
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/190356

González-Cruz, M.; Ballesteros-Pérez, P.; Lucko, G.; Zhang, J. (2022). Critical Duration
Index: Anticipating Project Delays From Deterministic Schedule Information. Journal of
Construction Engineering and Management. 148(11):1-12.
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002387

https://doi.org/10.1061/(ASCE)CO.1943-7862.0002387

American Society of Civil Engineers



 1 

Critical Duration Index: Anticipating Project Delays 1 

From Deterministic Schedule Information 2 

Maria Carmen González-Cruz, Ph.D. 1; Pablo Ballesteros-Pérez, Ph.D. 2; 3 

Gunnar Lucko, Ph.D., M.ASCE 3; Jing-Xiao Zhang, Ph.D. 4 4 

Abstract 5 

Classical scheduling techniques are well known to underestimate the average project 6 

duration, yet they remain widely used in practice due to their simplicity. In this paper the 7 

new Critical Duration Index (CDI) is proposed. This index indirectly allows anticipating 8 

the probability of a project ending late, as well as the average project duration extension 9 

compared to a deterministic project duration estimate. The accuracy of two simple 10 

regression expressions that use the CDI are tested on two representative datasets of 4,100 11 

artificial and 108 empirical (real) projects. Results show that these regression expressions 12 

outperform the only alternative index found in the literature. Besides allowing enhanced 13 

forecasting possibilities, calculating the CDI only requires basic scheduling information 14 

that is available at the planning stage. It can thus be easily adopted by project managers 15 

to improve their project duration estimates over prior deterministic techniques. 16 
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Practical applications 20 

(for non-academic or practitioner audiences) 21 

Classical scheduling techniques like Gantt charts or the critical path method are known 22 

to underestimate the project duration. However, they remain widely used in practice due 23 

to their simplicity. In this paper we have proposed the Critical Duration Index (CDI). This 24 

index allows anticipating the probability of a project ending later than the estimate 25 

produced with the Gantt chart or the critical path method. It also allows estimating how 26 

much longer the project might take to be completed, that is, the extension of the delay. 27 

The accuracy of two simple regression expressions that use the CDI are tested on two 28 

representative artificial and real project datasets. Our results show that these regression 29 

expressions outperform the only alternative index found in the literature. Besides 30 

allowing to forecast the probability and extension of a project delay, calculating the CDI 31 

only requires basic scheduling information that is available at the planning stage. Hence, 32 

it can be easily adopted by project managers to improve their project duration estimates 33 

over other deterministic techniques. 34 

35 
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Introduction 36 

Projects ending late and costing more than planned is unfortunately a pervasive problem 37 

in the construction industry (Ansar et al. 2016; Flyvbjerg 2011). This happens in most 38 

countries and in all types of projects (Ballesteros-Pérez, 2017; Hamzah et al., 2011; Keane 39 

& Caletka, 2008). 40 

There is a myriad of factors that cause a project to be delayed or suffer from a cost 41 

overrun (Mahamid et al. 2012). Among them are changes in the project scope, cash flow 42 

or payment problems, harsh weather conditions, resource scarcity, legal disputes, and 43 

others (Ballesteros-Pérez et al., 2012; Chudley & Greeno, 2016). Yet one that is 44 

frequently cited among the most common is poor project planning and scheduling 45 

practices (Zidane and Andersen 2018). 46 

In many industries – construction included – classical scheduling techniques still 47 

are the default option used by most project managers (Ballesteros-Pérez et al. 2018; 48 

Wilson 2003). They include Gantt bar charts (Taylor 1903), the critical path method 49 

(CPM) (Kelley and Walker 1989, 1959), and the program evaluation and review 50 

technique (PERT) (Malcolm et al. 1959). Such techniques are easy to learn and their 51 

results are easy to convey to others, including untrained project stakeholders. For practice, 52 

a vast array of commercial software implementation is available as well (e.g. Agantty, 53 

GanttPro, GanttProject, Ganttic, Liquid Planner, Microsoft Project, nTask, Oracle 54 

Primavera). 55 

Classical scheduling techniques are intrinsically deterministic. Deterministic 56 

means that they assume that activity durations are fixed, i.e., not suffer from duration 57 

variability (Ballesteros-Pérez et al. 2020c). It is noted that this is true even in the case of 58 

PERT. PERT is a pseudo-probabilistic project monitoring and control technique, because 59 

the way in which it estimates the average project duration is deterministic. Namely, PERT 60 



 4 

simplistically assumes that the average project duration equals exactly the sum of the 61 

critical activities’ average durations (Khamooshi and Cioffi 2013; Nelson et al. 2016). 62 

Yet the simple appeal of these techniques comes at a cost. Among other 63 

limitations, it has long been known that deterministic techniques tend to underestimate 64 

the average project duration (MacCrimmon and Ryavec 1964; Clark 1961). This means 65 

that they are too optimistic for real projects (Ballesteros-Pérez et al. 2018; Ballesteros-66 

Pérez 2017a). This renders them unrealistic for complex projects whose execution is 67 

characterized by a diverse set of resources in simultaneous activities (Barrientos-Orellana 68 

et al. 2021). 69 

Unfortunately, this project duration underestimation cannot be overcome by 70 

merely tweaking the calculation approach of such scheduling techniques. Instead, to 71 

produce more accurate and representative project duration estimates one must resort to 72 

other probabilistic alternatives. Examples are stochastic network analysis (SNA) 73 

(Pontrandolfo 2000) or schedule risk analysis (SRA) (Ballesteros-Pérez et al. 2019a). 74 

Both SNA and SRA explicitly use probabilistic calculations, hence are subject to 75 

statistical distribution assumptions (Valadares Tavares et al. 1999). These advanced 76 

scheduling techniques (and others that will be reviewed later) are more complex and thus 77 

more computationally expensive (Vanhoucke et al. 2016; Vanhoucke 2011). Also, most 78 

practitioners are not trained in them, and only few software tools facilitate their 79 

implementation (Sanz-Ablanedo et al., 2020; Trietsch and Baker 2012). 80 

However, the need of obtaining reliable project duration estimates in practical 81 

contexts remains. That is why a new index named Critical Duration Index (CDI) is 82 

proposed. The CDI indirectly allows anticipating the probability of a project ending later 83 

than the project duration estimate produced by a deterministic schedule. It also allows 84 

approximating the extension of the project delay, i.e., the time difference between the 85 
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actual and planned project finish dates. Calculating the CDI only requires knowing the 86 

activity planned durations and their total floats (slacks). This information is readily 87 

available in any deterministic schedule. The performance of some regression expressions 88 

that use the CDI as the only independent variable will be tested on a representative set of 89 

artificial projects with diverse topologies, as well as in a set of empirical projects. Finally, 90 

it will also be compared how the CDI fares against the only similar alternative index 91 

found in the literature. 92 

This research will solely focus on the project time (duration) dimension, not in the 93 

cost (money) dimension. Producing accurate project duration estimates has long been 94 

found harder than generating accurate project cost estimates (Herrerías-Velasco et al. 95 

2011; Clark 1962). This is because costs are merely additive. Hence, by the Central Limit 96 

Theorem (CLT), the actual cost of a project statistically approaches the sum of the 97 

activities’ average cost estimates (Ballesteros-Pérez et al. 2020c). However, the project 98 

duration depends not just on the activities’ average durations, but also on their duration 99 

variability, their order of execution, interruptions, overlaps, time lags, etc. (Ballesteros-100 

Pérez et al. 2020b). This is why producing reliable project duration estimates from 101 

deterministic schedules has proven to be more challenging. 102 

Literature Review 103 

The number of scheduling techniques that can anticipate the average project duration is 104 

vast and can only be outlined in broad strokes here. Each technique is suited to a particular 105 

context, type of project (e.g. linear and repetitive projects, etc.), project planning or 106 

tracking information requirements, statistical knowledge of the scheduler, available 107 

computer resources, and other factors (Vanhoucke 2013). This literature review 108 

establishes four desirable criteria by which it evaluates existing scheduling approaches. 109 

Those should be (a) deterministic, (b) as simple to calculate as the scheduling technique 110 
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itself, (c) not need information beyond what is known at the planning stage, and (d) 111 

overcome, at least partially, the problem of project duration underestimation. 112 

One group of literature encompasses PERT and EVM (earned value management) 113 

extensions. Both PERT and EVM are project planning and monitoring techniques. This 114 

means that besides establishing a project baseline, they allow controlling whether the 115 

project is progressing as expected (Hajdu and Bokor 2014; Hajdu 2013). The way in 116 

which they estimate the average project duration is deterministic (also in PERT, as we 117 

have noted earlier). But this is not true in most PERT extensions where a truly 118 

probabilistic approach is adopted [cf. Ballesteros-Pérez (2017a) for a recent review]. This 119 

substantially increases their complexity. Hence, they are neither (a) deterministic, nor (b) 120 

simple. 121 

Regarding EVM extensions, both probabilistic and deterministic extensions can 122 

be found in the literature [cf. Barrientos-Orellana et al. (2021) for a review of 123 

deterministic EVM extensions aimed at forecasting the project duration]. Their limitation 124 

is that access to updated project tracking information is required. Tracking information 125 

includes the percentage of progress, duration and actual costs of completed or ongoing 126 

activities (Khamooshi and Golafshani 2014; Wauters and Vanhoucke 2014). Without 127 

such information, EVM cannot estimate the project duration better than any deterministic 128 

technique (Kerkhove and Vanhoucke 2017; de Koning and Vanhoucke 2016; Batselier 129 

and Vanhoucke 2015a; Colin and Vanhoucke 2015). Hence, condition (c) is not fulfilled. 130 

Other literature addresses network topological indicators that fulfill the first three 131 

conditions [(a) deterministic, (b) simple, (c) only planning information]. A topological 132 

indicator is a metric that describes a particular trait of a project network (the structure of 133 

the activities’ precedence relationships). A wide variety of indicators exists, including the 134 

coefficient of network complexity (CNC), order strength (OS), serial-parallel (SP), 135 
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activity distribution (AD), length of arcs (LA), and topological float (TF) [cf. 136 

comprehensive reviews by Vanhoucke (2010, 2008)]. 137 

The intrinsic limitation of these topological indicators is that they serve a different 138 

purpose: They are aimed at numerically capturing the characteristics of a network 139 

structure, and in doing so, they neglect the activity durations which, of course, also impact 140 

the eventual project duration. Yet, a project schedule is ultimately a network of activities 141 

and these indicators can still provide some useful information of the project duration. Of 142 

particular interest is the serial-parallel (SP) indicator proposed by Vanhoucke 2010, 2008) 143 

as per Equation 1: 144 

1

1

−

−
=

n

m
SP  Eq. 1 145 

where m is the number of activities in the longest chain (not necessarily longest in 146 

terms of duration, only in its activity count), and n is the total number of activities in the 147 

entire network (schedule). The SP approaches 0 if all activities are arrayed in parallel and 148 

1 if all activities are in sequence. Most construction projects lie in between SP  0.2-0.8, 149 

though (Ballesteros-Pérez et al. 2020c). 150 

The SP alone is useless to estimate the project duration. Yet, it is known that 151 

projects whose schedules contain more parallel paths (SP closer to 0) are more prone to 152 

experience delays (Ballesteros-Pérez et al. 2019a, 2019b; Ballesteros-Pérez 2017b; 153 

Vanhoucke 2010). It is thus possible to improve the formulation of the SP indicator and 154 

generate a new index that can consider activity durations, not just their relationships. This 155 

refinement will become the CDI. 156 

On the other hand, Ballesteros-Pérez et al. (2020a) developed a related index to 157 

approximate the project duration average and standard deviation. The information such 158 

index required was mostly (but not exclusively) available at the planning stage. However, 159 
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that index also had important limitations. While it could be calculated manually, its 160 

calculation is cumbersome and its implementation is only feasible for small networks, not 161 

real-world sized ones. It also required subjectively setting parameter values to 162 

discriminate sub-critical activities (those with total floats close to zero). Additionally, its 163 

calculation involved an estimate of the activity durations’ variability, a piece of 164 

information that is not available in most deterministic schedules. However, since that 165 

index is the only alternative to the CDI, both will be compared later. 166 

For the sake of completeness, a plethora of other non-deterministic scheduling 167 

techniques have also been aimed at estimating a project’s duration. They include fuzzy 168 

logic (Chen 2007), artificial neural networks (ANN) (Lu 2002), stochastic network 169 

analysis (SNA) (Dodin and Sirvanci 1990), Monte Carlo simulation (Liu and Wang 170 

2013), machine learning (Acebes et al. 2015), and schedule risk analysis (SRA) 171 

(Vanhoucke 2015), to cite just a few. Their problem is that they do not fulfill being (a) 172 

deterministic, nor (b) simple, and sometimes not even condition (c) which is relying only 173 

on planning information. Hence, these techniques will no longer be considered. 174 

Research methods 175 

Objectives 176 

As mentioned earlier, deterministic techniques are popular in practice, but suffer from the 177 

problem of underestimating the average project duration. Hence, the goal of this research 178 

is to complement them by developing a new index that: 179 

a) remains deterministic; 180 

b) must be as simple to calculate as the scheduling technique itself; 181 

c) needs no information other than what is known at the planning stage; 182 

d) overcomes, at least partially, the project duration underestimation problem. 183 
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CDI Rationale 184 

We have emphasized that most construction projects usually last longer than planned and 185 

that classical scheduling techniques tend to underestimate the project duration. This 186 

problem is widely known in the construction industry (Altuwaim and El-Rayes 2021; Fan 187 

et al. 2021; Votto et al. 2021). However, it is often neglected that activities’ duration 188 

variability is also directly related to a higher probability of project delays. 189 

Let us consider a project schedule made up of a single activity i whose duration is 190 

di. The activity duration di is approximated by a constant value in a deterministic schedule 191 

– normally its expected average duration, let’s say 10 days. Yet, project schedulers are 192 

aware that di is subject to some degree of variability because various risk factors may 193 

impact the execution of activity i. This means that the actual (real) activity duration will 194 

likely differ from its average planned duration (e.g. activity i will eventually last 9 days 195 

or 12 days, instead of 10 days). Hence, the larger the variability of di, the larger the 196 

dispersion of that actual activity duration compared to its average. 197 

In this regard, Ballesteros-Pérez et al. (2020c) proved that the average of the actual 198 

durations of most construction activities coincides with their planned duration. This 199 

means that construction activities approximately end up late 50% of the time (and earlier 200 

50% of the time). In our one-activity project example, this would mean that the 201 

probability of the whole project ending late is about 50% and that the average delay would 202 

be about zero. But it was also found that the higher the count of parallel paths in a project, 203 

the higher the chances of said project ending late. 204 

Let us now consider a project with two parallel activities whose average durations 205 

are the same. For this project to end on time, both activities must end either early or just 206 

on time. Probabilistically speaking, this can occur only in one out of four scenarios. This 207 

is because each parallel activity has a 50% chance of finishing on time, that is ½. The 208 
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combined probability of both activities ending on time is the intersection of both events, 209 

that is, ½·½=¼. In other words, it suffices that one activity ends late for the whole project 210 

to be delayed. 211 

Consequently, if the project has three parallel activities (again all with same 212 

average durations), the chances of the project ending on time will be 2-3 = ⅛ = 0.125. 213 

From this it is easy to generalize that in projects with j paths with the same average 214 

duration, the chances of ending on time will equal 2-j. This probability approaches zero 215 

rapidly as the count of paths (j) increases. 216 

Of course, real projects do not have paths that last exactly the same, but most of 217 

them have multiple parallel paths. Each path can be made up of one or several activities 218 

that are in sequence, in parallel or, more commonly, in a combination of both. Moreover, 219 

good project managers keep reallocating resources so that no path gets too delayed. This 220 

means that in practice, when a project is properly managed, the actual durations of most 221 

paths should not eventually be that different. Hence, we conclude that the probability of 222 

a construction project ending late might not be that different from the 2-j theoretical 223 

model. 224 

Hence, adopting the 2-j model may prove useful for estimating the chances of a 225 

project ending on time. The challenge, though, is how to approximate the number of 226 

parallel paths in a project, that is, estimating the value of j. In this regard, few projects 227 

have purely independent paths that span from beginning to end. Instead, most paths in 228 

real projects diverge, intertwine, overlap, and merge at different points of the project 229 

makespan. Also, construction activity durations tend to be quite varied in practice. 230 

Explicitly counting the paths j by directly analyzing the project schedule is a non-231 

trivial task, even more so for medium and large projects. This because in those projects 232 

the number of distinct paths skyrockets and many paths separate and merge from each 233 
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other multiple times. The only alternative is to come up with a (good) approximation of 234 

j. 235 

We propose that the approximation of the number of paths j with a relatively 236 

similar duration of a project can be reasonably approximated by the Critical Duration 237 

Index (CDI): 238 

 

 

 −
=



=

kcriticalk

n

i
ii

dPD

tfd
CDI

,max

,0max
1  Eq. 2 239 

Equation 2 is straightforward and similar to the inverse of the aforementioned SP 240 

topological indicator but taking activity durations into account. Basically, the numerator 241 

adds up the activity durations (di) of all n activities in the schedule once their respective 242 

total floats (tfi) have been subtracted. Yet, to avoid adding up negative quantities, the 243 

maximum between 0 and di ‒ tfi is taken (this ignores all activities whose float is larger 244 

than its duration, i.e., tfi > di). The rationale behind subtracting the total float is that we 245 

want to consider only durations of subcritical activities (those whose float is relatively 246 

small). This because it is expected that the path to which they belong will also have a 247 

relatively small total float and their overall duration will not differ much from the critical 248 

path. 249 

The denominator of Equation 2 adds up the durations of the critical activities (dk). 250 

Yet, in those projects where the sum of the critical activity durations (Σdk) exceeds the 251 

project planned duration (PD), only the former is considered using the maximum 252 

operator. A situation where Σdk > PD can happen if the critical activities are partially 253 

overlapped. Conversely, in situations where Σdk ≤ PD, the denominator will equal PD. 254 

This can happen when critical activities’ precedence relationships include positive time 255 

lags, i.e., if critical activities are not scheduled one immediately after the other. This might 256 
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yield CDI values in between 0 and 1. However, since good project managers strive for 257 

work continuity, in most real projects, the time lags between critical activities tends to be 258 

relatively small (Σdk ≈ PD). This because critical activities are usually given the highest 259 

priority during project execution. 260 

Thus, it is expected that the CDI approximates the count of critical and subcritical 261 

parallel paths in most construction project schedules. The related probability of a project 262 

ending on time (named PD percentile henceforth) can be approximated by Equation 3. 263 

This is a simple regression expression that implements the previous 2-j theoretical model 264 

where j has been directly replaced by the CDI: 265 

CDI

CDI
percentilePD −== 2

2

1
 Eq. 3 266 

In equation 3, the CDI can range between 0 and + infinity and its calculation must 267 

only include meaningful activities, i.e., those that use resources (e.g. hammock-type 268 

and/or summary activities are excluded). If the CDI = 1, then the project has a dominant 269 

critical path and its average delay should be close to zero (as in the one-activity project 270 

example). However, the higher the value of CDI, the larger the delay the project may 271 

suffer. It must be noted, though, that the magnitude of this delay does not grow linearly 272 

with the value of CDI. After some experimentation with linear, polynomial, exponential, 273 

logarithmic and power regression expressions, the authors confirmed that the average 274 

project delay (RD / PD, real duration divided by planned duration) can be well 275 

approximated by the following logarithmic expression: 276 

)ln(1 CDIa
PD

RD
Average +  Eq. 4 277 

where ln is the natural (Euler’s) logarithm and a is a constant that depends on the 278 

amount and type of activities’ duration variability. Generally, a varies between 0 and 0.5. 279 
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For real projects, which are the aim of this study, the authors have determined that the 280 

value of a is generally close to 0.333. This means that the average project delay compared 281 

to the deterministic project duration estimate is approximately ln(CDI)/3. The next 282 

subsections will focus on demonstrating how the regression estimates of Equations 3 and 283 

4 perform on datasets of artificial and real projects. 284 

Artificial Projects Dataset 285 

We first test the accuracy of Equations 3 and 4 on an artificial dataset that comprises 286 

4,100 project networks of different topologies (different configurations of activity 287 

precedence relationships). Each network has 30 activities plus two extra dummy activities 288 

of zero duration that signpost the start and the end of each project. This dataset is curated 289 

by the Operations Research & Scheduling Research Group of Ghent University. The 290 

complete dataset can be accessed here: 291 

https://www.projectmanagement.ugent.be/research/data (MT set).  292 

The networks were generated with RanGen2. RanGen2 is a robust random 293 

network generator that was validated in prior studies (Vanhoucke et al. 2008; 294 

Demeulemeester et al. 2003). RanGen2 datasets have been used in multiple scheduling 295 

studies due to their representativeness, i.e., wide coverage of network typologies [e.g. 296 

Barrientos-Orellana et al. (2021); Ballesteros-Pérez et al. (2019b); Batselier and 297 

Vanhoucke (2015a); Colin and Vanhoucke (2014)]. Further information about the 298 

artificial dataset can be found in Vanhoucke et al. (2016). 299 

To resemble real projects, the 30 activities of each artificial network should take 300 

on different duration values. As a first step we have randomly generated activity duration 301 

averages and their variability by Monte Carlo simulation. The four distributions that we 302 

have adopted are summarized in Table 1 (Dataset ID column). 303 

https://www.projectmanagement.ugent.be/research/data
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< Insert Table 1 here > 304 

As the first one we selected lognormal activity durations to resemble the variety 305 

of activity durations and variability that is found in most real construction projects (Colin 306 

and Vanhoucke, 2016; Trietsch et al., 2012). Additionally, parameters for the lognormal 307 

distribution were set based on those measured in an extensive analysis of over 6,000 308 

construction activities by Ballesteros-Pérez et al. (2020c). As the other three, we used 309 

Normal, Uniform and Beta distributions to analyze how Equations 2-4 would perform 310 

under very different inputs. These distributions were indeed chosen for the sake of 311 

generality, as they are very different from each other (symmetrical and skewed, and with 312 

different types of support). Also, many researchers have resorted to these distributions in 313 

prior studies when modelling construction activity durations (AbouRizk et al., 1994; 314 

AbouRizk & Halpin, 1992). 315 

As a first step and for each of the 4,100 projects, we randomly generate a set of 316 

average activity durations for the 30 activities of each project with the distributions stated 317 

in the second column of Table 1 (Average Activity Durations column). This set 318 

corresponds to the deterministic activity durations (di) that would be used by any 319 

deterministic schedule to calculate activities’ total floats (tfi) and the project duration 320 

estimate (PD). 321 

Then, we simulate 10,000 runs of each of those 4,100 projects while keeping the 322 

average duration di of each activity constant, but now allowing duration variability. This 323 

means we simulate 10,000 possible executions of each of the 4,100 projects in which 324 

activity durations vary according to the distributions of the third column of Table 1 325 

(Activity Duration Variability column). In these 10,000 simulations, activities are 326 

scheduled to start as soon as possible (ASAP) and activity preemption (interruption) is 327 

not allowed. This simulation yields 10,000 project duration results per project which are 328 
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labeled real durations (RD). They are named RD as they represent the possible durations 329 

that each of the 4,100 projects, once executed, may have had.  330 

Finally, we count for each project the number of those 10,000 project executions 331 

whose real duration is below the deterministic project duration estimate (the one obtained 332 

with the initial average activity durations). With it, we calculate the proportion of times 333 

when RD ≤ PD which coincides with the PD percentile (probability of the project being 334 

early). Also, the average of the 10,000 RD values divided by the PD coincides with the 335 

average delay of each project. The PD percentile and Average RD / PD are the values 336 

that Equations 3 and 4 seek to estimate.  337 

Hence, with this simulation exercise we have obtained accurate values for the 338 

probability of being late and the average time delay of 4,100 projects. If our equations 3 339 

and 4, which are only expressed as a function of the CDI, work well, their outputs should 340 

not deviate much from the results obtained by simulation.  341 

Artificial Projects Results 342 

Detailed results for the 4,100 projects and the four activity duration distributions 343 

from Table 1 are listed in the supplemental online material (4100 projects datasets.xlsx 344 

file). For brevity, only the most relevant results are presented here.  345 

Figure 1 shows scatterplots of the actual 4,100 PD percentile values as a function 346 

of their respective CDI with dashed regression curves. Overall, it is found that the 347 

coefficients of determination R² are high for equation 3 (which corresponds to 2-CDI). 348 

Namely, R² values vary between 0.85 and 0.88 in Figure 1, which indicates a high 349 

goodness-of-fit in the four distributions displayed in Table 1. 350 

< Insert Figure 1 here > 351 
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However, besides high R² values, other conditions of a representative regression 352 

are independence of errors (symmetrically distributed residuals) and constant variance of 353 

errors across observations (homoscedasticity). Symmetrically distributed residuals can be 354 

checked with PP plots or QQ plots. The latter are included as the supplemental material 355 

along with the project results but are not discussed here. The right columns of Table 2, 356 

though, show the residuals’ first four moments (mean, standard deviation, skewness, and 357 

kurtosis).  358 

< Insert Table 2 here > 359 

It can be seen that the mean values are very close to zero, and that skewness values 360 

do not deviate much from 0 either. However, it is noted that the 4,100 projects do not 361 

constitute a homogeneous (balanced) dataset. That is, in the 4,100 projects there are more 362 

arrangements with parallel paths than with sequential paths. Therefore, perfectly 363 

distributed residuals cannot be expected either. 364 

The residuals homoscedasticity can be checked with standardized residuals plots. 365 

These are also found in the supplemental material. Those plots reveal that the point clouds 366 

resemble ‘gunshots’ (absence of residuals directionality). This is also substantiated by the 367 

low R², intercept, and slope values of their respective regression expressions. 368 

Figure 2, on the other hand, plots Equation 4, where the x-axis represents the 369 

natural logarithm of CDI, and the y-axis the average projects’ real duration compared to 370 

its planned duration, that is, their average delay (in per unit basis, i.e., /1). 371 

< Insert Figure 2 here > 372 

Of particular interest is Figure 2a, which reaches R² = 0.90 with a = 0.333 and 373 

represents the variability of real construction projects. Figures 2b to 2d need slightly 374 



 17 

different slope parameter values (a values between 0.02 and 0.14, respectively), yet they 375 

also hold a good linear correlation with ln(CDI). 376 

Similar conclusions on the independence of errors and homoscedasticity can be 377 

made from the regression plots of Figure 2. Table 3 shows the residuals’ first four 378 

moments after applying Equation 4 to approximate the average project delay extension 379 

(average RD / PD). Again, the mean and skewness are quite close to zero, even closer 380 

than in Table 2. For a more detailed analysis the reader is referred to the QQ plots and 381 

standardized residuals plots that can be found in the supplemental material. 382 

< Insert Table 3 here > 383 

Finally, as mentioned earlier, other (polynomial, exponential, logarithmic and 384 

power) regression expressions were also tried for Equations 3 and 4 which sporadically 385 

rendered slightly higher R² values compared to those of Table 3. However, the authors 386 

decided to retain Equations 3 and 4 due to their extreme simplicity. This should make 387 

them more suitable for their adoption in the daily practice of deterministic scheduling. 388 

Empirical Projects Dataset 389 

Next, the accuracy of Equation 4 was also tested on a dataset of 108 real (empirical) 390 

projects. Equation 3 cannot be tested with such projects because real projects have only 391 

one realization (one RD value as the project only happened once). A single RD value does 392 

not allow measuring the actual PD percentile, as this is a probabilistic parameter. Also, 393 

most real projects have many paths and their probability of being early is well below 50% 394 

(close to 0 as per 2-CDI ). That is why so many projects end late and cannot be used for 395 

testing Equation 3. 396 

The complete dataset of empirical project involved 133 projects and can be 397 

accessed at https://www.projectmanagement.ugent.be/research/data/realdata. Only 108 398 

https://www.projectmanagement.ugent.be/research/data/realdata


 18 

of them included the as-built schedules (and a RD value) and could be used for testing 399 

equation 4. The dataset has been described by Vanhoucke et al. (2016) and Batselier and 400 

Vanhoucke (2015b). This dataset keeps growing and has also been used by many 401 

scheduling researchers for validation purposes [e.g. (Ballesteros-Pérez et al. 2019b; 402 

Martens and Vanhoucke (2018); Colin and Vanhoucke 2016)]. Most projects are 403 

construction-related such as building, civil engineering, industrial, and services projects. 404 

Most projects were carried out in Belgium, the Netherlands, Italy, the U.S., and 405 

Azerbaijan. Further information about the 108 projects is given in the Table of the 406 

Appendix I. In that Table the original project code (Project ID column) has been retained 407 

for replicability. The last columns of the Table list the CDI values, plus the actual and 408 

estimated RD / PD values of each project (the latter being the value obtained with 409 

Equation 4). 410 

Some of the 108 projects required substantial editing before they could be used in 411 

this research. Hammock or summary activities that did not correspond to actual work 412 

were identified. Those activities spanned many days but did not actually involve any use 413 

of resources. Since they could distort the value of CDI, they were removed before 414 

analysis. 415 

Empirical Projects Results 416 

Figure 3 compares the actual RD / PD values of the 108 projects with the logarithm of 417 

CDI. The regression curve of Equation 4 with slope a = 0.333 is shown as a dashed line. 418 

< Insert Figure 3 here > 419 

Overall, the coefficient of determination is moderately high (R² = 0.801) even 420 

though this dataset is also quite heterogeneous, and despite the presence of a few outliers. 421 
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More detailed results can be found in the supplemental material (see 108 Empirical 422 

projects dataset.xlsx file). 423 

Discussion 424 

From examining Figures 1-3, as well as Tables 2 and 3, we conclude that Equations 3 and 425 

4 provide good approximations of the probability of a project being early, and of the 426 

average project delay. We can also conclude that calculating the CDI might be useful for 427 

project schedulers who use deterministic scheduling techniques at the expense of a 428 

minimal extra calculation effort. 429 

One check remains to perform, though. This is to test whether the CDI offers a 430 

significant advantage over the only alternative index found in the literature which was 431 

proposed by Ballesteros-Pérez et al. (2020a). Per Equations 2-4, the calculation of the PD 432 

percentile and RD / PD via CDI takes little effort. It also is completely deterministic; it 433 

does not involve subjectivity, nor any information that is unknown at the planning stage. 434 

On these objectives, the CDI already exhibits significant advantages over Ballesteros-435 

Pérez et al.’s (2020a) index. However, it is also necessary to check whether equation 4 is 436 

also more accurate (equation 3 cannot be compared as Ballesteros-Pérez et al.’s (2020a) 437 

index did not estimate the probability of a project ending late). With that purpose, Table 438 

4 is included. 439 

< Insert Table 4 here > 440 

Ballesteros-Pérez et al. (2020a) had tested the accuracy of their index on the same 441 

artificial dataset of 4,100 networks that this study has used, but with 13 parametrization 442 

options (I to XIII). The very same dataset, distributions, and parameters are therefore used 443 

for Equation 4 to compare its outputs with those of Ballesteros-Pérez et al. (2020a). For 444 

brevity, only the coefficients of determination have been included (see the last two 445 
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columns of Table 4). The column Previous R² displays the results of Ballesteros-Pérez et 446 

al’s (2020a) index, while the column Current R² lists the results of Equation 4 calculated 447 

with the CDI. Detailed results by project for the 13 dataset configurations can be found 448 

in the supplemental material (Ballesteros-Pérez et al 2020a index comparison.xlsx file). 449 

By comparing the last two columns of Table 4, though, we find that Equation 4 450 

(right column) outperforms Ballesteros-Pérez et al. (2020a) (left column) for most 451 

parametrizations. The average R² in the last row is also slightly higher for Equation 4. 452 

Hence, we conclude that using the CDI to estimate project delays is: 453 

• much simpler (the calculation of Ballesteros-Pérez et al.’s (2020a) index is much 454 

more complex than that of the CDI), 455 

• less information-demanding (Ballesteros-Pérez et al.’s (2020a) index requires 456 

information about the activities’ duration variability, as well as subjectively setting 457 

the values of some regression parameters. None of these is available in a deterministic 458 

schedule). 459 

• more accurate (as shown in Table 4).  460 

Hence, the CDI, as well as equations 3 and 4, should be the default option for 461 

project schedulers who want to produce quick project delay estimates from deterministic 462 

schedule information. 463 

The CDI could also allow a quick categorization of a projects’ level of complexity. 464 

In this regard CDI captures the number of subcritical and critical activities that a project 465 

manager must handle simultaneously on average during execution. This interpretation 466 

enables the project manager to convey to stakeholders, especially the owner, if their 467 

project has more or less chances of ending late. For example, a project with CDI = 1 may 468 

be considered a project of basic complexity whose probability of ending late would be 469 
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50% and whose average expected delay is zero. A project with CDI = 3 will end late  470 

1 - 2-3 = 0.875 ≈ 88% of the time and its average delay will be ln(3) / 3 = 0.366 ≈ 36% 471 

longer than its deterministic planned duration. This is relevant information for practice. 472 

Conclusions 473 

Contributions to the Body of Knowledge 474 

The use of deterministic scheduling techniques is common in construction practice to plan 475 

and control projects. However, these techniques are prone to underestimating the actual 476 

project duration. To overcome this problem, a new index has been proposed called 477 

Critical Duration Index (CDI). The CDI is a simple and deterministic index whose 478 

calculation only involves the activity durations and total floats. The CDI, via two 479 

extremely simple regression expressions, allows approximating the probability that a 480 

project will have of ending later than planned with minimal extra calculation effort. The 481 

accuracy of the CDI and its regression expressions have been tested on two project 482 

datasets. Results suggest that the CDI provides good estimates of both the probability of 483 

a project ending late and the average project delay. It also outperforms a previous index 484 

proposed by Ballesteros-Pérez et al. (2020a). Finally, a possible interpretation of 485 

measuring the project complexity with the CDI has also been proposed. 486 

Limitations 487 

Our new approach also has some limitations. As the regression analyses have shown, the 488 

actual duration of a project can sometimes differ significantly from the estimates that the 489 

CDI produces. Of course, it cannot capture in a single magnitude the entire complexity 490 

of a project network. Yet, we feel that its accuracy is high enough for quick and manual 491 

estimates. The authors tried other mathematical configurations and alternative parameters 492 

for the calculation of the CDI as well as for equations 3 and 4. For example, in equation 493 
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3 we considered replacing the base 2 with Euler’s number, that is, using e-CDI instead of 494 

2-CDI. We also tried to use free floats instead of total floats when calculating Equation 2. 495 

However, those alternatives tended to be more prone to overestimating the number of 496 

critical and subcritical paths of a deterministic schedule, and also the probability of a 497 

delay. Hence, free floats were discarded, but their values have been included in the 498 

supplemental material should future researchers wish to pursue that line of inquiry. 499 

Additionally, slightly more accurate, but also more complex regression 500 

expressions were found. Those were also rejected as they mostly involved higher order 501 

polynomials whose regression coefficients were difficult to anticipate in practice. Hence, 502 

as simplicity was a requirement for the CDI and its related regression expressions, we 503 

eventually decided to retain equations 2 to 4. Still, perhaps more accurate yet simple-to-504 

use parametrizations of equations 2 to 4 might be found in future research. Similarly, a 505 

more accurate approach for anticipating the value of a (the slope of equation 4) might 506 

also be explored by future researchers. 507 

Next, the practitioners’ community should extensively test our expressions in a 508 

wider set of projects. It would be useful to receive some feedback about the usefulness of 509 

the concept the CDI represents, as well as the convenience and simplicity of its derived 510 

regression expressions for anticipating project delays. As a second step, the CDI-derived 511 

classification of project complexity may help raising awareness on a higher probability 512 

of projects suffering from resource conflicts. This due to the simultaneous execution of 513 

multiple activities sharing the same resources. Eventually, all this will hopefully help the 514 

practitioners’ community to better understand the limitations of current deterministic 515 

scheduling techniques, as well as the need to resort to other tools and techniques that 516 

overcoming those limitations. 517 
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Appendix I: A summary of the 108 empirical projects characteristics along with 518 

the CDI project duration estimates 519 

A summary of the 108 empirical projects characteristics along with the CDI project 520 

duration estimates is included in the following table. 521 

Table. 108 empirical projects summary. 522 

Project Project Project Planned Cost Real Cost Planned Dur. Real Dur. Activity 
CDI 

AD / PD (/1) 

ID Name Type PC [€] RC [€] PD [d] RD [d] Count Actual Estimate 

C2011-05 Telecom System Agnes Service 180,485.27 180,485.27 43 53 20 1.92 1.23 1.22 

C2011-07 Patient Transport System Service 180,759.44 191,065.06 389 444 49 1.46 1.14 1.13 

C2011-10 Building a House Building 484,398.41 494,947.71 195 203 32 1.09 1.04 1.03 

C2011-12 Claeys-Verhelst Premises Building 3,027,133.19 3,102,395.91 443 453 49 1.10 1.02 1.03 

C2011-13 Wind Farm Civil Eng. 21,369,835.51 26,077,764.74 525 600 107 1.43 1.14 1.12 

C2012-13 Pumping Station Jabbeke Industrial 336,410.15 350,511.31 125 140 74 1.43 1.12 1.12 

C2012-15 The Master Project Service 185,472.45 185,113.10 32 32 121 1.00 1.00 1.00 

C2012-17 Building a Dream Building 241,015.00 314,856.14 145 204 33 2.15 1.41 1.26 

C2013-01 Wiedauwkaai Fenders Civil Eng. 1,069,532.42 1,314,584.58 152 152 39 1.27 1.00 1.08 

C2013-02 Sewage Plant Hove Civil Eng. 1,236,603.66 1,146,444.38 403 408 175 1.04 1.01 1.01 

C2013-03 Brussels Finance Tower Building 15,440,865.89 16,338,027.20 425 426 55 1.00 1.00 1.00 

C2013-04 Kitchen Tower Anderlecht Building 2,113,684.00 2,512,524.00 333 453 244 2.03 1.36 1.24 

C2013-05 PET Packaging Service 874,554.28 874,554.28 521 632 28 1.99 1.21 1.23 

C2013-06 Govmnt. Office Building Building 19,429,810.51 21,546,846.18 352 344 275 1.00 0.98 1.00 

C2013-07 Family Residence Building 180,476.47 175,030.65 170 174 46 1.00 1.02 1.00 

C2013-08 Timber House Building 501,029.51 576,624.05 216 235 41 1.23 1.09 1.07 

C2013-09 Urban Develop.Project Civil Eng. 1,537,398.51 1,696,971.79 291 360 71 1.91 1.24 1.22 

C2013-10 Town Square Civil Eng. 11,421,890.36 15,218,926.38 786 785 186 1.00 1.00 1.00 

C2013-11 Recreation Complex Building 5,480,518.91 5,451,028.00 359 277 159 0.60 0.77 0.83 

C2013-12 Young Cattle Barn Building 818,439.99 879,853.17 115 188 27 5.23 1.63 1.55 

C2013-13 Office Finish. Works (1) Building 1,118,496.59 955,929.22 236 217 11 0.82 0.92 0.93 

C2013-14 Office Finish. Works (2) Building 85,847.89 75,468.30 80 88 9 1.36 1.10 1.10 

C2013-15 Office Finish. Works (3) Building 341,468.11 308,343.78 171 115 17 0.52 0.67 0.78 

C2013-16 Office Finish. Works (4) Building 248,203.92 198,567.00 196 108 7 0.29 0.55 0.59 

C2013-17 Office Finish. Works (5) Building 244,205.40 203,605.97 161 107 23 0.35 0.66 0.65 

C2014-01 Mixed-use Building Building 38,697,822.73 39,777,643.30 474 448 41 1.00 0.95 1.00 

C2014-02 Playing Cards Industrial 191,492.70 190,266.50 124 146 21 1.77 1.18 1.19 

C2014-03 Organizational Develop. Service 43,170.15 83,712.15 229 260 112 1.50 1.14 1.14 

C2014-04 Compres. Station Zelzate Industrial 62,385,597.58 65,526,930.04 522 844 24 7.69 1.62 1.68 

C2014-05 Apartment Building (1) Building 532,410.29 591,410.53 228 274 25 1.48 1.20 1.13 

C2014-06 Apartment Building (2) Building 3,486,375.47 3,599,114.11 547 611 29 1.27 1.12 1.08 

C2014-07 Apartment Building (3) Building 1,102,536.78 1,289,696.78 353 404 25 1.31 1.14 1.09 

C2014-08 Apartment Building (4) Building 1,992,222.09 2,380,299.86 233 275 39 1.49 1.18 1.13 

C2015-01 Young Cattle Barn (2) Building 612,769.44 646,473.65 131 210 27 3.12 1.60 1.38 

C2015-02 Railway Station (1) Civil Eng. 1,121,316.94 967,988.79 417 501 216 1.78 1.20 1.19 

C2015-03 Industrial Complex (1) Building 2,244,090.74 1,868,796.28 257 278 135 1.25 1.08 1.07 

C2015-04 Apartment Building (5) Building 2,750,938.00 2,590,796.73 160 205 56 1.84 1.28 1.20 
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Project Project Project Planned Cost Real Cost Planned Dur. Real Dur. Activity 
CDI 

AD / PD (/1) 

ID Name Type PC [€] RC [€] PD [d] RD [d] Count Actual Estimate 

C2015-06 Family Residence (2) Building 143,673.20 186,107.00 260 290 184 1.51 1.12 1.14 

C2015-07 Industrial Complex (2) Building 5,999,600.00 5,414,544.00 297 313 138 1.31 1.05 1.09 

C2015-08 Garden Center Building 467,297.21 461,900.17 191 186 186 1.00 0.97 1.00 

C2015-09 Railway Station (2) Civil Eng. 1,457,424.00 2,145,682.26 354 569 340 6.53 1.61 1.63 

C2015-10 Tax Return System (1) Service 18,990.00 8,010.00 85 85 15 1.00 1.00 1.00 

C2015-11 Staff Authoriz. System Service 14,400.00 9,105.00 55 55 7 1.00 1.00 1.00 

C2015-12 Premium Payment System Service 132,570.00 58,410.00 184 184 35 1.00 1.00 1.00 

C2015-13 Broker Acc.Conv. System Service 12,735.00 9,990.00 117 117 16 1.00 1.00 1.00 

C2015-14 Sup. Pensions Database Service 34,260.00 18,285.00 124 124 17 1.00 1.00 1.00 

C2015-15 FACTA System Service 11,700.00 7,035.00 57 57 13 1.00 1.00 1.00 

C2015-16 Generic Doc. Output Syst. Service 64,620.00 64,125.00 270 270 22 1.00 1.00 1.00 

C2015-17 Insurance Bundling Syst. Service 281,430.00 281,070.00 208 236 86 1.45 1.13 1.12 

C2015-18 Tax Return System (2) Service 39,450.00 25,380.00 128 128 15 1.00 1.00 1.00 

C2015-19 Receipt Numb. System Service 43,800.00 37,530.00 182 182 20 0.96 1.00 0.99 

C2015-20 Policy Numbering System Service 12,645.00 11,100.00 171 161 6 0.95 0.94 0.98 

C2015-21 Investment Product (1) Service 4,020.00 3,240.00 37 37 12 1.00 1.00 1.00 

C2015-22 Risk Profile Questionnaire Service 29,880.00 17,400.00 151 151 22 1.00 1.00 1.00 

C2015-23 Investment Product (2) Industrial 46,920.00 32,805.00 122 120 33 0.99 0.98 1.00 

C2015-24 CRM System Service 44,130.00 36,870.00 233 233 21 1.00 1.00 1.00 

C2015-25 Beer Tasting Service 1,210.00 1,780.00 14 14 18 1.00 1.00 1.00 

C2015-26 Debt Collection System Service 458,112.37 512,546.15 148 154 214 1.22 1.04 1.07 

C2015-27 Railway Station Antwerp Building 22,703.52 25,313.12 68 81 18 1.28 1.19 1.08 

C2015-28 Web. Tennis Vlaanderen Service 219,275.00 382,475.00 201 212 20 1.22 1.05 1.07 

C2015-29 Fire Station Building 1,874,496.82 1,887,087.25 284 298 204 1.25 1.05 1.07 

C2015-30 Social Apts. Ypres (1) Building 440,940.89 440,940.89 244 254 40 1.10 1.04 1.03 

C2015-31 Social Apts Ypres (2) Building 1,310,723.46 1,282,185.98 271 364 29 2.80 1.34 1.34 

C2015-32 Social Apts Ypres (3) Building 2,509,031.42 2,509,031.42 358 265 48 0.56 0.74 0.81 

C2015-33 IJzertoren Memor. Square Civil Eng. 214,417.71 224,789.67 50 94 12 6.98 1.88 1.65 

C2015-34 Roadworks Poperinge Civil Eng. 511,325.86 440,394.16 120 193 13 5.75 1.61 1.58 

C2015-35 Retirement Apartments Building 14,956,314.25 16,068,878.30 850 951 11 1.42 1.12 1.12 

C2016-01 Railway Bridge (1) Civil Eng. 671,383.50 703,703.50 225 274 26 1.97 1.22 1.23 

C2016-02 Railway Bridge (2) Civil Eng. 962,181.56 972,341.56 229 239 23 1.15 1.04 1.05 

C2016-03 Railway Bridge (3) Civil Eng. 926,888.01 910,728.01 203 220 25 1.19 1.08 1.06 

C2016-04 Railway Bridge (4) Civil Eng. 906,253.87 906,253.87 248 242 26 0.89 0.98 0.96 

C2016-05 Railway Bridge (5) Civil Eng. 832,497.46 832,497.46 195 197 32 1.05 1.01 1.02 

C2016-06 Defense Building Service 4,331,260.49 4,331,260.49 252 232 96 1.00 0.92 1.00 

C2016-07 Shop. Village Walkways Civil Eng. 930,179.09 932,757.25 224 316 110 3.42 1.41 1.41 

C2016-08 SCM System Service 375,253.34 438,741.66 725 725 99 1.00 1.00 1.00 

C2016-09 Data Loss Prevent. System Service 584,951.77 1,425,155.96 195 189 113 1.00 0.97 1.00 

C2016-10 Biofuel Refinery Industrial 14,362,625.00 14,466,100.00 360 375 23 1.25 1.04 1.07 

C2016-11 Residential House (1) Building 162,472.00 163,189.00 241 254 55 1.15 1.05 1.05 

C2016-12 Residential House (2) Building 222,858.00 226,285.00 291 291 59 1.00 1.00 1.00 

C2016-13 Residential House (3) Building 367,952.00 379,300.00 306 330 51 1.24 1.08 1.07 

C2016-14 Residential House (4) Building 218,366.00 222,021.78 321 320 48 1.00 1.00 1.00 

C2016-15 Resid. House Struct. Work Building 95,694.00 100,763.00 126 130 13 1.12 1.03 1.04 

C2016-16 Resid. Finish. Works (1) Building 54,577.76 64,526.76 90 90 24 1.00 1.00 1.00 

C2016-17 Resid. Finish. Works (2) Building 54,703.17 64,580.17 86 86 24 1.00 1.00 1.00 

C2016-18 Resid. Finish. Works (3) Building 51,115.52 60,829.52 91 91 25 1.00 1.00 1.00 
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Project Project Project Planned Cost Real Cost Planned Dur. Real Dur. Activity 
CDI 

AD / PD (/1) 

ID Name Type PC [€] RC [€] PD [d] RD [d] Count Actual Estimate 

C2016-19 Resid. Finish. Works (4) Building 51,303.38 53,351.38 91 91 25 1.00 1.00 1.00 

C2016-20 Resid. Finish. Works (5) Building 52,021.28 53,783.28 91 91 25 1.00 1.00 1.00 

C2016-21 Resid. Finish. Works (6) Building 54,324.22 54,996.22 101 101 24 1.00 1.00 1.00 

C2016-22 Resid. Finish. Works (7) Building 56,969.40 57,822.40 101 101 24 1.00 1.00 1.00 

C2016-23 Resid. Finish. Works (8) Building 56,182.71 56,645.71 101 101 24 1.00 1.00 1.00 

C2016-24 Resid. Finish. Works (9) Building 52,262.83 53,176.83 101 101 24 1.00 1.00 1.00 

C2016-25 Resid. Finish. Works (10) Building 54,580.33 56,748.33 91 91 24 1.00 1.00 1.00 

C2016-26 Resid. Finish. Works (11) Building 51,286.24 53,319.24 91 91 24 1.00 1.00 1.00 

C2016-27 Apt. Build. Found. (1) Building 813,663.06 879,701.06 78 88 16 1.45 1.13 1.12 

C2016-28 Apt. Struct. Work (1) Building 569,177.85 586,086.85 71 79 19 1.40 1.11 1.11 

C2016-29 Apt. Struct. Work (2) Building 1,797,873.62 1,860,330.62 129 148 19 1.43 1.15 1.12 

C2016-30 Apt. Struct. Work (3) Building 1,319,736.29 1,353,361.29 85 96 23 1.52 1.13 1.14 

C2016-31 Apt. Struct. Work (1) Building 488,936.00 498,473.00 105 117 23 1.40 1.11 1.11 

C2016-32 Apt. Struct. Work (2) Building 477,381.00 496,991.00 89 97 22 1.23 1.09 1.07 

C2016-33 Apt. Struct. Work (3) Building 377,282.00 394,829.00 116 129 23 1.55 1.11 1.15 

C2016-34 Apt. Struct. Work (4) Building 362,476.00 383,871.00 83 92 23 1.40 1.11 1.11 

C2019-01 Project Lepelstraat Building 1,292,979.00 1,315,819.86 533 673 87 0.85 1.26 0.95 

C2019-02 Social Housing Building 734,602.11 748,555.80 352 355 18 1.00 1.01 1.00 

C2019-04 Nuclear Healthcare Building 4,318,950.00 4,232,553.41 373 520 33 2.84 1.39 1.35 

C2019-05 Fuel Tank Filter Industrial 1,456,000.00 1,476,290.00 510 515 15 1.00 1.01 1.00 

C2019-06 Production Line Change Industrial 1,512,000.00 1,534,060.00 480 501 23 1.15 1.04 1.05 

C2019-07 Gluing Machine Industrial 107,500.00 116,800.00 150 189 8 1.58 1.26 1.15 

C2019-08 Labeling Machine Industrial 114,700.00 128,200.00 115 182 7 3.34 1.58 1.40 
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 31 

Table 1: 4100 Artificial Project Datasets with activity duration distributions 722 

Distribution 
Average Activity Durations Activity Duration Variability 

Mean  Std. deviation  Mean  Std. deviation  

Lognormal Uniform (0, 3) 0.50 0 Uniform (0.23, 0.70) 

Normal Uniform (0, 30) /5 0 Uniform (0, 0.35) 

Uniform Uniform (1, 30) Uniform (0, 2) 

Beta 

(O+4·L+P)/6 with: 

O ~ Uniform (1, 30) 

P ~ O + Uniform (1, 30)         

L ~ O + Uniform (0, 1)·(P  ̶  O) 

[(P  ̶  O)/6]+ SQRT[(5/6) + 

+ (16/7)·((L  ̶  O)(P  ̶  L)/(P  ̶  O)²)]  

Bound between O and P 

Note: Parameters are mean and standard deviation for Lognormal, Normal and Beta, 723 
and lower and upper bound for Uniform and Beta. Negative values of the Normal 724 
distribution were truncated. The standard deviation of the Beta distribution uses the 725 
calculation proposed by Herrerías-Velasco et al. (2011) for the PERT technique. 726 

727 
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Table 2: PD Percentile Regression Results with Residuals 728 

Distribution x y R² Mean Std. dev. Skewness Kurtosis 

Lognormal 1/2CDI PD percentile 0.88 -0.003 0.048 -0.698 -0.235 

Normal 1/2CDI PD percentile 0.85 0.005 0.046 1.202 6.578 

Uniform 1/2CDI PD percentile 0.85 -0.022 0.045 -0.379 2.438 

Beta 1/2CDI PD percentile 0.86 0.026 0.044 1.721 2.870 

729 
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Table 3: RD/PD Regression Results with Residuals 730 

Distributio

n 
x y R² Mean Std. dev. 

Skewnes

s 

Kurtosi

s 

Lognormal 1+0.33·ln(CDI) RD / PD 0.90 0.002 0.027 0.613 6.479 

Normal 1+0.06·ln(CDI) RD / PD 0.89 0.000 0.008 0.537 11.112 

Uniform 1+0.14·ln(CDI) RD / PD 0.85 0.001 0.014 0.054 7.642 

Beta 1+0.02·ln(CDI) RD / PD 0.84 0.000 0.003 1.167 16.094 

731 



 34 

Table 4: 4,100 Projects for Comparison of equation 4 with the index proposed 732 

by Ballesteros-Pérez et al. (2020a) 733 

Dataset 
Activities/ 

Project ni 
Activity Durations (di) Activity Duration Variability 

Previous 

R2 

Current 

R2 

I 30 Lognormal (2, 1) Lognormal with CVi = Uniform (0.1, 0.3) 0.849 0.861 

II 30 Lognormal (2, 1) Lognormal with CVi = 0.1 (constant) 0.852 0.886 

III 30 Lognormal (2, 1) Lognormal with CVi = 0.3 (constant) 0.919 0.865 

IV 15 Lognormal (2, 1) Lognormal with CVi = Uniform (0.1, 0.3) 0.739 0.849 

V 30 Lognormal (0.25, 0.005) Lognormal with CVi = Uniform (0.1, 0.3) 0.928 0.940 

VI 30 Lognormal (0.25, 0.75) Lognormal with CVi = Uniform ( 0.1, 0.3) 0.899 0.873 

VII 30 Lognormal (6, 0.12) Lognormal with CVi = Uniform (0.1, 0.3) 0.939 0.942 

VIII 30 Lognormal (6, 1.5) Lognormal with CVi = Uniform (0.1, 0.3) 0.745 0.852 

IX 30 Normal (25, 7.5) Lognormal with CVi = Uniform (0.1, 0.3) 0.945 0.940 

X 30 Normal (25, 7.5) Lognormal with CV i= 0.1 (constant) 0.947 0.961 

XI 30 Normal (25, 7.5) Lognormal with CVi = 0.3 (constant) 0.947 0.908 

XII 30 Uniform (0, 100) Lognormal with CVi = Uniform (0.1, 0.3) 0.926 0.930 

XIII 30 Constant (di = 10) Lognormal with CVi = Uniform (0.1, 0.3) 0.929 0.942 

   Average 0.890 0.904 

Note: Parameters are mean and standard deviation for Lognormal and Normal, and 734 
lower and upper bound for Uniform. 735 

736 
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List of Figure captions 737 

Fig. 1: 4,100 artificial projects’ Planned Duration (PD) probability percentiles 738 

regression plots assuming lognormal (a), normal (b), uniform (c), and beta (d) 739 

activity durations. 740 

Fig. 2: 4,100 artificial projects’ average Real Duration (RD) / Planned Duration (PD) 741 

regression plots assuming lognormal (a), normal (b), uniform (c), and beta (d) 742 

activity durations. 743 

Fig. 3: 108 empirical projects’ Real Duration (RD) / Planned Duration (PD) regression 744 

plot. 745 
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Fig. 1: 4,100 artificial projects’ Planned Duration (PD) probability percentiles regression 
plots assuming lognormal (a), normal (b), uniform (c), and beta (d) activity durations. 
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Fig. 2: 4,100 artificial projects’ average Real Duration (RD) / Planned Duration (PD) 

regression plots assuming lognormal (a), normal (b), uniform (c), and beta (d) activity 

durations. 
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Fig. 3: 108 empirical projects’ Real Duration (RD) / Planned Duration (PD) regression 

plot. 
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