# ON FINITE MINIMAL NON-NILPOTENT GROUPS 

A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO, AND DEREK J. S. ROBINSON

(Communicated by Jonathan I. Hall)


#### Abstract

A critical group for a class of groups $\mathfrak{X}$ is a minimal non- $\mathfrak{X}$-group. The critical groups are determined for various classes of finite groups. As a consequence, a classification of the minimal non-nilpotent groups (also called Schmidt groups) is given, together with a complete proof of Gol'fand's theorem on maximal Schmidt groups.


## 1. Introduction

Given a class of groups $\mathfrak{X}$, we say that a group $G$ is a minimal non- $\mathfrak{X}$-group, or an $\mathfrak{X}$-critical group, if $G \notin \mathfrak{X}$, but all proper subgroups of $G$ belong to $\mathfrak{X}$. It is clear that detailed knowledge of the structure of minimal non-X-groups can provide insight into what makes a group belong to $\mathfrak{X}$. All groups considered in this paper are finite

Minimal non- $\mathfrak{X}$-groups have been studied for various classes of groups $\mathfrak{X}$. For instance, minimal non-abelian groups were analysed by Miller and Moreno [10], while Schmidt [14] studied minimal non-nilpotent groups. The latter are now known as Schmidt groups. Itô 9 considered the minimal non- $p$-nilpotent groups for $p$ a prime, which turn out to be just the Schmidt groups. Finally, the third author [12] characterised the minimal non- $T$-groups ( $T$-groups are groups in which normality is a transitive relation). He also characterised in [13] the minimal non-PST-groups, where a $P S T$-group is a group in which Sylow permutability is a transitive relation.

The aim of this paper is to give more precise information about the structure of Schmidt groups and show how to construct them in an efficient way. As a consequence of our study, a new proof of a classical theorem of Gol'fand is given.

Our approach depends on the classification of critical groups for the class of PSTgroups given in [13]. Recall that a subgroup $H$ is said to be Sylow-permutable, or S-permutable, in a group $G$ if $H$ permutes with every Sylow subgroup of $G$. We mention a similar class $\mathcal{Y}_{p}$, which was introduced in [2]. If $p$ is a prime, a group $G$ belongs to the class $\mathcal{Y}_{p}$ if $G$ enjoys the following property: if $H$ and $K$ are $p$ subgroups of $G$ such that $H$ is contained in $K$, then $H$ is S-permutable in $\mathrm{N}_{G}(K)$. Clearly every $P S T$-group is a $\mathcal{Y}_{p}$-group.

There is a close relation between the class of groups just introduced and $p$ nilpotence, as in shown by the following result, which was proved in [2, Theorem 5].

[^0]Theorem 1. A group $G$ is a $\mathcal{Y}_{p}$-group if and only if either it is p-nilpotent or it has an abelian Sylow p-subgroup $P$ and every subgroup of $P$ is normal in $\mathrm{N}_{G}(P)$.

Our first main result is:
Theorem 2. The minimal non- $\mathcal{Y}_{p}$-groups are just the minimal non-PST-groups with a non-trivial normal Sylow p-subgroup. Such groups are of the types described in I to IV below. Let $p$ and $q$ be distinct primes.

Type I: $G=[P] Q$, where $P=\langle a, b\rangle$ is an elementary abelian group of order $p^{2}, Q=\langle z\rangle$ is cyclic of order $q^{r}$, with $q$ a prime such that $q^{f}$ divides $p-1$, $q^{f}>1$ and $r \geq f$, and $a^{z}=a^{i}, b^{z}=b^{i^{j}}$, where $i$ is the least positive primitive $q^{f}$-th root of unity modulo $p$ and $j=1+k q^{f-1}$, with $0<k<q$.
Type II: $G=[P] Q$, where $Q=\langle z\rangle$ is cyclic of order $q^{r}>1$, with $q$ a prime not dividing $p-1$ and $P$ an irreducible $Q$-module over the field of $p$ elements with centralizer $\left\langle z^{q}\right\rangle$ in $Q$.
Type III: $G=[P] Q$, where $P=\left\langle a_{0}, a_{1}, \ldots, a_{q-1}\right\rangle$ is an elementary abelian p-group of order $p^{q}, Q=\langle z\rangle$ is cyclic of order $q^{r}$, with $q$ a prime such that $q^{f}$ is the highest power of $q$ dividing $p-1$ and $r>f$. Define $a_{j}^{z}=a_{j+1}$ for $0 \leq j<q-1$ and $a_{q-1}^{z}=a_{0}^{i}$, where $i$ is a primitive $q^{f}$-th root of unity modulo $p$.
Type IV: $G=[P] Q$, where $P$ is a non-abelian special p-group of rank $2 m$, the order of $p$ modulo $q$ being $2 m, Q=\langle z\rangle$ is cyclic of order $q^{r}>1, z$ induces an automorphism in $P$ such that $P / \Phi(P)$ is a faithful irreducible $Q$-module, and $z$ centralizes $\Phi(P)$. Furthermore, $|P / \Phi(P)|=p^{2 m}$ and $\left|P^{\prime}\right| \leq p^{m}$.
Since a group is a soluble $P S T$-group if and only if it belongs to $\mathcal{Y}_{p}$ for all primes $p$ [2, Theorem 4], Theorem 2 may be regarded as a local approach to the third author's classification of minimal non-PST-groups 13 .

An interesting consequence of Theorem 2 is the following classification of Schmidt groups. In order to describe the classification, we must introduce one further type of group:

Type V: $G=[P] Q$, where $P=\langle a\rangle$ is a normal subgroup of order $p, Q=\langle z\rangle$ is cyclic of order $q^{r}>1$, and $a^{z}=a^{i}$, where $i$ is the least primitive $q$-th root of unity modulo $p$.
Our main result can now be stated as:
Theorem 3. The Schmidt groups are exactly the groups of Type II, Type IV and Type V.

Our next result shows that $p$-soluble groups with Sylow $p$-subgroups isomorphic to a normal subgroup of a minimal non- $\mathcal{Y}_{p}$-group have a restricted structure.

Theorem 4. Let $G$ be a p-soluble group with a Sylow p-subgroup P. If $P$ is isomorphic to a non-trivial normal Sylow subgroup of a minimal non- $\mathcal{Y}_{p}$-group, then $G$ has p-length 1 .

In [4] Gol'fand stated the following result:
Theorem 5. Let $p$ and $q$ be distinct primes, let $r$ be a given positive integer, and let $a$ be the order of $p$ modulo $q$. Then there is a unique minimal non-p-nilpotent group $G_{0}$ of order $p^{a_{0}} q^{r}$, where $a_{0}=a$ if $a$ is odd and $a_{0}=3 a / 2$ if $a$ is even, such
that all minimal non-p-nilpotent groups of order $p^{t} q^{r}$ are isomorphic to quotients of $G_{0}$ by central subgroups.

Only a sketch of a proof of this theorem is given in Golfand's article. In Section 3, we show how to construct the Schmidt groups of Gol'fand, and we also give a complete proof of Theorem 5. We remark that Rédei [11] has given another construction of the Schmidt groups of maximum order.

## 2. Proofs of Theorems 2, 3 and 4

Proof of Theorem 2. Assume that $G$ is a minimal non- $\mathcal{Y}_{p}$-group and let $P$ be a Sylow $p$-subgroup of $G$. Since $G$ does not belong to $\mathcal{Y}_{p}$, there exist subgroups $H$ and $K$ of $P$ such that $H \leq K$ and $H$ is not S-permutable in $\mathrm{N}_{G}(K)$. Consequently there is an element $z \in \mathrm{~N}_{G}(K)$ such that $z$ does not normalise $H$. Here it can be assumed that $z$ has order $q^{r}$ for some prime $q \neq p$. Then $G=K\langle z\rangle$ because $G$ is a minimal non- $\mathcal{Y}_{p}$-group. This implies that $K=P$ is a normal Sylow $p$-subgroup of $G$ and $Q=\langle z\rangle$ is a cyclic Sylow $q$-subgroup of $G$. Then $G$ is not a PST-group, yet every proper subgroup has $\mathcal{Y}_{p}$ and $\mathcal{Y}_{q}$, and thus is a $P S T$-group by [2].

Conversely, if $G$ is a minimal non- $P S T$-group, then $G$ does not have $\mathcal{Y}_{p}$ for some prime $p$. Since all its proper subgroups satisfy $\mathcal{Y}_{p}$, the group $G$ is a minimal non-$\mathcal{Y}_{p}$-group. The classification of minimal non- $P S T$-groups given in 13 completes the proof. (Note that the groups of Types IV and V of [13] are both of Type IV above.)

Proof of Theorem 3, Let $G$ be a minimal non-nilpotent group. Then $G$ is a minimal non- $p$-nilpotent group for some prime $p$. Suppose that $G$ is not a $\mathcal{Y}_{p}$-group, so that $G$ is a minimal non- $\mathcal{Y}_{p^{-}}$group. By Theorem 2 , the group $G$ is of one of Types I-IV. By examining the group structure, we see that groups of Type I and III are not minimal non- $p$-nilpotent. Therefore $G$ must be of Type II or IV.

Assume now that $G$ belongs to $\mathcal{Y}_{p}$. Then by [1, Theorem A] and [3, VII, 6.18], the $p$-nilpotent residual $P$ of $G$ is an abelian minimal normal Sylow subgroup which is complemented in $G$ by a cyclic Sylow $q$-subgroup $Q$. Moreover $Q$ normalises each subgroup of $P$. This implies that $P$ is cyclic of order $p$, say $P=\langle a\rangle$. In addition, $a^{z}=a^{i}$ for some $0<i<p$ and $z^{q}$ centralizes $a$. This implies that $i$ must be a primitive $q$-th root of unity modulo $p$ and, by taking a suitable power of $z$ as a generator of $Q$, we can assume that $i$ is the least such positive integer. Hence $G$ is of Type V.
Proof of Theorem 4. Assume that $G$ is a $p$-soluble group with $p$-length $>1$ and $G$ has least order subject to possessing a Sylow $p$-subgroup $P$ which is isomorphic to a non-trivial normal Sylow subgroup of a Schmidt group. By [6, VI, 6.10], we conclude that $P$ is not abelian. Thus $P$ is a Sylow $p$-subgroup of a group of Type IV in Theorem 2. By minimality of order $\mathrm{O}_{p^{\prime}}(G)=1$ and $\mathrm{O}^{p^{\prime}}(G)=G$. In addition, since the class of groups of $p$-length at most 1 is a saturated formation, we have $\Phi(G)=1$ and hence $G$ has a unique minimal normal subgroup which is an elementary abelian $p$-group. Let $D=\mathrm{O}_{p}(G)$; then $D$ is a non-trivial elementary abelian group and $\mathrm{C}_{G}(D)=D$. Moreover $\Phi(P)=\mathrm{Z}(P) \leq D$ and so $P / D$ is elementary abelian.

Let $T$ be the subgroup defined by $T / D=\mathrm{O}_{p^{\prime}}(G / D)$. Since $P / D$ is an elementary abelian $p$-group, $G / D$ has $p$-length at most 1 by [6, VI, 6.10]. It follows that $(T / D)(P / D)$ is a normal subgroup of $G / D$. Therefore $T P$ is a normal subgroup of
$G$. Assume that $T P$ is a proper subgroup of $G$. Now $\mathrm{O}_{p^{\prime}}(T P) \leq \mathrm{O}_{p^{\prime}}(G)=1$, so $P$ is a normal subgroup of $T P$ and hence of $G$, a contradiction which shows that $G=T P$.

Assume now that $P / D$ is a non-cyclic elementary abelian group. By [8, X, 1.9], we have $T / D=\left\langle\mathrm{C}_{T / D}(x D) \mid x D \in P / D, x D \neq D\right\rangle$. Let $x \in P \backslash D$. Since $P / D$ centralizes $x D$, we have $P / D \leq \mathrm{N}_{G / D}\left(\mathrm{C}_{T / D}(x D)\right)$. Let $T_{x} / D=\mathrm{C}_{T / D}(x D)$. Assume that $P T_{x}=G$; then $T_{x}=T$ is a normal subgroup of $G$ and thus $\mathrm{O}_{p^{\prime}}(G / D)=T_{x} / D$. This implies that $\langle x\rangle D / D \leq \mathrm{Z}(G / D)$ and $\langle x\rangle D$ is a normal $p$-subgroup of $G$, so that $\langle x\rangle D$ is contained in $D$, a contradiction. Consequently $P T_{x}$ is a proper subgroup of $G$ for all $1 \neq x D \in P / D$. Hence $P T_{x}$ has $p$-length at most 1 by minimality of $G$. Since $\mathrm{C}_{G}(D)=D$ and $\mathrm{O}_{p^{\prime}}\left(P T_{x}\right)$ centralizes $D$, we conclude that $\mathrm{O}_{p^{\prime}}\left(P T_{x}\right)=1$. Therefore $P$ is a normal subgroup of $P T_{x}$, which shows that $T$ normalizes $P$ and thus $P$ is a normal subgroup of $G$. This contradiction shows that $P / D$ is cyclic.

Since $P$ has class 2, we see from [7, IX, 5.5] that, if $p>3$, then $G$ has $p$-length at most 1. Therefore $p \leq 3$. Let $X$ be a minimal non- $\mathcal{Y}_{p}$-group such that $P$ is a Sylow $p$-subgroup of $X$. Note that $P / \Phi(P)$ is an irreducible $X$-module. In particular $D$, the subgroup of the previous paragraphs, is not normal in $X$ and so $P=D D^{g}$ for some $g \in X$. Since $D$ is abelian, $D \cap D^{g} \leq Z(P)=\Phi(P)$, and it follows that $P / \Phi(P)$ has order $p^{2}$. This implies that $P$ is an extra-special group of order $p^{3}$. If $p=2$, then, since $C_{G}(D)=D$, we see that $G$ must be a symmetric group of degree 4. Hence $P$ is dihedral of order 8 , which cannot lead to a group of Type IV since $\operatorname{Aut}(P)$ is a 2 -group. Hence $p=3$. But a non-abelian group of order $3^{3}$ cannot occur as the normal Sylow 3 -subgroup of a Schmidt group, because the only prime divisor of $3^{2}-1$ is 2 and the order of 3 modulo 2 is 1 . This contradiction completes the proof of the theorem.

## 3. The construction of Gol'fand's groups and a proof of Gol'fand's theorem

We begin by constructing groups of Type IV with a Sylow $p$-subgroup $P$ of order $p^{3 m}$ and $|P / \Phi(P)|=p^{2 m}$. These groups were constructed in [13] by a different method, but the present approach is more convenient when $p=2$. We will use the following result on linear operators.

Lemma 6. Let $p$ be a prime and let $r$ be a positive integer such that $\operatorname{gcd}(p, r)=$ 1. Let $\beta$ be a linear operator of order $p^{u} r$ on a vector space $V$ over the field of p-elements, where $u$ is a non-negative integer. If $\beta$ has irreducible minimum polynomial $f$, then $\beta^{p^{u}}$ also has minimum polynomial $f$.
Proof. Let $g$ be the minimum polynomial of $\beta^{p^{u}}$. Now $f\left(\beta^{p^{u}}\right)=f(\beta)^{p^{u}}=0$, so that $g$ divides $f$. Since $f$ is irreducible, $f=g$.

Construction 7. Let $p$ and $q$ be distinct primes such that the order of $p$ modulo $q$ is $2 m, m \geq 1$. Let $F$ be the free group with basis $\left\{f_{0}, f_{1}, \ldots, f_{2 m-1}\right\}$. Write $R=F^{\prime} F^{p}$ and $R^{*}=[F, R] R^{p}$. Then $F / R$ is an elementary abelian $p$-group of order $p^{2 m}$ and $H=F / R^{*}$ is a $p$-group such that $R / R^{*}=\Phi(H)$ is an elementary abelian $p$-group contained in $\mathrm{Z}(H)$. Moreover $H$ is a non-abelian group because an extra-special group of order $p^{2 m+1}$ is an epimorphic image of $H$.

Denote by $g_{i}$ the image of $f_{i}$ under the natural epimorphism of $F$ onto $H=$ $F / R^{*}, 0 \leq i \leq 2 m-1$. Since $H$ has class 2 , we know that $\Phi(H)$ is generated by all $\left[g_{i}, g_{j}\right]$, with $i<j$, and $g_{i}^{p}$. Therefore $\Phi(H)$ has dimension as $\operatorname{GF}(p)$-vector space
at most $\frac{1}{2}(2 m(2 m-1))+2 m=m(2 m+1)$. Assume that the dimension is less than $m(2 m+1)$. Then there exists an element

$$
r=\prod_{j}\left(f_{j}^{p}\right)^{\lambda_{j}} \prod_{j<k}\left[f_{j}, f_{k}\right]^{\mu_{j k}} \in R^{*}
$$

with some $\lambda_{j}$ or $\mu_{j k}$ not divisible by $p$. It is clear that $p \mid \lambda_{j}$ for all $j$ since $F^{p} F^{\prime} / F^{\prime}$ is a free abelian group with basis $\left\{f_{j}^{p} F^{\prime} \mid 0 \leq j \leq 2 m-1\right\}$. Suppose that $p \nmid \mu_{i k}$ for some $i<k$ and let $\rho_{i}$ be the endomorphism of $F$ defined by $f_{i}^{\rho_{i}}=f_{i}^{2}, f_{l}^{\rho_{i}}=f_{l}$ for $l \neq i$. Then $r^{\rho_{i}} R^{*}=R^{*}$ and so $r^{\rho_{i}} r^{-1} R^{*}=R^{*}$. This implies that

$$
w=\prod_{j<i}\left[f_{j}, f_{i}\right]^{\mu_{j i}} \prod_{i<l}\left[f_{i}, f_{l}\right]^{\mu_{i l}} \in R^{*} .
$$

On the other hand, by applying $\rho_{k}$ we find that

$$
w^{\rho_{k}} w^{-1} R^{*}=\left[f_{i}, f_{k}\right]^{\mu_{i k}} R^{*}=R^{*}
$$

Since $p \nmid \mu_{i k}$, it follows that $\mu_{i k}$ has an inverse modulo $p$. This means that $\left[f_{i}, f_{k}\right] \in$ $R^{*}$. Now since permutations of the generators of $F$ induce endomorphisms in $F$ and $R^{*}$ is fully invariant, it follows that $F^{\prime} \leq R^{*}$ and $H$ is abelian, a contradiction. Therefore $\Phi(H)$ has dimension $m(2 m+1)$ and so $|\Phi(H)|=p^{m(2 m+1)}$.

Let $f(t)=c_{0}+c_{1} t+\cdots+c_{2 m-1} t^{2 m-1}+t^{2 m}$ be an irreducible factor of the cyclotomic polynomial of order $q$ over $\operatorname{GF}(p)$ and let $\alpha$ be the endomorphism of $F$ given by $f_{i}^{\alpha}=f_{i+1}$ for $0 \leq i \leq 2 m-2, f_{2 m-1}^{\alpha}=f_{0}^{-c_{0}} f_{1}^{-c_{1}} \cdots f_{2 m-1}^{-c_{2 m-1}}$. Since $R^{*}$ is a fully invariant subgroup of $F$, it follows that $\alpha$ induces an endomorphism $\beta$ on $H=F / R^{*}$. In turn, $\beta$ induces an automorphism $\bar{\beta}$ on $H / \Phi(H)$. Since $H / \Phi(H)=(H / \Phi(H))^{\bar{\beta}} \leq H^{\beta} \Phi(H) / \Phi(H)$, it follows that $H=H^{\beta} \Phi(H)$, whence $H=H^{\beta}$. Consequently $\beta$ is an automorphism of $H$.

It is clear that $\beta$ induces the linear operator $\bar{\beta}$, with minimum polynomial $f$, on the vector space $H / \Phi(H)$. Now by [6, III, 3.18], we conclude that $\beta^{q}$ has order $p^{u}$ for a some $u$ and hence $\beta$ has order $p^{u} q$. By Lemma 6, there is a $\operatorname{GF}(p)$-basis $\left\{g_{0}^{\prime}, g_{1}^{\prime}, \ldots, g_{2 m-1}^{\prime}\right\}$ of $H / \Phi(H)$, where $g_{i}^{\prime}=g_{i} \Phi(H)$, such that $g_{i}^{\bar{\beta}^{p^{u}}}=g_{i+1}^{\prime}$ for $0 \leq i \leq 2 m-2$ and $g_{2 m-1}^{\prime \bar{\beta}^{p^{u}}}=g_{0}^{\prime-c_{0}} g_{1}^{\prime-c_{1}} \cdots g_{2 m-1}^{\prime-c_{2 m-1}}$. Hence we can replace $\beta$ by $\beta^{p^{u}}$ and assume without loss of generality that $\beta$ has order $q$.

It follows that $\Phi(H)$ is a $\operatorname{GF}(p) T$-module, where $T=\langle\beta\rangle$ is a cyclic group of order $q$. By Maschke's Theorem $\Phi(H)$ is a direct sum of irreducible $T$-modules. Let $N$ be the sum of all non-trivial irreducible submodules in the direct decomposition and write $P=H / N$. It is clear that $N$ is $\beta$-invariant and therefore $\beta$ induces an automorphism $\gamma$ of order $q$ in $P$. Let $Q=\langle z\rangle$ be a cyclic group of order $q^{r}$ acting on $P$ via $z \mapsto \gamma$. Let $G=[P] Q$ be the corresponding semidirect product.

It is easily checked that $G$ is a Schmidt group. Next we show that $P$ has order $p^{3 m}$. From Theorem [3 we see that $\Phi(P)$ has order at most $p^{m}$, where $|P / \Phi(P)|=p^{2 m}$. On the other hand, $|\Phi(H)|=p^{m(2 m+1)}$, and $N$ has order a power of $p^{2 m}$ because every faithful irreducible $\langle\beta\rangle$-module over $\operatorname{GF}(p)$ has dimension $2 m$. Therefore $|\Phi(P)|=p^{m}$.

Remark 8. In the group of Construction 7, we may assume that $\bar{g}_{2 m-1}^{z}=\bar{g}_{0}^{-c_{0}} \bar{g}_{1}^{-c_{1}}$ $\cdots \bar{g}_{2 m-1}^{-c_{2 m-1}}$, where $\bar{g}_{i}=g_{i} N$.

Proof. We know that $\bar{g}_{2 m-1}^{z}=\bar{g}_{0}^{-c_{0}} \bar{g}_{1}^{-c_{1}} \cdots \bar{g}_{2 m-1}^{-c_{2 m-1}} \bar{w}$, where $\bar{w} \in \Phi(P)$. Since $f(t)$ is irreducible, 1 is not a root of $f(t)$ and it follows that $c=c_{0}+c_{1}+\cdots+c_{2 m-1}+1 \not \equiv 0$
$(\bmod p)$. Consequently there exists an integer $d$ such that $c d \equiv-1(\bmod p)$. Put $\bar{w}_{0}=\bar{w}^{d}$ and consider the automorphism $\delta$ of $P$ defined by $\bar{g}_{i}^{\delta}=\bar{g}_{i} \bar{w}_{0}$ for $0 \leq i \leq$ $2 m-1$. If we write $\gamma_{0}=\delta \gamma \delta^{-1}$, it is easily checked by an elementary calculation that $\bar{g}_{i}^{\gamma_{0}}=\bar{g}_{i+1}$ for $0 \leq i \leq 2 m-2$, and $\bar{g}_{2 m-1}^{\gamma_{0}}=\bar{g}_{0}^{-c_{0}} \bar{g}_{1}^{-c_{1}} \cdots \bar{g}_{2 m-1}^{-c_{2 m-1}}$. Let $\left\langle z_{0}\right\rangle$ be a cyclic group of order $q^{r}$, with $z_{0}$ acting on $P$ via $z_{0} \mapsto \gamma_{0}$. Since $\left\langle z_{0}\right\rangle$ and $\langle z\rangle$ are conjugate in $\operatorname{Aut}(P)$, it follows by [3, B, 12.1] that the groups $P\langle z\rangle$ and $P\left\langle z_{0}\right\rangle$ are isomorphic.

Remark 9. The group in Construction 7 does not depend on the choice of irreducible factor $f(t)$.

Proof. Assume that the group $G_{1}=\left[P_{1}\right]\left\langle z_{1}\right\rangle$ has been constructed by using another irreducible factor $g(t)$ of the cyclotomic polynomial of order $q$ over $\operatorname{GF}(p)$. Since $G$ and $G_{1}$ have the same order, it will be enough to find a set of generators of $G_{1}$ for which the relations of $G$ hold. Since $z$ centralizes $\Phi(P)$ and $z_{1}$ centralizes $\Phi\left(P_{1}\right)$, we have $G / \Phi(P) \cong[P / \Phi(P)]\langle z\rangle$ and $G_{1} / \Phi\left(P_{1}\right) \cong\left[P_{1} / \Phi\left(P_{1}\right)\right]\left\langle z_{1}\right\rangle$. But $P / \Phi(P)$ and $P_{1} / \Phi\left(P_{1}\right)$ are faithful irreducible modules for a cyclic group of order $q$. Therefore $[P / \Phi(P)]\left(\langle z\rangle /\left\langle z^{q}\right\rangle\right)$ is isomorphic to $\left[P_{1} / \Phi\left(P_{1}\right)\right]\left(\left\langle z_{1}\right\rangle /\left\langle z_{1}^{q}\right\rangle\right)$ by [3, B, 12.4]. Let $\phi$ be an isomorphism between these groups. Then it is clear that $\phi$ induces an isomorphism $\psi$ between $G / \Phi(P)$ and $G_{1} / \Phi\left(P_{1}\right)$.

Let $\bar{h}_{i}=h_{i} \Phi(P), 0 \leq i \leq 2 m-1$. Put $\bar{k}_{i}=\bar{h}_{i}^{\psi}$ and $\bar{u}=\bar{z}^{\psi}$. We show how to extend the isomorphism $\psi$ to an isomorphism between $G$ and $G_{1}$. In order to do so, we choose representatives $k_{i}$ of $\bar{k}_{i}$ and $u$ of $\bar{u}$ such that the order of $u$ is $q^{r}$. There is no loss of generality in assuming that $k_{i}^{u}=k_{i+1}$ for $0 \leq i \leq 2 m-2$. Indeed, if $k_{i}^{u}=k_{i+1} w_{i+1}$ with $w_{i+1} \in \Phi\left(P_{1}\right)$, then $k_{i}^{\prime}=k_{i} w_{i} \cdots w_{1}$ for $1 \leq i \leq 2 m-1, k_{0}^{\prime}=k_{0}$ are representatives of $\bar{k}_{i}$ and $k_{i}^{\prime u}=k_{i+1}^{\prime}$ for $1 \leq i \leq 2 m-1$ because $u$ centralizes $\Phi\left(P_{1}\right)$. By using the same argument as in Remark [8, we may also assume that $k_{2 m-1}^{u}=k_{0}^{-c_{0}} k_{1}^{-c_{1}} \cdots k_{2 m-1}^{-c_{2 m-1}}$. Therefore $G$ and $G_{1}$ satisfy the same relations and by Von Dyck's theorem they are isomorphic.

Remark 10. In Construction 7 it is not necessary to assume that $\beta$ has order $q$. Indeed, it can be proved that $\beta^{q}$ fixes all elements of $\Phi(H)$ and that the automorphism $\gamma$ induced by $\beta$ in $H / N$ has order $q$.

Gol'fand's result (Theorem (5) can be recovered with the help of Construction 7 and Theorem 3 ,
Proof of Theorem 5. Let $p$ and $q$ be distinct primes and let $a$ be the order of $p$ modulo $q$. Then $a$ is the dimension of each non-trivial irreducible module for a cyclic group of order $q$ over $\operatorname{GF}(p)$. Assume that $a$ is odd. Then every Schmidt group $G$ with a normal Sylow $p$-subgroup $P$ such that $|P / \Phi(P)|=p^{a}$ is of Type II or Type V. Then the theorem holds in this case because all Schmidt groups of the same type with isomorphic Sylow $q$-subgroups are actually isomorphic.

Assume now that $a$ is even, with say $a=2 m$. Then we are dealing with Schmidt groups of Type II or Type IV. Let $G_{0}$ be the group of Construction 7 . Then $\left|G_{0}\right|=p^{3 m} q^{r}$ and $\left|P_{0} / \Phi\left(P_{0}\right)\right|=p^{2 m}$, where $P_{0}$ is a normal Sylow $p$-subgroup of $G_{0}$. It is clear that $G_{0} / \Phi\left(P_{0}\right)$ is a Schmidt group of Type II. Therefore, if $G$ is a Schmidt group of Type II with order $p^{t} q^{r}$ and a normal Sylow $p$-subgroup, then $G \cong G_{0} / \Phi\left(P_{0}\right)$ and $\Phi\left(P_{0}\right) \leq \mathrm{Z}\left(G_{0}\right)$. Consequently, we need only show that all Schmidt groups of Type IV and order $p^{t} q^{r}, t \leq 3 m$, which have a normal Sylow $p$-subgroup are isomorphic to quotients of $G_{0}$ by central subgroups.

Let $\bar{G}$ be a Schmidt group of Type IV and order $p^{t} q^{r}$ with a normal Sylow $p$ subgroup $\bar{P}$. Then $G_{0} / \Phi\left(P_{0}\right)$ and $\bar{G} / \Phi(\bar{P})$ are isomorphic. Let us choose generators $z$ and $\bar{z}$ of Sylow $q$-subgroups $Q$ of $G_{0}$ and $\bar{Q}$ of $\bar{G}$ such that the minimum polynomials of the actions of $z$ on $P_{0} / \Phi\left(P_{0}\right)$ and $\bar{z}$ on $\bar{P} / \Phi(\bar{P})$ coincide. Also choose generators $g_{0}, g_{1}, \ldots, g_{2 m-1}$ of the Sylow $p$-subgroup $P_{0}$ of $G_{0}$ and generators $\bar{g}_{0}$, $\bar{g}_{1}, \ldots, \bar{g}_{2 m-1}$ of the Sylow $p$-subgroup $\bar{P}$ of $\bar{G}$ such that $g_{j}^{z}=g_{j+1}$ and $\bar{g}_{j}^{\bar{z}}=\bar{g}_{j+1}$ for $0 \leq j \leq 2 m-2$. Since $\Phi\left(P_{0}\right)=P_{0}^{\prime}$ and $\Phi(\bar{P})=\bar{P}^{\prime}$, and both $P_{0}$ and $\bar{P}$ have class 2 , the subgroup $\Phi\left(P_{0}\right)$ can be generated by the commutators $\left[g_{i}, g_{j}\right]$, while $\Phi(\bar{P})$ is generated by the commutators $\left[\bar{g}_{i}, \bar{g}_{j}\right]$. On the other hand, if $u_{i}=\left[g_{0}, g_{0}^{z^{i}}\right]$, we have $u_{i}=u_{i}^{z^{k}}=\left[g_{k}, g_{k}^{z^{i}}\right]$. It is easy to see that $u_{i}=\left[g_{0}, g_{0}^{z^{i}}\right]=\left[g_{0}^{z^{q}}, g_{0}^{z^{i}}\right]=u_{q-i}^{-1}$.

Observe that $q$ is odd since $2 m$ divides $q-1$ : write $q=2 s+1$. By definition of the $g_{i}$ and $u_{i}$, and use of the minimum polynomial of the action of $z$ on $P_{0} / \Phi\left(P_{0}\right)$, it may be shown that for $l \geq 1$,

$$
u_{s+m+l}=u_{s-m+l}^{-c_{0}} u_{s-m+l+1}^{-c_{1}} \ldots u_{s+m+l-2}^{-c_{2 m-2}} u_{s+m+l-1}^{-c_{2 m-1}} .
$$

Now this formula and the relations $u_{i}=u_{q-i}^{-1}$ allow us to show by induction that each $u_{s+m+l}$ can be expressed in terms of elements of the set $B=\left\{u_{s-m+l}\right.$, $\left.u_{s-m+2}, \ldots, u_{s}\right\}$. Since $\Phi\left(P_{0}\right)$ has dimension $m$ over $\operatorname{GF}(p)$, this expression is unique. It follows that each $u_{j}$ can be uniquely expressed in terms of the elements of $B$, and so this is also true for each generator of $\Phi\left(P_{0}\right)$. The same argument shows that the generators of $\Phi(\bar{P})$ have a similar unique expression subject to the same relations.

The arguments of Remark 9 allow us to assume that

$$
g_{2 m-1}^{z}=g_{0}^{-c_{0}} g_{1}^{-c_{1}} \cdots g_{2 m-1}^{-c_{2 m-1}} \text { and } \bar{g}_{2 m-1}^{\bar{z}}=\bar{g}_{0}^{-c_{0}} \bar{g}_{1}^{-c_{1}} \cdots \bar{g}_{2 m-1}^{-c_{2 m-1}}
$$

Consequently, all relations of $G_{0}$ are satisfied by $\bar{G}$. By Von Dyck's theorem, it follows that $\bar{G}$ is an epimorphic image of $G_{0}$ by a central subgroup of $G_{0}$.

## References

[1] A. Ballester-Bolinches and R. Esteban-Romero. Sylow permutable subnormal subgroups of finite groups II. Bull. Austral. Math. Soc., 64(3):479-486, 2001. MR. 1878899 (2002k:20035)
[2] A. Ballester-Bolinches and R. Esteban-Romero. Sylow permutable subnormal subgroups of finite groups. J. Algebra, 251(2):727-738, 2002. MR1917388 (2003f:20031)
[3] K. Doerk and T. Hawkes. Finite Soluble Groups. De Gruyter Expositions in Mathematics. W. de Gruyter, Berlin, New York, 1992. MR1169099 (93k:20033)
[4] Ju. A. Gol'fand. On groups all of whose subgroups are special. Doklady Akad. Nauk SSSR, 60:1313-1315, 1948 (Russian). MR0024899 (9:565e)
[5] B. Huppert. Zur Sylowstruktur auflösbarer Gruppen. Arch. Math., 12:161-169, 1961. MR0142641 (26:210)
[6] B. Huppert. Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967. MR0224703 (37:302)
[7] B. Huppert and N. Blackburn. Finite Groups II, Springer-Verlag, Berlin, Heidelberg, New York, 1982. MR0650245 (84i:20001a)
[8] B. Huppert and N. Blackburn. Finite Groups III, Springer-Verlag, Berlin, Heidelberg, New York, 1982. MR0662826 (84i:20001b)
[9] N. Itô. Note on (LM)-groups of finite order. Technical report, Kodai Math. Seminar Report, 1951.
[10] G. A. Miller and H. C. Moreno. Nonabelian groups in which every subgroup is abelian. Trans. Amer. Math. Soc., 4:398-404, 1903. MR 1500650
[11] L. Rédei. Die endlichen einstufig nichtnilpotenten Gruppen. Publ. Math. Debrecen, 4:303-324, 1956. MR0078998(18:12f)
[12] D. J. S. Robinson. Groups which are minimal with respect to normality being intransitive. Pacific J. Math., 31:777-785, 1969. MR0258943 (41:3588)
[13] D. J. S. Robinson. Minimality and Sylow-permutability in locally finite groups. Ukr. Math. J., 54(6):1038-1049, 2002. MR1956642 (2003k:20054)
[14] O. J. Schmidt. Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Mat. Sbornik, 31:366-372, 1924.

Departament D'Àlgebra, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot, València, Spain

E-mail address: Adolfo.Ballester@uv.es
Departament de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, E-46022 València, Spain

E-mail address: resteban@mat.upv.es
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801

E-mail address: robinson@math.uiuc.edu


[^0]:    Received by the editors December 12, 2003 and, in revised form, July 16, 2004.
    2000 Mathematics Subject Classification. Primary 20D10.
    This work was supported by Proyecto BFM2001-1667-C03-03 (MCyT) and FEDER (European Union).

