
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 133, Number 12, Pages 3455–3462
S 0002-9939(05)07996-7
Article electronically published on June 8, 2005

ON FINITE MINIMAL NON-NILPOTENT GROUPS

A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO, AND DEREK J. S. ROBINSON

(Communicated by Jonathan I. Hall)

Abstract. A critical group for a class of groups X is a minimal non-X-group.
The critical groups are determined for various classes of finite groups. As a
consequence, a classification of the minimal non-nilpotent groups (also called
Schmidt groups) is given, together with a complete proof of Gol’fand’s theorem
on maximal Schmidt groups.

1. Introduction

Given a class of groups X, we say that a group G is a minimal non-X-group,
or an X-critical group, if G /∈ X, but all proper subgroups of G belong to X. It is
clear that detailed knowledge of the structure of minimal non-X-groups can provide
insight into what makes a group belong to X. All groups considered in this paper
are finite

Minimal non-X-groups have been studied for various classes of groups X. For
instance, minimal non-abelian groups were analysed by Miller and Moreno [10],
while Schmidt [14] studied minimal non-nilpotent groups. The latter are now known
as Schmidt groups. Itô [9] considered the minimal non-p-nilpotent groups for p a
prime, which turn out to be just the Schmidt groups. Finally, the third author [12]
characterised the minimal non-T -groups (T -groups are groups in which normality
is a transitive relation). He also characterised in [13] the minimal non-PST -groups,
where a PST -group is a group in which Sylow permutability is a transitive relation.

The aim of this paper is to give more precise information about the structure
of Schmidt groups and show how to construct them in an efficient way. As a
consequence of our study, a new proof of a classical theorem of Gol’fand is given.

Our approach depends on the classification of critical groups for the class of PST -
groups given in [13]. Recall that a subgroup H is said to be Sylow-permutable, or
S-permutable, in a group G if H permutes with every Sylow subgroup of G. We
mention a similar class Yp, which was introduced in [2]. If p is a prime, a group
G belongs to the class Yp if G enjoys the following property: if H and K are p-
subgroups of G such that H is contained in K, then H is S-permutable in NG(K).
Clearly every PST -group is a Yp-group.

There is a close relation between the class of groups just introduced and p-
nilpotence, as in shown by the following result, which was proved in [2, Theorem 5].
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Theorem 1. A group G is a Yp-group if and only if either it is p-nilpotent or it
has an abelian Sylow p-subgroup P and every subgroup of P is normal in NG(P ).

Our first main result is:

Theorem 2. The minimal non-Yp-groups are just the minimal non-PST-groups
with a non-trivial normal Sylow p-subgroup. Such groups are of the types described
in I to IV below. Let p and q be distinct primes.

Type I: G = [P ]Q, where P = 〈a, b〉 is an elementary abelian group of order
p2, Q = 〈z〉 is cyclic of order qr, with q a prime such that qf divides p− 1,
qf > 1 and r ≥ f , and az = ai, bz = bij

, where i is the least positive
primitive qf -th root of unity modulo p and j = 1 + kqf−1, with 0 < k < q.

Type II: G = [P ]Q, where Q = 〈z〉 is cyclic of order qr > 1, with q a prime
not dividing p−1 and P an irreducible Q-module over the field of p elements
with centralizer 〈zq〉 in Q.

Type III: G = [P ]Q, where P = 〈a0, a1, . . . , aq−1〉 is an elementary abelian
p-group of order pq, Q = 〈z〉 is cyclic of order qr, with q a prime such that
qf is the highest power of q dividing p − 1 and r > f . Define az

j = aj+1

for 0 ≤ j < q − 1 and az
q−1 = ai

0, where i is a primitive qf -th root of unity
modulo p.

Type IV: G = [P ]Q, where P is a non-abelian special p-group of rank 2m,
the order of p modulo q being 2m, Q = 〈z〉 is cyclic of order qr > 1, z
induces an automorphism in P such that P/Φ(P ) is a faithful irreducible
Q-module, and z centralizes Φ(P ). Furthermore, |P/Φ(P )| = p2m and
|P ′| ≤ pm.

Since a group is a soluble PST -group if and only if it belongs to Yp for all
primes p [2, Theorem 4], Theorem 2 may be regarded as a local approach to the
third author’s classification of minimal non-PST -groups [13].

An interesting consequence of Theorem 2 is the following classification of Schmidt
groups. In order to describe the classification, we must introduce one further type
of group:

Type V: G = [P ]Q, where P = 〈a〉 is a normal subgroup of order p, Q = 〈z〉
is cyclic of order qr > 1, and az = ai, where i is the least primitive q-th
root of unity modulo p.

Our main result can now be stated as:

Theorem 3. The Schmidt groups are exactly the groups of Type II, Type IV and
Type V.

Our next result shows that p-soluble groups with Sylow p-subgroups isomorphic
to a normal subgroup of a minimal non-Yp-group have a restricted structure.

Theorem 4. Let G be a p-soluble group with a Sylow p-subgroup P . If P is iso-
morphic to a non-trivial normal Sylow subgroup of a minimal non-Yp-group, then
G has p-length 1.

In [4] Gol’fand stated the following result:

Theorem 5. Let p and q be distinct primes, let r be a given positive integer, and
let a be the order of p modulo q. Then there is a unique minimal non-p-nilpotent
group G0 of order pa0qr, where a0 = a if a is odd and a0 = 3a/2 if a is even, such
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that all minimal non-p-nilpotent groups of order ptqr are isomorphic to quotients
of G0 by central subgroups.

Only a sketch of a proof of this theorem is given in Golfand’s article. In Sec-
tion 3, we show how to construct the Schmidt groups of Gol’fand, and we also
give a complete proof of Theorem 5. We remark that Rédei [11] has given another
construction of the Schmidt groups of maximum order.

2. Proofs of Theorems 2, 3 and 4

Proof of Theorem 2. Assume that G is a minimal non-Yp-group and let P be a
Sylow p-subgroup of G. Since G does not belong to Yp, there exist subgroups H
and K of P such that H ≤ K and H is not S-permutable in NG(K). Consequently
there is an element z ∈ NG(K) such that z does not normalise H. Here it can be
assumed that z has order qr for some prime q �= p. Then G = K〈z〉 because G is
a minimal non-Yp-group. This implies that K = P is a normal Sylow p-subgroup
of G and Q = 〈z〉 is a cyclic Sylow q-subgroup of G. Then G is not a PST -group,
yet every proper subgroup has Yp and Yq, and thus is a PST -group by [2].

Conversely, if G is a minimal non-PST -group, then G does not have Yp for some
prime p. Since all its proper subgroups satisfy Yp, the group G is a minimal non-
Yp-group. The classification of minimal non-PST -groups given in [13] completes
the proof. (Note that the groups of Types IV and V of [13] are both of Type IV
above.) �
Proof of Theorem 3. Let G be a minimal non-nilpotent group. Then G is a minimal
non-p-nilpotent group for some prime p. Suppose that G is not a Yp-group, so that
G is a minimal non-Yp-group. By Theorem 2, the group G is of one of Types I–IV.
By examining the group structure, we see that groups of Type I and III are not
minimal non-p-nilpotent. Therefore G must be of Type II or IV.

Assume now that G belongs to Yp. Then by [1, Theorem A] and [3, VII, 6.18],
the p-nilpotent residual P of G is an abelian minimal normal Sylow subgroup which
is complemented in G by a cyclic Sylow q-subgroup Q. Moreover Q normalises each
subgroup of P . This implies that P is cyclic of order p, say P = 〈a〉. In addition,
az = ai for some 0 < i < p and zq centralizes a. This implies that i must be a
primitive q-th root of unity modulo p and, by taking a suitable power of z as a
generator of Q, we can assume that i is the least such positive integer. Hence G is
of Type V. �
Proof of Theorem 4. Assume that G is a p-soluble group with p-length > 1 and G
has least order subject to possessing a Sylow p-subgroup P which is isomorphic
to a non-trivial normal Sylow subgroup of a Schmidt group. By [6, VI, 6.10],
we conclude that P is not abelian. Thus P is a Sylow p-subgroup of a group of
Type IV in Theorem 2. By minimality of order Op′(G) = 1 and Op′

(G) = G. In
addition, since the class of groups of p-length at most 1 is a saturated formation,
we have Φ(G) = 1 and hence G has a unique minimal normal subgroup which is an
elementary abelian p-group. Let D = Op(G); then D is a non-trivial elementary
abelian group and CG(D) = D. Moreover Φ(P ) = Z(P ) ≤ D and so P/D is
elementary abelian.

Let T be the subgroup defined by T/D = Op′(G/D). Since P/D is an elementary
abelian p-group, G/D has p-length at most 1 by [6, VI, 6.10]. It follows that
(T/D)(P/D) is a normal subgroup of G/D. Therefore TP is a normal subgroup of
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G. Assume that TP is a proper subgroup of G. Now Op′(TP ) ≤ Op′(G) = 1, so
P is a normal subgroup of TP and hence of G, a contradiction which shows that
G = TP .

Assume now that P/D is a non-cyclic elementary abelian group. By [8, X, 1.9],
we have T/D = 〈CT/D(xD) | xD ∈ P/D, xD �= D〉. Let x ∈ P\D. Since P/D cen-
tralizes xD, we have P/D ≤ NG/D

(
CT/D(xD)

)
. Let Tx/D = CT/D(xD). Assume

that PTx = G; then Tx = T is a normal subgroup of G and thus Op′(G/D) = Tx/D.
This implies that 〈x〉D/D ≤ Z(G/D) and 〈x〉D is a normal p-subgroup of G, so that
〈x〉D is contained in D, a contradiction. Consequently PTx is a proper subgroup
of G for all 1 �= xD ∈ P/D. Hence PTx has p-length at most 1 by minimality of G.
Since CG(D) = D and Op′(PTx) centralizes D, we conclude that Op′(PTx) = 1.
Therefore P is a normal subgroup of PTx, which shows that T normalizes P and
thus P is a normal subgroup of G. This contradiction shows that P/D is cyclic.

Since P has class 2, we see from [7, IX, 5.5] that, if p > 3, then G has p-length at
most 1. Therefore p ≤ 3. Let X be a minimal non-Yp-group such that P is a Sylow
p-subgroup of X. Note that P/Φ(P ) is an irreducible X-module. In particular D,
the subgroup of the previous paragraphs, is not normal in X and so P = DDg

for some g ∈ X. Since D is abelian, D ∩ Dg ≤ Z(P ) = Φ(P ), and it follows that
P/Φ(P ) has order p2. This implies that P is an extra-special group of order p3. If
p = 2, then, since CG(D) = D, we see that G must be a symmetric group of degree
4. Hence P is dihedral of order 8, which cannot lead to a group of Type IV since
Aut(P ) is a 2-group. Hence p = 3. But a non-abelian group of order 33 cannot
occur as the normal Sylow 3-subgroup of a Schmidt group, because the only prime
divisor of 32−1 is 2 and the order of 3 modulo 2 is 1. This contradiction completes
the proof of the theorem. �

3. The construction of Gol’fand’s groups

and a proof of Gol’fand’s theorem

We begin by constructing groups of Type IV with a Sylow p-subgroup P of order
p3m and |P/Φ(P )| = p2m. These groups were constructed in [13] by a different
method, but the present approach is more convenient when p = 2. We will use the
following result on linear operators.

Lemma 6. Let p be a prime and let r be a positive integer such that gcd(p, r) =
1. Let β be a linear operator of order pur on a vector space V over the field
of p-elements, where u is a non-negative integer. If β has irreducible minimum
polynomial f , then βpu

also has minimum polynomial f .

Proof. Let g be the minimum polynomial of βpu

. Now f(βpu

) = f(β)pu

= 0, so
that g divides f . Since f is irreducible, f = g. �
Construction 7. Let p and q be distinct primes such that the order of p modulo
q is 2m, m ≥ 1. Let F be the free group with basis {f0, f1, . . . , f2m−1}. Write
R = F ′F p and R∗ = [F, R]Rp. Then F/R is an elementary abelian p-group of
order p2m and H = F/R∗ is a p-group such that R/R∗ = Φ(H) is an elementary
abelian p-group contained in Z(H). Moreover H is a non-abelian group because an
extra-special group of order p2m+1 is an epimorphic image of H.

Denote by gi the image of fi under the natural epimorphism of F onto H =
F/R∗, 0 ≤ i ≤ 2m− 1. Since H has class 2, we know that Φ(H) is generated by all
[gi, gj ], with i < j, and gp

i . Therefore Φ(H) has dimension as GF(p)-vector space
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at most 1
2 (2m(2m−1))+2m = m(2m+1). Assume that the dimension is less than

m(2m + 1). Then there exists an element

r =
∏

j

(fp
j )λj

∏

j<k

[fj , fk]µjk ∈ R∗

with some λj or µjk not divisible by p. It is clear that p | λj for all j since F pF ′/F ′

is a free abelian group with basis {fp
j F ′ | 0 ≤ j ≤ 2m − 1}. Suppose that p � µik

for some i < k and let ρi be the endomorphism of F defined by fρi

i = f2
i , fρi

l = fl

for l �= i. Then rρiR∗ = R∗ and so rρir−1R∗ = R∗. This implies that

w =
∏

j<i

[fj , fi]µji

∏

i<l

[fi, fl]µil ∈ R∗.

On the other hand, by applying ρk we find that

wρkw−1R∗ = [fi, fk]µikR∗ = R∗.

Since p � µik, it follows that µik has an inverse modulo p. This means that [fi, fk] ∈
R∗. Now since permutations of the generators of F induce endomorphisms in F
and R∗ is fully invariant, it follows that F ′ ≤ R∗ and H is abelian, a contradiction.
Therefore Φ(H) has dimension m(2m + 1) and so |Φ(H)| = pm(2m+1).

Let f(t) = c0 + c1t + · · · + c2m−1t
2m−1 + t2m be an irreducible factor of the

cyclotomic polynomial of order q over GF(p) and let α be the endomorphism of
F given by fα

i = fi+1 for 0 ≤ i ≤ 2m − 2, fα
2m−1 = f−c0

0 f−c1
1 · · · f−c2m−1

2m−1 . Since
R∗ is a fully invariant subgroup of F , it follows that α induces an endomorphism
β on H = F/R∗. In turn, β induces an automorphism β̄ on H/Φ(H). Since

H/Φ(H) =
(
H/Φ(H)

)β̄ ≤ HβΦ(H)/Φ(H), it follows that H = HβΦ(H), whence
H = Hβ . Consequently β is an automorphism of H.

It is clear that β induces the linear operator β̄, with minimum polynomial f ,
on the vector space H/Φ(H). Now by [6, III, 3.18], we conclude that βq has order
pu for a some u and hence β has order puq. By Lemma 6, there is a GF(p)-basis

{g′0, g′1, . . . , g′2m−1} of H/Φ(H), where g′i = giΦ(H), such that g′β̄
pu

i = g′i+1 for

0 ≤ i ≤ 2m − 2 and g′β̄
pu

2m−1 = g′−c0
0 g′−c1

1 · · · g′−c2m−1
2m−1 . Hence we can replace β by

βpu

and assume without loss of generality that β has order q.
It follows that Φ(H) is a GF(p)T -module, where T = 〈β〉 is a cyclic group of

order q. By Maschke’s Theorem Φ(H) is a direct sum of irreducible T -modules. Let
N be the sum of all non-trivial irreducible submodules in the direct decomposition
and write P = H/N . It is clear that N is β-invariant and therefore β induces an
automorphism γ of order q in P . Let Q = 〈z〉 be a cyclic group of order qr acting
on P via z �→ γ. Let G = [P ]Q be the corresponding semidirect product.

It is easily checked that G is a Schmidt group. Next we show that P has
order p3m. From Theorem 3 we see that Φ(P ) has order at most pm, where
|P/Φ(P )| = p2m. On the other hand, |Φ(H)| = pm(2m+1), and N has order a
power of p2m because every faithful irreducible 〈β〉-module over GF(p) has dimen-
sion 2m. Therefore |Φ(P )| = pm.

Remark 8. In the group of Construction 7, we may assume that ḡz
2m−1 = ḡ−c0

0 ḡ−c1
1

· · · ḡ−c2m−1
2m−1 , where ḡi = giN .

Proof. We know that ḡz
2m−1 = ḡ−c0

0 ḡ−c1
1 · · · ḡ−c2m−1

2m−1 w̄, where w̄ ∈ Φ(P ). Since f(t)
is irreducible, 1 is not a root of f(t) and it follows that c = c0+c1+· · ·+c2m−1+1 �≡ 0
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(mod p). Consequently there exists an integer d such that cd ≡ −1 (mod p). Put
w̄0 = w̄d and consider the automorphism δ of P defined by ḡδ

i = ḡiw̄0 for 0 ≤ i ≤
2m − 1. If we write γ0 = δγδ−1, it is easily checked by an elementary calculation
that ḡγ0

i = ḡi+1 for 0 ≤ i ≤ 2m− 2, and ḡγ0
2m−1 = ḡ−c0

0 ḡ−c1
1 · · · ḡ−c2m−1

2m−1 . Let 〈z0〉 be
a cyclic group of order qr, with z0 acting on P via z0 �→ γ0. Since 〈z0〉 and 〈z〉 are
conjugate in Aut(P ), it follows by [3, B, 12.1] that the groups P 〈z〉 and P 〈z0〉 are
isomorphic. �
Remark 9. The group in Construction 7 does not depend on the choice of irreducible
factor f(t).

Proof. Assume that the group G1 = [P1]〈z1〉 has been constructed by using another
irreducible factor g(t) of the cyclotomic polynomial of order q over GF(p). Since
G and G1 have the same order, it will be enough to find a set of generators of
G1 for which the relations of G hold. Since z centralizes Φ(P ) and z1 centralizes
Φ(P1), we have G/Φ(P ) ∼= [P/Φ(P )]〈z〉 and G1/Φ(P1) ∼= [P1/Φ(P1)]〈z1〉. But
P/Φ(P ) and P1/Φ(P1) are faithful irreducible modules for a cyclic group of order
q. Therefore [P/Φ(P )](〈z〉/〈zq〉) is isomorphic to [P1/Φ(P1)](〈z1〉/〈zq

1〉) by [3, B,
12.4]. Let φ be an isomorphism between these groups. Then it is clear that φ
induces an isomorphism ψ between G/Φ(P ) and G1/Φ(P1).

Let h̄i = hiΦ(P ), 0 ≤ i ≤ 2m − 1. Put k̄i = h̄ψ
i and ū = z̄ψ. We show how to

extend the isomorphism ψ to an isomorphism between G and G1. In order to do so,
we choose representatives ki of k̄i and u of ū such that the order of u is qr. There
is no loss of generality in assuming that ku

i = ki+1 for 0 ≤ i ≤ 2m − 2. Indeed, if
ku

i = ki+1wi+1 with wi+1 ∈ Φ(P1), then k′
i = kiwi · · ·w1 for 1 ≤ i ≤ 2m−1, k′

0 = k0

are representatives of k̄i and k′
i
u = k′

i+1 for 1 ≤ i ≤ 2m − 1 because u centralizes
Φ(P1). By using the same argument as in Remark 8, we may also assume that
ku
2m−1 = k−c0

0 k−c1
1 · · · k−c2m−1

2m−1 . Therefore G and G1 satisfy the same relations and
by Von Dyck’s theorem they are isomorphic. �
Remark 10. In Construction 7, it is not necessary to assume that β has order q. In-
deed, it can be proved that βq fixes all elements of Φ(H) and that the automorphism
γ induced by β in H/N has order q.

Gol’fand’s result (Theorem 5) can be recovered with the help of Construction 7
and Theorem 3.

Proof of Theorem 5. Let p and q be distinct primes and let a be the order of p
modulo q. Then a is the dimension of each non-trivial irreducible module for a
cyclic group of order q over GF(p). Assume that a is odd. Then every Schmidt
group G with a normal Sylow p-subgroup P such that |P/Φ(P )| = pa is of Type II or
Type V. Then the theorem holds in this case because all Schmidt groups of the same
type with isomorphic Sylow q-subgroups are actually isomorphic.

Assume now that a is even, with say a = 2m. Then we are dealing with Schmidt
groups of Type II or Type IV. Let G0 be the group of Construction 7. Then
|G0| = p3mqr and |P0/Φ(P0)| = p2m, where P0 is a normal Sylow p-subgroup of
G0. It is clear that G0/Φ(P0) is a Schmidt group of Type II. Therefore, if G is a
Schmidt group of Type II with order ptqr and a normal Sylow p-subgroup, then
G ∼= G0/Φ(P0) and Φ(P0) ≤ Z(G0). Consequently, we need only show that all
Schmidt groups of Type IV and order ptqr, t ≤ 3m, which have a normal Sylow
p-subgroup are isomorphic to quotients of G0 by central subgroups.
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Let G be a Schmidt group of Type IV and order ptqr with a normal Sylow p-
subgroup P̄ . Then G0/Φ(P0) and G/Φ(P ) are isomorphic. Let us choose generators
z and z̄ of Sylow q-subgroups Q of G0 and Q of G such that the minimum poly-
nomials of the actions of z on P0/Φ(P0) and z̄ on P/Φ(P ) coincide. Also choose
generators g0, g1, . . . , g2m−1 of the Sylow p-subgroup P0 of G0 and generators ḡ0,
ḡ1, . . ., ḡ2m−1 of the Sylow p-subgroup P of G such that gz

j = gj+1 and ḡz̄
j = ḡj+1

for 0 ≤ j ≤ 2m − 2. Since Φ(P0) = P ′
0 and Φ(P ) = P

′
, and both P0 and P have

class 2, the subgroup Φ(P0) can be generated by the commutators [gi, gj ], while
Φ(P ) is generated by the commutators [ḡi, ḡj ]. On the other hand, if ui = [g0, g

zi

0 ],
we have ui = uzk

i = [gk, gzi

k ]. It is easy to see that ui = [g0, g
zi

0 ] = [gzq

0 , gzi

0 ] = u−1
q−i.

Observe that q is odd since 2m divides q − 1: write q = 2s + 1. By definition of
the gi and ui, and use of the minimum polynomial of the action of z on P0/Φ(P0),
it may be shown that for l ≥ 1,

us+m+l = u−c0
s−m+l u

−c1
s−m+l+1 . . . u

−c2m−2
s+m+l−2 u

−c2m−1
s+m+l−1.

Now this formula and the relations ui = u−1
q−i allow us to show by induction that

each us+m+l can be expressed in terms of elements of the set B = {us−m+l,
us−m+2, . . . , us}. Since Φ(P0) has dimension m over GF(p), this expression is
unique. It follows that each uj can be uniquely expressed in terms of the elements
of B, and so this is also true for each generator of Φ(P0). The same argument
shows that the generators of Φ(P ) have a similar unique expression subject to the
same relations.

The arguments of Remark 9 allow us to assume that

gz
2m−1 = g−c0

0 g−c1
1 · · · g−c2m−1

2m−1 and ḡz̄
2m−1 = ḡ−c0

0 ḡ−c1
1 · · · ḡ−c2m−1

2m−1 .

Consequently, all relations of G0 are satisfied by G. By Von Dyck’s theorem, it
follows that G is an epimorphic image of G0 by a central subgroup of G0. �
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[9] N. Itô. Note on (LM)-groups of finite order. Technical report, Kodai Math. Seminar Report,

1951.
[10] G. A. Miller and H. C. Moreno. Nonabelian groups in which every subgroup is abelian. Trans.

Amer. Math. Soc., 4:398–404, 1903. MR1500650
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