
effects of actions ( Ed ) and its corresponding resistance value 
( Rd ), as shown in Eq. 5. If these coefficient values are greater 
or equal to one, then the section complies with the imposed 
restriction defined in Table 4.

2.3.1 � Computational model description

The procedure used to obtain the deflections and stresses 
has been the displacement method. This method consists in 
solving Eq. 6.

In this equation, �
�
 corresponds to the perfect embedding 

forces vector. These forces would be obtained if each of the 
system bars had all the degrees of freedom constrained. � is 
the stiffness matrix of the system, generated by assembling 
the stiffness matrices of all bar elements. To get the stiffness 
matrix of each element, the average between both frontal 
and dorsal nodes’ mechanical properties has been calcu-
lated. The complete section without considering the shear 
lag and panel reduction has been considered to obtain these 
mechanical properties. Finally, � and � are the deflections 
and stress vectors, respectively. The computational model 
process flowchart for stresses is shown in Fig. 3.

(5)
Rd

Ed

≥ 1.

(6)� = � ⋅ � + �
�
.

This procedure is repeated with all load cases defined 
in Table 4. The following load cases have been considered 
loading the entire bridge length as a single load case: Self-
Weight, Dead Loads, Thermal Heating, Thermal Cooling, 
and Wind. In order to consider the different positions of 
traffic loads, every 5-m bar has been loaded separately, con-
sidering two separated loading cases, the concentrated load 
and the distributed. This gives, as a result, 88 load cases for 
traffic load and a total of 93 if all load cases are considered. 
The results obtained from loading each bar have been com-
bined to consider all loading possibilities regarding traffic 
load. After this, the load case envelope has been calculated 
to consider each section’s maximum and minimum results.

Regarding combinations and envelopes, the envelope of 
all persistent and transitory situations combinations have 
been obtained for ULS. These combinations have been con-
sidered dominant action all live loads in different combina-
tions. The envelope of all characteristic combinations has 
been considered for SLS regarding stress limitation.

3 � Methodology

In this section, the algorithms used are detailed. SAMO2 and 
a discrete version of the SCA and Jaya Algorithms were used 
to develop the experiments. The algorithms were chosen due 
to the differences in their movement methods and the ease of 
parameterization in the case of Jaya and SCA.

3.1 � Trajectory‑based algorithm: SAMO2

Simulated Annealing was developed by Kirkpatrick et al. 
(1983). This algorithm is an analogy based on the thermo-
dynamic behavior of a group of atoms forming a crystal. 

Fig. 3   Computational model process flowchart
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“Annealing” refers to the chemical process of heating and cool-
ing materials in a controlled manner. This study has chosen a 
variant to carry out the optimization, which includes the ben-
efits of GAs. The GA seeks the best solution through selection, 
crossover, and mutation operators. To include these strategies, 
SAMO2 has been used. This metaheuristic introduces the prob-
abilistic acceptance of the poorer quality solutions to flee from 
local optimums and directs the search towards better objective 
function values. For this reason, it accepts inadequate solutions 
with probability Pa . The expression is given by the expression 
of Glauber (7), where T is a parameter that decreases with time. 
Consequently, the probability of accepting a poor solution is 
reduced from the initial value, T0 . Furthermore, it includes a 
mutation operator that allows the algorithm to change some 
variables to explore the optimization process.

The initial temperature is set according to the method pro-
posed by Medina (2001). This algorithm depends on several 
parameters: Markov Chain Length (MCL), which defines 
the number of iterations before temperature decreases, and 
the Cooling Coefficient (CC), which is always less than one 
and represents the temperature variation. Furthermore, the 
mutation operator depends on the Variables Number (VN) 
and the Standard Deviation (SD). To fix the end of the opti-
mization, two termination criteria have been defined for 
this metaheuristic: the first is the Unimproved Chains (UC) 
that limit the number of Markov Chains allowed without 
any improvement before finishing the optimization, and the 
second ends the process if the temperature reaches 5% of 
the initial ( T0 ). This algorithm has been chosen as it has 
achieved good results in other bridge optimization problems 
(Penadés-Plà et al. 2019).

3.2 � Swarm intelligence algorithms: SCA and Jaya

3.2.1 � Sine cosine algorithm (SCA)

SCA was proposed in Mirjalili (2016) and corresponded to 
a swarm intelligence algorithm that considers the sine and 
cosine functions to carry out the process of exploring and 
exploiting the search space. To carry out the movement of 
the solutions, Pt

j
 is additionally used, which corresponds to 

the position of the destination solution for iteration t and 
dimension j,  and typically uses the best solution obtained 
so far. In addition to Pt

j
 , the algorithm uses three random 

numbers r1, r2, r3 , which take values between 0 and 1. The 
update method used is shown in Eqs. 8 and 9.

(7)Pa =
1

1 + e
−ΔE

T

.

(8)xt+1
i,j

= xt
i,j
+ r1 × sin(r2)× ∣ r3P

t
j
− xt

i,j
∣,

3.2.2 � Jaya

Jaya is a swarm intelligence algorithm that allows to tackle 
continuous optimization problems, with and without con-
straints naturally. Jaya was proposed in Rao (2016) to solve 
benchmark problems. However, it has been used to solve 
complex optimization problems in different areas. The pecu-
liar distinctive feature of Jaya from the other swarm intel-
ligence algorithms is that it updates agents’ positions in the 
population by considering the best and worst individuals. 
Additionally, binary versions of Jaya have been developed. 
For example, in Aslan et al. (2019) an XOR operator was 
integrated to be able to tackle binary problems. Another 
attractive quality of Jaya is that it does not have specific 
control parameters, and only the size of the population and 
the number of generations need to be defined. In Fig. 4 and 
Eq. 10, the flowchart and the movement of Jaya are shown, 
respectively.

3.2.3 � Discretization algorithm

The discretization algorithm is applied in the case of swarm 
intelligence metaheuristics because both metaheuristics 
work naturally in continuous spaces. As input parameters, it 
uses the metaheuristic, MH, and the list of discrete solutions 
obtained in the previous iteration, lSol. As an output, it 
returns a new list of discrete solutions, lSol. As the first case, 
the discretization algorithm obtains the velocities of the MH. 
This specifically corresponds to the component that modifies 
xt
i,j

 in Eqs. 8 to 10 . For example, in the case of Jaya, it cor-
responds to what is obtained from the operation 
r1(x

t
best,j

− ∣ xt
i,j
∣ −r2(x

t
worst,j

− ∣ xt
i,j
∣)).

Subsequently, a transfer function is applied that aims to 
bring the velocity values, which can take values in ℝ , to 
values between [0, 1). A v-shaped transfer function has been 
used in this study case, ∣ tanh(v) ∣ . With the obtained values 
lSolProbability, when applying the transfer function, each 
solution and dimension are considered, and the value is com-
pared with a random number r1 between [0,1). If the value 
of lSolProbability is greater than the random number, an 
update occurs in that dimension; otherwise, it is not modi-
fied. The update procedure has two possibilities: a � value 
is considered, and a random number r2 is generated. If this 
r2 is less than � , the value is replaced by the value of the 
best obtained so far for that dimension. Otherwise, a random 
update is performed. This last option is intended to improve 
the exploration of the search space.

(9)xt+1
i,j

= xt
i,j
+ r1 × cos(r2)× ∣ r3P

t
j
− xt

i,j
∣ .

(10)xt+1
i,j

= xt
i,j
+ r1(x

t
best,j

− ∣ xt
i,j
∣ −r2(x

t
worst,j

− ∣ xt
i,j
∣)).
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Algorithm 1 Discretization algorithm
1: Function Discretization(lSol, MH)

2: Input lSol

3: Output lSol

4: vlSol ← getVelocities(Lsol, MH)

5: lSolProbability ← appliedTransferFunction(vlSol)

6: for (each SolProbability in lSolProbability) do

7: for (each dimSolProbability in SolProbability) do

8: if dimSolProbability > r1 then

9: if beta > r2 then

10: Update lSoli,j considering the best.

11: else

12: Update lSoli,j with a random value allowed.

13: end if

14: else

15: Don’t update the element in lSoli,j

16: end if

17: end for

18: end for

19: return lSol

Fig. 4   The standard Jaya algo-
rithm flowchart

3.3 � Parameter tuning

The results obtained from the metaheuristics depend on their 
parameter values. Consequently, a parameter selection pro-
cess is needed to choose those that give the best results for 
the objective function. This depends strongly on the opti-
mization problem. Therefore, different optimization prob-
lems will result in different parameter values. The search for 

parameters that best fit the optimization problem is called 
parameter tuning.

3.3.1 � SAMO2 tuning

Depending on the metaheuristic, the parameter number 
varies. There are algorithms with more parameters, such as 
SAMO2 than others with a smaller number. First, searching 
for the best fitting ones can become a complex problem. 
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Consequently, existing procedures allow the researcher to 
get the most statistically significant parameters to focus the 
search on the variation of these. These procedures are called 
Design of Experiment s (DoE). In this case, a 2k fractional 
factorial design has been carried out to get the SAMO2 
parameter tuning.

In factorial designs, each factor level’s possible combina-
tions are studied in each trial or replication. This makes it 
possible to evaluate the change in response when the level 
of the factor is varied. This variation is called the effect of 

Table 5   SAMO2 variables bound for DoE

Parameter Lower bound (−) Upper bound (+)

MCL 100 1000
SD 0% 30%
VN 1 5
CC 0.80 0.95
UC 1 5

Table 6   Parameter values 
combination and results for DoE

MCL SD VN CC UC Cost (€) Time (s) %Desv (%) %Min (%)

1 − − − − + 4,620,844.60 1055.93 5.80 20.61
2 + − − − − 4,033,264.82 9833.70 7.46 5.27
3 − + − − − 5,109,179.62 989.63 3.37 33.35
4 + + − − + 3,831,318.29 9810.90 0.10 0.00
5 − − + − − 4,609,783.20 804.36 13.33 20.32
6 + − + − + 4,088,143.85 7819.85 7.90 6.70
7 − + + − + 4,694,176.90 787.77 11.78 22.52
8 + + + − − 4,622,308.95 7846.10 6.32 20.65
9 − − − + − 4,164,394.64 3043.06 11.89 8.69
10 + − − + + 3,831,268.79 28,688.65 0.11 0.00
11 − + − + + 4,430,917.82 3252.46 10.75 15.65
12 + + − + − 3,831,788.82 28,818.08 0.07 0.01
13 − − + + + 4,743,449.44 3182.93 9.49 23.81
14 + − + + − 3,851,070.22 30519.37 0.50 0.52
15 − + + + − 4,463,121.26 2977.47 13.46 16.49
16 + + + + + 3,839,681.73 26664.77 0.11 0.22

Fig. 5   Pareto chart of the stand-
ardized effects



	 D. Martínez‑Muñoz et al.

1 3

  312   Page 12 of 25

the factor and is related to its statistical significance (Mont-
gomery 2013). Two levels need to be assigned to the stud-
ied algorithm parameters to carry out this procedure. The 
studied parameters and the levels are chosen are shown in 
Table 5.

Because two levels are defined for each variable, 32 (25 ) 
runs are needed to get a complete factorial design. Further-
more, five replications need to be considered to get the aver-
age and the deviation for each experiment, obtaining 160 
runs. To reduce the number of runs, it has been decided to 
carry out a fractional factorial DoE of resolution V. This 
reduces the number of runs to 80 because of the reduction 
of combinations to 16. A summary of the parameter value 
combinations is given in Table 6.

DoE Minitab (Minitab 2019) software has been used to 
carry out the statistical analysis. For the statistical analysis, 
the first-order interaction has also been considered. Accord-
ingly, in Fig. 5, it can be seen that the parameters with more 
effect are MCL and CC. In addition, the interaction between 
UC with SD and UC is also significant. The average results 
of the five replicates for each of the 16 experiments are 
shown in Table 6.

As can be seen in Table 6, the best results correspond to 
experiment number 10. However, considering the cost and 
the optimization time, it can be observed that with a worsen-
ing of 0.001% in the objective function, the result can be got 
in 34.28% less time if the parameters of experiment four are 
used. Furthermore, the deviation between experiments ten 
and four is similar, 0.11% and 0.10%, respectively. Due to 
the improvement in computation time and slight difference 
in deviation and objective function value, the parameters 
chosen for the SAMO2 optimization correspond to experi-
ment four, as shown in Table 7.

3.3.2 � Swarm intelligence metaheuristics tuning

The methodology proposed in García et  al. (2018) was 
used in the selection of the parameters. To obtain an ade-
quate selection of the parameters, this methodology uses 
four measures defined by Eqs. (11) to (14). GBestValue 

corresponds to the best value obtained from all execu-
tions considering all of the parameter settings. BestValue 
and WorstValue correspond to the best and the worst value 
obtained for a given parameter setting. The parameters and 
explored values are shown in Table 8. In the Range column, 
the explored values are displayed for each parameter. The 
Value column corresponds to the selected value. For the 
generation of values, each combination of parameters was 
executed five times. For the calculation of the best perfor-
mance, each of the indicators is constructed to have values 
between 0 and 1. The closer to 1, the better the performance. 
These values are plotted on a radar chart, and the area under 
the curve is calculated. The set of indicators that takes the 
largest area corresponds to the best performance. To deter-
mine the number of iterations, 600 and 800 iterations were 
considered. In the latter case, there were no significant dif-
ferences in the optimal, but it did have an important impact 
on the time used. 

1.	 The percentage deviation of the best value obtained 
compared to the best known value: 

2.	 The percentage deviation of the worst value obtained 
compared to the best known value: 

3.	 The percentage deviation of the average value obtained 
compared to the best known value: 

4.	 The convergence time for the best value: 

4 � Results

4.1 � Parameter tuning

In this section, the results obtained from the parameteriza-
tion of the metaheuristics are shown. It should be noted that 
SCA and Jaya have no necessary parameters for their move-
ments. In Fig. 6, the results of the first four configurations 

(11)bSolution = 1 − abs
(

GBestValue − BestValue

GBestValue

)

.

(12)

wSolution = 1 − abs
(

GBestValue −WorstValue

GBestValue

)

.

(13)

aSolution = 1 − abs

(

GBestValue − AverageValue

GBestValue

)

.

(14)

nTime = 1 − abs

(

convergenceTime −minTime

maxTime −minTime

)

.

Table 7   Parameter chosen for 
SAMO2 algorithm

MCL SD VN CC UC

1000 30% 1 0.8 5

Table 8   Scanned parameters for swarm metaheuristics

Parameters Description Value Range

N Number of solutions 10 [10, 20]
Iteration Number Maximum iterations 600 [600, 800]
� Exploration–exploitation 0.8 [0.7, 0.8]
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Fig. 6   Adjustment of swarm parameters by means of radar chart

Fig. 7   Statistical methodol-
ogy (Hays and Winkler 1970; 
Lanza-Gutierrez et al. 2017)
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are shown. Of the four configurations, chart 2 and chart 3 
have considerably worse nTime indicators than the other 
two configurations. Graphs 1, 2, and 3 have similar values 
for aSolution, wSolution, and bSolution. Therefore, 1 has a 
better performance than the other two. When comparing 1 
with 4, we see that nTime is similar, however, 1 is superior 
in the other indicators, with which the configuration N = 10 , 
iteration = 600, and � = 0.8 was chosen.

4.2 � Cost minimization metaheuristic comparison

This section aims to describe and analyze the results 
obtained by the SAMO2, discrete Jaya, and discrete SCA 
algorithms. For an adequate analysis, descriptive statistics 

are used together with boxplot visualizations. Additionally, 
the Kolmogorov–Smirnov–Lilliefors and the signed-rank 
Wilcoxon statistical tests are used to determine the statistical 
significance of the results. These tests were chosen accord-
ing to the statistical methodology shown in Fig. 7 (Hays and 
Winkler 1970; Lanza-Gutierrez et al. 2017).

In this research work, 30 executions were used. The 
choice of 30 cases is related to the conditions for the statisti-
cal methods to be reliably applicable. Particularly according 
to Richardson (2010), in the case of the parametric statistical 
test n > 30 is suggested. On the other hand, in the case of 
the Wilcoxon test, the minimum value is 15 (Mundry and 
Fischer 1998). However, the value of 30, in the case of non-
parametric tests, is widely used in cases of comparison of 

Table 9   Cost minimization results for 30 executions of SAMO2, discrete Jaya, and discrete SCA algorithms

Run SAMO2 Discrete Jaya Discrete SCA

Cost (€) CO
2
 (kg) Time (s) Cost (€) CO

2
 (kg) Time (s) Cost (€) CO

2
 (kg) Time (s)

1 3,829,112 9,393,007 9196 4,143,961 10,114,677 7842 3,854,631 9,441,993 7497
2 3,845,663 9,422,139 7590 4,768,396 11,451,567 7010 3,841,685 9,423,182 7822
3 3,829,828 9,390,570 9687 4,274,386 9,681,541 5682 3,868,348 9,487,298 7890
4 3,834,439 9,395,042 9719 4,167,039 9,494,257 7700 3,837,468 9,411,814 7635
5 3,836,721 9,393,995 9431 4,296,276 9,832,819 7863 3,863,494 9,467,940 7786
6 3,832,833 9,394,394 9198 3,966,049 9,664,702 6634 3,838,032 9,396,761 7795
7 3,837,599 9,398,873 9291 3,867,355 9,439,086 6690 3,835,377 9,395,270 7318
8 3,841,418 9,408,629 9271 3,923,888 9,536,557 7945 3,839,078 9,400,419 7876
9 3,826,260 9,391,263 9226 3,942,003 9,495,904 7704 3,844,805 9,422,679 7832
10 3,837,246 9,398,956 9691 3,862,458 9,465,666 5887 3,867,325 9,485,202 7880
11 3,838,964 9,399,137 9507 4,193,812 9,480,247 6545 3,833,502 9,406,118 7557
12 3,844,258 942,0046 9669 4,507,870 10,273,813 7231 3,840,298 9,419,024 7904
13 3,840,202 9,408,438 9557 3,900,545 9,469,228 6024 3,844,078 9,432,582 7509
14 4,701,903 11,582,022 9857 3,919,121 9,538,184 7932 3,848,079 9,419,256 7790
15 4,004,603 9,837,622 9957 4,191,451 10,219,877 7916 3,920,211 9,618,810 7821
16 3,837,030 9,407,815 9504 4,426,445 10,272,926 7568 3,840,156 9,402,993 7886
17 3,838,077 9,398,395 9706 3,988,854 9,625,319 7738 3,851,332 9,451,619 7740
18 3,826,143 9,389,610 9794 4,628,723 10,388,171 7639 3,829,666 9,398,361 7905
19 3,836,306 9,393,541 9326 3,884,798 9,425,667 7015 3,844,407 9,425,169 7902
20 3,829,965 9,397,333 9913 4,260,373 9,525,527 7995 3,853,756 9,458,527 7736
21 3,834,064 9,395,196 9591 4,704,005 11,472,333 6842 3,846,266 9,424,806 7922
22 3,838,869 9,397,516 9535 3,953,660 9,626,126 7902 3,856,002 9,455,145 7502
23 3,840,493 9,410,517 9239 4,363,499 9,990,653 7275 3,858,728 9,455,868 7583
24 3,836,563 9,399,930 9618 4,589,899 10,380,952 7753 3,839,780 9,410,778 7904
25 3,833,027 9,394,227 9495 4,025,218 9,846,483 3307 3,866,162 9,481,381 7730
26 3,834,233 9,397,504 9413 4,133,015 9,433,096 7848 3,853,062 9,444,842 7790
27 3,845,712 9,417,868 9566 3,889,122 9,532,552 7550 3,867,166 9,474,659 7781
28 3,832,970 9,403,292 9985 4,116,324 9,418,032 7931 3,847,715 9,447,151 7552
29 3,829,559 9,389,435 8800 4,482,044 10,843,764 7022 3,844,695 9,425,683 7660
30 3,834,992 9,398,076 9775 3,909,149 9,511,426 6425 3,838,057 9,417,710 7891
Average 3,870,302 9,487,480 9470 4,175,991 9,881,705 7147 3,850,445 9,440,101 7747
Wilcoxon 0.012 0.0012 1.92e−06 4.29e−06
p value
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algorithms in the area of computer science and operations 
research.

The results of the 30 executions of each of the algorithms 
are shown in Table 9, with the settings selected for the prob-
lem of minimizing the cost of the structure. The Cost column 
corresponds to the minimum value obtained in the execu-
tion. Column CO

2
 corresponds to the value of emissions 

of CO
2
 for the minimum cost structure obtained. The time 

corresponds to the time required to obtain the minimum.
When analyzing the table, it can be observed that the best 

value was obtained with the SAMO2 algorithm with a cost 
of 3,826,142 €, followed by the minimum obtained by SCA 
of 3,829,666 €. However, on average, SCA is systematically 
higher than SAMO2, obtaining an average value for the 30 
executions of 3,850,445 €, whereas SAMO2 got 3,870,302 
€. The Jaya algorithm was quite a bit further away with 
an average of 4,175,991 €. When applying the Kolmogo-
rov–Smirnov–Lillefors test and later the Wilcoxon test, it 
can be seen that the difference between SCA and SAMO2 

is significant. Figure 8 shows the comparison of the cost 
minimization boxplots obtained by the different algorithms. 
It has been observed that in the case of SAMO2 and SCA, 
the interquartile range is very similar; however, SAMO2 has 
a significant number of outliers. The latter observation rein-
forces the robustness of SCA concerning SAMO2.

The computational time required by each algorithm to 
find the minimum is another interesting variable to analyze. 
In this case, the best time was obtained by Jaya with a value 
of 3306, but with very bad values (probably due to the fast 
convergence of the algorithm). In a comparison between 
SAMO2 and SCA, it is seen that it consistently performs bet-
ter in all SCA executions. SCA gets an average time of 7747 
s and SAMO2 9470 s. Additionally, Fig. 9 shows the histo-
grams of the convergence times for the three algorithms. The 
SAMO2 histogram is shifted towards higher values, getting 
the worst performance. In the case of Jaya, a much more 
dispersed histogram reinforces the possibility of a fast con-
vergence that implies bad results in the optimization. In the 
case of SCA, a much less dispersed histogram is obtained 
than the previous ones, with values mainly between 7500 
and 7900. Finally, when the emission values associated to 
cost optimization results are analyzed, a clear correlation is 
founded between cost and CO

2
 optimization. Therefore, the 

designs minimized by SCA also obtain minimum emission 
values of CO

2
 . On average, SCA got emissions of 9,440,101 

and SAMO2 of 9,487,480 kg of CO
2
.

The results obtained from cost optimization show that 
SCA gets the best results in cost and computation time com-
pared with Jaya and SAMO2. Accordingly, SCA results have 
been considered for the cost optimization analysis. Further-
more, the correlation between cost and CO

2
 optimization in 

these algorithms is consistent with the results obtained in 
other bridge optimization works. Because of this relation-
ship between both targets, the same algorithm parameters 
have been chosen to get the results for CO

2
 optimization.

Fig. 8   Cost boxplots for 
SAMO2, Jaya, and SCA Algo-
rithms

Fig. 9   Time histogram for SAMO2, Jaya, and SCA Algorithms
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4.3 � Insight into the discrete algorithm

This section aims to investigate some features of the proce-
dure given in Algorithm 1. The first attribute to investigate 
relates to the transfer function application in line 5 of the 
algorithm. Particularly, it is desired to determine whether the 
transfer function contributes to the discretization procedure. 
This is accomplished by replacing the transfer function with 
a uniform random operator that generates values between 0 
and 1. In addition, line 8 of the algorithm configures two 
values for dimSolProbability. The first value is set to 0.5 
(Random 0.5), corresponding to a 50% chance of executing 
a transition. The second value is set to 0.7 (Random 0.3), 
corresponding to a 30% chance of executing a transition. 

The results are presented in Table 10. The table shows that, 
on average, the values obtained by Discrete SCA are higher 
than those obtained by the random operator for its different 
parameters. In particular, it was 0.75% higher than Random 
0.3 and 0.86% higher than Random 0.5. The same situation 
occurs when analyzing the maximums; in the case of the 
Random operator, these are greater than in the case of SCA. 
The standard deviation also shows a considerable difference, 
where the dispersion of the random operator has values close 
to 55,000, and in the case of SCA, it is 17,048. Finally, the 
execution times are quite similar in all cases.

A second experiment involves the parameter beta used 
in line 9 of the Algorithm 1. This parameter has to do with 
exploration and exploitation. If the criterion is met, the 

Table 10   Cost minimization 
results for 30 executions of 
Random 0.3, Random 0.5, and 
discrete SCA algorithms

Run Random 0.5 Random 0.3 Discrete SCA

Cost Time (s) Cost Time (s) Cost Time (s)

1 3,841,686 7545 3,854,631 7435 3,854,631 7497
2 3,838,057 8121 3,841,686 7893 3,841,685 7822
3 3,856,002 6979 3,868,348 7113 3,868,348 7890
4 4,004,604 7985 4,041,118 8001 3,837,468 7635
5 3,837,585 6922 3,863,494 6893 3,863,494 7786
6 3,920,211 8021 4,009,757 8021 3,838,032 7795
7 3,863,494 7215 3,835,377 7325 3,835,377 7318
8 4,004,604 7498 3,973,917 7568 3,839,078 7876
9 3,920,211 8210 3,844,806 7901 3,844,805 7832
10 3,867,325 7646 3,938,024 7924 3,867,325 7880
11 3,920,211 7645 3,912,499 7235 3,833,502 7557
12 3,847,798 8024 3,840,298 8024 3,840,298 7904
13 3,844,078 7644 3,847,990 7701 3,844,078 7509
14 3,848,079 7891 3,844,078 7903 3,848,079 7790
15 3,927,551 7798 3,920,211 7923 3,920,211 7821
16 3,853,756 7234 3,847,713 8002 3,840,156 7886
17 3,854,631 8102 3,851,332 8115 3,851,332 7740
18 4,004,604 7744 3,829,666 6903 3,829,666 7905
19 3,844,695 7894 3,844,407 7745 3,844,407 7902
20 3,840,156 7745 3,853,756 7801 3,853,756 7736
21 3,858,728 7875 3,846,266 7932 3,846,266 7922
22 3,846,266 7534 3,856,002 7345 3,856,002 7502
23 3,868,348 7655 3,858,728 7792 3,858,728 7583
24 3,853,062 7943 3,930,520 8002 3,839,780 7904
25 4,004,604 7653 3,866,162 7755 3,866,162 7730
26 3,920,211 7897 3,853,062 7932 3,853,062 7790
27 3,844,407 7746 3,867,166 7743 3,867,166 7781
28 3,847,874 7653 3,847,715 7510 3,847,715 7552
29 3,851,332 7695 3,844,695 7655 3,844,695 7660
30 3,867,166 7894 3,938,024 8032 3,838,057 7891
Average 3,883,378 7714 3,879,048 7704 3,850,445 7747
Max 4,004,604 8210 4,041,118 8115 3,920,211 7922
Min 3,837,585 6922 3,829,666 6893 3,829,666 7318
std 55,639 312 54,164 340 17,048 159
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update considers the best solution; otherwise, a random 
update is carried out. In addition to the value used (0.8), the 
values 0.5 and 0.3 were also investigated. The outcomes are 
shown in Table 11. According to the averages, the param-
eter with the best outcome was 0.8. This holds true when 
examining the maximum. In the event of the minimum, SCA 
0.3 earned the best value, but SCA 0.8 was not far behind. 
Another notable result is the value of the standard deviation, 
which is significantly lower for SCA 0.8, indicating higher 
stability in locating the optimal ones. This is also associated 
with the convergence times. In the case of SCA 0.5 and 0.3 
are considerably less than 0.8, but their dispersion is greater. 
All of the above points to a decrease in the stability of the 
algorithm when using these parameters.

4.4 � Optimization results

This work has compared both cost and CO
2
 single objective 

optimizations of a continuous box-girder SCCB of 220 m 
with three spans divided in 60, 100, and 60 m length. As 
stated earlier, and backed by data obtained from the algo-
rithm comparison, the results correspond to SCA optimiza-
tion. In total, 30 algorithm runs have been carried out to 
perform a statistical analysis of the results obtained. To get 
results from CO

2
 emission, the same procedure as in cost 

optimization has been used while considering CO
2
 emissions 

as the objective function. Because the optimization problem 
is similar, the same algorithm parameters have been applied 
for the CO

2
 target.

Table 11   Cost minimization 
results for 30 executions of 
Discrete SCA 0.8, Discrete 
SCA 0.5, and Discrete SCA 0.3 
algorithms

Run Discrete SCA 0.8 Discrete SCA 0.5 Discrete SCA 0.3

Cost Time (s) Cost Time (s) Cost Time (s)

1 3,854,631 7497 3,843,524 5676 3,852,498 5621
2 3,841,685 7822 3,845,599 5894 3,851,261 4947
3 3,868,348 7890 3,832,283 6109 3,859,721 5076
4 3,837,468 7635 3,829,373 5964 3,854,194 5938
5 3,863,494 7786 3,840,952 5826 3,870,990 5367
6 3,838,032 7795 3,839,057 6028 3,849,196 3840
7 3,835,377 7318 3,849,643 5444 3,839,412 4984
8 3,839,078 7876 3,839,271 5470 3,850,429 3134
9 3,844,805 7832 3,839,664 6062 3,857,432 5189
10 3,867,325 7880 3,840,787 5122 3,847,051 5963
11 3,833,502 7557 3,845,540 2349 3,851,258 5992
12 3,840,298 7904 3,844,938 5631 3,876,165 5515
13 3,844,078 7509 3,834,878 5901 3,861,690 5767
14 3,848,079 7790 3,846,365 5554 3,852,585 4235
15 3,920,211 7821 3,833,527 4493 3,859,730 3051
16 3,840,156 7886 3,827,056 5701 4,056,478 4554
17 3,851,332 7740 4,029,735 6070 3,840,542 6077
18 3,829,666 7905 3,846,775 5445 3,855,213 5681
19 3,844,407 7902 3,834,013 5946 3,859,171 5079
20 3,853,756 7736 3,838,546 5027 3,841,768 5056
21 3,846,266 7922 3,838,290 5659 3,853,698 4084
22 3,856,002 7502 3,833,359 4896 3,875,181 4084
23 3,858,728 7583 3,846,665 5643 3,844,489 2744
24 3,839,780 7904 3,849,429 5611 3,858,573 5245
25 3,866,162 7730 3,841,566 5998 3,845,703 6115
26 3,853,062 7790 3,830,238 6047 3,842,629 4220
27 3,867,166 7781 3,856,881 6057 3,840,573 5631
28 3,847,715 7552 4,158,713 6045 3,862,079 5616
29 3,844,695 7660 3,832,127 5833 3,843,622 3737
30 3,838,057 7891 3,848,890 4531 3,864,325 4549
Average 3,850,445 7747 3,862,589 5834 3,865,589 5170
Max 3,920,211 7922 4,158,713 6109 4,056,478 6115
Min 3,829,666 7318 3,827,056 2349 3,839,412 2744
std 17,048 159 66,973 746 38,284 997
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This section gives the bridge variables values obtained 
considering cost and CO

2
 as two single objective optimi-

zations while briefly comparing both results. Furthermore, 
cost and CO

2
 relation for both optimizations is shown in 

Fig. 16, while in Fig. 14 structural and reinforcement steel 
amounts have been shown for both cost and CO

2
 optimiza-

tions best results. In Sect. 5, a more extensive discussion of 
these results is provided.

The first results are related to the material’s resistance, 
reinforcement, and shear connector diameter. For cost opti-
mization results, concrete compressive strength ( fck ) and 
yield stress for structural steel ( fyk ) correspond to 25 and 

275 MPa for all individuals. However, for CO
2
 optimiza-

tion, the value of steel yield ( fyk ) shows greater dispersion. 
The best individual has a 355 MPa value, as can be seen 
in Table 12. Reinforcement diameters ( �base , �r1

 , and �r2
 ) 

obtained from optimization correspond to 6 mm for both 
base and reinforcement layers. Consequently, optimization 
gets three reinforcement layers on the top slab. Regarding 
shear connectors, as in reinforcement bars, the optimization 
gets both lowest diameter ( �sc ) and connector length ( hsc ). 
For CO

2
  the optimization results show the same results.

Once the materials have been defined, the results from the 
geometrical variables are obtained. Steel beam depth ( hb ), 

Table 12   Design variables 
results for best individual and 
minimum and maximum values

*Values of the standard series of IPE profiles (CEN 2017). Min and Max correspond to the maximum and 
minimum values obtained. Best correspond to the value obtained for the best individual

Variables Unit Cost optimization CO
2
 optimization

Best Min Max Best Min Max

b m 7 7 7.16 7 7 7
�w deg 63 46 86 65 45 84
hs mm 200 200 200 200 200 200
hb cm 312 250 388 298 255 384
hfb mm 430 400 610 400 400 610
tf1 mm 70 25 74 34 25 79
bf1 mm 780 300 780 350 300 780
hc1 mm 440 70 820 420 0 800
tc1 mm 21 16 23 16 16 24
tw mm 16 16 25 16 16 28
hc2 mm 80 0 860 630 10 800
tc2 mm 16 16 25 20 16 25
bc2 mm 310 300 700 300 300 610
tf2 mm 25 25 70 27 25 60
hs2 mm 150 150 180 150 150 240
nsf2

u 0 0 0 0 0 0
dst m 1 1 4.3 1.6 1 5
dsd m 4.3 4 9.3 4.7 4 9.5
bfb mm 300 200 900 200 200 1000
tffb mm 28 25 35 28 25 34
twfb

mm 27 25 35 31 25 34
nr1 μ 200 200 439 259 200 446
nr2 μ 337 200 431 403 200 424
�base mm 6 6 8 6 6 6
�r1

mm 6 6 6 6 6 6
�r2

mm 6 6 6 6 6 6
sf2* mm 270 200 600 330 200 600
sw* mm 400 200 600 200 200 550
st* mm 360 200 550 500 200 600
hsc mm 100 100 100 100 100 100
�sc mm 16 16 22 16 16 22
fck MPa 25 25 25 25 25 25
fyk MPa 275 275 275 355 275 460
fsk MPa 500 500 500 500 500 500
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web angle ( �w ), and distances between transverse stiffeners 
( dst ) and diaphragms ( dsd ) are shown in Fig. 10. It should be 
emphasized that the thickness of the upper ( hs ) and lower 
( hs2 ) concrete slabs gives the same result for both optimiza-
tions and takes the minimum possible value of 0.20 and 0.15 

m, respectively. Meanwhile, CO
2
 optimization gets higher 

beam depths ( hb ), and stiffener ( dst ) and diaphragm ( dsd ) dis-
tance values than cost. The next variable values are related to 
the webs and flanges of the cross-section. As can be seen in 
Fig. 11, CO

2
 takes a higher range of values than cost for both 

Fig. 10   Cross-section geometrical variables for cost and CO
2
 optimization

Fig. 11   Flanges and web variables for cost and CO
2
 optimization
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width ( bf1 ) and thickness ( tf1 ) of the upper flanges, while for 
webs ( tw ) and lower flange ( tf2 ), thickness gets lower values.

As stated in Sect. 2.2, and in accordance with Fig. 1, 
the cross-section of this optimization problem involves the 
inclusion of four cells: two uppers and two lower. The aim 

of these cells is to improve structural cross-section behav-
ior, which allows better values of the objective function to 
be obtained. Figure 12 shows the results obtained for cell 
variables ( hc1 , tc1 , hc2 , tc2 , bc2 ). It should be noted that the 
algorithm is left to eliminate these cells by allowing them to 

Fig. 12   Cell variables results for cost and CO
2
 optimization

Fig. 13   Floor beam variables results for cost and CO
2
 optimization
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take a null value in variables that define its geometry. As can 
be seen in Fig. 12, both optimization objectives get values 
larger than zero for cell variables. It can be observed that 
CO

2
 optimization gives in average lower values for upper 

cell height ( hc1 ) and thickness ( tc1 ). Meanwhile, for lower 
cells, although the average value of the results obtained is 
similar, the cost optimization gives a wider range of values 
for variables of this element ( hc2 , tc2 , bc2).

Figure 13 gives the floor beam variables results. As 
can be seen in this figure, and consequently with results in 
Fig. 10, CO

2
 optimization gives higher values of depths ( hfb ) 

and widths ( bfb ) due to the higher distances between dia-
phragm sections, where these floor beams are materialized. 
Against that, thicknesses ( tffb , twfb

 ) values are similar in both 
optimizations.

Finally, the results from material amounts and cost are 
represented in Figs. 14 and 16, respectively. The first fig-
ure shows that the cost target function gives higher values 
for rolled steel and lower values for reinforcement steel in 
slabs. However, CO

2
 optimization gives the opposite result. 

The first part of Fig. 14 gives boxplots that show the values 

reached by the 30 individuals obtained from the algorithm 
runs. In the second part, the trajectory of steel amounts has 
been represented for the best individuals obtained from 
cost and CO

2
 optimization. Regarding the relationship 

between cost and CO
2
 obtained in Fig. 16, it can be seen 

that there is a clear relationship between both criteria for 
cost optimization. For this case, a straight line with equation 
CO2 = 2.5144 ⋅ Cost − 241, 642 with a R2 = 0.98 expresses 
a good fit of the straight line. By applying cost optimization 
for each euro reduced, a reduction of 2.5144 kg of CO

2
 is 

obtained by applying heuristic optimization techniques. In 
contrast, for CO

2
  optimization for the same cost, there is 

a large dispersion between the CO
2
 values obtained. This 

difference between cost and CO
2
 objective functions opti-

mization is shown in Fig. 15. In this figure, cost and CO
2
 

trajectories have been plotted for the best individual of both 
optimization objectives. It can be seen that when optimizing 
cost, both cost and CO

2
 amounts decreases following the 

same trend. However, when the objective function is CO
2
 

, cost has a high variation during the optimization getting 
a clear difference in terms of cost at the end. Furthermore, 

Fig. 14   Reinforcement bars and structural steel amounts for both optimization objectives
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in Table 13 the lowest values for ULS and SLS constraints 
are shown.

5 � Discussion

In this section, the results shown in Sect. 4.4 will be dis-
cussed. These results have been compared with earlier opti-
mization studies of Briseghella et al. (2013) and Kaveh et al. 
(2014), where box-girder SCCB has been optimized. As can 
be seen in Table 12, the concrete strength ( fck ) obtained 
from both cost, and CO

2
 optimizations is 25 MPa. This 

Fig. 15   Cost and CO
2
 variation during the optimization process for both optimization objective functions

Fig. 16   Cost and CO
2
 correlation considering both optimization objectives

Table 13   Lower checking coefficients values obtained from for both 
cost and CO

2
 optimization best individuals

This checking coefficients correspond to the expression that compares 
the design stresses and the resistant ones defined in Eq. 3

Constraints Cost CO
2

ULS
 Flexure 1.132 1.476
 Flexure–shear interaction 1.155 –

SLS
 Stress in steel 1.768 1.831
 Stress in concrete 1.817 1.793
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concrete strength value is a result of the high inertia of the 
resistant section in compressed zones that make the con-
crete compression lower than the strength limit defined by 
regulations (CEN 2013a, c). For steel, the value obtained 
by cost optimization is unusual. For structural steel in 
bridges, the expected value is 355 MPa, as in Briseghella 
et al. (2013). This reduction in yield stress ( fyk ) makes a 
difference between a traditional design between a cost opti-
mization design. Meanwhile, Kaveh et al. (2014) used 275 
MPa steel for the bridge solution. Moreover, if the CO

2
 

optimization is analyzed, it can be observed that the best 
individual takes a 355 MPa value for yield stress ( fyk ). This 
is produced because there is no difference in CO

2
 emissions 

between different yield stress; consequently, taking higher 
resistance steel does not increase the value of the objective 
function. This higher value allows to use less material due 
to the higher steel resistance. Regarding reinforcing bars 
steel, it can be seen that the results given for both optimi-
zation objectives are yield stress ( fsk ) of 500 MPa, which 
is the usual value for concrete structures (Monleón 2017; 
Vayas and Iliopoulos 2017). Continuing with reinforcing bar 
analysis, it can be seen that the optimization always gets a 
6 mm diameter. The program can add up to three layers of 
reinforcement to the top slab. The optimization algorithm 
uses this possibility to adjust as far as possible the reinforc-
ing needs, decreasing the bar diameter as a consequence. 
For shear connectors, it can be seen that the program takes 
the lowest boundary values for both heights ( hsc ) and diam-
eter ( �sc ) in cost and CO

2
 emissions optimization of best 

individuals.

Next is the analysis of the main cross-section variables. 
It can be seen in Sect. 4.4 that cost optimization, in general, 
gets lower deck depth values compared with CO

2
 optimiza-

tion. Moreover, the CO
2
 best optimization individual gets 

a greater web angle ( �w ), which leads to a higher value of 
the bottom flange, obtaining a higher value of steel amount. 
Regarding top flanges, the results in Fig. 11 are confirmed 
in Table 12. CO

2
 obtains lower values of width ( bf1 ), and it 

is observed that this plate thickness ( tf1 ) also takes a lower 
value than cost.

One of the aims of this study has been to analyze if cells 
added to the cross-section help reduce costs and emissions. 
It can be stated that this is true. The values from the cell 
variables show that their values are not zero in every case. 
Therefore, cells improve the structural behavior of the cross-
section because they allow buckling of the plates to be con-
trolled by reducing the distances between elements without 
stiffening. These elements allow to add a more resistant sec-
tion and become longitudinal stiffening elements. The oppo-
site occurs for bottom flange longitudinal stiffeners. If the 
values shown in Table 12 are observed, then, in every case 
the value of this element’s number ( nsf2 ) takes the value of 
zero. This may lead to a contradiction because these ele-
ments prevent the lower flange from buckling when com-
pressed (i.e., in the support areas on piles). But if the results 
of this research are compared with Kaveh et al. (2014), then 
it can be seen that in his study, he obtains the same result. In 
this optimization case, it is logical to obtain this result 
because, in sections subjected to sagging, a lower slab mate-
rializes that works in compression and do not allow the 

Table 14   Material amount 
summary for both optimization 
objectives

Min and Max correspond to the maximum and minimum values obtained. Best correspond to the value 
obtained for the best individual

Material Unit Cost optimization CO
2
 optimization

Best Min Max Best Min Max

Concrete m3 528 528 528 528 528 528
Structural steel kg 2,064,029 2,062,333 2,114,520 2,061,655 2,061,656 2,083,789
Reinforcement steel kg 57,328 56,161 66,184 59,668 56,566 72,530
Cost € 3,829,666 3,829,666 3,920,211 4,096,922 3,828,450 4,443,057
CO

2
kg 9,398,360 9,395,269 9,618,810 9,389,721 9,389,721 9489469

Table 15   Cost and emissions for the best individual of both optimization objectives

Material Unit Cost optimizatión CO
2
 optimization

Measurement Cost (€) CO
2
 (kg) Measurement Cost CO

2

Concrete m3 528 46,918 (1.2%) 135,516 (1.4%) 528 46,918 (1.1%) 135,516 (1.4%)
Structural steel kg 2,064,029 3,550,130 (92.7%) 8,937,246 (95.1%) 2,061,655 3,814,062 (93.1%) 8,926,966 (95.1%)
Reinforcement steel kg 57328 80,259 (2.1%) 40,130 (0.4%) 59,668 83,535 (2.0%) 41,768 (0.4%)

Total 3,829,666 9,398,360 Total 4,096,922 9,389,721
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plate’s buckling. Furthermore, in hogging sections (i.e., in 
span centers), this plate’s main effort is tension and, there-
fore, buckling will not occur. Moreover, the center part of 
the bottom flanges is not taken into account for the strength 
calculation of the section due to the shear lag reductions 
imposed by the standards (CEN 2013c) used for the calcula-
tion. In Briseghella et al. (2013), where a topological opti-
mization is carried out, the material in these bottom flange 
areas is removed because it exceeds the maximum working 
stress.

Finally, material amounts and objective function values 
obtained have been analyzed. The material summary results 
are shown in Table 14, while cost and CO

2
 emissions are 

in Table 15. The relation between both objective functions 
has been represented in Fig. 16. As stated in Sect. 4, there 
is a clear relationship between cost and CO

2
 optimization 

when choosing cost as the objective function, while on the 
contrary, it is not. This is due to the equality between dif-
ferent steel grade emissions in data obtained from BEDEC 
database (2021). This allows the CO

2
 optimization process to 

obtain different yield stress values for structural steel with-
out producing major variations in its target function, but on 
the higher ones in terms of cost. This contrast with related 
traditional concrete bridges optimization works (Yepes et al. 
2012, 2015) where it is found that both cost and CO

2
 optimi-

zation leads to the optimization of the other.

6 � Conclusions

In this article, the design of a SCCB has been considered. 
This design has considered the analysis of costs and emis-
sions of CO

2
 . The proposed bridge considers 34 discrete 

variables that correspond to 1.38 × 1046 combinations. A 
discretization method was proposed through the use of 
transfer functions, which was applied to the SCA and Jaya 
metaheuristics. To evaluate the method, they were compared 
with SAMO2, which has previously solved structural prob-
lems efficiently. The results showed that discrete SCA was 
the one that obtained the best results both in the optimi-
zation values and in the execution times. SCA was 24.5% 
faster than SAMO2 and in the case of cost optimization, 
considering the average, SCA obtained 0.5% lower values 
than SAMO2.

Subsequently, SCA was used to compare cost and CO
2
 

optimizations. Regarding the results obtained, it was 
observed that in both optimizations bottom flange stiffeners 
has been removed due to the double composite action of 
concrete slabs on supports. Furthermore, the use of inner 
cells in the bridge cross-section has been considered. These 
cells improve the section stress resistances and reduce the 
distance between non-stiffened areas in steel plates. In 

addition, there is a clear relationship between cost and CO
2
 

optimization. In this case, it can be observed that one euro 
decrease in cost translates into 2.5144 kg of CO

2
 reduction 

when applying heuristic optimization techniques.
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