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Abstract: Including designer preferences in every phase of the resolution of a multi-objective opti-
mization problem is a fundamental issue to achieve a good quality in the final solution. To consider
preferences, the proposal of this paper is based on the definition of what we call a preference basis
that shows the preferred optimization directions in the objective space. Associated to this preference
basis a new basis in the objective space—dominance basis—is computed. With this new basis the
meaning of dominance is reinterpreted to include the designer’s preferences. In this paper, we show
the effect of changing the geometric properties of the underlying structure of the Euclidean objective
space by including preferences. This way of incorporating preferences is very simple and can be
used in two ways: by redefining the optimization problem and/or in the decision-making phase. The
approach can be used with any multi-objective optimization algorithm. An advantage of including
preferences in the optimization process is that the solutions obtained are focused on the region of
interest to the designer and the number of solutions is reduced, which facilitates the interpretation
and analysis of the results. The article shows an example of the use of the preference basis and
its associated dominance basis in the reformulation of the optimization problem, as well as in the
decision-making phase.

Keywords: multi-objective decision-making; Pareto front; multi-objective optimization; preference
in multi-objective optimization

1. Introduction

In a design problem posed as a multi-objective optimization, there is not a single
solution. Therefore, the designer—decision maker (DM in what follows)—must get, from
the set of optimal solutions—Pareto set—, a suitable solution adjusted to a given set of
preferences. It is accepted that the preferences of the designer might play a fundamental
role in the resolution of this type of problems [1–4]. Using preference handling mechanisms
in the optimization process has shown to be a valuable tool when facing multi-objective
optimization problems [5]. These mechanisms also facilitate the decision-making process
at the selection step, because the DM will focus its attention to the pertinent region of the
Pareto front [6]. Nevertheless, this implies that it is necessary to have tools that allow to
take into account the preferences in any of the phases of resolution of a design problem that
is intended to be solved through multi-objective optimization. Thus, preferences of the DM
affect the definition of the objectives, the optimization to reach an approximation to the
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Pareto set, and/or the selection of the final solution. There are already some papers that
explain how to bring some progress in all these steps but most of them are mainly focused
to incorporating preferences in the optimization problem. For example, there are some
works on how to build functions to optimize according preferences [7]. Mechanisms for per-
tinency have also been included in some multi-objective optimization algorithms [2,6,8–10]
in which the preferences guide the approach to the front. Reference [11] proposes a
new angle-based preference selection mechanism to be included in the optimization al-
gorithm. Reference [12] investigates two methods to find simultaneously optimal (in the
objective space) and practically desirable solutions (in the decision space). Reference [13]
incorporates preference information into evolutionary multi-objective optimization in an
interactive way, at each iteration, the decision maker has to include preference information
(as points corresponding to aspiration levels for objectives). Reference [2] introduces a new
preference relation based on a reference point approach that is used into an interactive
optimization scheme that uses a multi-objective evolutionary algorithm (MOEA). Refer-
ence [14] integrates preferences in the optimization process by a nonuniform mapping
of the objective space according to an aspiration level vector, and some other parameters
(number of divisions, expected extend of the region of interest, etc.) supplied by the
DM. A recent work [15] proposes a modification of a decomposition-based multi-objective
evolutionary algorithm to obtain a denser set of solution closer to a reference point.

Most of the works found in the bibliography try to provide new developments appli-
cable in the final decision phase or throughout the optimization via interactive mechanisms.
Another large group of proposals tries to modify the optimization algorithm to incorporate
preferences in the optimization process itself. The proposal described here is based on
modifying the original problem to incorporate preferences without having to modify the
optimization algorithm. That is there is no need to incorporate any additional mechanism
or layer in the algorithm. In this paper, we show a very simple way to incorporate pref-
erences in the objective definition phase. It allows the use of any current optimization
algorithm without special requirements, being compatible with any advance made in the
multi-objective optimization algorithm. Additionally, it is shown how to use this same
methodology in the final decision phase helping in the visualization of the preferred solu-
tions. This is applicable in case of problems in which the Pareto front has been obtained
without taking into account the preferences, and it is necessary to incorporate them in the
final decision stage.

The adaptation of the original problem to include preferences usually also depends
on the problem itself. It involves the adaptation or design of functions to be optimized
that reflect the preferences. A widely used way is to transform the multi-objective problem
into a single-objective problem by means of scalarization [16]. A classic method widely
used is the weighted sum of the objectives where it is necessary to adjust weighting factors
that, in some way, incorporate the preferences of the designer. The idea of this work is
somewhat similar; it consists of modifying the functions to be optimized but maintaining
the multi-objective character, that is, without turning it into a single-objective function.
Technically, we use what we call preference directions, that are introduced by choosing a
special basis for the space of objectives Rn. Broadly speaking, the elements of such a basis
represent the directions in the space in which the DM feels that the optimization must be
realized. Associated to these preference directions, a new basis, called dominance basis, is
obtained. Their elements are defined as intersection of hyperplanes which are orthogonal
to the preference directions. From the geometrical point of view, the cone generated by the
dominance basis provides a representation of the dominance cone. Thus, the corresponding
change of basis allows a reinterpretation of the classical dominance relationship that is used
for defining the Pareto front, that represents the solution of a multi-objective optimization
problem. The underlying idea is very simple and consists of the fact that the change of
base produces a deformation of the objective space in a way that favors the preferences of
the DM. The definition of these bases is beyond the scope of this paper, and it is problem
dependent: it is assumed that the DM has established such preference directions using his
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own criteria. Nevertheless, for the aim of illustrating this notion, we will shown how to
obtain it in some particular examples.

The paper is organized as follows. Section 2 introduces the main concepts involved
in the proposal. In Section 3, we show how to use preference and dominance bases to
reformulate the multi-objective problem and also to help in the decision-making step.
Section 4 shows an application example, and the last Section 5 summarizes the main
conclusion and future works.

2. Preference Directions and Dominance

The way proposed to introduce preferences in the geometric space is by means of the
space basis of Rn: Bp := {vi : i = 1, ..., n} (preference basis). We will call the vectors of such
basis preference directions. Our main idea is that these vectors model the preferred directions
for minimization. In other words, each hyperplane that is orthogonal to a vector in this
basis separates the points of the space into two sets: the points “below” the hyperplane
dominate—with respect to this preference direction—the points “above” the hyperplane.

Thus, associated with Bp, a new basis Bd := {vdi : i = 1, ..., n} of Rn can be defined
by using a geometric procedure that will be explained later on (see Proposition 1). We
will call it the dominance basis. The positive cone C+

d (dominance cone see Definition 1)
generated by Bp, and also associated with Bd, allows to reinterpret dominance according
to the new preference directions provided. Recall that the notion of dominance depends on
the lattice order that is considered in the Euclidean space. The usual order in Rn is given
by the “coordinates" ordering, when these coordinates correspond to the canonical basis in
the Euclidean n-dimensional space. If we consider the coordinate order with respect to a
different basis of Rn—in our case, Bd—, we obtain a different dominance relation among
points. Our main contributions in the present paper are: (1) to show how to obtain the
dominance basis from the preference basis; and (2) how to use it in the multi-objective
optimization problem.

Figure 1 shows an example of the reinterpretation of dominance for a 2-objective space.
The figure shows the canonical interpretation of dominance and how the dominance area
changes when a different basis of preference directions is considered. Note that the effect
of considering the dominance defined by the cone generated by Bd can be understood
as a deformation of the area that is dominated by a given point. Remark that, if the
canonical base is set as the preference basis, the dominance basis is also the canonical basis
(dominance and preference basis are the same). In the next subsection, we will provide the
equations to obtain the dominance basis Bd from the preference directions basis.

Area dominated 
by point A

A

Direction for 
minimization

Direction for 
minimization

v2=vd1

v1=vd2

Area dominated 
by point A

A

Directions for 
minimization with
preferences 

v2

v1

vd2

vd1

Figure 1. Graphical interpretation of canonical dominance and dominance with preferences. Domi-
nated area by point A for different dominance basis (vd1, vd2). Dominance with the canonical basis
(figure on the left) and dominance when preferences are included with a basis change (figure on
the right).
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Computation of Dominance Basis Bd

Let (Rn, ‖ · ‖2) be the n-dimensional Euclidean space. Consider a basis Bp := {vi : i =
1, ..., n} norm one elements of Rn included in the positive cone of Rn. Each of the elements
of the basis defines what we have called a preference direction for the optimization. The
optimization procedure that we present here proposes to consider the associated dominance
cone as the set of all vectors that are over the hyperplane defined by each vector defining a
preference direction (its projection on this vector must be positive). Therefore, we define
the positive semispace S+

vi
associated with the preference direction vi, i = 1, ..., n, as

S+
vi

:=
{

v ∈ Rn : v · vi ≥ 0}.

Consequently, the dominance cone C+
d can be defined as follows.

Definition 1. Let Bp := {vi : i = 1, ..., n} be a basis of preference directions of Rn. We define the
dominance cone as the intersection of all the semispaces S+

vi
, that is:

C+
d :=

n⋂
i=1

S+
vi
=
{

v ∈ Rn : v · vi ≥ 0, i = 1, ..., n
}

.

The positive cone C+
d generated by Bp allows to reinterpret dominance according to

the new preference directions: if A is a point in Rn, A + C+
d gives the set of all the points

that are dominated by A. In Figure 1, a 2D example is given, where the dark grey area
shows the area dominated by point A, that is, A + C+

d .

Definition 2. Given a set of vectors Z = {z1, ..., zm} ⊂ Rn, we define its positive linear hull
as the set

Pos(Z) :=
{ m

∑
i=1

λizi : λi ≥ 0
}

.

For the subsequent proposals described in Section 3.2, it is necessary to obtain the
dominance basis Bd corresponding to the preference basis Bp defined by the DM. A way to
obtain Bd is based on the equivalence of C+

d and Pos(Bd) (see Proposition 1). As we already
mentioned, the dominance basis is defined by vectors that are orthogonal to vectors of the
preference basis.

Proposition 1. The dominance cone associated with a basis of preference directions Bp = {vi :
i = 1, ..., n} coincides with the positive linear hull Pos(Bd) of the set of vectors Bd := {vdi : i =
1, ..., n} defined as follows.

For every i = 1, ..., n, vdi ∈ Rn is a (norm one) solution of the system

v1 · vdi = 0
...

vi−1 · vdi = 0
vi+1 · vdi = 0

...
vn · vdi = 0


which also satisfies that vi · vdi > 0.

Proof. First, note that for each i = 1, ..., n, the linear system defined above always has a
subspace of solutions of dimension 1, because it is made of n− 1 linear equations. So, we
can choose a solution with norm equal to one, and also vi · vdi > 0 (if vi · vdi = 0 for all i,
then vdi = 0, since Bp is a basis).
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Let us prove first that C+
d ⊆ Pos(Bd). Take an element v ∈ C+

d . By the definition of
the set of preference directions—they are linearly independent—, we have that the set
{vd1, ..., vdn} defined as in the statement of the result, is a basis for Rn. Then, v can be
written as v = ∑n

i=1 xi vdi, for real numbers x1, ..., xn. We have that

0 ≤ v · vk =
n

∑
i=1

xi vdi · vk = xk vdk · vk

for all k = 1, ..., n. Since vdk · vk > 0, we get that xk ≥ 0. This can be done for all k = 1, ..., n,
and so we get that C+

d ⊆ Pos(Bd).
Conversely, take an element v ∈ Pos(Bd). Then, it can be written as v = ∑n

i=1 xi vdi,
where all the coordinates xi are non-negative. Then,

v · vk =
n

∑
i=1

xi vdi · vk = xk vdk · vk.

But xk ≥ 0 and vdk · vk ≥ 0, and so v · vk ≥ 0 for all k. Consequently, v ∈ C+
d , and so

Pos(Bd) ⊆ C+
d .

Therefore, Pos(Bd) = C+
d , and the result is proved.

Based on Proposition 1, it is possible to give an algorithm that computes the vectors of
the corresponding dominance basis Bd. An example with MATLAB is shown in Figure 2.
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function Md=dominanceCone(Mp)
% Mp matrix of preference directions (each column is a vector of the basis)
% Mp=[v1' v2' ... vn']
% Md matrix that define dominance cone
% Md=[vd1' vd2' ... vdn'] (each column is a vector of the basis)

n=size(Mp,1);
Md=zeros(n,n);

for i=1:n
Maux=Mp;
Maux(:,i)=[]; % Remove i column
v=Mp(:,i)'; % Extract i column
% Building system of linear equation
for ii=1:n % to avoid det(A)=0

A=[Maux'; zeros(1,n)];
A(end,ii)=1;
if det(A)~=0

break;
end

end
B=zeros(n,1);
B(end)=1;
% Solve system of linear equations Av = B for v
vaux1=(A\B)';
% Compute inverse vector (opposite direction)
vaux2=-vaux1;
% Checking convenient cone (v*vi>0)
if (vaux1*v')>(vaux2*v')

Md(:,i)=vaux1'/norm(vaux1);
else

Md(:,i)=vaux2'/norm(vaux2);
end

end

Figure 2. Matlab function based on proposition 3 that computes dominance basis from preference
basis.

Figure 2. MATLAB function based on proposition 1 that computes dominance basis from preference basis.

3. Using Preference Directions in Multi-Objective Optimization Problems

There are two direct uses of the dominance bases:

• Including preferences in the decision-making step.
• Including preferences by reformulating the optimization problem.

In both cases, the mathematical meaning underlying the concept of “optimization
direction" refers to the definition of preference basis. From this basis, it is possible to obtain
the dominance basis—as described in the previous section—which is the one that redefines
the space of objectives, thus incorporating the preferences.
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3.1. Including Preferences in the Decision Making Step

As a first application, we consider the case of a DM who is provided with a Pareto front
and tries to select a solution based on his preferences. In this selection process, graphical
tools are important to visually analyze the Pareto front. A standard way used is to color
the different points of the Pareto front according to the designer’s preferences [17].

To illustrate this use, a 2D example is shown below. Let us suppose that all possible
solutions of a 2D multi-objective problem are placed on a disc of radius r = 1, and centered
on the origin. Obviously, the perimeter of this set of solutions is formed by the circle of
radius unit centered on the origin (see Figure 3a). If the optimization problem consists on
minimizing both objectives, it is easy to locate the Pareto front, represented as a discrete
approach formed by the points highlighted in black in Figure 3a. Once the Pareto front is
obtained, the DM usually has to choose one of the solutions included in the front. Assuming
that both objectives are equally relevant, it seems reasonable to select a solution close to the
ideal point. The ideal point has the minimum possible value for each objective, which is
highlighted with a diamond in Figure 3b. A commonly used tool in the decision phase is to
color the points of the Pareto front according to their proximity to the designer’s preferred
area. In the case of Figure 3b, the points closest to the ideal point are colored dark blue,
and the furthest points are colored red.
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Figure 3. (a) Possible values of the objectives (grey disc) and approximation to Pareto front (black
points). (b) Coloring Pareto front according to proximity to ideal point (diamond).

However, if the DM defines some preference directions, the analysis of the solutions
of the Pareto front changes. If we suppose that Bp is defined by the DM, Bd can be easily
obtained applying the algorithm provided by Proposition 1:

Bp =

{
v1 = (0.3162, 0.9487)
v2 = (0, 1)

}
→ Bd =

{
vd1 = (1, 0)
vd2 = (−0.9487, 0.3162)

}
. (1)

With this new base, which incorporates the DM’s preferences, the objective space is
deformed by affecting the distances between points. With the associated dominance basis
Bd and the matrix Md, the new distances are easily calculated (see Appendix A). Figure 4a
shows, in the canonical space, the Pareto front colored according to the proximity to the
ideal point with the new Bd base. In the same figure, the vectors of the Bp preference base
(in blue color) are shown, as well as the vectors corresponding to the Bd dominance base
(in red color). In addition, to better understand how the relationship of distances to the
ideal point has been changed, Figure 4b is shown. In this figure, the Pareto front and the
ideal point in the space defined by Bd are represented.
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Figure 4. (a) Pareto front colored according to proximity to ideal point computed in the basis Bd
and plotted in canonical basis. Vectors of preference directions in blue and vectors of dominance
directions in red. (b) Same points but plotted in the basis Bd.

As seen in the figure, this simple preference-based coloring allows the DM to select a
subset of relevant solutions according to his preferences.

3.2. Including Preferences by Reformulating the Optimization Problem

This way of considering preferences—by selecting a new basis—is easy to apply with
all the available optimization tools because it is just a change of coordinates. Defining a
multi-objective problem as:

min
θ

J(θ) (2)

subject to: θ ∈ S ⊂ Rm,

where θ = (θ1, . . . , θm) ∈ Rm is the decision vector, J(θ) = (J1(θ), . . . , Jn(θ)) ∈ Rn is objec-
tive vector, and S is the subspace that satisfies all the additional constraints of the problem.

We must define a new basis that collects the preference directions:

Bp := {vi : i = 1, ..., n}. (3)

The redefinition of the multi-objective optimization problem that include preferences
is done using the associated dominance basis Bd := {vdi : i = 1, ..., n} and the matrix Md
(see Equation (A1), Appendix A):

min
θ

Jd(θ) (4)

Jd(θ) = (M−1
d J(θ)T)T

subject to: θ ∈ S ⊂ Rm.

To see the effect of the preference directions in the optimization problem, an example
of a 2D problem (in the objective space) is shown. It is assumed that the space of possible
objectives is on a disk of unit radius. Figure 5a shows the periphery of this set on a canonical
basis, while Figure 5b shows the same circle but at the base Bd. It is clearly shown how
the circle is deformed and becomes an ellipse. The equivalent points have been colored
identically in both figures to make them easier to locate.
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Figure 5. (a) Representation of the unit circle in the canonical basis, and the preference (red) and
dominance (blue) vectors of the corresponding basis. Lines with ’o’ and ’x’ show Pareto front in
canonical and Bd basis, respectively. (b) Same circle and Pareto fronts drawn in Bd basis.

Figure 5a also shows the vectors that correspond to the preferences base (in blue) and
to the dominance base (in red). Note that Pareto front changes according to the base on
which the points are represented. The points that correspond to an approximation of the
front that would be obtained using the canonical base are highlighted with circles, and
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the points of the front that would be obtained using the dominance base Bd are marked
with “x”. It can be seen that the use of this basis allows the front to be focused on the area
preferred by the DM, which has been previously defined by Bp. As a additional comment,
it can be observed that by focusing on the region of interest, in general fewer solutions
are obtained. This facilitates the final decision stage, since the DM has to choose between
fewer options but all oriented according to his preferences.

Therefore, the use of Bd directly in the formulation of the optimization problem
provides the pertinency property without having to modify the optimization algorithm.
This methodology can be used with any optimizer since it only involves a reformulation of
the optimization problem.

A 3D example comparing canonical dominance and dominance with preferences is
shown in Figure 6. For demonstration purposes, the set of possible objective values is a
sphere, and the boundary of the sphere is represented in blue. The basis Bp defines the
dominance cone Bd. Remark that, if Bp is the canonical base, Bp = Bd.

Figure 6. 3D Pareto front approximation (in magenta) with canonical dominance (upper figure) and
dominance with preferences (bottom figure).
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Bp =


v1 = (1, 0, 0)
v2 = (0, 1, 0)
v3 = (0, 0, 1)

→ Bd =


vd1 = (1, 0, 0)
vd2 = (0, 1, 0)
vd3 = (0, 0, 1)

. (5)

The dominance cone defined by Bd is represented with a polyhedron with one of its
vertex at the origin. Each of the edges starting at the origin represents a vector of Bd. The
polyhedron is colored in red. The resulting Pareto front has been highlighted in magenta.

Figure 6 shows the resulting Pareto front for canonical dominance (upper figure) and
Pareto front obtained with a base of preferences defined by Bp (bottom figure):

Bp =


v1 = (0, 0.7071, 0.7071)
v2 = (0.5774, 0.5774, 0.5774)
v3 = (0.7071, 0.7071, 0)

→
Bd =


vd1 = (−0.7071, 0.7071, 0)
vd2 = (0.5774,−0.5774, 0.5774)
vd3 = (0, 0.7071,−0.7071)

.

(6)

The reader can notice how the selection of preference directions provides a narrower
Pareto set when comparing with the canonical situation. Indeed, the preference direc-
tion basis Bp is strictly included in the canonical positive cone, what provides a wider
dominance cone (see the picture on the bottom of Figure 6). This means that, in the new
situation, each point in the Pareto front dominates more points of the original sphere of
objective values, what gives a smaller set of dominating relevant points. To understand the
deformation produced by the preferences, Figure 7 shows the same that Figure 6 (bottom)
but drawn in Bp basis. The DM has to consider a smaller set of optimal points for his final
election, all of them fitting with his original preference requirements.

Figure 7. 3D deformed sphere (blue points) resulting from preferences and Pareto front approxima-
tion (in magenta) drawn in Bd.
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4. Application Example: The Daily Diet Design Problem

In this section, we will develop a complete example regarding the design of a healthy
diet. The original problem can be found in Reference [18], where an alternative form of
decision-making called TOPSIS is presented. The methodology tries to reach the com-
promise that the chosen alternative should have the smallest distance from the positive ideal
solution and the largest distance from the negative ideal solution. Therefore, no preferences are
proposed by the DM and cannot be compared with the proposal of the present work. In
order to illustrate the methodology, we will propose some DM preferences.

The problem concerns the prescription of a diet for a patient who has some particular
health characteristics. Suppose that the decision variables with their bound constraints are
the following.

• Milk pints: 0.0 ≤ x1 ≤ 6.00.
• Beef pounds: 0.0 ≤ x2 ≤ 1.00.
• Eggs dozen: 0.0 ≤ x3 ≤ 0.25.
• Bread ounces: 0.0 ≤ x4 ≤ 10.00.
• Lettuce and salad ounces: 0.0 ≤ x5 ≤ 10.00.
• Orange juice pints: 0.0 ≤ x6 ≤ 4.00.

The problem has three design objectives, J1, J2 and J3:

J1(x) = 24x1 + 27x2 + 15x4 + 1.1x5 + 52x6
J2(x) = 10x1 + 20x2 + 120x3
J3(x) = 0.22x1 + 2.2x2 + 0.8x3 + 0.1x4 + 0.05x5 + 0.26x6

, (7)

where J1(x) is the Carbohydrate intake [g], J2(x) is the Cholesterol intake [unit], and J3(x)
is the Cost [$].

There are also some constraints that affects the optimization calculations, regarding
the amount of vitamin A [i.u] (g1(x)), iron [mg] (g2(x)), food energy [calories] (g3(x)), and
proteins [g] (g4(x)).

g1(x) = 720x1 + 107x2 + 7080x3 + 134x5 + 1000x6 ≥ 5000
g2(x) = 0.2x1 + 10.1x2 + 13.2x3 + 0.75x4 + 0.15x5 + 1.2x6 ≥ 12.5
g3(x) = 344x1 + 1460x2 + 1040x3 + 75x4 + 17.4x5 + 240x6 ≥ 2500
g4(x) = 18x1 + 151x2 + 78x3 + 2.5x4 + 0.2x5 + 4.0x6 ≥ 63

(8)

The multi-objective problem to be solved can be written as follows:

min
x

J(x) (9)

J(x) = (J1(x), J2(x), J3(x)) ∈ R3

subject to: x ≤ x ≤ x, x ∈ R6

gi(x) ≥ bi, i = 1 . . . 4, gi(x) ∈ R, bi ∈ R.

Since it is a linear problem in both objectives and constraints, a classic optimization
method obtains good results with a reasonable computational cost. Pareto front is obtained
using a classic method, ε-constraint method, described in Reference [16]. Pareto front
values are achieved by solving multiple mono-objective problems in which only one of the
objectives is minimized, and the rest are considered as constraints. In order to obtain a
suitable discretization of the front, it is necessary to vary the value of these constraints on
the objectives in an adequate way. The steps are the following: first, the minimums of each
independent objective are obtained. With these values we have the range of values where
approximately the Pareto front is located. Subsequently, the increase to be applied to the
restriction in each mono-objective problem is defined. In this particular case, the range of
variation of two of the objectives (J1 y J3) has been divided into 50 parts, obtaining εJ1 y
εJ3. Subsequently, multiple problems of a single objective are solved by adding constraints
on the other objectives. Then, multiple problems (50× 50 = 2500) of a single objective are
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solved by adding constraints on the other objectives, that is, varying n from 1 to 50 and m
from 1 to 50, and solving the following mono-objective problems:

min
x

J2(x) (10)

subject to: x ≤ x ≤ x, x ∈ R6

gi(x) ≥ bi, i = 1 . . . 4, gi(x) ∈ R, bi ∈ R
J1(x) ≤ J1min + εJ1 · n
J1(x) ≤ J3min + εJ3 ·m.

If a better approach to the front is required, the process can be repeated minimizing
J1(x) or J3(x).

Since the problem is linear in both the target and the constraints, linear programming
has been used. The approximation to the front obtained consists of 2049 points. Twenty-five
hundred mono-objective problems have been executed, but some of them were not feasible;
therefore, they did not provide a solution. Figure 8 shows a 3D representation of the Pareto
front approximation obtained.
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Figure 8. Pareto front approximation obtained for daily diet problem.

The DM must analyze this front and select a solution that fits his preferences. The
first step, to have fewer points to choose from, is to reduce the number of points to 342
while maintaining a good representation of the front. This can be done reducing the
discretization step.

Then, to help in the decision-making, the Pareto front is colored according to distance
to the ideal point; see Figure 9 (upper). The ideal point corresponds to a possible solution
obtained with the minimum values of each of the objectives.

This representation shows to the DM which are the points that present a more ’bal-
anced’ compromise between objectives. It should be noted that, in order to calculate the
distance to the ideal point, the front has been scaled trying to avoid the distortions that can
be caused by the different units and orders of magnitude of each of the objectives. Each
objective is rescaled between 0 and 1. With these new values, the distances to the ideal
point are calculated (that corresponds to the point (0, 0, 0) when applying the scaling).
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This ’balanced’ solution is not always the preferred one, and the DM can decide on
another order of preferences. It is very useful that these preferences will be incorporated
in all phases of the MO problem resolution. In this case, a set of preferences defined by a
vector base will be established.

Let us show now how to implement the preference directions by the DM, in this case,
the doctor who treats the patient with special needs. Concretely, the doctor knows that the
diet for the patient must satisfy preferably the following relations:

• The ratio among the Carbohydrate intake and the Cholesterol intake must be as near
as possible to 2. This means that the preference equation J1 = 2 · J2 must be taken
into account. This condition supplies one of the preference directions: v1 = (2, 1, 0).

• Since there are a lot of bad quality Carbohydrates in the market, the doctor wants to
promote the use of the correct ones.
An indirect way to increase the use of good quality carbohydrates is through cost. It is
estimated that the impact on the price of the diet of such carbohydrates is around 1$
per 100 g of carbohydrates. Poor quality carbohydrates are significantly cheaper on
the market. This allows to set a new direction of preference that is J1/100 = J3. This
second conditions supplies another preference direction: v2 = (1/100, 0, 1).

• The third preference direction maintains the original objective of minimizing cost:
v3 = (0, 0, 1).

Summing up all these assumptions and converting these vectors into unit vectors the
preference basis Bp and its corresponding dominance basis are:

Bp =


v1 = (0.8944, 0.4472, 0)
v2 = (0.01, 0, 1)
v3 = (0, 0, 1)

→
Bd =


vd1 = (0, 1, 0)
vd2 = (0.4472,−0.8944, 0)
vd3 = (−0.4472, 0.8944, 0.0045)


. (11)

By changing the base, the calculation of the distances is modified. The example shows
how the ’color’ of the solutions closest to the ideal changes when these preferences are
incorporated; see Figure 9 (bottom).

It can be seen that coloring, considering these new preferences (see Figure 9 (bottom)),
orients the DM towards a different area of the front. Usually, these points would be more
interesting for DM, and, consequently, he could choose more suitable solutions.

Table 1 shows the five best solutions extracted from each of the colored fronts. In
particular, the points closest to the ideal point are shown. As you can see, the solutions
obtained from coloring with preferences are closer to the preferences of the DM. The cost
is lower, ratios among the Carbohydrate intake and the Cholesterol intake are nearest to
two and ratios among Carbohydrate intake and Cost are nearest to 100. In this first case,
the preference directions are used in the decision phase to assist the DM in making the
final decision. This procedure does not reduce the number of solutions to be evaluated but
enables a very simple way to visualize the results and select a subset of solutions of interest.
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Figure 9. Pareto front obtained for daily diet problem. Upper figure shows the Pareto front colored
according to the proximity to ideal point. Figure on the bottom shows the Pareto front colored
according to the proximity to ideal point computed in basis Bd. In both cases, dark blue color
highlights the best solutions (dark red the worst).

Another alternative is to use the preference directions in the optimization process
itself as proposed in Equation (4). The same multi-objective optimization method has
been used to obtain the new front (constraint method). In this case, the range of variation
of two of the objectives (Jd1 and Jd3) has been divided into 10 parts and 10× 10 = 100
mono-objective problems have been solved. The Pareto front achieved has 10 points (many
of the mono-objective problems raised were not feasible and, therefore, did not provide a
solution). Applying the preferences to modify the optimization problem has significantly
reduced the computational cost and has focused the solution to the area of interest.
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Table 1. alt1: The five nearest points to ideal point without considering preferences. alt2: The five
nearest points to ideal point considering preferences.

Sol J1 J2 J3 x1 x2 x3 x4 x5 x6

alt1 236.87 39.51 2.85 1.78 0.69 0.07 0.69 0 3.17
222.52 42.66 2.85 1.81 0.72 0.08 0.17 0 3.02
236.87 35.97 2.91 1.60 0.74 0.04 0 0.24 3.43
251.22 36.36 2.85 1.76 0.65 0.05 1.22 0 3.33
222.52 39.79 2.91 1.74 0.74 0.06 0 1.13 3.07

alt2 236.87 69.26 2.36 3.52 0.21 0.25 7.40 0 0.68
222.52 68.69 2.42 3.33 0.30 0.24 6.04 0 0.84
281.67 67.83 2.24 3.78 0 0.25 10.00 0 0.79
265.57 66.68 2.30 3.68 0.09 0.23 9.29 0 0.68
251.22 66.11 2.36 3.50 0.18 0.23 7.92 0 0.84

Figure 10 shows the new front obtained compared to the previous one (Figure 8), the
new front is colored in orange. There is a noticeable difference, since now the preferences
have deformed the target space and have oriented the search towards a different zone
adjusted to the DM’s preferences. It should be noted that the number of points of the
front obtained is 10, which is significantly lower than the number of points obtained in the
original front without considering preferences (2049 points). Among these new values, the
DM can select, for example, a more balanced solution. The points highlighted with black
square in the figure show 3 examples of balanced solutions. The particular values of this
3 solutions are shown in Table 2.
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Figure 10. Pareto front obtained for daily diet problem. In orange, the Pareto front obtained including
preferences into the optimization problem resolution. In blue, the original Pareto front obtained
without preferences. Black square shows 3 balanced solutions.
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Table 2. Balanced solutions obtained from the Pareto front with preferences.

J1 J2 J3 x1 x2 x3 x4 x5 x6

151.65 70.34 2.65 2.66 0.69 0.25 0.31 0 1.24
175.46 70.13 2.57 2.91 0.55 0.25 2.31 0 1.08
199.27 69.91 2.49 3.15 0.42 0.25 4.31 0 0.92

5. Conclusions

This work shows a very easy alternative to introduce preferences both in the opti-
mization problem formulation and/or in the final decision phases. The methodology is
based on defining vectors that mark the directions of optimization and constitute what
is called the preference base. It is shown and formally demonstrated how to obtain the
dominance base from the preference one. In addition, the MATLAB code is provided for
its calculation. This base is the one used to redefine the dominance relations, and it is the
one in charge of ’deforming’ the space to include the defined preferences. In Section 3, it
is shown that the deformation of the space resulting from applying the dominance basis
reconfigures the problem so that the points in the directions of preference dominate the rest
of the solutions. This deformation is usable both to redefine the concept of dominance (this
feature is usable by optimization algorithms) and to recalculate the distances that reorder
the points in the space according to the preferences (this feature can be used in the decision
phase to order solutions).

An important advantage of this methodology, when applied in the problem refor-
mulation, is it can be used with any multi-objective optimization algorithm. In order to
prove the use and usefulness of this methodology, a problem with three objectives has been
raised. The results obtained show the simplicity of the use of this methodology and opens
up a new range of possibilities for the inclusion of preferences. It has not been the objective
of this work to show a general methodology for defining the directions of preferences; this
aspect is particular to each problem and opens a very interesting research line that would
allow to popularize the use of the methodology proposed in this article.
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Appendix A. Equations of the Change of Basis and Related Distance

Once the preference directions which define the dominating basis are established, we
have to make a change of basis, which modifies also the equation of the distance in Rn

that must be used. So, the equation for this new distance is provided just by considering
the change of basis. Using elementary linear algebra, we get that changing coordinates
from the canonical basis to another one—in this case, Bd—is done by using the matrix
Md defined by the coordinates of the vectors vd1 = (v1

d1, ..., vn
d1), v2..., vn = (v1

dn, ..., vn
dv) as

columns, that is,

Md =

v1
d1 · · · v1

dn
...

. . .
...

vn
d1 · · · vn

dn

. (A1)

Consider a vector v = (x1, ..., xn) ∈ Rn, and write (α1, ..., αn) for the coordinates of v
with respect to the basis Bd. Then,

Md ·

α1

...
αn

 =

x1

...
xn

, (A2)

α1

...
αn

 = M−1
d ·

x1

...
xn

, (A3)

Thus, the definition of a new basis changes the associated norm, and this can also be
used in the decision-making step for selecting/coloring points with the lower distance to
a particular goal (see Section 3.2). Note that this distance takes into account the designer
preferences. The definition of the norm with the new basis can be obtained as follows.

Let us find the equations that allow to write the scalar product ·Bd in Rn that satisfies
that the elements of Bd define an orthonormal basis of the space. For this, take the matrix
Md (see (A1)), if w = (y1, ..., yn) ∈ Rn, the scalar product v ·Bd w can be written as:

v ·Bd w = (x1, ..., xn) ·Bd

y1

...
yn

 = (x1, ..., xn) · (M−1
d )T · (M−1

d ) ·

y1

...
yn

. (A4)

That is, the Gram matrix G associated with ·Bd is given by G = (M−1
d )T · (M−1

d ).
Therefore, the associated Euclidean norm can be computed as:

‖v‖ :=

√√√√√√(x1, ..., xn)(M−1
d )T · (M−1

d )

x1

...
xn

 =

√
n

∑
i=1

(αi)2, (A5)

where (α1, ..., αn) are the coordinates of v in Bp.
Summing up, we have that the norm computed following the new dominance basis

change the perception of distance according to the selected preference directions. Figure A1
shows all the points that are at a distance equal to 1, together with the preference directions
and the dominance basis.
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Figure A1. Ellipsoid representing the unit circle in the norm associated with the dominance basis.
The preference directions fixed by the DM are shown (blue). The corresponding dominance basis is
also shown (red).
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