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Abstract 

Germany’s target to become climate-neutral by 2045 creates high expectations for a 

green hydrogen economy as a strategic path in the energy transition. Still, the questions 

about where the hydrogen will be produced and at what cost must be answered. This 

thesis helps answer these questions, focusing on developing an electrolysis-based 

hydrogen production model worldwide. The employed methodology starts with selecting 

a python-based software, PyPSA in this case. This software is used to minimize the 

levelized cost of hydrogen (LCOH) for a defined electrolysis-based hydrogen production 

system by optimizing its size, using linear optimization. The model is implemented using 

status quo techno-economic parameters together with the country risk premiums, which 

characterize the economic risk of the different countries. 

The worldwide model results show that battery storage system is still too expensive to 

bring an advantage to the system. Furthermore, the hybrid PV-wind configuration 

reduces the LCOH taking certain regions of the world into a more economically 

competitive position. Finally, the country risk premiums can shape the LCOH distribution 

worldwide, excluding countries with low economic attractiveness from an investor 

perspective, despite having high renewable energy potential. 
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Kurzfassung 

Das Ziel Deutschlands, bis 2045 klimaneutral zu werden, weckt hohe Erwartungen an 

eine grüne Wasserstoffwirtschaft als strategischen Pfad der Energiewende. Dennoch 

müssen die Fragen beantwortet werden, wo der Wasserstoff produziert werden soll und 

zu welchen Kosten. Die vorliegende Arbeit trägt zur Beantwortung dieser Fragen bei und 

konzentriert sich auf die Entwicklung eines Modells für die weltweite 

Wasserstoffproduktion auf Elektrolysebasis. Die angewandte Methodik beginnt mit der 

Auswahl einer python-basierten Software, in diesem Fall PyPSA. Diese Software wird 

verwendet, um die Wasserstoffgestehungskosten (LCOH) für ein definiertes 

elektrolysebasiertes Wasserstoffproduktionssystem zu minimieren, indem dessen 

Größe mithilfe der linearen Optimierung optimiert wird. Das Modell wird unter 

Verwendung von techno-ökonomischen Status-quo-Parametern zusammen mit den 

„Country Risk Premiums“ implementiert, die das wirtschaftliche Risiko der 

verschiedenen Länder charakterisieren. 

Die weltweiten Modellergebnisse zeigen, dass das Batteriespeichersystem immer noch 

zu teuer ist, um einen Vorteil für das System zu bringen. Darüber hinaus reduziert die 

hybride PV-Wind-Konfiguration die LCOH, was bestimmte Regionen der Welt in eine 

wirtschaftlich wettbewerbsfähigere Position bringt. Schließlich können die „Country Risk 

Premiums“ die LCOH-Verteilung weltweit beeinflussen und Länder ausschließen, die 

trotz ihres hohen Potenzials an erneuerbaren Energien aus Sicht der Investoren 

wirtschaftlich wenig attraktiv sind. 
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1 Introduction 

Hydrogen is expected to be a key component for the energy transition and, therefore, for 

the decarbonization of the European and global energy system [1]. Germany is also 

supporting a hydrogen economy as a key strategy to fulfill the climate neutrality targets 

set by the European Union by 2050 and set in the German Federal Climate Change Act 

(Klimaschutzgesetz) by 2045. Furthermore, as Germany has limited potential for national 

green hydrogen, the government plans to import high amounts of hydrogen [2]. 

Due to the national hydrogen strategies, new questions concerning green hydrogen have 

been raised. One of these questions regards the worldwide regions with higher hydrogen 

production potential and the costs for its production, which is addressed in this thesis. 

 

1.1 Motivation 

The motivation for this thesis lies in two different activities. First, the national hydrogen 

strategies create a need, to know which countries or regions in the world will be able to 

produce the cheapest green hydrogen. 

Secondly, this thesis is written in the FfE Munich (Forschungsstelle für 

Energiewirtschaft), whose main activity is the analysis of today’s energy system and how 

this energy system might develop in the future. For this goal, they developed the 

simulation model ISAaR (Integriertes Simulationsmodell zur Anlageneinsatz- und 

Ausbauplanung mit Regionalisiserung). The ISAaR is a linear optimization model that 

describes the European energy system mathematically, and one of the questions that 

addresses, is the role of hydrogen in the future energy system. 

The ISAaR already considers green hydrogen in its mathematical model, as shown in 

the Figure 1-1, however, the accuracy of the model may be improved by implementing a 

more consistent cost potential curve for hydrogen as input for the ISAaR, i.e. the 

correlation between the amount of hydrogen and its cost. A series of steps are needed 

to obtain the cost potential curves for the different countries or regions. The first one is 

the optimization of the hydrogen production costs using weather data, which is tackled 

in this thesis. 
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Figure 1-1 System boundaries, energy carrier rails and sector-coupling conversion technologies in 
ISAaR [3] 

 

This cost potential curve of hydrogen includes two different costs. On the one hand, the 

production costs of hydrogen represented by the levelized cost of hydrogen (LCOH), and 

on the other hand the import costs, which is how much does it cost to import the produced 

hydrogen from the production site to the consumption site, in this case Germany in 

Europe, for the ISAaR model. 

The scope of this thesis considers the production cost of hydrogen, which is the levelized 

cost of hydrogen (LCOH), leaving the land use potential analysis and import costs for 

future studies. 

To model the levelized cost of hydrogen (LCOH), an open-source environment based on 

linear optimization will be used. 

 

1.2 Research Questions 

The main goal of this thesis is to model the levelized cost of hydrogen (LCOH) in a global 

scale considering different techno-economic criteria. To achieve this goal the following 

research questions are proposed: 

1. Which Open-Source environment is appropriate to model the Levelized Cost of 

Hydrogen (LCOH) production worldwide? 

2. What are the effects of considering a hybrid wind-solar system and battery storage 

system on the Levelized Cost of Hydrogen (LCOH)? 

3. Which are the effects of Country Risk Premium (CRP) on the Levelized Cost of 

Hydrogen (LCOH)? 
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1.3 Thesis Structure 

Firstly, a theoretical framework concerning economic criteria regarding the production of 

hydrogen is summarized, focusing mainly on the levelized cost of hydrogen (LCOH) and 

on the country risk premiums. Following, the electrolysis-based hydrogen production 

system is explained as well as the main ideas about modelling energy systems and linear 

programming. 

Then an analysis of the existing models for the levelized cost of hydrogen (LCOH) is 

encapsulated in a matrix, with the main assumptions regarding geographical scope and 

technologies used for the hydrogen production. 

Afterwards the followed methodology is presented including the electrolysis-based 

hydrogen production system to be modelled, the explanation of the used qualitative 

assessment for the selection of the open-source software and finally all the criteria 

specific needed for the development of the model. These criteria involve the identification 

of input data, the development of a database structure for all inputs and outputs, the 

program code and processing of all the inputs and finally the selection of calculation 

scenarios. 

To finish, the presentation of the results answering the research questions followed by 

the conclusions and a small outlook for this master’s thesis. 
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2 Theoretical Framework 

This chapter contains three main parts. First, the fundaments on specific hydrogen 

economy techno-economic criteria, followed by the electrolysis-based hydrogen 

production system, and finally, a short allusion to energy systems modelling. 

 

2.1 Techno-economic criteria 

This techno-economic criteria chapter refers to the characterization of the hydrogen 

production cost. 

 

2.1.1 Levelized Cost of Hydrogen (LCOH) 

The concept levelized cost of hydrogen is derived from the long existing concept 

levelized cost of energy (LCOE). The LCOE represents the sum of investment and 

operational cost of the power plant producing the energy throughout its lifetime, divided 

by the total energy produced in its lifetime [4, 5]. In the same line, the levelized cost of 

hydrogen (LCOH) represents the sum of all the investment (CAPEX) and operational 

(OPEX) costs for the components involved in the production of hydrogen divided by the 

amount of hydrogen produced throughout its lifetime. Just as the LCOE allows the 

comparison of different alternative power plants for the electricity production, the LCOH 

is a key concept for assessing different hydrogen production systems [4–6].  

 

𝐿𝐶𝑂𝐻 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝑃𝐸𝑋 𝑎𝑛𝑑 𝑂𝑃𝐸𝑋 𝑐𝑜𝑠𝑡𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
 𝑖𝑛 

€

𝑘𝑔𝐻2

 

 

The LCOH is expressed in €/kgH2. The components to be considered in the calculation 

of the LCOH, include the systems for the production, transmission and storage of 

electricity, heat, and hydrogen. Additional systems such as water pumping systems, 

desalination plants or other infrastructures should be also included. 

 

2.1.2 Annuity Factor (AnF) and interest rate (r) 

An alternative way to calculate the LCOH is to consider the total costs and produced 

hydrogen over a year instead of over its lifetime. To achieve that, the CAPEX costs 

should be annualized through an annuity factor (AnF). 
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The annuity factor is normally used from an investing perspective to calculate the present 

value of a cash flow series, with a specific interest rate r, also known as a discount rate 

or expected return rate, and with a number of years n, during which the annual cash flow 

payment C is received [7–9]. 

 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 =  𝐶 ·  𝐴𝑛𝐹 = 𝐶 ∗ ∑
1

(1 + 𝑟)𝑛

𝑛=1

= 𝐶 ·
(1 + 𝑟)𝑛 − 1

𝑟 ∗ (1 + 𝑟)𝑛
  

 

From a company cost perspective, for example to invest in a project, the annuity factor 

is used to annualize the current total investment cost (CAPEX), which means distributing 

the complete CAPEX in equal annual payments through the lifetime of the project or 

system. In this case the, the above mentioned “Present Value” would represent the 

current total investment cost and the C would represent the annualized cost to pay during 

the life of the system, n [10].  

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝑃𝐸𝑋 =  𝐶 ·  𝐴𝑛𝐹 = 𝐶 ∗ ∑
1

(1 + 𝑟)𝑛

𝑛

𝑛=1

= 𝐶 ·
(1 + 𝑟)𝑛 − 1

𝑟 ∗ (1 + 𝑟)𝑛
  

 

Then, clearing the C, 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡 = 𝐶 =  
𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝑃𝐸𝑋

𝐴𝑛𝐹
 

Being again, 

𝐴𝑛𝐹 =
(1 − (1 + 𝑟)𝑛)

𝑟
=

(1 + 𝑟)𝑛 − 1

𝑟 ∗ (1 + 𝑟)𝑛
 

 

Applying the annuity factor to the LCOH formula must be done carefully, given that each 

component i of the hydrogen production system has a different lifetime and even maybe 

different interest rate. 

 

𝐿𝐶𝑂𝐻 =  
∑ (

𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝑃𝐸𝑋𝑖 
𝐴𝑛𝐹𝑖

+ 𝑎𝑛𝑛𝑢𝑎𝑙 𝑂𝑃𝐸𝑋𝑖)𝑖
𝑖=1

𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑎𝑛𝑛𝑢𝑎𝑙𝑙𝑦
    𝑖𝑛     

€

𝑘𝑔𝐻2

 

 

Generally, the OPEX is given as a percentage of the total CAPEX, which is why the 

equation can also be expressed as: 
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𝐿𝐶𝑂𝐻 =  
∑ 𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝑃𝐸𝑋𝑖 · (

1 
𝐴𝑛𝐹𝑖

+ 𝑂𝑃𝐸𝑋𝑖(%))𝑖
𝑖=1

𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑎𝑛𝑛𝑢𝑎𝑙𝑙𝑦
     𝑖𝑛     

€

𝑘𝑔𝐻2

 

 

While the lifetime n of the system or component is direct to know, the interest rate r per 

period is more difficult to understand [8].  

Let us consider the common case where a company wants to start a project. In that case, 

it is important to differentiate between the company to which the project belongs, and the 

investors that will provide the capital for the project, normally banks or stockholders. 

From the company’s perspective, the interest rate is an interest cost and from the 

investor’s perspective, it is the minimum rate of return required to invest in the project. 

Usually, the weighted average cost of capital (WACC) is used as this interest cost or 

expected rate of return, as it represents the average costs that the company has to pay 

for debt and equity holders [9]. Then the WACC provides, in a single value, the minimum 

profit required by the investors (banks and stakeholders) to be willing to borrow the 

capital, which corresponds with company’s capital cost [11].  

 

The capital costs are then divided into equity capital and debt capital. The equity capital 

represents the cost of money funded by the company stakeholders, which is the 

minimum rate of return expected to take the risk of investing. On the other hand, debt 

capital represents the money funded by loans, usually from banks. Each type of capital 

cost is weighted depending on the company’s capital structure so that they contribute 

differently to the WACC [11]: 

 

𝑊𝐴𝐶𝐶 =
𝐸

𝑉
∗ 𝑅𝐸 +

𝐷

𝑉
∗ 𝑅𝐷 ∗ (1 − 𝑇) 

 

Where: 

• E/V is the share of equity capital 

• D/V is the share of debt capital 

• RE is the cost of equity calculated usually by the Capital Asset Pricing Model 

(CAPM), from investors 

• RD is the cost of debt, which is the interest rate of the obtained loan 

• T represents the tax rate to consider the tax-deductible share of the loan 

 

 



  

8 

 

• Capital Asset Pricing Model (CAPM) 

The CAPM is used to calculate the cost of equity, RE, for a specific company in a specific 

market [8]. The model has different variants but the simplest one considers the risk-free 

rate and the premium risk given by the specific market and the sensitivity of the company 

or investment to the market. Another common consideration in the CAPM is the country 

risk premium (CRP), which represents an additional risk associated to the country where 

the investment is being considered [8, 12].  

 

The simplest CAPM formula is: 

 

𝑅𝐸 = 𝑅𝑓 + 𝛽 ∗ (𝑅𝑚 − 𝑅𝑓) + 𝐶𝑅𝑃 

 

Where: 

• RE is the cost of equity 

• Rf is the risk-free rate  

• Rm is the expected market return 

• (Rm – Rf) is the market risk premium 

• β represents the sensitivity of the company or investment to the market 

• CRP is the country risk premium 

 

As a simplification is to consider that the capital costs come completely from costs of 

equity, which means that the invested money is completely funded by stakeholders and 

there are no loans.  

Therefore, the WACC would be equal to the cost of equity. 

 

𝑊𝐴𝐶𝐶 = 𝑟 = 𝑅𝐸 =  𝑅𝑓 + 𝛽 ∗ (𝑅𝑚 − 𝑅𝑓) + 𝐶𝑅𝑃 = 𝑊𝐴𝐶𝐶′ + 𝐶𝑅𝑃 

 

The equity risk premium represents the excess risk over the risk-free rate in a specific 

market. The equity risk premium cost can be then deduced from the above WACC 

equation [13]: 

  

𝐸𝑞𝑢𝑖𝑡𝑦 𝑅𝑖𝑠𝑘 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 =  𝑊𝐴𝐶𝐶 − 𝑅𝑓 =  𝛽 ∗ (𝑅𝑚 − 𝑅𝑓) + 𝐶𝑅𝑃 
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2.1.3 Country Risk Premium (CRP) 

The country risk premiums take into account the additional risk of investing in a specific 

country in comparison to another country [14]. Professor Damodara from the Stern 

School of Business from the New York University (NYU) has developed extensive 

studies for the country risk premiums and also provides this country risk premium data. 

This data can be found in Appendix I: Country Risk Premiums (January 5, 2022) [15, 16]. 

The country risk premiums are based on default risk for the specific countries, an 

additional risk in case the country stops paying its international debt. An essential 

question to approach here is why the country risk premiums are needed, and to answer 

the existing types of investment risks must be understood. 

 

2.1.3.1 Assessment of investment risks 

Two types of investment risks are identified, unsystematic or diversifiable risks and 

systematic or non-diversifiable risks [8]. 

As its name suggests, the diversifiable risk can be eliminated through diversification, 

which means that investing in a large number of projects or in different markets or 

countries will reduce the risk to zero. However, as this risk is eliminable, it will not add 

any premium rate of return to the risk-free rate. Therefore, diversifiable risks cannot add 

a risk premium [8]. 

On the other hand, the non-diversifiable risks cannot be eliminated, which means that 

the company will depend on the overall economy, which may be affected by 

unpredictable events. To assume the non-diversifiable risks, the investors will demand a 

higher profit which translates into a risk premium [8]. 

 

2.1.3.2 Is country risk diversifiable or non-diversifiable? 

Now the question is if the country risk premium is a diversifiable or non-diversifiable risk. 

This question is critically analyzed with arguments for and against it. Globalization is a 

key argument against a country risk premium because the possibility of investing in 

multiple countries will, in the end, diversify the risk. Therefore, just considering this, the 

country risk should be diversifiable. Nevertheless, the approach should also be 

considered more carefully, firstly considering if the average investor has truly access or 

absence of impartiality for investing in multiple countries and secondly if there are 

positive return correlations between countries. A positive return correlation means that 

investing in one country will positively affect other countries’ investments. These 
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correlations have been intensively studied in the last decades and appear to be of 

increasing importance. [17]. 

The country risk may look diversifiable at first sight, and in part it is, but always there will 

be a residual country risk that is non-diversifiable. Although there might be other 

approaches to include this risk, a country risk premium represents a direct and realistic 

one [14]. 

  

2.1.3.3 Calculation of the country risk premium 

Despite globalization being present in the current worldwide economy, there is no 

standard approach for calculating the country risk premiums. The Stern School of 

Business at New York University uses two different calculation approaches for the 

country risk premiums. These approaches have similarities, but they deviate from the 

data sources. Both quantify the long-term country risk first, which is later corrected by 

summing up the short-term country risks [18]. The following table summarizes each 

approach, alongside its advantages and drawbacks. 

 

Table 2-1 Country risk premium calculation approaches considered by the Stern School of 
Business (NYU) [16] 

 First Approach Second Approach 

Quantify long-term 
country risk 

Estimate the bond default spread. Using 
local currency sovereign rating. 

Default spreads from sovereign Credit 
Default Swap (CDS) market. 

Correct the previous 
adding short-term 
country risk 

Equity market volatility Equity market volatility 

Advantage 

Default spread characterizes the market 
risk better than rating agencies (rating 
agencies consider additional criteria) 

Default spreads are dynamic 

Sovereign CDS reflect current situation of 
default risk. Dynamic 

Downsides 

Correlation between qualitative (rating) 
and quantitative (bond default) indicators 
not perfect. 

Ratings depend on private financial 
agencies. Not regularly updated 

Sovereign CDS include additional risks 
not related with country risks. 

No sovereign CDS for every country. 

 

First approach for the calculation of the country risk premiums 

This first method quantifies the long-term risk using the local currency sovereign rating 

to estimate the bond default spreads. Later, the effect of the short-term country risk is 

added through the equity market volatility [16].  

 

• Local currency sovereign rating 

The local currency sovereign rating is assessed by agencies such as Moody’s or 

Standard & Poor’s to determine if a country can meet its financial responsibilities. This 

assessment considers political, economic, financial, legal and fiscality factors, among 
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others. The sovereign rating cannot be directly used for the calculation of the risk 

premium. However, it must be correlated to obtain how much a country deviates from 

the best rated countries through the bond default spread. 

One of the most known country ratings is Moody’s rating. It results from an extensive 

rating process of financial obligations implemented by the private financial service 

company Moody’s Investors Service. This rating can be divided into short-term and long-

term rating [19].  

The short-term ratings characterize the ability of a financial body to return all short-term 

obligations. On the other hand, the long-term ratings denote the credit risk for fixed 

financial obligations with a maturity year of at least a year. That means how likely will the 

financial obligation be fulfilled. Ultimately the long-term ratings represent a qualitative 

credit risk of an investment [19].  

 

 

Figure 2-1 Moody’s global long-term rating scale. Source: Moody’s Investor Service 

 

Moody’s Corporation is not the only rating agency existing on the market, Standard & 

Poor’s (S&P) is another important financial rating agency. The downside about these 

ratings is that their update depends completely on the rating agency, and therefore they 

are not often updated. These agencies consider factors such as [18]: 

• Political risk 

• Economic structure 

• Economic growth prospects 

• Fiscal flexibility 

• General government debt burden 

• Offshore and contingent liabilities 
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• Monetary flexibility 

• External liquidity 

• External debt burden 

 

These agencies also differentiate between local and foreign currency ratings: 

• Foreign currency rating. Due to the current globalized economy, many countries 

have been developing their economies by borrowing money from other countries. 

These loans are defined in foreign currency. The inability of the borrowing country 

to pay back to its issuer in the foreign currency results in default. This kind of 

default is common, and it is rated [18]. 

• Local currency rating. More complicated to comprehend are the local currency 

ratings. These assess the inability of a country to pay its local debt, which means 

how likely a local currency default can occur. It is easy to think that local currency 

default can be avoided just by printing more money, given that the country has 

control over the local currency. However, there are some reasons why local 

currency defaults are preferred over printing more money. Two of these reasons 

are: 

o There is a shared currency between countries (such as the euro), so 

printing money is limited for the benefit of the common currency system 

[18]. 

o There is a trade-off between default and currency devaluation. Currency 

devaluation implies prestige loss, political instability, inflation, and 

economic recession. One key factor to decide between default or printing 

more money is how deep the debt of local companies is dependent on 

foreign currency. If the corporations have a high rate of foreign currency 

debt, the devaluation of the local currency could ruin their finances and in 

that case is the default preferable [18]. 

 

For calculating the country risk premiums, the Stern School of Business at the NYU uses 

Moody’s long-term ratings for the local currency [18]. As these ratings denote a 

qualitative credit risk and not a quantitative one, there is the need to quantify these 

country ratings, accomplished with the bond default spreads. 

 

• Bond default spread 

The bond default spread is the difference between the interest rate of a country specific 

bond and the interest rate “risk-free” bond, being both bonds issued for the same period 
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of time and in the currency corresponding to the “risk-free” bond to make them 

comparable [18].  

The “risk-free” bond also entails risk, but the goal here is to set a reference bond 

(preferably one with a powerful and accessible currency such as dollar or euro) to which 

other countries can be compared. The default spread serves as a direct way to 

characterize the long-term country risk premium, however not every country issues 

bonds in foreign currency. Therefore, an alternative way is needed to characterize the 

country risk premiums for other countries [18]. 

This alternative consists of identifying Moody’s local currency ratings for the countries 

with existing default spreads, then calculating the average default spread and correlating 

this result with the countries with the same sovereign Moody’s rating, also the ones with 

existing default spreads [16, 20]. 

In case a country has neither foreign currency bonds nor sovereign ratings, this approach 

cannot be utilized. 

𝐵𝑜𝑛𝑑 𝐷𝑒𝑓. 𝑆𝑝𝑟𝑒𝑎𝑑 = 𝐼𝑛𝑡. 𝑟𝑎𝑡𝑒 𝑏𝑜𝑛𝑑𝑐𝑡𝑟𝑦 𝑥,𝑡 𝑦𝑒𝑎𝑟𝑠,𝑐𝑢𝑟𝑟 𝑎 − 𝐼𝑛𝑡. 𝑟𝑎𝑡𝑒 𝑏𝑜𝑛𝑑𝑟𝑖𝑠𝑘−𝑓𝑟𝑒𝑒 𝑐𝑡𝑟𝑦,𝑡 𝑦𝑒𝑎𝑟𝑠,𝑐𝑢𝑟𝑟 𝑎  

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑡𝑜𝑟 =  
𝜎𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑥

𝜎𝑟𝑖𝑠𝑘−𝑓𝑟𝑒𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑦
 

 

• Equity Market Volatility 

Once the long-term risk is quantified through the sovereign ratings and the bond default 

spread, the short-term risks are to be considered through a volatility factor. To address 

this, the equity markets (stock markets) are compared. The parameter used as the 

multiplication factor is the ratio of the standard deviation for the country’s equity market 

divided by the standard deviation of the reference equity market (reference used in the 

bond default spread calculation) [18]. 

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑡𝑜𝑟 =  
𝜎𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑥

𝜎𝑟𝑖𝑠𝑘−𝑓𝑟𝑒𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑦

 

 

The first calculation approach can be summarized in the following equation. 

𝐶𝑅𝑃1 =  𝐵𝑜𝑛𝑑 𝐷𝑒𝑓. 𝑆𝑝𝑟𝑒𝑎𝑑 (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑀𝑜𝑜𝑑𝑦’𝑠 𝑟𝑎𝑡𝑖𝑛𝑔)  ∗   𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 
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Second approach for the calculation of the country risk premiums 

The second quantification method is quite similar to the first, but it uses Credit Default 

Swap (CDS) spreads instead of bond default spreads [16, 18].  

 

• Credit Default Swap market (CDS) 

The CDS market was created in 1994 and has evolved in the last three decades. This 

market prices the default risk of different financial bodies so that the buyer can be 

protected in case of default [21].  

The CDS market is divided into different branches, being the corporate CDS the biggest 

one, second the bank CDS and lastly, concerning the country risk, the sovereign CDS. 

The sovereign CDS denotes the default risk of a nation for not being able to pay back its 

government bonds [16, 21].  

The weakness in the sovereign CDS market is its dependence on other risks unrelated 

to the country default risk, such as liquidity and market narrowness, which make them 

more volatile. The strength of sovereign CDS is that they are regularly updated. On the 

other hand, ratings are more reliable but depend on a rating agency to be updated, so 

they respond slower to changes in specific markets and countries [18, 21]. 

The CDS default spread calculation is analog to the bond default spread calculation. 

 

𝐶𝐷𝑆 𝐷𝑒𝑓. 𝑆𝑝𝑟𝑒𝑎𝑑 = 𝐶𝐷𝑆𝑐𝑡𝑟𝑦 𝑥 − 𝐶𝐷𝑆𝑟𝑖𝑠𝑘−𝑓𝑟𝑒𝑒 𝑐𝑡𝑟𝑦  

 

The volatility factor is identical to the first approach. The second calculation approach for 

the country risk premiums quantification is summarized in the following equation. 

 

𝐶𝑅𝑃2 = 𝐶𝐷𝑆 𝐷𝑒𝑓. 𝑆𝑝𝑟𝑒𝑎𝑑 + 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

 

The CDS Market does not include most countries, which is one of the reasons for using 

the first method for the country risk premiums quantification. Also, the sovereign CDS 

market is quite volatile in terms of the narrowness and liquidity of the market. Any 

changes in the market parties or liquidity, independent from the country risk, will be 

reflected in the sovereign CDS rates [20]. 
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2.1.3.4 Effect of the base rate on the CRP 

The base rate is the interest rate defined by a central bank and charged to a commercial 

bank for borrowing money [22], consequently, the base rate is related to the debt capital; 

see 2.1.2. 

The country risk premiums are usually introduced in the Capital Assessment Pricing 

Model (CAPM) as an additional risk premium and therefore considered part of the equity 

capital [12]; see also 2.1.2. For this reason, the base rate and the country risk premium 

are independent and the increase or decrease of one does not affect the other or vice 

versa.  

Just to give an example, if the base rate increases, the WACC of the company will also 

increase, but it would increase equally for every country, as the country risk premium is 

not affected. In the model assumptions, the WACC is simplified, considering only the 

equity capital, this assumption can be understood as if the company’s capital comes 

completely from stakeholders and not from bank loans. Therefore, no debt capital is 

considered in the calculations and the base rate would not affect the annualized costs of 

the components. 

 

2.2 Electrolysis-based hydrogen production system 

The following chapter briefly describes the electrolysis-based hydrogen production 

system and its main components. 

 

2.2.1 Overview of the system 

The production of electrolysis-based hydrogen is becoming more economically viable 

thanks to the increase of electricity produced by renewable energies and the cost 

reduction of electrolyzers [23]. 

A green hydrogen production system is integrated with different systems, from producing 

electricity to storing the produced hydrogen. These systems can be grouped by its 

energy carrier plus water systems: 

• Electricity: components for the production, storage, and transmission of 

electricity. 

• Heat: components for the production, storage, and transmission of heat. 

• Hydrogen: systems for the production, storage, and transport of hydrogen. 

• Water: components for the provision of clean water. 
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Figure 2-2 Components in an electrolysis-based hydrogen production system 

 

Figure 2-2 shows the main systems in the production of electrolysis-based hydrogen, 

needing electricity, water, and heat. There are more alternatives to produce electricity or 

heat, coming from other renewable energy systems. In addition, the desalination system 

is only needed in case no fresh water is available or it is scarce and only suitable in 

locations close to the sea or with a saltwater source.  

 

2.2.2 Types of electrolyzers 

The most important component in this system is the electrolyzer, where the hydrogen is 

produced. While all kind of electrolyzers need water and electricity, the amount of heat 

needed depends on the type of electrolyzer and its operation. Even some electrolyzers 

may be operated without adding any additional heat [24]. The four main existing 

hydrogen electrolyzers are: 

• Alkaline Electrolyzers (AEL) 

• Proton Exchange Membrane Electrolyzer (PEM) 

• Solid Oxide Electrolyzer Cell (SOEC) 

• Anion Exchange Electrolyzer (AEM) 

These electrolyzers have different construction approaches, operational processes, 

efficiencies, and maturity levels. The electrolyzers technologies are constantly evolving 

at different levels (stack or cell level and whole system level), aiming to increase the 

systems’ efficiencies and scalabilities, while optimizing the amount of materials used and 

extend their lifetime [23]. Figure 2-3 shows the main technical specifications for the four 

electrolyzers mentioned above. 

Renewable 
Energy

Electricity Sea Water Clean Water HydrogenHeat
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Figure 2-3 AEC, AEM, PEM and SOEC electrolyzers main characteristics [24] 

 

A compressor is also needed to facilitate the storage of the produced hydrogen, given 

its low volumetric density. Therefore, after the electrolysis of hydrogen, a compressor 

should be installed. Also, the electrolyzer itself can electrochemically compress the 

hydrogen, which is more energetically efficient than compressing the hydrogen in 

conventional ways, that is, with a mechanical compressor [25]. The hydrogen can also 

be stored in other physical states or transformed into other energy carriers. 

 

2.2.3 Storage of hydrogen 

Besides the electrolysis-based hydrogen production, storing the produced hydrogen is 

also a key challenge for the further development of the hydrogen economy. Here are 

presented the main methods for the storage of hydrogen [26]: 

• Physical-based storage of hydrogen 

o Compressed gas: great volumes needed 

o Liquified: losses due to boil-off of the hydrogen 

o Cryo-compressed: takes advantages from the two previous storage methods 

• Adsorption-based storage of hydrogen 

• Chemical-based storage of hydrogen 
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2.2.4 Synthetic fuels and ammonia as alternative energy carriers 

An alternative to hydrogen storage is to transform the produced hydrogen in other energy 

carriers, such as synthetic fuels and ammonia [27].  

• Synthetic fuels: use the Fischer-Tropsch process with a green carbon source to 

transform the hydrogen in fuels for aviation, methane, or other hydrocarbons. 

• Ammonia: use the Harber process to transform the hydrogen into ammonia, 

which can be used as fuel for shipping and plays a key role in the production of 

fertilizers. 

 

The transformation of hydrogen into synthetic fuels and ammonia could stimulate the 

development of the hydrogen economy, contribute to the energy transition with carbon 

neutral fuels and reduce the greenhouse emissions in specific industries such as the 

ammonia industry [27, 28]. 

 

2.3 Modelling of energy systems 

The energy system models analyze the processes involving the production, transport, or 

supply of energy, among others. The models consider different scopes, spatial resolution 

and temporal resolution, and scope. These models can be a small part of a sub-sector 

in a specific region, such as gas supply in Germany. They can also comprise the 

combination of sectors at an international level, for example, the production, demand, 

and consumption of electricity from all kinds of energy sources at the European level [29, 

30].  

For this reason, the goals of the models are wide-ranging. On the one hand, they are 

used to understand the dynamics of existing energy processes. On the other hand, they 

serve to investigate and explore the energy systems of the future with different scenarios, 

predict their evolution, and take decisions that will help get to the desired scenario. An 

example would be modelling the complete European energy system to predict the future 

demand of the different energy sources and what would be the next needed steps to 

reduce the dependency on imported oil and gas [29, 30]. 

The energy system models are simplifications of the reality. Simplification is needed to 

facilitate the computational performance of the model and to keep the results 

comprehensible. If the model is too complex, the correlations between the parameters 

and constraints are difficult to analyze. This is a common trade-off found not only in 

energy system models but in any kind of model. More complex models are less 
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comprehensive but more realistic, and simpler models are easier to analyze but not close 

to reality. 

The energy system models use simulation and or optimization methods to calculate the 

different scenarios. One of the most commonly used methods is linear optimization or 

linear programming [29]. 

 

2.3.1 Linear optimization or linear programming 

The linear optimization, or linear programming method, consists of minimizing or 

maximizing an objective function, which represents a measurement for a real-world 

process or problem. This objective function is a linear equation composed by specific 

variables, called decision variables, whose value is to be determined. Only a certain 

combination of values for the decision variables will minimize or maximize the objective 

function [31, 32]. 

Additionally, the objective function is subject to a set of constraints that limit the possible 

values of the decision variables. These constraints are defined as extra equality and 

inequality linear equations of the decision variables [31, 32]. Non-negativity constraints 

are common in the different linear models, especially in energy system models; for 

example, the amount of electricity cannot be negative [32]. Moreover, the constraints 

should not contradict each other to keep the feasibility of the optimization problem [31]. 

The three elements of a linear optimization problem in standard form are [29]: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑖𝑛 𝑜𝑟 𝑚𝑎𝑥 𝑓(𝑥𝑗)  =  𝑐1𝑥1  + 𝑐2𝑥2  + ···  + 𝑐𝑛𝑥𝑛 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑥𝑗 , 𝑗 =  1, 2, . . . , 𝑛. 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑠. 𝑡.  𝑥1  ≥ 0    (𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦) 

  𝑥2  ≥ 0     (𝑛𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦) 

 𝑎1𝑥1  +  𝑎2𝑥2  + ···  + 𝑎𝑛𝑥𝑛   {
≤
=
≥

}   𝑏 

 

The linear optimization problem can also be written in a matrix form [33]: 

 𝑚𝑖𝑛 𝑜𝑟 𝑚𝑎𝑥 𝑓 = 𝐶′𝑋 

  𝑠. 𝑡.          𝐴𝑋 ≤ 𝑏 

  𝑋 ≥ 0 

 𝑤ℎ𝑒𝑟𝑒 
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𝐶 = [

𝑐1

𝑐2

⋮
𝑐𝑛

] , 𝑋 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] ,      𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋮ ⋮
⋯ 𝑎𝑚𝑛

]  ,    𝑏 = [

𝑏1

𝑏2

⋮
𝑏𝑚

]    

 

The simplex method is one of the most popular methods to solve linear optimization 

problems, invented in 1947 by G.B. Dantzig [31]. 

 

2.3.2 Non-linear optimization or non-linear programming 

Sometimes non-linearities are needed to model certain systems. In that case, the 

problem is no longer linear, and it is called non-linear optimization problem or non-linear 

programming problem. There are different approaches to solve non-linear optimization 

problems, which can be found in the literature. 
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3 Existing Levelized Cost of Hydrogen (LCOH) studies 

To understand the meaning of the levelized cost of hydrogen (LCOH), it is useful to 

understand the levelized cost of electricity (LCOE). The ISE Fraunhofer Institute defines 

the LCOE as the division of all lifetime investment and operation costs, CAPEX and 

OPEX respectively, by the total amount of net electricity generated, independently of 

whether it is a conventional or renewable power plant [4, 5]; see 2.1.1. 

In the same way, the levelized cost of hydrogen (LCOH) is calculated through the division 

of all CAPEX and OPEX costs by the total amount of hydrogen produced throughout the 

system’s life [6]; see 2.1.1. 

The number of articles, models, and tools regarding hydrogen potential and its costs has 

increased in recent years due to the increasing interest in hydrogen as a key component 

for the energy transition. Due to the high literature amount, a deeper analysis regarding 

the most relevant optimization models of the levelized cost of hydrogen (LCOH) is carried 

out. 

 

3.1 Overview of studies regarding levelized cost of hydrogen (LCOH) 

An overview of recent articles and studies regarding the levelized cost of hydrogen 

(LCOH) might be helpful to know the existing considerations and trends in the field. 

In  

Table 3-1, column ‘Key Word’ classifies the different scientific contributions into 

‘Optimization’ or ‘Analysis’. While both scientific contributions might model the different 

elements of the hydrogen production system, only the ‘Optimization’ contributions 

consider an optimization, minimizing the LCOH. On the other hand, the ‘Analysis’ 

contributions might calculate the LCOH, but without optimizing the size of the hydrogen 

production system. 

 

Table 3-1 Overview of articles and studies regarding levelized cost of hydrogen (LCOH) 

Ref. Scientific Contribution Type Year Key Word Topics 

[34] PtX Atlas Fraunhofer IEE Tool 2021 Optimization 

PV, Wind 

Optimization of LCOH and other 
synthetic fuels globally, considering 
techno- and socio-economic criteria 

Import costs. 

[35] EWI - Estimating Long-Term 
Global Supply Costs for Low-
Carbon Hydrogen 

Working 
Paper 

2020 Optimization 

Analysis 

PV, Wind 

Analysis of LCOH for three different 
production mechanism: from RES, from 
natural gas plus CCS and pyrolysis in 
94 countries. For the RES case a linear 
optimization is considered. 
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Ref. Scientific Contribution Type Year Key Word Topics 

[36] MDPI - Electrochemical 
Hydrogen Production Powered 
by PV/CSP Hybrid Power 
Plants: A Modelling Approach 
for Cost Optimal System 
Design 

Article 2021 Optimization 

PV, Solar 
Tower, TES 

Optimization of LCOH getting the 
optimum of six variables regarding the 
installed power of different components 
in three locations (Germany, Spain, 
and Morocco). AEL electrolyzer. Global 
Optimization Tool, MathWorks. 

[37] Methodology for multi-objective 
optimization of wind 
turbine/battery/electrolyzer 
system for decentralized clean 
hydrogen production 

Article 2021 Optimization 

Wind, 
Battery 

Optimization of multiple parameters 
with LCOH among them, using 
iterations and a self-developed script. 
AEL electrolyzer. 

[38] Hydrogen from renewables: 
Supply from North Africa to 
Central Europe as blend in 
existing pipelines – Potentials 
and costs 

Article 2019 Optimization 

PV, Wind, 
Battery 

Optimization of LCOH in the North 
Africa region. PEM electrolyzer. 

[39] Agora-AFRY: No-regret 
hydrogen: Charting early steps 
for H₂ infrastructure in Europe 

Study 2021 Optimization 

PV, Wind 

Optimization of LCOH in Europe, also 
considering hybrid configuration and 
transport costs. 

[40] AFRY's Global Hydrogen 
Trade Model 

Slides 2022 Optimization 

PV, Wind 

Optimization of demand, supply 
(LCOH) and transport of hydrogen 

[41, 
42] 

HYPAT – Globaler H2 
Potenzialatlas 

Tool 2021 Optimization 

PV, Wind 

Optimization of LCOH with 
minimization of costs, under 
development. 

[43] H2 Atlas Africa Tool 2021 Analysis 

PV, Wind 

Analysis of hydrogen potential and its 
LCOH for Africa. Until now only 
western Africa analyzed. 

[44] AusH2 - Australia's Hydrogen 
Opportunities Tool 

Tool 2021 Analysis 

PV, Wind, 
CCS 

Analysis of LCOH allowing the user to 
choose the parameters for the system. 

[45] HyDRA - Hydrogen Demand 
and Resource Analysis. NREL 

Tool 2009 Analysis Analysis of LCOH without considering 
PV and Wind costs. For USA. Also, an 
existing Worksheet ‘H2A Hydrogen 
Production Model’. 

[46] IRENA – World Energy 
Transitions – Outlook 2022 
1.5ºC Pathway 

Study 
(5.3) 

2022 Analysis 

PV, Wind 

Analysis of LCOH in 2050 globally 
differentiating countries investment risk. 

[47] Lazard’s Levelized Cost of 
Hydrogen Analysis v2.0 

Report 2021 Analysis Analysis of LCOH considering only 
hydrogen, no renewables technologies 
investment. 

[48] Techno-economic Analysis of 
Hydrogen Electrolysis from Off-
Grid Stand-Alone Photovoltaics 
Incorporating Uncertainty 
Analysis 

Article 2020 Analysis 

Monte Carlo 

PV 

Analysis of LCOH with Monte Carlo 
simulations to identify key drivers of PV 
powered electrolysis. 

Optimize PV system. 

[49] Assessment of Hydrogen 
Production Costs from 

Electrolysis: United States and 
Europe 

Report 2020 Analysis 

Monte Carlo 

PV, Wind 

Analysis of LCOH with Monte Carlo 
simulations considering from a realistic 
point of view all costs for hydrogen 
production. 

[50] Levelized Cost of Hydrogen 
Calculation from Off-Grid 
Photovoltaic Plants Using 
Different Methods 

Article 2021 Analysis 

PV 

Analysis of LCOH for an existing PV 
power system with historical, and two 
different simulated power production 
data. Interesting ratio Electrolyzer 
Power/PV Power (oversize factor). 

[51] Levelized costs of energy and 
hydrogen of wind farms and 
concentrated photovoltaic 
thermal systems. A case study 
in Morocco 

Article 2020 Analysis 

PV, CPV/T 

Analysis of LCOH for a given 
Renewable power in Morocco 
optimizing the electrolysis capacity of 
AEL through numerical simulations in 
C++ 

[52] Hydrogen production costs of a 
polymer electrolyte membrane 
electrolysis powered by a 
renewable hybrid system 

Article 2021 Analysis 

CPV/T, 
Solar Tower 

Analysis of LCOH for a given PEM 
electrolysis capacity in Morocco, 
optimizing the multiple solar (oversize 
factor). 

[53] A Techno-Economic Analysis 
of solar hydrogen production 
by electrolysis in the north of 
Chile and the case of 
exportation from Atacama 
Desert to Japan 

Article 2020 Analysis 

PV, CSP, 
TES, Grid 

Analysis of LCOH for Chile with real 
and simulated power data, for AEL and 
PEM. MATLAB/Simulink. 
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Ref. Scientific Contribution Type Year Key Word Topics 

[54] Techno-economic feasibility 
evaluation of a standalone 
solar-powered alkaline water 
electrolyzer considering the 
influence of battery energy 
storage system: A Korean case 
study 

Article 2021 Analysis 

PV, Battery 

Analysis of LCOH potential with Monte 
Carlo simulation in Korea through the 
modelling of different components for 
AEL. 

[55] Country-specific cost 
projections for renewable 
hydrogen production through 
off-grid electricity systems 

Article 2021 Analysis 

PV, Wind 

Analysis of LCOH for European 
countries until 2050. 

[56] The Future of Hydrogen - IEA 

Seizing today’s opportunities 

Report 2019 Analysis 

PV, Wind 

Analysis of LCOH globally. Figure 14 
shows a map with distribution of LCOH 
considering hybrid of renewables. 

 

3.2 Analysis of existing optimization models of levelized cost of 

hydrogen (LCOH)  

The focus is to analyze deeper the eight optimization models, classified in  

Table 3-1 as ‘Optimization’. This analysis provides a perspective of the main 

considerations made in these models for the LOCH optimization. 

The analyzed optimization models are: 

1. PtX Atlas Fraunhofer IEE 

2. Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen 

3. Electrochemical Hydrogen Production Powered by PV/CSP Hybrid Power Plants: 

A Modelling Approach for Cost Optimal System Design 

4. Hydrogen from renewables: Supply from North Africa to Central Europe as blend 

in existing pipelines – Potentials and costs 

5. Methodology for multi-objective optimization of wind turbine/battery/electrolyzer 

system for decentralized clean hydrogen production 

6. Agora-AFRY: No-regret hydrogen: Charting early steps for H₂ infrastructure in 

Europe 

7. AFRY's Global Hydrogen Trade Model 

8. HYPAT – Globaler H2 Potenzialatlas 

 

The key aspects to be analyzed are: 

• Organization 

• End-Product of the model: Gas Hydrogen or other Synthetic Fuels based on 

Hydrogen 

• Geographical scope 

• Year of the model 

• Modelling environment: 
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• Grid: On/off-grid 

• Electrical Storage 

• Renewable energy source to produce hydrogen 

• Hybrid configuration PV and wind turbines 

• Model criteria 
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Table 3-2 Matrix of LCOH optimization models for LCOH 

Ref. Model Organization Year Final 
Product 

Geographical 
Scope 

Modelling 
Environment 

Grid Electrical 
Storage 

Renewable 
Energy 

Hybrid 
Solar/Wind 
(K) 

Modelling criteria 

[34] PtX Atlas Fraunhofer Fraunhofer IEE 2021 Fischer-
Tropsch, 
CH3OH, 
SNG (l/g) 
H2(l/g) 

Global. 
Maximum 30 
areas per 
country 

Optimization Model 
SCOPE 

ERA5 Data 

Open-Source: No 

Off Yes Onshore 
Wind 

PV 

Yes, Wind 
limiting 
factor 

Socioeconomical criteria 

Cost optimization for 
different 12 technologies 

Desalination 

WACC constant 

SOEC, PEM 

[35] EWI - Estimating Long-
Term Global Supply 
Costs for Low-Carbon 
Hydrogen 

Institute of Energy 
Economics at the 
University of 
Cologne (EWI) 

2020 H2 gas 94 countries 
on six 
continents 
(except 
Antarctica) 

- 

Open Source: No 

Off No Onshore 
Wind, 
Offshore 
Wind, PV 

Yes Linear optimization of 
RES case (RES, natural 
gas, pyrolysis), varying 
the RES to electrolyzer 
capacity ratio. 

WACC constant  

Low ang high temperature 
electrolyzer 

[36] MDPI -Electrochemical 
Hydrogen Production 
Powered by PV/CSP 
Hybrid Power Plants: A 
Modelling Approach for 
Cost Optimal System 
Design 

Deutsches 
Zentrum für Luft- 
und Raumfahrt & 

TU Dresden 

2021 H2 gas 3 locations in 
Germany, 
Spain, 
Morocco 

Global Optimization 
Tool, MathWorks 
which is a Pattern 
Search algorithm 

Open Source: No 

Off No, 
thermal 
energy 
storage 
TES 

PV, Solar 
Tower 

No Six optimization variables 
(power of elements) 

Price Level index (OECD) 

WACC constant 

AEL 

[37] Methodology for multi-
objective optimization 
of wind turbine/battery/ 
electrolyzer system for 
decentralized clean 
hydrogen production 

Centre de 
D´eveloppement 
des Energies 
Renouvelables 
(CDER) 

2021 H2 Gas Algeria  Self-developed 
script 

Open Source: No 

On/ 

Off 

Yes Onshore 
Wind 

No Optimization of four 
objective functions with 
LCOH among them and 
for decision variables, 
using iterations. 

No WACC considered 

AEL 

[38] Hydrogen from 
renewables: Supply 
from North Africa to 
Central Europe as 
blend in existing 
pipelines – Potentials 
and costs 

Hamburg 
University of 
Technology 
(TUHH) 

2019 H2 Gas Algeria, 

North Africa 
locations 
(close to 
pipelines) 

- 

Open Source: No 

Off Yes (in 
off-grid) 

Wind, PV Yes,  

no K, both 
optimized. 

Transport also considered 

WACC constant 

PEM 
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Ref. Model Organization Year Final 
Product 

Geographical 
Scope 

Modelling 
Environment 

Grid Electrical 
Storage 

Renewable 
Energy 

Hybrid 
Solar/Wind 
(K) 

Modelling criteria 

[39] No-regret hydrogen: 
Charting early steps 
for H₂ infrastructure in 
Europe 

Agora 
Energiewende and 
AFRY 
Management  

Consulting 

2021 H2 gas Europe - 

Open Source: No 

Off No Wind, PV Yes, they 
consider in 
hybrid that 
15% of 
wind not 
usable 

‘No-regret’ hydrogen, the 
hydrogen demand of the 
industries with a high 
probability of hydrogen 
needs. Two scenarios, 
Blue-Green (SMRCCS + 
pyrolysis + RES), Fast-
Green (only RES) 

They use hexagonal cells 
for the geographical 
division and the transport 
of the produced and 
stored hydrogen 

[40] AFRY's Global 
Hydrogen Trade Model 

AFRY 2022 H2 Gas, 
Ammonia 

Global - 

Open Source: No 

Off No Wind, PV No Linear optimization in 
Python, optimizing 
demand, supply, and 
transport simultaneously. 

It considers green and 
blue hydrogen. 

[41, 
42] 

HYPAT – Globaler H2 
Potenzialatlas 

(in progress) 

Bundesministerium 
für Bildung und  

Forschung BMBF 

- H2 Gas, 

Synthetic 
products 

Global - On/ 

Off 

Yes (in 
off-grid) 

Additional 
renewable 
sources 

- Water and environmental 
concern considered 

WACC constant 
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The eight optimization models are deeper analyzed. 

1. Ptx Atlas 

The Fraunhofer ISE optimizes the LCOH for almost 600 locations globally. It uses 

the Optimization Model Scope considering 12 different technologies configurations 

for the cost minimizations. These technologies contain six different fuels combined 

with two different electrolysis systems. The main system components considered for 

the optimization are solar PV on open-field, onshore wind, battery storage, 

electrolyzer (PEM and SOEC), and hydrogen storage. Additionally, heat pumps, 

electric boiler, heat storage system, desalination, CO2 capture system among other 

systems are considered depending on the optimized technology option. The 

optimization model is not open-source, but the parameters data sources considered, 

are published [34]. 

 

2. Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen  

The Institute of Energy Economics at the University of Cologne (EWI) compares the 

cost of hydrogen production for three different production mechanisms (methane with 

CCS, pyrolysis, and electrolysis with renewable energy). This comparison is done for 

94 countries in six continents. The third case is studied adopting a linear optimization 

model considering solar PV, onshore wind and offshore wind as renewable energy 

technologies and low-temperature and high-temperature electrolyzers. The decision 

variable for this model is the ratio RES-to-electrolyzer, noting that higher capacity 

factors of the renewable energy sources do not necessarily mean a higher capacity 

ratio of the electrolyzer [35]. 

Additionally, it considers a Learning Rate for the CAPEX costs, so that if the capacity 

doubles in comparison with a reference capacity installed, the costs reduce a certain 

percentage, due to the modelling of the learning curve [35]. 

The cost optimization CAPEX and OPEX of the electrolyzer and the renewable 

energy systems for each country, year and technology considered. Also, a specific 

hydrogen demand is considered as a parameter for each country and year. The 

optimization equations and constraints are published [35]. 

 

3. Electrochemical Hydrogen Production Powered by PV/CSP Hybrid Power 

Plants: A Modelling Approach for Cost Optimal System Design: 

The Institute of Future Fuels in Cologne and the TU Dresden have developed an 

optimization cost model for a system based on an alkaline electrolyzer (AEL) 

supplied by photovoltaic, concentrated solar power (CSP) and thermal energy 
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storage. Other components of the off-grid system are a heater and a turbine. The 

installed powers for the six mentioned components represent the optimization 

variables of the system. The system is optimized for three different locations in 

Germany, Spain and Morocco and two different scenarios for the PV and CSP costs, 

which are current technology costs and technology costs in 10 years [36]. 

Two assumptions concerning the modelling of the electrolyzer are. First the 

electrolyzer can only work between 20% and 100% of the nominal power. Secondly, 

the standby mode of 1% nominal power is considered to avoid cold start of the 

electrolyzer. A constant interest rate is considered for the calculation of the 

annualized costs, but no country risk premiums are considered [36]. 

 

Figure 3-1 Example of optimization variables of the electrolyzer system and its constraints [36] 

 

4. Methodology for multi-objective optimization of wind turbine/battery/ 

electrolyzer system for decentralized clean hydrogen production: 

The Centre of Renewable Energies Development (CDER) in Algeria proposes a 

system that produces hydrogen gas, and includes wind turbine, electrolyzer, battery, 

power converters, and hydrogen tank. The approach is to optimize four objective 

functions simultaneously with an iterative optimization algorithm to find Pareto-

Optimal solutions [37]. 

• Total Hydrogen Deficit: minimize the demand not covered 

• Energy Dump Possibility: minimize the not used produced energy 

• Levelized Cost of Hydrogen: minimize 

• CO2 emissions avoided: maximize 

Some interesting components considered in the model are a DC/DC power converter 

to protect battery against overcharge and over discharge, as well as an AC/DC 

rectifier to convert to DC the energy produced at the wind turbine. The battery 

modelling is detailed and two optimization strategies depending on the wind load are 

elaborated for the management of the battery system [37]. 
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Additionally, noticeable constraints for the electrolyzer are considered. The input 

power must be between 20% and 100%, also the Electrolyzer Operation Time (EOT) 

must be above a minimum limit, and the Start-ups per day (Start) which sets a limit 

for the number of start-ups within a day. The hydrogen tank is also subjected to 

interesting constraints [37]. 

An annual hydrogen demand of 8760 kg/a is set, representing 1kg/h. Nevertheless, 

meeting the demand is monthly flexible, according to a specific time series [37]. 

 

5. Hydrogen from renewables: Supply from North Africa to Central Europe as 

blend in existing pipelines – Potentials and costs: 

The Technical University of Hamburg developed a model to minimize the total costs 

of a green hydrogen system in Algeria. Afterwards the LCOH will be calculated. The 

components considered are PV, onshore wind, battery storage, electrolyzer and 

electricity transmission line. The transport of the produced hydrogen to Europe 

through existing pipelines is also included and therefore the transport costs are 

included.  

The hydrogen demand considered for the optimization is arbitrary set to 1GWh/A. 

The study also calculates the technical production potential of green hydrogen by the 

exclusion of high populated and big slope areas. 

Additionally, a room for improvement chapter for the model is presented with different 

possible future assumptions. Some examples are the reduction of electrolyzer 

efficiency and other technologies as they age, the possible consideration of 

electrolyzer overload to take advantage of electricity peaks, the sale of oxygen or the 

consideration of social and ecological criteria [37]. 

 

6. No-regret hydrogen: Charting early steps for H₂ infrastructure in Europe 

Agora Energiewende together with AFRY Management Consulting have developed 

an optimization model, called ‘Hexamodel’ for the calculation of the LCOH in Europe, 

dividing the continent in hexagon cells [39]. 

Only the no-regret demand of hydrogen is considered for the optimization, which 

means that only the demand for the industrial sectors that are certain to be supplied 

with hydrogen are considered. Future unreliable demand expectations of hydrogen 

are excluded [39]. 

For the optimization model two scenarios are considered. First the Blue-Green 

(SMRCSS + Pyrolysis + RES) and second the Fast-Green (only RES). Additionally, 

hybrid PV-Wind configurations are regarded with a simple constraint, which is an 
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overlapping factor of 15%, meaning that in case of a hybrid setup, 15% of the wind 

potential will be excluded. In this model also hydrogen storage and transport are 

considered [39] but separated from the optimization of the hydrogen production 

costs. 

 

7. AFRY's Global Hydrogen Trade Model 

AFRY has developed an optimization model integrating demand, supply and 

transport globally using linear optimization. In the supply model, green and blue 

hydrogen are considered. For green energies PV and Wind are integrated, but no 

hybrid setup is considered. In addition, no battery or hydrogen tank are included in 

the optimization model. Other important assumptions are the non-flexibility of the 

demand [40]. 

Worth mentioning is the integration of the demand, supply and transport at a global 

scale, resulting in interesting outputs concerning the estimated distribution of 

hydrogen production worldwide and the import-export relationships between 

countries [40]. 

 

8. HYPAT – Globaler H2 Potenzialatlas 

The Federal Ministry of Education and Research of Germany is currently developing 

an optimization model for hydrogen production globally. In the model, wind PV and 

additional renewable energies are being considered, as well as Direct Air Capture 

and specific interest rates for the different countries. Also, an potential area analysis, 

especially with the exclusion of water scarce areas, will be considered [41, 42]. 

The project is still under development. Therefore, many details such as PV-wind 

hybrid setup, battery or hydrogen tank are still to be published.  

 

This academic work research questions focus on the effects of hybrid PV-wind energy 

configuration, the introduction of a stationary battery system in the system, and the 

consideration of the Country Risk Premiums. These components or assumptions are 

further studied for the eight models to see their effect on the sizing and behavior of the 

hydrogen production system. Additionally, the hydrogen tank represents an interesting 

component due to its effect on the system’s performance. The modelled components 

and assumptions for each of the eight analyzed optimization models are summarized in 

Table 3-3. 
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Table 3-3 Modelled components in each analyzed LOCH optimization model [34–42] 
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PtX Atlas 

Fraunhofer 

Linear 
X X X X X X X X  X X  

EWI - Estimating 

Long-Term Global 

Supply Costs for 

Low-Carbon 

Hydrogen 

Linear 

X X X X        X 

MDPI - 

Electrochemical 

Hydrogen 

Production 

Powered by 

PV/CSP Hybrid 

Power Plants: A 

Modelling Approach 

Non-

linear 

X  X     X X X X  

Methodology for 

multi-objective 

optimization of wind 

turbine/battery/ 

electrolyzer system  

Non-

linear 

X X   X X     X  

Hydrogen from 

renewables: Supply 

from North Africa 

to Central Europe 

Linear 

X X X X X      X  

AFRY's Global 

Hydrogen Trade 

Model 

Linear 

X X X          

No Regret 

Hydrogen Agora-

Afry 

Linear

? X X X X         

HYPAT – Globaler 

H2 Potenzialatlas 

(in progress) 

Linear

? X X X ? ? ? X     X 

FfE Linear X X X X X X X X    ? 

 

Looking at the eight analyzed optimization models (one of them still being developed), 

only four consider hybrid wind and PV as energy source for the electrolysis of hydrogen. 

Three of the eight models consider hydrogen storage in tanks, and also three models 

include electrical battery storage. Only the PtX Atlas optimization model from Fraunhofer 

considers hybrid wind-PV, battery storage, and hydrogen storage simultaneously. Also, 

the PtX Atlas is not limited to one location but optimizes different locations worldwide 

[34].  

Regarding the Country Risk Premiums, only the in-progress optimization model HYPAT 

might consider them in their calculations [42]. The optimization model (EWI) considers 

country-dependent CAPEX costs [35], which is a similar approach to the Country Risk 

Premiums. 
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Table 3-3. shows also the components planned to be included in the model developed 

in this academic work. It intends to incorporate hybrid PV-wind, battery, hydrogen 

storage tank, and Country Risk Premiums. In addition, heater and desalination systems 

supporting the electrolysis are included as possibility. 

The results and conclusions of the five optimization models that consider at least one of 

the three following components (hybrid PV-wind, battery, or hydrogen tank) are further 

analyzed. See Table 3-4. 

 

Table 3-4 Optimization model conclusions analysis for the hybrid, battery and hydrogen storage 
components [34, 35, 37–39] 

Model Hybrid (PV-Wind) Battery H2 Storage 

PtX Atlas 

Fraunhofer 

Locations with hybrid solar-wind 

systems are frequently found in 

the optimization results. 

Not all locations with solar and 

wind energy potential will 

introduce hybrid systems. 

For H2 gas no battery is 

introduced in the optimization 

results. (Other energy carriers 

introduce storage) 

For H2 gas no tank is introduced 

in the optimization results. (Other 

energy carriers introduce storage) 

EWI - Estimating 

Long-Term Global 

Supply Costs for 

Low-Carbon 

Hydrogen 

Hybrid system results in lower 

LCOH, only when wind and solar 

potentials are simultaneously high 

and even then, with low reduction 

of costs. 

N/A N/A 

Methodology for 

multi-objective 

optimization of wind 

turbine/battery/ 

electrolyzer system 

for decentralized 

clean hydrogen 

production 

Note: location in 

Algeria 

N/A 

Different cases of study. The 

optimization results usually 

introduce of battery storage, 

supporting the hydrogen 

production. 

However, this model also 

minimizes electricity curtailment 

(energy dump). In conclusions 

mentioned, that if energy dump 

objective is ignored, the LCOH 

decreases (due to battery) 

Hydrogen tank is introduced in all 

the optimization results of the 

case studies 

Hydrogen from 

renewables: Supply 

from North Africa 

to Central Europe 

as blend in existing 

pipelines – 

Potentials and costs 

Note: location in 

Algeria 

Two cases: upper cost and a 

lower cost. 

Only one of the cases result in a 

hybrid system, being the 

introduced share quite small. 

Even halving the CAPEX of the 

battery system, the optimization 

results do not introduce battery 

into the system. 

N/A 

No Regret 

Hydrogen Agora-

Afry 

Locations with hybrid PV-wind 

systems are frequently found in 

the optimization results. 

N/A 

Pressurized tanks and salt 

caverns are considered, having 

the salt caverns lower CAPEX but 

limited by location. 

In conclusions stated that 

hydrogen storage provides 

security to cover the demand. 

 

Table 3-4 presents the results and conclusions for the optimization models that integrate 

at least of the components, hybrid PV-wind simultaneously, battery storage, and 
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hydrogen storage system. The color represents a qualitative assessment of the existing 

optimization models, characterizing how integrating the different components affects the 

Levelized Cost of Hydrogen (LCOH). 

In the case of the integration of hybrid PV-wind energy, the different optimization models 

conclude in a neutral or positive assessment. According to the model results, the hybrid 

configuration will be profitable only in optimal simultaneity of solar and wind conditions. 

Regarding the hydrogen tank, normally, the assessment of the different models is neutral 

or positive, which means that introducing a hydrogen tank generates no change or a 

small decrease in the LCOH. Here is also important to differentiate between hydrogen 

tank and cavern storage, being the last case restricted to existing locations but with lower 

costs. This academic work considers only the hydrogen tank in the model. 

Finally, the assessment of the battery storage system in the models is generally negative 

due to its high investment costs, making electricity curtailment a more profitable option. 

 

This analysis can delineate a point of reference to which the results of the model 

developed in this academic work can be compared. 
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4 Methodology and data 

The following chapter focuses on the methodology and data used to develop the 

electrolysis-based hydrogen production model. First, the electrolysis-based hydrogen 

production system to be modelled is delimited. Then, the input data is identified, and an 

appropriate database structure is created. Furthermore, the code program is written, and 

the desired output data and calculation scenarios are defined. 

 

4.1 Definition of the hydrogen production system 

The electrolysis-based hydrogen production system modelled is a simplification of the 

complete system described in 2.2. The following diagram shows the components 

included in the system to be modelled. 

 

Figure 4-1 Simplified electrolysis-based hydrogen production system 

 

Only open space photovoltaic and onshore wind are included as renewable energy 

sources for electricity production. Although offshore wind will probably entail a key 

technology for electrolysis-based hydrogen production, it is not considered in this model. 

Modelling the desalination system represents a great interest in the case of coastal 

regions with water scarcity, but this would have required a certain amount of pre-analysis 

that can be done in future improvements of the model. 

On the other hand, while modelling a heater involves just a high efficiency component 

for transforming electricity into heat, the amount of heat needed depends on the type of 
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electrolyzer. Some electrolyzers can work with external heat at their reversal voltage 

(endothermic reaction) or without external heat when they work at its thermoneutral 

voltage.  

In the case of proton exchange electrolyzers (PEM), as in this model, their standard 

operation requires overpotentials to overcome irreversible losses. These overpotentials 

entail an exothermic operation [57]; therefore, no extra heat is needed. Also, the viability 

of recovering the produced waste heat for other applications is being studied [58]. For 

this reason, modelling a heater or a heat pump is excluded from the model. 

A stationary battery system is also modelled in the system. Finally, a hydrogen storage 

system is included in the model in the form of a tubular accumulator. 

 

4.1.1 Main objective of the model 

The above-mentioned electrolysis-based hydrogen production system is modelled, and 

its size is optimized for several locations and a specific hydrogen demand using linear 

programming. Therefore, the optimization results include the sizes of the components 

needed to meet the hydrogen demand (1 kg of hydrogen per hour) while producing the 

hydrogen at minimum cost. 

 

4.1.2 Assumptions and constraints of the model 

Assumptions regarding the number of locations (MERRA-2) 

The system size will be optimized for 51677 locations in total. These locations are cells 

extracted from the MERRA-2 datasets from the NASA Global Modeling and Assimilation 

Office. MERRA-2 stands for Modern-Era Retrospective Analysis for Research and 

Application, Version 2. This project has divided the whole world, all land, and sea area, 

into a grid of 207936 cells, each with an approximate size of 50x50 km [59]. Large 

amounts of meteorological data have been provided for each of these cells since 1980. 

Only inland cells are considered for the development of the model, excluding the 

Antarctic and North Pole (above latitude .75º 45’). In total, 51677 cells are considered, 

and the same number of optimizations are carried out. Figure 4-2 shows the world map 

with the chosen cells to be calculated. 

The land use potential analysis regarding environmental protected areas, water scarcity, 

high-density population, and high steep regions, among others, is excluded for the 

development of the model. Therefore, no extra exclusion criteria for the cells are 

included, and no potential analysis for producing hydrogen is done. That means that the 
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results are not meant to tell how much hydrogen can be produced in each cell but to tell 

how much the hydrogen production would cost if no potential limit is set. 

 

 

Figure 4-2 World map with MERRA-2 cells division to include in the model 

 

Assumptions regarding hydrogen production system 

• Off grid system. 

• Components considered in the model as from Figure 4-1: 

o Open space PV 

o Onshore very weak wind turbine (explained in 4.3.2) 

o Onshore very strong wind turbine (explained in 4.3.2) 

o PEM Electrolyzer: the electrolyzer can work between 0% and 100% of 

nominal power, overloads are excluded. The ramp up of the PEM 

electrolyzer, either from cold start or warm start, is considered to get to 

nominal power in a few seconds [60]. The stack exchange after a certain 

number of operation hours is not included in the model.  

o Hydrogen storage system (tubular accumulator). This storage system is 

suitable for hydrogen gas, and it is considered as a buffer storage and not 
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intended for the long-term storage. Nevertheless, its capacity is not limited 

in the model. 

o Stationary battery storage. 

• Hydrogen demand of 1kgH2/h 

• Exclusion of components such as offshore wind turbines, compressor, 

desalination system, heater or heat pump, water costs, and electricity 

transmission system. 

 

Assumptions regarding general optimization information 

• Investment and operation costs, as well as other technical parameters of the 

components, for the year 2020.  

• Weather data of solar irradiation and wind speed for the year 2012 from MERRA-

2 database. 

• Hourly time resolution, for 2012 equals 8784 h 

 

4.1.3 Linearity of the model’s objective function 

The size of the system is optimized using linear optimization or linear programming. The 

objective function to be minimized, is the yearly costs of the system, which is a linear 

equation. The decision variables are the sizes of the systems to be modelled in the 

electrolysis-based hydrogen system; see Figure 4-1. Finally, the constraints specified for 

each component are defined by the employed open-source software that will formulate 

and solve the optimization problem according to the given input. 

The defined demand for the model is 1kg of hydrogen per hour. The bigger the demand, 

the bigger the size of the optimized system, and consequently higher total costs. 

However, the LCOH is independent of the considered demand as nor of the following 

potential limiting constraints are considered in the model: 

• No constraints regarding the maximum component size are considered. 

• No constraints concerning the potential area analysis are included in the model. 

As shown in Figure 4-3Figure 4-4, the total system costs against hydrogen demand have 

a constant slope until a potential limit is found, which is not the case in the model. For 

this reason, the LCOH is independent of the considered demand. 
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Figure 4-3 Linearity of system costs in the model due to absence of potential limit 

 

4.2 Qualitative assessment of Open-Source software  

An Open-Source software is needed to model the electrolysis-based hydrogen 

production system shown in Figure 4-1. Different open-source environments are 

evaluated using a qualitative assessment. 

 

4.2.1 Criteria for the qualitative assessment 

The assessment of the existing Open-Source linear optimization python-based 

environments is entirely qualitative and is implemented considering the following criteria: 

1. General criteria: is it python-based software? Are the software frequently 

updated and new functions added? Is there an existing community? Are there 

examples? 

2. Suitable: can the electrolysis-based hydrogen production system be modelled 

with the software? Can the components and constraints be introduced? Is the 

output data meaningful? 

3. Automatable: given the amount of data, can the optimization be automated for 

all the locations? Are the input and output files easily created, saved, and loaded? 

Is the software compatible with tools and solvers that allow the reduction of the 

optimization time? 

4. Flexible: if the model is improved in the future, will the system be easy to modify? 

(Introduce or remove components). Or should the system be built from scratch? 

Potential Limit (e.g. no 
more area available…)

8760 kg 
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4.2.2 Open-Source software to be assessed 

A wide variety of Open-Source software for linear optimization of power systems can be 

easily found, PyPSA, urbs, PSAT, PYPOWER or DIETERpy, among others. The model 

is developed in python and a preassessment is conducted to decide which software are 

firstly excluded and which should be further assessed. 

 

Table 4-1 Preassessment of different open-source software [61–64] 

Software General Suitable Automatable Flexible Preassessment 

PyPSA 
    

Further assessment 

urbs 
    

Further assessment 

PyPOWER 
    

Excluded 

DIETERpy 
 

- 
 

- Excluded 

PSAT 
 

- - - Excluded 

 

• PyPSA: further assessment. 

• urbs: further assessment. 

• PyPOWER: excluded. Input data must be written in a .py script, which forces the 

model to be hard coded and therefore uncomfortable to modify [64]. 

• DIETERpy: excluded. Although the software may be interesting, the information 

provided and the input data structure are not intuitive and few examples are given 

[63]. 

• PSAT: excluded. For MATLAB instead of Python 

 

Two Open-Source software will be further evaluated, PyPSA, developed by the 

Technical University of Berlin and urbs, developed by the Technical University of Munich. 

 

4.2.3 PyPSA: Python for Power System Analysis 

PyPSA was developed by the Department of Digital Transformation in Energy Systems 

at the Technical University of Berlin and is used for minimizing cost optimization of power 

flow systems. It can also be used for modelling other systems (sector coupling) given its 

adaptability [61]. 

In PyPSA the system is called a network which contains the different components. There 

are three fundamental components, bus (node), link (process) and store, which are used 

to create the other predefined components of the system [61]. 

Our simple hydrogen production system would be composed by: 

• 2 buses: Electricity and Hydrogen 
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• 3 generators: open space PV and onshore very weak wind and onshore very 

strong wind 

• 1 links: PEM Electrolyzer 

• 2 storage units: battery storage and hydrogen storage tank 

• 1 load: demand 

 

 

Figure 4-4 Simple PyPSA schema for the hydrogen production system 

 

4.2.4 Urbs: A linear optimization model for distributed energy systems 

Urbs was developed by the Chair of Renewable and sustainable Energy Systems at the 

Technical University of Munich. It is mainly used for the optimal sizing of energy systems, 

not being restricted to only power energy systems. For that, different commodities can 

be defined, such as electricity, gas, heat, and hydrogen [62]. 

A series of model entities allow the model of the energy system. In the case of a simple 

hydrogen production system, the entities would be: 

• 3 commodities:  

o 3 suplm: PV solar and very weak and very strong wind timeseries 

o 1 demand: hydrogen demand 

• 4 process:  

o PV panel (solar in, electricity out) 

o Very weak wind turbine (wind in, electricity out) 

o Very strong wind turbine (wind in, electricity out) 

o PEM Electrolyzer (electricity in, hydrogen out) 

• 2 storage: Battery storage and hydrogen storage tank 

 

BUS 0

‘Electricity’

BUS 1

‘Hydrogen’

LINK 0

‘Electrolyzer’

Gen. (open space PV)

Gen. (weak onshore wind)

Gen. (strong onshore wind)

Storage unit (Battery)

Storage unit (H2 Tank)

Load (hydrogen)

simple electrolysis-based hydrogen production model

L
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Figure 4-5 Simple urbs schema for the hydrogen production system 

 

4.2.5 PyPSA and urbs comparison 

A deeper assessment of PyPSA and urbs open-source software is required to choose 

the most appropriate one for developing the electrolysis-based hydrogen production 

model.  

Below a comparison table between PyPSA und urbs for the above specified criteria 

(general, suitability, automatability and flexibility criteria) is presented with the following 

qualitative assessment: 

• Green points: positive rating 

• Grey points: neutral rating 

• Yellow points:  negative rating  

• Red points: exclusion criteria. No exclusion points were identified. 

 

Table 4-2 Comparison assessment for the open-source software PyPSA and urbs [61, 62] 

 

Electricity Hydrogen
PROCESS 0

‘PV panel’
COMMODITY SPLM

‘PV Solar’

PROCESS 3

‘PEM

Electrolyzer’

STORAGE 

‘Battery’

STORAGE 

‘H2 Tank’

COMMODITY SPLM

‘Very weak wind’

PROCESS 1

‘Very weak wind

turbine’

COMMODITY 

DEMAND 

‘Hydrogen’

COMMODITY SPLM 

‘Very strong wind’

PROCESS 2

‘Very strong

wind turbine’

simple electrolysis-based hydrogen production model

PyPSA urbs

General

■ Python Package ■ Python Environment

■ Frequent updates (interesting for Research Institut FfE) ■ Rare updates

■
Community with fast response. Community in Google 

Groups and GitHub Issues
■ GitHub issues 

■ Examples available ■ Examples available

■ Less intuitive ■ More intuitive

Suitability

■ System components can be modelled ■ System components can be modelled

■ WACC not directly included ■ WACC included

■ OPEX not directly included ■ OPEX included

■ DSM possible ■ DSM possible and intuitive

■ Shadow prices as output ■ No shadow prices as output

Automatability

■ Input: components as csv or DataFrames ■ Input: components as .xslx

■ Input: Fast to modify DataFrame directly ■ Input: Slower to modify .xlsx directly

■
Optimization formulating either with pyomo or without 

pyomo (faster)
■ Optimization formulating only with pyomo 

■ Solvers: GLPK, CPLEX, Gurobi ■ Solvers: GLPK, CPLEX, Gurobi

Flexibility
■

Multiple inputs/outputs in links must be defined in 

advance in code
■ Multiple inputs/outputs in processes easily defined

■ System components can be easily added ■ System components can be easily added
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Although both open-source software are suitable for the implementation of the model 

and there are no key aspects to exclude one software against the other, PyPSA was 

selected. This decision was made taken into consideration three arguments in favor of 

PyPSA which are:  

 

• PyPSA allows the construction of the optimization model both using pyomo 

and without using pyomo. Not using pyomo is stated to be faster since 51677 

optimizations must be conducted. Therefore, a faster building of the optimization 

model represents an advantage for the specific application [61, 62]. 

• PyPSA allows the input of the model to be panda DataFrames. Working with 

DataFrames may represent an advantage over working with .xlsx files for the 

model’s input (urbs). The DataFrames are usually more efficient in data storage 

and speed. Especially when iterating, reading DataFrames should be faster than 

reading .xlsx files to build each one of the 51677 optimization models  [61, 62]. 

• PyPSA has a greater community to answer questions and the software is 

frequently updated. The frequent update of the software ensures the long-term 

usability of the model and the possibility of adding new functions in the future. 

From a research institute perspective, as the FfE, this is a relevant aspect to 

develop the model further. 

 

Therefore, PyPSA was selected as the appropriate open-source tool for the specific 

development of the electrolysis-based hydrogen production model. This decision 

answers the first research question: “Which Open-Source environment is appropriate to 

model the Levelized Cost of Hydrogen (LCOH) production worldwide?”. 

 

4.3 Input data 

The electrolysis-based hydrogen production model needs different data as input. This 

data can be classified in three levels, system level, country level and cell level. 



  

44 

 

 

Figure 4-6 Visualization of country, cell, and system level for the data input 

 

Figure 4-6 shows the three classification levels in the Luxembourg, France, German, and 

Belgium region. The land level is defined by the political borders of the countries, in blue. 

The cell level is defined by the division grid from MERRA-2 data, in red, and the system 

level is specific to the modelled electrolysis-based hydrogen production system. To 

explain the three levels, going from the biggest to the smallest level, first the country 

level, then the cell level and finally the system level. 

 

Table 4-3 Overview of the input data levels 

Data Level Data 

Country Level Country Risk Premiums 

Cell level 

Geometrical and geographical MERRA-2 cell data 

PV capacity factors timeseries (derived from MERRA-2 solar irradiation data) 

Wind capacity factors (derived from MERRA-2 wind speed data) 

System Level 

Model parameters  

Technical parameters 

Economic parameters 

 

4.3.1 Country level data 

It is referred to all the data consistent inside one country. The country risk premiums data 

corresponds to this level, provided by the Stern School of Business at NYU [16] and can 

be found in the Appendix I: Country Risk Premiums (January 5, 2022). The country risk 

premium concept and calculation method is explained in 2.1.3. The last update of the 

country risk premiums and the one used for developing the model is from the January 5, 

2022. 
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4.3.2 Cell level data 

The electrolysis-based hydrogen system described in 4.1 is optimized in each of the 

51677 cells. The grid data originates from the MERRA-2 database, explained in 4.1.2. 

The MERRA-2 database provides large amounts of meteorological data for each one of 

the cells in the grid. 

For the development of the model the following MERRA-2 data is used at cell level: 

• MERRA-2 cell geometry and geographical location to associate each cell with a 

single country. 

• MERRA-2 cell meteorological data covering solar irradiation and wind speed in 

hourly resolution 

 

The historical solar irradiation and the wind speed data from MERRA-2 represent 

interesting datasets for calculating the electricity generation from PV and wind turbines. 

However, these datasets cannot be used directly and must be transformed into capacity 

factors to be used directly in the model.  

The capacity factors represent the ratio between the actual energy produced by a 

generator and the maximum energy that can be produced for the same time resolution 

[65].  

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑂𝑢𝑡𝑝𝑢𝑡 [𝑀𝑊ℎ]

𝑁𝑜𝑚𝑖𝑙𝑎𝑛 𝑃𝑜𝑤𝑒𝑟 [𝑀𝑊] · 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 [ℎ]
 

 

The most common time resolution is one hour, which results in hourly capacity factors. 

Looking at the meaning of the capacity factor, the produced energy by the generator for 

a specific hour can be directly calculated. 

 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 [𝑀𝑊ℎ] = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 · 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 [𝑀𝑊] · 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 [ℎ] 

 

The FfE has already worked with the MERRA-2 datasets transforming the raw 

meteorological data into capacity factors with an hourly resolution for specific PV and 

wind turbines. This capacity factors data is available in the database of the FfE. 

 

• PV capacity factors available in FfE database  

The irradiation data from MERRA-2 has been used to calculate the hourly capacity 

factors for open-field PV with specific conditions. The selected open-field PV panels 

entail a performance factor of 0,804, and the capacity factors are available for different 
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inclinations (10º, 20º, 30º, 40º and 45º) and 16 different cardinal orientations with 22,5º 

steps taking as 0º reference the south and 90º as west. Also, the capacity factors are 

calculated for four different weather years, 2012, 2015, 2017 and 2019 

 

• Wind turbines capacity factors timeseries available in FfE database 

The wind speeds from the MERRA-2 data source are transformed into capacity factors 

for ten different wind turbines, five offshore wind turbines and five onshore wind turbines. 

The calculated wind capacity factors already include the cut-in and cut-out speed as well 

as the corresponding efficiencies for each specific turbine. The capacity factors are 

calculated for four different weather years, 2012, 2015, 2017 and 2019 

 

Table 4-4 Wind Turbines available for the calculated capacity factors 

Ref. Wind Turbine 
On/ 

Offshore 

Classificati
on 

Nominal 
power in 
MW 

Rotor 
height in m 

Rotor 
diameter in 
m 

Power 
density in 
W/m2 

[66] Siemens SWT-
3.6-120 

Offshore Very weak 3,6 100 120 318 

[67] Vestas V164 - 
8.0MW 

Offshore Weak 8 140 164 379 

[67] Vestas V164 - 
8.0MW  

Offshore Middle 8 105 164 379 

[68] Siemens SWT-
3.6-107 

Offshore Strong 3,6 100 107 400 

[68] Siemens SWT-
3.6-107  

Offshore Very strong 3,6 80 107 400 

[69] Enercon E-115 Onshore Very weak 3 140 115,7 285 

[70] Nordex N100 Onshore Weak 2,5 120 100 318 

[71] Vestas V80 
2.0MW 

Onshore Middle 2 100 80 398 

[68] Siemens SWT-
3.6-107  

Onshore Strong 3,6 100 107 400 

[69] Enercon E-82 E3 Onshore Very strong 3,02 80 82 572 

 

For the development of the model, only the onshore wind turbines are considered. The 

“Classification” column in Table 4-4 follows an intern FfE site classification, being the 

power density the main classification parameter, followed by the second classification 

parameter, the rotor height. The wind turbines with the highest power density are 

classified with the “very strong” rating, which also means they can endure the highest 

wind speeds and gusts. Intuitively, the taller wind turbines are classified as “weak” or 

“very weak”, as they cannot endure high wind speeds for stability reasons. For the 

electrolysis-based hydrogen production system, the classified “very weak” and “weak” 

wind turbines represent interesting components as they are usually higher, which means 

more stable and constant wind speeds and, therefore, steadier higher full load hours. 

These constant wind speeds are advantageous, as they enable the steady operation of 

the electrolyzer, which is desired to cover the constant hydrogen demand. 
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4.3.3 System level data 

The system level includes all the consistent data inside the electrolysis-based hydrogen 

production system. These data consider all the techno-economic parameters for the 

modelled components, as well as specific parameters of the model. Since a hydrogen 

production system is modelled in each cell, each system shares the same techno-

economic and system specific parameters. 

As mentioned in 4.1.2, the techno-economic data corresponds to the year 2020, dividing 

it into technical data and economic data. Below, the model parameters are explained, 

followed by the technical and economic parameter. 

 

Model parameters data 

The specific model parameters are defined in the excel and directly imported to PyPSA 

to create and calculate the right optimization model. The main model parameters are: 

• snapshots: a total of 8784 timesteps or snapshots are considered as it is the number 

of hours that the weather year 2012, a leap year, has. 

• load.p_set: in the electrolysis-based hydrogen production system, the load 

corresponds to the demand, and it is set to a specific value for all the timesteps 

(snapshots). As PyPSA works with power units (MW) [61], in the model the demand 

is defined as the equivalent power for one kilogram of hydrogen per hour. Knowing 

that the low heating value of hydrogen is 0,03333 MWh/kg [72] 

𝑙𝑜𝑎𝑑 = 1
𝑘𝑔

ℎ
· 0,03333

𝑀𝑊ℎ

𝑘𝑔
= 0,03333 𝑀𝑊 

Therefore, the system must provide in each timestep 0,03333 MW to fill the demand. 

• p_nom_extendable: all the components whose size must be optimized, must be 

defined with the parameter p_nom_extendable set to ‘True’, to allow the optimization 

to find the optimum size for each component [61]. 

• cyclic_state_of_charge: if set to True, then the initial state of charge, first timestep, 

and the final state of charge, last timestep, of the Storage Unit components (hydrogen 

storage and battery storage) must match as an additional restriction in the 

optimization model [61]. 

 

Technical parameters data 

The technical data include technical parameters of the different components modelled in 

the electrolysis-based hydrogen production system. These parameters are: 

• Lifetime 
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• Efficiency 

• Charge Storage Efficiency 

• Dispatch Storage Efficiency 

• Self-Discharge losses 

• Energy Power Ratio 

 

Each one of the technical parameters are specific to one or various technologies. The 

following table shows the values used in the development of the model.  

 

Table 4-5 Technical parameters of the electrolysis-based hydrogen production system 

Ref. Technology 
Lifetime 
in years 

Efficiency 
Storage 
Efficiency 

Dispatch 
Efficiency 

Discharge 
Loss 

E/P 
Ratio 

[73] PVA - Open Area 25 0,804 - - - - 

[74] 
WEA_very_weak - 
Enercon E-115 

25 - - - - - 

[74] 
WEA_weak - Nordex 
N100 

25 - - - - - 

[74] 
WEA_middle - Vestas 
V80 

25 - - - - - 

[74] 
WEA_very_strong - 
Enercon E-82 E3 

25 - - - - - 

[74] 
WEA_strong - Siemens 
SWT-3,6-107  

25 - - - - - 

[75, 76] 
H2 Storage Tank 
(Tubular Accumulator) 

30 - 0,975 0,975 0 - 

[77, 78] 
Battery Storage 
(Stationary) 

10 - 0,950 0,950 0 4 

[78, 79] PEM Electrolyzer 20 0,580 - - - - 

 

The efficiency of the open area PV panels corresponds to the performance factor 

considered in calculating the capacity factors timeseries obtained by processing the 

MERRA-2 meteorological irradiation data; see 4.3.2. 

The efficiencies of the wind turbines are directly included in the calculation of the capacity 

factor timeseries, which are calculated from the MERRA-2 wind speed datasets; see 

4.3.2. 

The energy power ratio is a referred to the stationary battery storage ratio between its 

energy capacity and the amount of energy that can be supplied in a second, which 

corresponds to the power. Depending on the battery storage application, a certain energy 

power ratio or another is preferred. Generally, electric vehicle batteries have an energy 

power ratio of around one, while stationary battery systems in energy system 

applications tend to have a higher energy power ratio. Additionally, the energy power 

ratio represents a key parameter used to compare the costs between battery systems. 

Usually, batteries with lower energy power ratios are more expensive [77, 80]. In the 
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case of the hydrogen storage tank, the energy power ratio does not represent a common 

parameter.  

The store, dispatch efficiencies, and dispatch losses are characteristic parameters of the 

battery and the hydrogen storage systems. The FfE considers no discharge losses for 

either of the storage systems. 

Finally, the electrolyzer operation is characterized by its efficiency parameter. The 

efficiency depends on the type of electrolyzer, and for PEM electrolyzer, 0,58 is 

considered. 

 

Economic parameters data 

The economic data comprehend all the investment specific costs (CAPEX), operational 

costs (OPEX) given as a percentage of the investment costs, and WACC for the different 

components of the hydrogen production system. 

 

Table 4-6 Economic parameters of the electrolysis-based hydrogen production system 

Ref. Technology 
Investment 
Cost Power 
in €/MW 

Investment 
Cost Capacity 
in €/MWh 

Operational 
Cost Power in 
% of investment 
cost 

Operational 
Cost Capacity 
in % investment 
cost 

WACC 

[73] PVA - Open Area 675551 - 0.03 - 0.035 

[81] 
WEA_very_weak - 
Enercon E-115 

2034400 - 0.014 - 0.035 

[81] 
WEA_weak - 
Nordex N100 

1769600 - 0.016 - 0.035 

[81] 
WEA_middle - 
Vestas V80 

1267200 - 0.023 - 0.035 

[81] 
WEA_very_strong - 
Enercon E-82 E3 

740000 - 0.039 - 0.035 

[81] 
WEA_strong - 
Siemens SWT-3,6-
107  

934400 - 0.031 - 0.035 

[75, 76] 
H2 Storage Tank 
(Tubular 
Accumulator) 

1250 12500 0.02 0.02 0.035 

[77] 
Battery Storage 
(Stationary) 

513800 133900 0.058 - 0.035 

[78] PEM Electrolyzer 1420000 - 0.02 - 0.035 

 

The costs for the PV panels, wind turbines, and electrolyzers are denoted by their 

nominal power. The hydrogen and battery storage systems are characterized by both, 

nominal power, and energy capacity parameters. 

The costs for the different wind turbines are calculated based on their technical 

specifications and certain factors using a SQL script provided by the FfE. 

The hydrogen storage system costs are defined by investment and operational costs for 

its power and capacity. On the other hand, the battery systems costs are represented by 
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the investment cost for power and capacity and only with power operational costs. The 

WACC is defined at the FfE with the value of 3,5% for all the technologies. 

 

4.4 Database structure and data processing  

Structuring the input and output data may facilitate a clear understanding of the model 

course of action. First, an overview of the input and output data is presented, followed 

by the database, and excel structures used to import the data into the python model. The 

database structure to save the output results are also shown. 

Later, the processing steps of the different input data are explained. 

 

4.4.1 Overview of input and output data 

The python model for the electrolysis-based hydrogen production system takes specific 

input, identified, and classified in 4.3, in country, cell and system levels. This input must 

be processed before using it for the optimizations of the hydrogen production systems. 

The optimizations output must also be processed and saved in the database. An 

overview of the input and output data interrelations with the model is shown in Figure 

4-7.  

The input data is completely stored in the FfE database. However, the model imports the 

data not only from the database but also a small part via excel file for the technical 

parameters of the components. In the future, it is intended that this data is also directly 

read from the database. 

 

 

Figure 4-7 Overview of input and output data 
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Once the input data is introduced in the python model, either via the database or the 

excel file, this data will be processed before being introduced in PyPSA. PyPSA will then 

generate the hydrogen production system, formulate the optimization problem with all its 

constraints, and with an external solver, the problem will be optimized, and the output 

data obtained. This output data will be sorted, processed, and then directly saved in the 

database with a specific structure. 

 

4.4.2 Overview of the database structure 

As mentioned, all the input data is stored in the FfE database in PostgreSQL, in tables 

or views starting with the prefixes “t_h2_model_” and “v_h2_model_”, respectively. The 

difference between tables and views strikes primarily if the data is truly stored and in the 

presentation of it. 

The tables store the data with a vertical structure commonly used in databases with 

relational tables. These relational tables have few columns and many rows (vertical 

structure), and the values or parameters inside the columns tend to be identifiers 

explained in additional associated description tables. 

On the other hand, the views do not store data but just read and rearrange data from 

other existing tables to make it more comprehensive. More comprehensive usually 

means a greater number of columns and fewer rows (horizontal structure). The values 

inside the views are not necessarily identifiers or numeric values but also text, giving a 

direct meaning to the row. Views are useful for understanding the data stored in the 

relational tables.  

Figure 4-8 shows the database structure in the form of an Entity Relationship Diagram 

(ERD). On the input side, three input data levels can be identified. Firstly, the country 

risk premiums for the country level, the techno-economic parameters for the system 

level, and finally, the MERRA-2 for the cell level. 

The input data is already processed in PostgreSQL before being introduced in the python 

model, where it will be further processed. In the case of the output data, the results are 

processed in the python model and then directly saved in the database. 
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Figure 4-8 ERD overview of input and output structure in the database 

 

4.4.3 Overview of the excel input structure for PyPSA 

PyPSA is the software tasked to generate the hydrogen production system with the 

corresponding components, formulate the optimization problem, and finally, solve the 

problem. PyPSA’s system, including all the components, is called a network. The 

network can integrate predefined components, which the user can choose. These 

predefined components in PyPSA are [61]: 

• Buses 

• Carriers 

• Generators 

• Global constraints 

• Line types 
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• Lines 

• Links 

• Loads 

• Shunt impedances 

• Storage units 

• Stores 

• Subnetworks 

• Transformer types 

• Transformers 

 

Each predefined PyPSA component has a specific function described in the PyPSA 

documentation. In addition, each component has specific attributes, which can be 

required input, optional input, or output [61]. 

PyPSA requires the definition of the predefined components and their attributes in a 

specific way so that PyPSA can create the right optimization model with its specific 

constraints and solve it. To do that, PyPSA allows three different paths to import the 

model data. These methods are further explained in the PyPSA documentation, and they 

are [61]: 

• Direct in python code: after creating a network, the components are added to 

the network by coding in python language. 

• CSV files: PyPSA has a defined function in its python package to import the 

network components from csv files. Each PyPSA predefined component requires 

a different csv file with a specific structure of the component attributes. 

• DataFrames: PyPSA has a defined function in its python package to import the 

network components from DataFrame. Each PyPSA predefined component 

requires a different DataFrame with a specific structure of the component 

attributes. 

 

The input attributes must be characterized in the code, csv files, or DataFrames to define 

the system network in PyPSA. Among these three methods, the direct definition in the 

python code is excluded as the flexibility to change the hydrogen production system 

would be time intensive and restricted to regular users of the PyPSA python package. 

The alternative use of csv files is more attractive, as the definition of the system can be 

done externally without deep understanding of the python code and then later be 

imported to PyPSA. The main drawback regarding the csv files method regards the 

automatability criteria defined in 4.2.1 specific to the implementation of the electrolysis-
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based hydrogen production model. In this case, 51677 different optimization models 

must be defined, and each requires specific data for the cell level, see 4.3.2. For this 

reason, is the speed of the data import of high importance, and the comparison between 

the import of the components data in the PyPSA software through csv files and through 

DataFrames showed that the DataFrames resulted in a better performance. 

This outcome is intuitive as in the case of the csv files, for each cell optimization, a csv 

file must be created from a DataFrame and saved in a specific directory before being 

able to import it to PyPSA. Using DataFrames saves the creation of the csv file, given 

that the DataFrame can also be imported directly to PyPSA. Therefore, the direct import 

of DataFrames to PyPSA is chosen over the csv files method, as it is more efficient for 

integrating the cell level data in each optimization.  

Despite using the DataFrames, a specific structure is still needed inside these 

DataFrames. The name of the components must be the indexes, and the attribute names 

must be the column names of the DataFrames. This structure can easily be given with 

an excel file with as many sheets as predefined PyPSA components to be imported. 

Each of these sheets will be read as a DataFrame, which will later be imported to PyPSA. 

Figure 4-9 shows the simplified excel structure for some of the PyPSA predefined 

components. 

 

 

Figure 4-9 Excel structure for predefined components from PyPSA 

 

Figure 4-10 is a scheme for transforming the excel sheets into general DataFrames. 

Together with the cell level and country level data, these DataFrames are imported into 

PyPSA, where the optimization takes place. 
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Figure 4-10 Overview of the import of excel input into the python model 

 

The excel file is an easy path to create the needed structure in the DataFrames that must 

be imported into PyPSA. Nevertheless, all the data is already stored in the database, 

and a unique PostgreSQL query would be a cleaner and more unified solution, given that 

two input sources, excel and database, would be reduced to only the database. This 

would avoid possible errors due to possible name incompatibilities used in the database 

and the excel file.  

This alternative path of creating the DataFrames is being considered for the future 

development of the model, where queries templates in PostgreSQL could be created, 

and the already used queries for a specific scenario could also be stored in the database 

table t_h2_model_scenario_description. 

 

4.4.4 Data processing 

The already defined input data in Input data4.3, must be processed before being 

introduced in PyPSA for the optimizations. This data processing can be done in the 

database, before entering the python model, or once the data is imported to the python 

model. 
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The following table shows where the data is processed for the three different 

classification levels of the data. 

 

Table 4-7 Overview of the data levels and the data included 

Input Data 
Level 

Data 
Processing in database 
(PostgreSQL) 

Processing in 
Python 

Country 
Level 

Country Risk Premiums X  

Cell level 

Geometrical and geographical MERRA-2 cell 
data 

X  

PV capacity factors timeseries (derived from 
MERRA-2 solar irradiation data) 

X  

Wind capacity factors (derived from MERRA-
2 wind speed data) 

X  

System 
Level 

Model parameters   

Technical parameters   

Economic parameters X X 

 

The data processing for each of the six datasets indicated in the table above is explained 

below. 

 

Country Risk Premium (Country Level) 

As explained in the theoretical framework, see 2.1.3, the country risk premiums represent 

a specific interest rate for each country. This dataset comes from the Stern School of 

Business at New York University [16] and has been stored in the FfE database for further 

use. 

This dataset integrates data for 187 countries and three additional cities from the United 

Arab Emirates: Abu Dhabi, Sharjah, and Ras Al Khaimah.  

ISO 3166-1 enables the association of the different country names with a specific country 

code, often used in the FfE database. This norm integrates 249 countries, while the 

country risk premium dataset includes only 187 therefore, the country risk premiums 

dataset should be filled [82]. The FfE considers Kosovo as an additional country for some 

studies, which makes a total of 250 countries with its respective country codes, missing 

63 countries in the country risk premiums dataset. 

A simple approach is conducted to fill the country risk premiums for the missing 

countries. This approach consists of manually assigning the country risk premium from 

a neighbor country with a similar country risk based on different political and economic 

criteria from the Credendo analysis [20].  

• Neighboring countries 

• Similar country risk based on political and economic criteria [20] 
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This approach does not ensure the right country risk premium for the missing countries, 

and further analysis to assign more suitable country risk premiums might be convenient. 

Nevertheless, this simple method allows filling the gaps easily manually.  

Once the original country risk premium dataset and the assigned neighboring countries 

are stored in the database, a view with the 250 countries is created to facilitate its access 

and visualization. 

 

Figure 4-11 ERD for the country risk premium 

 

The country risk premiums are needed for calculating the annualized costs per 

component and country, later explained.  

 

Geometrical and geographical MERRA-2 cell data (Cell Level) 

The MERRA-2 data includes the identification number of the cell and its geographical 

coordinates. The MERRA-2 cells do not follow political or natural borders, but they 

represent a rectangular grid division of the world, with cells of approximately 50x50km. 

Given that no political borders are followed, each MERRA-2 may belong to none (middle 

of the ocean), one, two, or even more countries [59].  

The country assignment for each cell is needed so that the country risk premiums can 

be considered in calculating the country specific costs used to optimize the electrolysis-

based hydrogen production system. The assignment process of a country per cell follows 

a simple criterion, consisting of assigning the country with the highest area share to the 

cell. 

In the example shown below, the MERRA-2 cell with the identification number 107858 

includes areas from three countries, France, Luxembourg, and Germany. The area share 

for each country is 44.6%, 41.2%, and 14.2%, respectively; therefore, as the biggest 

area share is in France, the French country code from the ISO 3166-1 will be assigned 

to this cell, and the French technology and component costs will be used in the 

optimization. 
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Figure 4-12 MERRA-2 cell 107858 with area shares in France, Luxembourg, and Germany 

 

The assignment of a country per cell is accomplished with a series of PostgreSQL 

queries. To address this, the geometry of each MERRA-2 cell is intersected with the 

geometries of each country inside the cell. Once the intersection or intersections in each 

cell are extracted, the area share for each intersection is calculated. Two arrays are 

saved, the first one with the countries inside the cell and the second one with the area 

shares for each country. Also, the complete area of the cell is saved to facilitate future 

hydrogen potential analysis. The table where the processed data is saved is 

t_model_merra2_world. 

The table t_h2_model_cells is created from this data with only two columns. The first 

column corresponds to the cell identification number, and the second corresponds to the 

country identifier with the highest area share for that specific cell. The entity relationship 

diagram is shown in Figure 4-13. 

 

Figure 4-13 ERD for MERRA-2 cell country assignment 

 

PV capacity factors timeseries 

The PV capacity factors timeseries with an hourly resolution are derived from the 

MERRA-2 meteorological data and are already stored in the FfE database. As mentioned 
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in 4.3.2, the calculated capacity factors are available in each location for five different 

inclinations, sixteen different cardinal orientations, and four different weather years.  

The imported capacity factors timeseries to the python model correspond to the weather 

year 2012 and the maximum full load hours. In other words, for the 80 capacity factors 

timeseries for a single location in the weather year 2012 (five inclinations multiplied by 

sixteen orientations), only the one with the maximum full load hours, meaning the 

maximum sum of hourly capacity factors, is imported to the python model. These 

capacity factors timeseries are saved in table t_merra2_pv_max_erz. 

 

Wind capacity factors timeseries (Cell Level) 

The wind capacity factors timeseries with an hourly resolution are derived from the 

MERRA-2 meteorological data and are already stored in the FfE database. These 

capacity factors are calculated for five or ten different wind turbines defined in 4.3.2, 

depending on if the cell is completely onshore, offshore, or shares land and sea. 

The developed electrolysis-based hydrogen production model considers only onshore 

wind turbines, see Table 4-4. Although it is possible to model the five onshore wind 

turbines, this would increase the computational time of the optimizations. Therefore, a 

pre-analysis is conducted to select which wind turbines will be the most convenient for 

the implementation of the model. 

This pre-analysis consists of optimizing the electrolysis-based hydrogen production 

system size for 100 random cells, modelling the five different wind turbines. The results 

will show which wind turbines are installed in each cell, keeping the system costs at a 

minimum while fulfilling the hydrogen demand and the other system constraints. 

As a hypothesis, the electrolysis-based hydrogen production system performance will be 

dominated by the electrolyzer, as a constant demand of hydrogen must be supplied 

hourly. The electrolyzer must run as steady as possible to fill the demand, requiring a 

regular source of electricity, PV, or wind. Regarding wind energy, the wind speed 

increases at higher altitudes [83], so the average wind speeds are more frequent and 

steadier with increasing height. The correction for wind speed based on height is given 

by Hellman formula [74, 83]. Higher wind turbines have then higher full load hours and 

are more capable of matching the constant electrolyzer electricity needs, despite being 

more expensive. Therefore, in the pre-analysis, most cells are expected to introduce the 

highest wind turbine. The highest turbine is classified as “very weak”, given that their 

power density is lower but steadier, so they cannot endure high wind speeds or gusts, 

as mentioned in 4.3.2. The pre-analysis results can be seen in 5.1. 
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Additionally, the norm IEC 61400-1:2019 is used to select the wind turbine in each cell. 

This norm centers on the design requirements of wind energy generation systems. This 

norm is addressed to understand the existing types of wind classes used to classify the 

different wind turbines [84]. 

The wind classes define how suitable a wind turbine is for a certain type of wind 

conditions, regarding the average wind speed (Vave), the extreme 50-year gust (Vref), and 

the turbulence (Iref). The table with the parameters corresponding for each wind class 

can be found in  

For certain locations, the wind is so strong that the very weak turbine is not appropriate 

for construction. The modelled very weak wind turbine is Enercon E-115, initially only 

suitable for Wind class (IEC) IIA [69]. However, the new E-115 E3 wind turbines with the 

same power (3MW) are suitable for the wind class (IEC) IA [85].  

The MERRA-2 locations must be analyzed and classified to see which are over a wind 

class IA (tropical conditions), and therefore, unsuitable for the very weak wind turbine 

Enercon E-115 E3. The average wind speed (Vave) and the reference wind speed (Vref) 

for the 140m rotor height are then calculated according to the norm IEC 61400-1:2019. 

The MERRA-2 cells, which are above the limit conditions for wind class I, will consider 

only the construction of very strong wind turbines.  

Different multiplication factors are needed to calculate the reference wind speed (Vref). 

First, given that the weather data is only available for one year (2012), a correction factor 

is needed to consider them as 50-year wind speeds. This correction factor is 1,25. 

Also, the available wind speed data is in hourly resolution, while the reference wind 

speed is calculated with the 10-min average. An additional correction factor, extracted 

from the World Meteorological Organization (WMO), with the value of 1,08, is used to 

transform the hourly average wind speed into a 10-min average wind speed [86]. 

The reference wind speed calculation multiplies the two correction factors by the 

maximum hourly average wind speed for one year: 

 

𝑉𝑟𝑒𝑓 = 1,25 · 1,08 · 𝑉2012,ℎ𝑜𝑢𝑟𝑙𝑦,𝑚𝑎𝑥 

 

Then with the reference wind speed and the average wind, the wind class for the specific 

location can be determined. 
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Model parameters (System Level) 

The model parameters, defined in 4.3.3, are directly imported from the excel file and do 

not need any processing. 

 

Technical parameters (System Level) 

The components' technical parameters are specified in 4.3.3 and do not need any 

processing before being given to PyPSA.  

In the database, the technical parameter values are found in the table 

t_h2_model_tech_param. To understand the parameter identifiers, two additional 

description tables must be considered. Figure 4-14 shows the ERD for the technical 

parameters in the database. 

 

Figure 4-14 ERD for technical parameters of the components 

 

Most technical parameters will be directly written in the excel file; see Figure 4-8 and 

Figure 4-10. However, taking the technical parameters directly from the database to 

create the DataFrames is being considered for the future development of the model. 

 

Economic parameters (System Level) 

In 4.3.3, the economic parameters for the different components are identified. In the 

database, the economic parameter values are found in the table t_h2_model_costs. To 

understand the parameter identifiers, two additional description tables must be 

considered. Figure 4-15 shows the ERD for the economic parameters in the database. 
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Figure 4-15 ERD for economic parameters of the components 

 

The economic parameters and the country risk premiums are needed to calculate the 

annualized costs per technology and country. This calculation is made in python, 

independently from the electrolysis-based hydrogen production model. Its results are 

saved in the table, t_h2_model_ann_costs_per_country, later accessed by the python 

model for the optimizations of the cells. 

The annualized costs are calculated using the annuity factor explained in 2.1.2, but it 

also depends on the component, as each component might have different parameter 

costs. 

 

• PV, wind turbines, and electrolyzer:  

These components only consider specific investment and operational costs regarding 

power in €/MW. Therefore, the calculation of their annualized cost is direct. 

𝐴𝑛𝑛. 𝑐𝑜𝑠𝑡𝑖 =  𝐶𝐴𝑃𝐸𝑋𝑝𝑜𝑤,𝑖 · (
1 

𝐴𝑛𝐹𝑖
+ 𝑂𝑃𝐸𝑋𝑝𝑜𝑤,𝑖(%))    𝑖𝑛   

€

𝑀𝑊 · 𝑦𝑒𝑎𝑟
 

 

• Battery storage: 

Besides having power specific investment and operational costs in €/MW, the battery 

storage system has also capacity investment costs in €/MWh. The investment power and 

capacity costs can be related through the e/p ratio. 

𝐴𝑛𝑛. 𝑐𝑜𝑠𝑡𝑏𝑎𝑡𝑡 = 𝐶𝐴𝑃𝐸𝑋𝑡𝑜𝑡𝑎𝑙,𝑏𝑎𝑡𝑡 · (
1 

𝐴𝑛𝐹𝑖
+ 𝑂𝑃𝐸𝑋𝑝𝑜𝑤,𝑖(%))    𝑖𝑛   

€

𝑀𝑊 · 𝑦𝑒𝑎𝑟
 

With:  

𝐶𝐴𝑃𝐸𝑋𝑡𝑜𝑡𝑎𝑙,𝑏𝑎𝑡𝑡 = 𝐶𝐴𝑃𝐸𝑋𝑝𝑜𝑤,𝑏𝑎𝑡𝑡 + 𝑒/𝑝𝑟𝑎𝑡𝑖𝑜,𝑏𝑎𝑡𝑡 · 𝐶𝐴𝑃𝐸𝑋𝑐𝑎𝑝,𝑏𝑎𝑡𝑡    𝑖𝑛   
€

𝑀𝑊
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• Hydrogen storage: 

It has investment and operational costs for power and capacity. Therefore, two different 

annualized costs are calculated, for power characterization and energy capacity 

characterization. 

𝐴𝑛𝑛. 𝑐𝑜𝑠𝑡𝑝𝑜𝑤,𝑖 =  𝐶𝐴𝑃𝐸𝑋𝑝𝑜𝑤,𝑖 · (
1 

𝐴𝑛𝐹𝑖
+ 𝑂𝑃𝐸𝑋𝑝𝑜𝑤,𝑖(%))    𝑖𝑛   

€

𝑀𝑊 · 𝑦𝑒𝑎𝑟
 

𝐴𝑛𝑛. 𝑐𝑜𝑠𝑡𝑐𝑎𝑝,𝑖 =  𝐶𝐴𝑃𝐸𝑋𝑐𝑎𝑝,𝑖 · (
1 

𝐴𝑛𝐹𝑖
+ 𝑂𝑃𝐸𝑋𝑐𝑎𝑝,𝑖(%))    𝑖𝑛   

€

𝑀𝑊ℎ · 𝑦𝑒𝑎𝑟
 

 

The country risk premium is included in the calculation of the annuity factor, as shown 

below. 

 

𝐴𝑛𝐹 =
(1 − (1 + 𝑟)𝑛)

𝑟
=

(1 + 𝑟)𝑛 − 1

𝑟 ∗ (1 + 𝑟)𝑛
 

With: 

𝑟 = 𝑊𝐴𝐶𝐶 = 𝑊𝐴𝐶𝐶𝑏𝑎𝑠𝑒 + 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 𝑅𝑖𝑠𝑘 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 

 

Figure 4-16 shows the entity relationships diagram for the calculation of the annualized 

cost per country and technology.  

 

 

Figure 4-16 ERD for the calculation of the annualized cost per country and technology 

 

4.5 Output data 

The PyPSA optimizations of the electrolysis-based hydrogen production model result in 

a large amount of data that must be sorted and selected according to what is interesting 

for further analysis. The kept data is then stored in the database and can be classified 
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into three groups. Firstly, the LCOH, then the optimized component sizes, and the 

timeseries for the behavior of the components.  

 

Levelized Cost of Hydrogen (LCOH) 

While the component sizes and the timeseries can be directly extracted from the 

optimization results generated by PyPSA, the LCOH was calculated in python and then 

stored in the database as a result so that it can be easily accessed. The LCOH 

calculation follows the equations explained in the Theoretical Framework points 2.1.1 

and 2.1.2 and includes the following components: 

• Electricity generators: PV, Wind very weak and Wind very strong 

• PEM Electrolyzer 

• Battery Storage System 

• Hydrogen Storage System 

Including the hydrogen storage system in the LCOH has raised the question of whether 

a hydrogen storage system should be truly included, given that the LCOH usually covers 

only the hydrogen production system. In the case of the levelized cost of energy (LCOE), 

it covers only the power plant for electricity production. However, hydrogen is not 

electricity, and arguments against and for its inclusion are identified. 

For the inclusion, the main argument is that there is no equivalent to the electricity 

network in the hydrogen economy, where the hydrogen can be fed after production. 

Therefore, a hydrogen storage system is required to make the system more realistic. In 

addition, the hydrogen storage system gives the system certain flexibility needed for the 

cost optimization of hydrogen production. Another argument is that this system is found 

on the supply side, which means that hydrogen storage systems will realistically be 

installed on the production side, while also on the demand side, additional hydrogen 

storage systems will be installed, as in any other chemical industry. 

On the other hand, the main argument against the inclusion of the hydrogen storage 

system focuses on the main objective of the LCOH, which is to make possible the 

comparison between different hydrogen production technologies with a single 

parameter. Therefore, the calculation of the LCOH should be uniform among the different 

studies. Suppose other studies consider the hydrogen storage system in their 

calculation, for example, cost production analysis of hydrogen from steam reforming of 

natural gas. In that case, the LCOH in this academic work should include it too. 

Nevertheless, there is no consistency in the analyzed hydrogen production optimization 

models, where [34, 37] include the hydrogen storage systems in the cost calculation, [42] 
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plans to add, and the other five do not consider it in the cost optimization model at all 

[35, 36, 38–40].  

 

For the LCOH calculation, the storage system is included as this system is meant to act 

as an intermediate storage needed to get realistic optimization results. Without hydrogen 

storage, the modelled system would not be flexible enough, and it would depend entirely 

on the battery storage system, strongly increasing the costs of the system. 

One question that arises now is if the assumptions for the hydrogen storage system are 

correct, regarding mainly two aspects. Firstly, is a gas hydrogen storage system 

realistic? Or should another kind of hydrogen storage, such as a compressor and a liquid 

hydrogen tank, be considered? Secondly, should the size of the hydrogen storage tank 

be limited to a certain value? These questions are out of the scope of this academic work 

but are interesting for the outlook of the electrolysis-based hydrogen production model. 

 

Optimized size of the modelled components 

The optimizations results give the optimum size of the modelled components in MW or 

MWh, depending on if their characteristic parameter is power or energy capacity. 

 

Timeseries of the modelled components 

The optimization results include many timeseries describing the modelled components' 

performance and load profiles for all the timesteps. 

 

The output structure can already be seen in Figure 4-7 and Figure 4-8, but the specific 

selected parameters from the optimization results and stored in the database can be 

found in the Appendix III: Output data stored in database 

 

4.6 Python Code 

The electrolysis-based hydrogen production model is developed in python. However, 

high interaction with a PostgreSQL database is needed to access the input and store the 

output data. 

 

4.6.1 Module structure 

The python model is built in different modules that facilitate the structuring and 

understanding of the model. These modules, shown in the scheme from  Figure 4-17, 
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are main.py, input.py, precalc.py, opt.py, extra_pypsa.py and output.py. The code can 

be found in Appendix VI: Electrolysis-based hydrogen production python model code.  

 

 

Figure 4-17 Overview of python code modules 

 

Main.py module 

The main.py module centralizes the execution of the electrolysis-based hydrogen 

production model. It is built so that the first lines of the main.py module are the only ones 

the user has to modify selecting the specific variables and scenario, before running the 

entire model. 

The variables to be defined in the main.py module can be divided into Boolean and non-

Boolean variables. 

Boolean variables 

• calculate_ann_costs_in_db: if True, calculate new annualized costs per technology 

and country and selected year, importing the economic technology parameters and 

country risk premiums from the database and saving the annualized costs table back 

in the database. Default False. 

• optimize_each_cell: if True, an electrolysis-based hydrogen production system will 

be optimized for each cell. Default True. The following variables can only be used if 

optimize_each_cell is set to True. 

o import_data_db: if True, the data used for the optimizations of the cells are 

directly imported from the databank. Default True 
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o save_imported_data_feather: it can only be True if import_data_db is set to 

True and load_data_feather is set to False. If True, the imported data from 

the database are saved as feather files. 

o load_data_feather:  only can be True if import_data_db is set to False. If True, 

the data used for the optimizations are imported from the saved feather files. 

o store_cells_as_files: if True, every optimized cell PyPSA network will be 

saved in a folder. These files can take high amounts of storage space. Default 

False 

o work_output_data: if True, the results of the optimizations will be processed, 

and the data can either be saved as files or stored in the database. Default 

True. 

o save_results_as_files: only can be True if work_output_data is True. If True, 

the results (LCOH and component optimized sizes, without timeseries) will be 

saved as csv, parquet, and feather files. Default False. 

o insert_data_in_db: only can be True if work_output_data is True. If True, the 

results (LCOH, component optimized sizes, and timeseries) will be stored in 

the database. 

o overwrite_scenario_results_in_db: if True and insert_data_in_db is set to 

True, the existing results in the database only for the chosen scenario will be 

replaced with the new results. 

• print_time_summary: if True, a summary of the time needed for the different code 

modules will be displayed on the python console. The summary includes “Import 

or load data time”, “Preparations time”, “Optimization time”, “Work with output 

time”, and “Total time”. Default True. 

Non-Boolean variables: 

• num_parallel_processes: integer. It indicates the number of optimizations to be 

done simultaneously. The number of cores used must be less than half of the 

available cores or virtual computers available in the used computer, given that 

Gurobi uses for each optimization two virtual computers to solve the optimization 

problem in a short time. In case another solver different than Gurobi or less than 

two virtual computers for each parallel optimization is preferred or required, the 

variables “solver_name” and “solver_options={“threads”: }” in the opt.py module 

must be changed. 

If num_parallel_processes is set to 1, all the optimizations for the 51677 cells will 

take more than 17 days. Therefore, a minimum of num_parallel_processes = 8 is 
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recommended so that the whole model optimizations take around two days. 

Therefore, a powerful server is needed. 

• h2_scenario_id: integer. It indicates which scenario is going to be calculated. The 

h2_scenario_id is related to the name of the excel name to which the scenario is 

called in the main.py module. Also, this number will be stored as the 

id_scenario_h2_model for the results in the database. 

• scenario_year: integer. It indicates the year for the calculated scenario. 2020 is 

the only year considered in the scope of this academic work.  

  

Input.py module 

The input.py module contains all the functions related with: 

• The data import from the database 

• The save and load of input data in feather files 

• The data import from the excel file 

• The import of DataFrames into PyPSA 

• Other functions related with the input data  

 

Precalc.py module 

The precalc.py module includes all the functions related with: 

• The processing of the data python in dictionaries 

• The calculation of the annualized costs per technology and country 

• The update of the DataFrames for the PyPSA input, PV and wind capacity 

factors, and annualized costs of the components. 

An important function here is the import_id_cells_data_from_db, which defines which 

cells will be optimized. As input, an established connection with the database is needed. 

This function imports the identification numbers of the cells with their respective 

belonging country as a DataFrame, through a PostgreSQL query. This function is 

predefined to call all the 51677 cells considered in 4.1.2. Therefore, if another sample of 

cells belonging to a specific world region is desired, the PostgreSQL query should be 

changed here. Currently, an alternative PostgreSQL query is shown as a comment that 

imports the 100 random cells. 

 

Opt.py module 

The opt.py module, named after optimization, contains the functions for: 

• The optimization of all considered cells using PyPSA. 
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• Enabling the parallelization of the optimizations 

 

Extra_pypsa.py module 

The functions included in this module enable two main changes on the PyPSA networks. 

The first function, called multiple_input_output, allows the links in the network to accept 

more than one input and output. This function is important for model's future development 

to be able to give water or heat (SOEC electrolyzer) as additional inputs to the 

electrolyzer Link. 

The second extra change involves the transformation of Storage Units without a 

predefined energy-power ratio into two Links, a Bus, and one Store component so that 

the size of its power and capacity can be optimized separately. This functionality is 

needed because the predefined component PyPSA Storage Unit allows only the 

optimization of the power size. In contrast, the Store component only optimizes its energy 

capacity size. Replacing the Storage Unit will make the system more complex, but the 

tank power and capacity will be optimized separately. Figure 4-18 shows the 

replacement. 

 

Figure 4-18 Replacement of Storage Unit with equivalent components in PyPSA 

 

Link “Tank_pow_store”: enables the storage of hydrogen. Its characteristic parameter 

is its power, which represents the amount of hydrogen, that can be stored per unit of 

time in MW. 

PyPSA Environment – Storage Unit replacement

Storage Unit
„Tank“

Bus
„Hydrogen“

Store
„Tank_cap_store“

Bus
„Hydrogen“

Bus
„Hydrogen_2“

Link
„Tank_pow_store“

Link
„Tank_pow_dispatch“
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Link “Tank_pow_dispatch”: enables the dispatch of hydrogen. Its characteristic 

parameter is its power, which represents the amount of hydrogen that can be dispatched 

per unit of time in MW. 

Store “Tank_cap_store”: enables the storage of hydrogen. Its characteristic parameter 

is its capacity, which represents the amount of hydrogen, that can be stored in MWh. 

Bus “Hydrogen_2”: enables the connection between the new Links and the new Store. 

 

Output.py module 

The output.py module contains all the functions related with: 

• The processing of the results 

• The export of all the output results into the database 

• Other functions to save and load output data from specific files (csv, parquet, 

feather) 

 

4.6.2 Time performance and parallelization 

The performance time of the model represents a challenge, given the high number of 

cells to be optimized, in total, 51677. To have an idea, if each linear optimization requires 

five seconds, the whole model will need at least three days, which may still be 

reasonable. Nevertheless, if each linear optimization takes 30 seconds, the performance 

time of the model will be around 18 days, which is not reasonable, especially if different 

calculation scenarios are considered. 

The first tests of linear optimizations with a free software solver needed several minutes 

to find the solutions, which meant that different approaches were required to reduce the 

optimization time per cell. Two main strategies have been adopted to address this issue, 

the improvement of PyPSA performance and the parallelization of the optimizations. 

 

Improvement of PyPSA performance 

For the improvement of the PyPSA performance, three different approaches are 

considered. First, the import of input data to PyPSA, then, the use of a powerful 

commercial solver to calculate the optimizations, and finally, not using pyomo to 

formulate the optimization problem. 

• Import of input data to PyPSA: as mentioned in 4.2.3 the input data for PyPSA can 

be introduced directly in the python code or be imported through csv files or 

DataFrames. The most time-efficient approach here is to consider DataFrames, as 

they save the step of saving and loading csv files for each optimization. The time 
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saved using this approach is not significant, but it makes the code more efficient and 

understandable. 

• Using Gurobi commercial solver: while there are existing free software optimizer 

solvers, such as GLPK or CPLEX, the use of commercial solvers, such as Gurobi, 

outrun the performance of the free software. The implementation of Gurobi as a 

solver for optimizing the cells significantly increased performance. It went from 

several minutes per optimization to around 40 seconds. A student license was used 

to implement the solver in the python code. 

• Not using Pyomo to formulate the optimization problem: PyPSA uses pyomo as the 

default path for implementing the optimization problem, with all its variables and 

constraints. However, in 2020, PyPSA introduced a new internal optimization 

framework that does not use pyomo, which is faster and less memory intensive. This 

framework has been optimized, fixing small issues, and in February 2022, the last 

update of the non-pyomo approach was released. The downside of the non-pyomo 

path is that the additional constraints and functionalities require a specific structure. 

Changing to non-pyomo was the last approach to improve the runtime performance, 

reducing the optimization time to 30 seconds. 

 

Parallelization of the optimizations 

The parallelization of the optimizations consists of running different optimizations 

simultaneously using multiple cores or virtual computers. The parallelization should be 

conducted in powerful computers or servers with multiple cores or virtual computers, 

ideally at least 16. At the FfE, the employed server has 46 virtual computers. 

The parallelization was conducted using the multiprocessing python package. In 

particular, the Pool class is used (instead of the Process class), given that the number 

of tasks is high [87]. 

For the Pool class, different parallelization methods are available in the multiprocessing 

python package. These methods can be implemented through the functions apply, map, 

apply_async, map_async, starmap, starmap_async, imap, and imap_unordenred [87]. 

The chosen function is imap, which saves memory by not converting the iterable into a 

list. Also, the chunk is given as input to accelerate the process. The alternatives async, 

starmap and unordered consider additional features not interesting for the model. 

The number of parallel optimizations is given externally in the __main__.py module 

through the variable num_parallel_processes. It is defined that the 

num_parallel_processes cannot surpass half of the total cores of virtual computers 
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available in the computer. This requirement is needed due to Gurobi, given that it 

requires more than one core for itself to perform properly in a short time.  

By default, Gurobi uses all available CPU cores in the computer to provide the best 

possible performance. In the parallelization process, the number of CPU cores used for 

each simultaneous optimization road must be limited to avoid overloading the CPU 

resources. This limit is defined in the opt.py module with “solver_options={“threads”: 2}”. 

Table 4-8 shows the results of a Gurobi performance test. This test was done with 

different combinations of CPU cores used per parallel process. Ten cells were optimized 

for the test for five different cases, repeating each case twice. 

 

Table 4-8 Performance comparison for parallelization with Gurobi 

Case Parallel 
optimizations 

CPU core / 
parallel 
optimization 

Number of 
CPU cores 

1. total 
time in s 

1. time 
per it in s 

2. total 
time in s 

2. time 
per it in s 

1 5 2 10 95.98 31.67 108.27 32.99 

2 10 1 10 180.89 95.26 178.99 96.24 

3 5 1 5 271.85 79.51 274.34 79.35 

4 2 2 4 179,46 28,73 177,47 28,62 

5 2 3 6 226,72 27,21 229,04 27,94 

 

From Table 4-8, it can be derived that the performance of Gurobi decreases rapidly when 

only one CPU core is used to solve the optimization (CPE core per parallel optimization). 

Additionally, the performance difference between using 2 or 3 CPU cores to solve the 

optimizations is insignificant. Therefore, the configuration of two CPU cores per parallel 

process is adopted. 

This chosen configuration explains the limit specified in the python code, where the 

number of parallel optimizations cannot exceed half of the total number of CPU cores. 

Therefore, each single parallel optimization process is programmed to use two CPU 

cores to enable a proper solver performance time.  

An example concerning the FfE server, which has 46 available virtual computers 

(equivalent to CPU cores), is presented. If the variable num_parallel_processes is 

initialized to 40, then the python model will restrict the number of simultaneous 

optimizations to 23, which is the number of available virtual computers divided by two. In 

that case, 23 optimizations will be performed simultaneously, each using two virtual 

computers, and therefore the whole server capacity will be used.  

The FfE server with 46 virtual computers was used to calculate the results. However, to 

avoid overloading the server, only a maximum of 60% of the server was used for the 

calculation, corresponding to 27 CPU cores. In the end, only 24 CPU cores (12 parallel 

optimization processes) were used, taking less than two days of calculation time. 
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The parallelization of the optimization allows a remarkable decrease of the calculation 

time down to a reasonable duration. 

 

 

Figure 4-19 Parallelization of PyPSA optimizations in twelve processes 

 

4.7 Selection of calculation scenarios 

The calculation scenarios represent different configurations of the electrolysis-based 

hydrogen production system, each with specific components and assumptions. The 

effects of the different components and assumptions on the levelized cost of hydrogen 

can be studied by comparing these scenario results. The analysis of the effects should 

help answer the second and third research questions found in 1.2. These research 

questions regard the effects on the LCOH of: 

• the PV-wind hybrid system, 

• the battery storage and 

• the country risk premiums (CRP) 

The calculation scenarios are presented in the following table: 

 

Table 4-9 Calculation scenarios for the electrolysis-based hydrogen production model 

id Scenario CRP Hybrid (PV-wind) Battery storage H2 storage 

1 _base_complete x x x x 

2 _constant_wacc 
 

x x x 

3 _only_pv x Only PV x x 

4 _only_wind x Only wind x x 

5 _affordable_battery x x 50% cost x 

PyPSA Optimizations 
51677 cells

Parallel 
process 1
4307 cells

Parallel 
process 2
4307 cells

Parallel 
process 3
4307 cells

Parallel 
process 4
4307 cells

Parallel 
process 5
4307 cells

Parallel 
process 6
4306 cells

Parallel 
process 12
4306 cells

Results 2Results 1 Results 4Results 3 Results 5 Results 6 Results 12

PyPSA
complete results

[…]

[…]

Parallelization of 
optimizations



  

74 

 

The base scenario, named “_base_complete” incorporates all components in the 

optimization model. Also, the country risk premiums are included in the int base scenario, 

considered a plausible assumption, for two reasons. First, the base scenario should be 

the most realistic one, and including the country risk premiums also comprises the 

economic attractiveness of the countries from an investor perspective. Secondly, as its 

name says, the base scenario is used for comparison with the other scenarios, retrieving 

a component or an assumption in the next calculation scenario so that the effects are 

easier to analyze. 

The “_the_constant_wacc” scenario does not consider the country risk premiums. 

Therefore, the interest rate considered to annualize the costs of the components is the 

base WACC presented in Table 4-6 for the economic parameters of the different 

components, and will be the same for all the countries in the world. This scenario 

approaches the case when all countries are equally attractive to investors, independently 

of the country’s political and economic situation. Then, with this scenario, it is expected 

to see how the country risk premiums affect the hydrogen production cost in regions or 

countries with high solar and wind renewable energy potential. 

The “_only_pv” and “_only_wind” scenarios consider only PV and only wind 

technologies, respectively, to produce electricity. With these scenarios, it is expected to 

see the advantages of hybrid PV-wind production systems for certain areas. 

The last scenario, called “_affordable_battery” was not initially planned. Instead, the idea 

was to consider a scenario with no battery storage. However, once the pre-analysis was 

done, see 5.1, it was observed that no battery was introduced in the optimization results 

for the 100 random cells. That means that the battery investment and operational costs 

are probably still too expensive for it to be economically interesting for an off-grid 

electrolysis-based hydrogen production system. Therefore, an alternative scenario was 

conceived, where the battery annualized costs are reduced to half, to see what effects a 

battery would have on the LCOH and in which regions and conditions. 

 

The results for these scenarios are presented and analyzed in 5.2. 
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5 Results 

This chapter examines firstly the results regarding the pre-analysis for 100 random cells, 

followed by the results analysis for the different calculation scenarios answering the 

research questions proposed in this academic work. 

 

5.1 Pre-analysis results 

As mentioned in 4.4.4, the wind capacity factors are available for five onshore wind 

turbines defined in 4.3.2. Although including the five onshore wind turbines in the model 

is possible, it would increase the computational time, which is not desired. Now the 

question is to identify if despite computational time increase, the optimization results 

considering the five onshore wind turbines would be any different than considering only 

a limited number of the available onshore turbines.  

A pre-analysis is then conducted in which 100 random cells worldwide are optimized 

considering the five available onshore wind turbines, very strong, strong, middle, weak, 

and very weak. 

The optimization results for the 100 random cells can be found in the Appendix IV: Pre-

analysis results – 100 random cells. The results include the calculated LCOH in €/kg and 

the sizes of the modelled components in MW for installed power and MWh for the 

hydrogen storage and battery capacities; see the output data units in Appendix III: Output 

data stored in database. Additionally, the tank energy power ratio is calculated. From the 

pre-analysis results, different interesting aspects can be identified. 

Firstly, the linear optimization never introduced the battery storage system, which means 

that curtailment is preferred to the storage of electricity, as the battery’s investment and 

operational costs are too high to provide an economic advantage in the system. After 

analyzing these results, an alternative calculation scenario was introduced called 

“_affordable_battery” considering 50% of the annualized battery costs. This scenario 

pretends to identify the regions and conditions in which battery storage is more likely to 

be introduced. This calculation scenario is explained in 4.7.  

Given that no battery is introduced and probably solar and wind is not constantly 

available for electricity production, an alternative component is needed to provide some 

flexibility, to meet the hourly demand. This component is the hydrogen storage tank, 

introduced in every optimized cell with energy capacities that differ from 1.33 MWh (40 

hours of covered demand at its full capacity) up to 18.66MWh (560 hours or 23 days of 

covered demand). The energy power ratio of the hydrogen storage embodies high 
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variations, where the highest energy power ratios correspond with higher energy 

capacities, and therefore, longer storage. 

Regarding PV, the installed power of PV and the LCOH are correlated so that the lowest 

LCOH corresponds to the lowest installed PV power, and as one increases, the other 

does too.  

The primary motivation for this pre-analysis concerns the wind turbines. Repeating the 

hypothesis described in 4.4.4, the electrolyzer would define the whole system’s behavior, 

given that it is intended to run as constantly as possible to be able to fill the hourly 

hydrogen demand. To achieve this, a steady supply of electricity is needed, which is 

expected to be supplied by the very weak wind turbine, despite being more expensive, 

because it holds the highest full load hours. 

As it is observed, the hypothesis is verified, where from the five modelled wind turbines, 

only three of them are introduced in the results, and the very weak wind turbine has the 

highest introduction rate by far. Table 5-1 summarizes the introduction rate for generation 

technologies in the pre-analysis results. 

 

Table 5-1 Rate of introduction for electricity generation components in pre-analysis results 

 PV Very Weak 
Wind 

Weak Wind Middle Wind Strong 
Wind 

Very Strong 
Wind 

Rate of 
introduction in % 

99% 73% 0% 0% 1% 5% 

 

At first sight, the weak wind turbine and the middle wind turbine can be excluded from 

the model without triggering any change in the optimization results. In addition, the strong 

wind turbine is also expected to be excluded, keeping the very weak and the very strong 

wind turbines in the model. Further analyses are carried out, considering two other 

scenarios. 

• Scenario A (base): PV and five onshore wind turbines 

• Scenario B: PV and only very weak wind turbine 

• Scenario C: PV and only very strong wind turbine 

These scenarios should enlighten the effects on the LCOH of restricting the modelled 

wind turbines. The analyses are implemented for 10 of the 100 random cells considered 

in the pre-analysis, which include the six cells with strong wind turbines and very strong 

turbines and other four random cells.  

Table 5-2 shows the results for the 10 selected cells, with the absolute difference of 

LCOH between scenarios A and B and between scenarios A and C. If only the very weak 

turbine or only the very strong wind turbine are modelled, scenarios B and C respectively, 
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then the LCOH always increases. The LCOH increase is mainly significant for high 

LCOH, however for the cells 96855 and 187101 with the lowest LCOH, the increase is 

respectively 0,08 €/kg (2%) and 0,10 €/kg (2%), supporting then the inclusion of both 

very weak and very strong wind turbines in the hydrogen production model. 

Mention that in cell 162700, where neither the very weak nor the very strong turbines 

were introduced, the difference in LCOH is 0,01 €/kg, representing a 0,15% LCOH 

increase in 1% of the 100 cells sample. It is assumed that the exclusion of the strong 

wind turbine will not lead to significant LCOH changes. 

 

Table 5-2 LCOH comparison for different wind turbine scenarios in the pre-analysis 

Cell 
Optimal Wind 
Turbine 
configuration 

LCOH (€/kg_H2) Absolute Difference Comparison 

A - 5 modelled 
wind turbines 

B - Only Very 
Weak Turbine 

B - A 
C - Only Very 
Strong Turbine 

C - A 

16907 very_weak 5,79 5,79 0,00 5,98 0,19 

119263 very_weak 5,82 5,82 0,00 5,93 0,10 

184029 very_weak 10,79 10,79 0,00 12,36 1,57 

187101 very_weak 4,71 4,71 0,00 4,81 0,10 

54353 very_strong 10,68 10,86 0,18 10,68 0,00 

96855 very_strong 4,84 4,92 0,08 4,84 0,00 

114910 very_strong 5,79 5,80 0,01 5,79 0,00 

152233 very_strong 5,86 5,88 0,02 5,86 0,00 

194146 
very_strong + 
very_weak 

7,59 7,60 0,01 7,62 0,04 

162700 strong 6,57 6,58 0,01 6,58 0,01 

 

From the pre-analysis, it is deduced that the battery will not play a critical role in the 

worldwide optimization results. At the same time, the hydrogen storage system will 

assume the flexibility function for meeting the demand. In addition, for the specific cell 

sample, the best LCOH belongs to the cells with the lowest PV installation power; 

nevertheless, the effect of hybrid PV and wind technologies is yet to be analyzed. Finally, 

only the very weak and the very strong wind turbines will be modelled for the optimization 

of the 51677 cells. 

 

5.2 Scenario results 

The first research question concerning the most suitable open-source software for 

developing the electrolysis-based hydrogen production model was already answered in 

4.2. The chosen software, PyPSA, is employed in the model to formulate and calculate 

the hydrogen systems optimization problems for each of the 51677 MERRA-2 cells.  
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The optimizations are performed for the five scenarios explained in 5.2 and the output 

results detailed in 4.5 are stored in the database. This output is analyzed to answer the 

two remaining research questions. The results presented in this chapter are subjected 

to the specific assumptions of the hydrogen production model for this academic work.  

 

The two remaining research questions cover the effects of the PV-wind hybrid system, 

the battery storage system, and the country risk premiums on the levelized cost of 

hydrogen (LCOH). Additionally, some interesting results about the hydrogen storage 

system will be presented. Therefore, for the sake of a clear presentation of the results, 

five different result sections are introduced: 

1. General LCOH 

2. Country risk premiums 

3. Hybrid PV-Wind electricity generation 

4. Battery storage system 

5. Hydrogen storage system 

The results are mainly presented through the visualization of the parameters and 

correlations in worldwide maps that enable a straightforward interpretation of the results. 

Furthermore, bar diagrams and density scatter diagrams are also employed. 

 

1. General LCOH 

Although the assessment of the LCOH values is not meant to answer any research 

question, it supports the understanding of further data analysis. The LOCH results come 

from “_base_complete” scenario, which considers all the components and the country 

risk premiums.  

Figure 5-1 shows the distribution of the LCOH worldwide in €/kg for green hydrogen 

production considering the techno-economic parameters for 2020. Additionally, as 

explained in 4.5, the calculation of the LCOH includes the hydrogen storage system 

installed power and capacity costs. 

In Figure 5-1, the cheapest LCOH cells are located mainly in Australia, southern Chile, 

the United States, the North Sea region in Europa, Greenland, and a small area in Brazil. 

These locations (except Greenland, which is only known for its hydropower potential for 

hydrogen production [88]) are found in the 20 countries with the lowest LCOH in 2050, 

according to the optimistic scenario from the IRENA Green hydrogen cost and potential 

report [89]. Another region worth mentioning and included in the IRENA report is Saudi 

Arabia. Also, the  study “The Future of Hydrogen” from IEA shows in Figure 14 similar 

economic LCOH regions as the optimization results [56]. 
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Figure 5-1 LCOH for the _base_complete scenario including country risk premiums 
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Nevertheless, in the IRENA report, other countries such as China, Argentina, or North 

African countries, are also predicted to lead the LCOH benchmark but do not show a 

high potential in the results for the “_base_complete” scenario. This effect is due to the 

country risk premiums and will be explained in the second section. 

 

After the short qualitative comparison of the global LCOH results, further analysis for 

some specific locations is carried out. The breakdown of the LCOH for three calculation 

scenarios and five specific locations is presented below; see Figure 5-2.  

The first two scenarios are the “_base_complete” and “_constant_wacc” respectively, 

with and without the country risk premiums (CRP). The third case corresponds to the 

minimum LCOH between the “_only_pv” and “_only_wind” scenarios for each specific 

cell, also including the CRP effect. The five studied locations are specified in Table 5-3 

with the CRP and the LCOH for the three scenarios. 

 

Table 5-3 Five specific locations for the LCOH breakdown 

Id. cell Location CRP in % 
LCOH in €/kg 

_base_complete 

LCOH in €/kg 

_constant_wacc 

LCOH in €/kg 

_only_pv or 
_only wind 

64753 Chile – Atacama Desert 0,70% 5,29 5,03 5,29 

108588 Germany – North Sea 0,00% 3,95 3,95 4,02 

106020 Algeria – Hassi R’Mel 6,43% 7,18 4,52 8,91 

123594 Mozambique – South Xai-Xai 8,90% 8,37 4,53 9,86 

172670 Australia – South coast Albany 0,00% 3,96 3,96 4,03 

 

 

Figure 5-2 Bar diagram of LCOH breakdown for five specific locations 
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For the five specific locations, the production of electricity with PV and wind turbines 

represents at least half of the total LCOH, while the hydrogen storage system does not 

entail a high share of the production costs. 

Concerning electricity production, in the locations where wind potential exists (all but the 

Atacama Desert in Chile), the LCOH is lower for the case with constant WACC (no 

country risk premiums considered). Also, comparing the first and third scenarios, it is 

observed that the hybrid PV-wind electricity production case usually offers a cost 

advantage. This cost advantage is significant for Algeria and Mozambique, given that 

they hold a higher ratio of PV-wind full load hours (0,46 and 0,44, respectively). On the 

other hand, the cost advantage is almost insignificant for Germany and Australia, which 

hold higher wind potential and then a low ratio of sun-wind full load hours (0,18 and 0,30 

respectively); see Table 5-4. 

 

Table 5-4 PV and Wind Full Load Hours (FLH) for the five specific locations 

Id. cell Location PV FLH 
Wind very 
weak FLH 

Wind very 
strong FLH 

Ratio PV FLH / wind 
very weak FLH 

64753 Chile – Atacama Desert 2109 1559 672 1,35 

108588 Germany – North Sea 1011 5584 3345 0,18 

106020 Algeria – Hassi R’Mel 1746 3718 1769 0,46 

123594 Mozambique – South Xai-Xai 1649 3684 1731 0,44 

172670 Australia – South coast Albany 1544 5079 2771 0,30 

 

Regarding the country risk premium effect, the higher the country risk premium, the 

higher the LCOH increase. Algeria, with a country risk premium of 6,43%, contemplates 

an increase of 59%, while Mozambique, with a country risk premium of 8,90%, 

experiences an increase of 85%. The effect of the country risk premiums will be further 

analyzed in the next section of the results. 

Besides analyzing the different scenarios for the five selected locations, a quantitative 

comparison of the LCOH with other LCOH studies is conducted. This quantitative 

assessment is only carried out for the first three locations, Chile, Germany, and Algeria, 

employing the “_constant_wacc” scenario (3,5% WACC), as the other studies do not 

consider the country risk premiums. Other LCOH analysis studies do not consider the 

hydrogen storage system in the LCOH calculation; therefore, the hydrogen storage costs 

are extracted from the LCOH results and shown in Table 5-5.  

Each study considers its own techno-economic assumptions, reason why the single 

value comparison is difficult to interpret. 
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Table 5-5 LCOH comparison with external studies for the five specific locations 

Id. cell Location 
LCOH in €/kg 

_constant_wacc 

LCOH in €/kg 

_constant_wacc 
(without tank) 

Other Study 
LCOH in 
€/MW 

Other Study 
WACC in %  

Ref.  

64753 
Chile – Atacama 
Desert 

5,03 4,85 3.31 (2018) 5,12 [53] 

106020 
Algeria – Hassi 
R’Mel 

4,52 4,18 
1,60-3,40 
(2020) 

5 [38] 

108588 
Germany – North 
Sea 

3,95 3,40 
4,40-4,60 
(2025) 

5 [90] 

 

In the Atacama Desert, the techno-economic analysis considers only solar energy, just 

like the optimization results for the electrolysis-based hydrogen production model [53]. 

However, according the Chilean Hydrogen Association analysis [53], the LCOH is 3,31 

€/kg, that is 32% cheaper than the model’s optimized LCOH with a value of 4,85 €/kg. 

This difference can be explained by the assumptions considered in the paper, where the 

electrolyzer power investment costs are significantly lower, with a range of 770-1100 

€/kW with a WACC of 5,12% and 20 years of lifetime [53], while the electrolysis-based 

hydrogen production model considers 1420 €/kW with a WACC of 3,5% and 20 years of 

lifetime. 

Similarly, Algeria’s optimized LCOH is lower than the electrolysis-based hydrogen 

production model results. They assume a more economical electrolyzer and wind 

turbines, while the PV technology costs are more expensive. Additionally, the linear 

optimization model published in the article considers that the produced hydrogen can be 

directly fed to a pipeline with an annual hydrogen demand and not hourly, which gives 

the model a higher hydrogen production flexibility [38]. 

Finally, the comparison represents a challenge for the North Sea location, as no onshore 

hydrogen production studies have been found. Nevertheless, the dena study for the Hy3 

project, which considers offshore wind turbines for hydrogen production, might help 

assess the order of magnitude of the optimized LCOH. As shown in Table 5-5, dena 

LCOH is more expensive, which is already a good indication, as offshore wind turbines 

hold higher investment and operational costs than the onshore wind. Additionally, 

desalination systems, compressor, and pipelines from the offshore wind platform until 

the coast are considered, which correlate with a higher LCOH. 

The dena Hy3 study focuses on a single region of the world, which corresponds to a 

single MERRA-2 cell from the 51677 optimized in the electrolysis-based hydrogen 

production model. Therefore, the dena study defines more concrete assumptions for the 

specific region, making the results more realistic while still clear. It is possible to consider 

more concrete assumptions in the electrolysis-based hydrogen production model; 
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however, it is not convenient as the geographical scope is worldwide, and the 

interpretability of the results would decline. 

2. Country risk premiums (CRP) 

In the previous section some effects of the country risk premiums on the LCOH were 

already observed. A further worldwide assessment of the country risk premiums effect 

on the LCOH is accomplished by comparing the first scenario, “_base_complete” with 

the second scenario, “_constant_wacc”. Firstly, a visualization of the country risk 

premiums is presented in Figure 5-3. The base countries with zero country risk premium 

are United States, Canada, Norway, Sweden, Germany, Netherlands, Luxembourg, 

Lichtenstein, Switzerland, Singapore, Australia and New Zealand [16]. 

Two different world maps are visualized for the assessment. First, analog to the LCOH 

world map for the “_base_complete” scenario, an LCOH world map for the 

“_constant_wacc” scenario is created, see Figure 5-4. Furthermore, a world map with 

the absolute difference in LCOH between these two scenarios is also visualized, see 

Figure 5-5. 

 

Figure 5-4 shows a noticeable change in the LCOH map, due to the absence of country 

risk premiums, with a higher number of locations with cheaper hydrogen production 

costs. Other countries also mentioned in the IRENA “Green hydrogen cost and potential” 

to have low LCOH in 2050, can be now be distinguished in the map, such as Argentina 

and North African countries, but also China and South Africa [89]. Additionally, Kenia 

and Mozambique are countries that stand out for their unpredicted low LCOH.  

The country risk premiums capture the effect of the country’s economic and political 

situations on the hydrogen production cost. For example, Argentina and North African 

countries, with high renewable energy potential, entail a higher economical a political 

risk, making them more unattractive for international investments in electrolysis-based 

hydrogen production systems. This means that the country risk premiums can shape the 

economic LCOH distribution worldwide by excluding the countries with high country risk 

premiums. 

Figure 5-5 shows the absolute difference between the “_base_complete” scenario, which 

includes the country risk premium, and “_constant_wacc”, which employs the same 

WACC, 3,5% for all the countries. The higher the country risk premium, the higher the 

absolute difference. In Central and South America, Africa and Central Asia, the absolute 

difference in LCOH frequently reaches more than 5€/kg. In countries with a country risk 

premium higher than 10%, such as Argentina, the LCOH is at least twice the cost without 

the country risk premium consideration.  
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Figure 5-3 Country Risk Premiums map 
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Figure 5-4 LCOH for the _constant_wacc scenario not including country risk premiums 
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Figure 5-5 LCOH absolute difference between _base_complete and _constant_wacc scenarios 
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The previous visualizations showed the global effect of the country risk premiums. Now 

single country analysis and comparison between countries with similar country risk 

premiums are conducted. In particular, the effect of the country risk premiums for 

Argentina alone is analyzed, and then Algeria and Turkey, which hold a country risk 

premium in the same range. 

Argentina’s country risk premium is the second highest in South America and amounts 

to 11,87%, below Venezuela with 20,34% and above Ecuador and Suriname with 9,89% 

each. This high country risk premium makes Argentina unattractive from an investment 

perspective, as the LCOH increases strongly. As depicted in Figure 5-6 (b), this absolute 

difference of LCOH between the two scenarios “_base_complete” and 

“_constant_wacc”, for Argentina varies between 3,39€/kg and 11,12 €/kg. 

 

Figure 5-6 Argentina’s country risk premium effect 

(a) (b)

(d)(c)
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This high variation in LCOH can be explained by the existing renewable energy potential 

in terms of full load hours (FLH). The subfigures (c) and (d) from Figure 5-6 represent 

Argentina’s wind FLH and solar FLH, respectively. While the solar FLH do not seem to 

have an obvious correlation with the LCOH absolute difference, the wind FLH do. This 

correlation is preceded on the fact that the higher the wind FLH, the smaller the installed 

powers and capacities for the different components. 

Further explaining this correlation, in high wind FLH conditions, the available wind is 

steadier; therefore, no high installed wind power is needed to supply the electrolyzer. 

Similarly, since the electricity available is then steadier, the size of the electrolyzer and 

hydrogen storage system can be reduced, as there is no need to produce more hydrogen 

for storage to meet the demand on later timesteps.  

In essence, low wind FLH are associated with the decoupling of the production and 

supply of hydrogen, therefore needing bigger sizes for the wind turbines, electrolyzer 

and hydrogen storage. On the other hand, high wind FLH enable the coupling of the 

production and supply of hydrogen, which means smaller component sizes and, 

therefore, a lower LCOH, having high electrolyzer FLH. As a key result, high wind FLH 

can compensate the country risk premium negative effect, especially in countries with 

high country risk premium, as is the case for Argentina. 

This compensation can also be easily recognized by comparing Algeria and Turkey, 

which have 6,43% and 5,44% country risk premiums, respectively. This comparison is 

accomplished through Figure 5-7 and Figure 5-8, containing the information with the 

same scale for Argelia and Turkey, respectively. 

 

Figure 5-7 Algeria’s country risk premium effect 

(a) (b)

(d)(c)
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Figure 5-8 Turkey’s country risk premium effect 

 

Despite Algeria having a higher country risk premium, its LCOH is lower, as observed 

comparing Figure 5-7 (a) and Figure 5-8 (a). The explanation again is the compensation 

of the country risk premiums negative effect, through to the high wind FLH. Algeria has 

a higher wind potential than Turkey, and therefore, the optimized electrolysis-based 

hydrogen production systems are smaller in Algeria and less sensitive to high country 

risk premiums.  

Similarly, is the LCOH absolute difference due to the country risk premium effect higher 

in Turkey, see Figure 5-8 (b) compared to Figure 5-7 (b). Not a significant correlation can 

be identified from the visualization of the solar FLH of both countries. 

Even comparing the LCOH visualizations for Argentina and Algeria, with the same scale, 

it can be appreciated that for both countries the highest LCOH interval is 6,00 €/kg to 

7,00€/kg, even though Argentina’s country risk premium is much higher, 11,87% against 

6,43% for Algeria. Consequently, the high wind potential from Argentina can compensate 

its unattractive investment situation characterized by its country risk premium. 

 

It is also important to mention that the evolution of the future country risk premiums can 

hardly be predicted. Therefore, in case the electrolysis-based hydrogen production 

model was to be used for future calculation scenarios, 2030, 2040 or 2050, instead of 

2020, a constant WACC for all countries would be a valid assumption for the comparison 

of the LCOH unless reliable future country risk premiums are available. 

 

 

(a) (b)

(d)(c)
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3. Hybrid PV-Wind electricity generation 

The scenario “only_pv” and “only_wind” are calculated to analyze the effect of a hybrid 

PV-wind configuration on the LCOH. Different visualizations of the results are presented. 

Figure 5-9 represents the distribution for the share of PV installed power in each 

optimized cell, according to the next equation. 

𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑃𝑉 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 =
𝑃𝑉 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟

(𝑃𝑉 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 + 𝑊𝑖𝑛𝑑 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑝𝑜𝑤𝑒𝑟)
 𝑖𝑛 % 

The visualization shows in yellow the locations with only PV systems and in blue the cells 

where exclusively wind turbine is installed. The transitional hybrid systems are 

represented in greens. From the visualization, most optimized systems are PV based.  

Additionally, Table 5-6 gives the number and share of cells with a specific share of PV 

or wind installed power. It is then corroborated that most optimized locations are PV-

based, 77,51% of all the cells (more than 50% share of PV installed power). Also, while 

the locations with only wind turbines as electricity generation systems represent 2,88% 

of the total cells, the locations with exclusively PV systems come up to 20,78%. 

Altogether it can be deduced that the PV systems prevail over the wind energy systems, 

and more than three-quarters of the cells have a hybrid system. 

Table 5-6 Number and share of cells with a specific share of solar or wind energy installed power 

Share of installed power Number of cells Share of cells 

Only Wind (<5% share of PV) 1611 3,12% 

Only PV (>95% share of PV) 11551 22,35% 

Hybrid Systems 38515 74,53% 

>50% share of PV 40054 77,51% 

>60% share of PV 30620 59,25% 

 

Additionally, Figure 5-10 represents in a world map the absolute difference of LCOH 

between the scenario “_base_complete” where the hybrid PV-wind configuration is 

modelled, and the minimum LCOH between the “_only_pv” and “_only_wind” scenarios. 

The darkest purple locations on the map represent the highest LCOH absolute 

reductions, which designate the areas where the hybrid PV-wind configuration embodies 

the most advantageous potential compared to only PV or wind turbine systems.  

These two world maps suggest on the one hand, that hybrid systems are usually 

introduced and, on the other hand, that hybrid systems reduce the LCOH. However, 

these statements must be complemented to assess if the frequently introduced hybrid 

PV-wind systems truly entail a competitive advantage on the LCOH over non-hybrid 

configurations (only PV or only wind) and, if so, how significant the benefit is.  

The bottom line is whether hybrid configurations are economically more competitive than 

non-hybrid configurations.  
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Figure 5-9 Optimized share of PV installed power worldwide 
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Figure 5-10 LCOH absolute difference between hybrid PV-wind and only PV or only wind
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The complementary assessment is done primarily through two different scatter 

diagrams.  

Figure 5-11 represents a density scatter diagram for the share of PV installed power 

against the LCOH from the hybrid scenario. The right bar represents the number of cells 

with the specific share of installed PV (y-axis) and LCOH (x-axis). From Figure 5-11 three 

clusters can be identified, the only PV cluster (>95% share of PV) with 11551 cells, the 

hybrid PV-wind cluster (40% to 70% share of PV) with 25474 cells, and finally, the only 

wind cluster (<5% share of PV) with 1611 cells. The only PV cluster is not economically 

competitive with the other two clusters, as it holds the highest LCOH.  

Between the hybrid cluster and the only wind cluster, the last one has lower LCOH, with 

a minimum of 2,31€/kg and 154 cells under 4€/kg. In the case of the hybrid cluster, the 

minimum LCOH is 3,29€/kg, corresponding to a PV share of 41,48%. In this cluster, the 

number of cells under an LCOH of 4€/kg is 441. Also, for the hybrid cluster, 2205 cells 

have an LCOH below 4,5€/kg and up to 4496 cells below 5€/kg.  

 

 

Figure 5-11 Density scatter diagram for the installed PV share against the LCOH Hybrid 

 

A summary of the number of cells in each for each LCOH range is presented in Table 

5-7. The transition range between the hybrid and wind clusters is also included. 
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Table 5-7 Summary of LCOH for the hybrid, wind, transition, and PV clusters 

Cluster Wind Cluster 

(0% - 5% PV share) 

Transition  

(5%-40% PV share) 

Hybrid cluster 

(40%-70% PV share) 

PV cluster  

(95%-100% PV share) 

LCOH\Total 1611 5273 25474 11551 

< 3€/kg 19 2 0 0 

3€/kg – 3,5€/kg 49 24 13 0 

3,5€/kg – 4€/kg 86 131 428 0 

4€/kg – 4,5€/kg 128 283 1764 0 

4,5€/kg – 5€/kg 163 290 2291 0 

Total < 5€/kg 445 730 4496 0 

 

Even though hybrid cells have a slightly higher LCOH, the higher number of locations 

and a low LCOH might represent an advantage against the only wind cluster. 

The question of how significantly the hybrid configuration affects the LCOH is answered 

through Figure 5-12, which represents a scatter diagram for the LCOH absolute 

difference between hybrid and non-hybrid configurations against the LCOH for the hybrid 

scenario. 

 

 

Figure 5-12 Scatter diagram for the absolute difference of LCOH between hybrid and non-hybrid 
configurations against the LCOH Hybrid 

In Figure 5-12, the relative cost reduction for each cell is also illustrated through the 

different colors. The cells inside the shaded shape experience a competitiveness 

increase for developing an electrolysis-based hydrogen production system, thanks to the 
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economic advantage provided by the hybrid PV-wind configurations, that is, a strong 

reduction of the LCOH. These cells are in four regions of the world, Greenland, the United 

States, Saudi Arabia, and Australia. This improvement can be easily exemplified by 

looking at the black point in Figure 5-12. This point represents cell 130191, located in 

the Saudi Arabian desert, with an LCOH for hybrid configuration of 4,48 €/kg and an 

LCOH absolute difference between hybrid and non-hybrid configurations of 1,20€/kg. 

For this cell, the hybrid configuration entails a cost reduction of 21,16%, taking the cell 

into a more economically competitive position, from 5.68€/kg to 4,48€/kg. 

In brief, with the current model assumptions, the results show that hybrid PV-wind cells 

are commonly found in the optimization results, and the hybrid configuration can 

significantly reduce the LCOH, making cells economically competitive. Also, wind-based 

cells are usually more competitive than solar-based cells. 

 

4. Battery storage system 

As mentioned in 5.1, the pre-analysis results showed that no battery was introduced for 

the 100 random optimized cells, and therefore, instead of a scenario with no modelled 

battery, the “_affordable_battery” scenario with a 50% reduction of the battery annualized 

costs is introduced. 

The results for the “_base_complete” scenario show that only 15 cells (<0,03% of all the 

optimized cells) include a battery storage system. This absence of battery storage 

systems in the optimization results indicates that the costs for the battery storage 

technologies are too high to bring an economical advantage to the system. 

The cost of the battery is so high that curtailment is preferred over storing the produced 

electricity for future timesteps. Table 5-8 contains the average curtailed electricity 

percentage per cell and technology, considering only the cells with installed power for 

the specific electricity generator. The PV technology has the highest curtailment 

percentage, as on average more than a quarter of all the electricity produced from PV is 

curtailed in every system cell. The curtailment is due to solar energy peaks, not so 

frequent on wind energies, which is the reason behind the lower curtailment in the very 

weak and very strong wind turbines. 

 

Table 5-8 Average percentage of curtailed electricity per technology 

Electricity generator Average Curtailed electricity pro cell 

PV 27,51% 

Very strong wind turbine 12,31% 

Very weak wind turbine 11,91% 
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In the “_constant_wacc” scenario, no battery was introduced due to the interest rate (or 

WACC) and lifetime correlations with the annuity factor. Further explaining this, it is 

important to remind that low annuity factors mean high annual costs; see 2.1.2. Table 

5-9 shows how by high interest rate (such as “_base_complete” for countries with high 

country risk premium), the effect of the lifetime is not so significant, as the annuity factor 

will always be low. In that case, the battery system has a similar annuity factor to the 

other technologies, and therefore, it is more economically viable to be introduced in the 

optimizations. However, in the case of low interest rate (such as in the “_constant_wacc” 

scenario or for the countries with low country risk premium in the “_base_complete” 

scenario), the component’s lifetime gains significance, having the lower lifetime 

technologies also lower annuity factor, and therefore, given their high annual costs, the 

component will not be introduced in the optimized system. That is the case for the battery 

storage system in the “_constant_wacc” scenario. 

 

Table 5-9 Annuity factors for representative interest rates (r) and lifetimes (n) values 

 Interest rate (r) Lifetime (n) Annuity factor (AnF) 

Case 1 3,5% 10 8,31 % 

Case 2 3,5% 20 14,21 % 

Case 3 13,5% 10 5,32 % 

Case 4 13,5% 20 6,82 % 

 

As no battery is introduced in the optimization results, the hydrogen storage system is 

used as the main flexibility technology to achieve the decoupling of hydrogen production 

and supply of the demand. This decoupling is needed in most locations as electricity is 

not always available for every timestep. 

The research question regarding the effects of the battery storage system on the LCOH 

is then already answered; the battery has no effect on the LCOH optimization, given its 

high investments and operational costs. Nevertheless, a small battery will probably be 

installed in a real project to address small electricity deviations within each hour. This is 

reasonable as the model considers an hourly time resolution, and what happens in the 

minute range is out of the model’s scope. 

 

The optimization results for the “_affordable_battery” scenario are shown in Figure 5-13 

and Figure 5-14. Firstly, Figure 5-13 shows the installed capacity for the affordable 

battery storage systems in hours from the demand side perspective, that is, how many 

hours can the demand for hydrogen be met with a full capacity battery. The maximum 

installed capacity is 18h and 27min. Comparing Figure 5-13 with the map for the share 

of PV installed power, Figure 5-9, the battery storage system is only introduced in 
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locations with a high share of PV installed power, which are usually not economically 

competitive. This result is logical as the high PV share locations depend highly on the 

solar full load hours, and the battery storage system allows the electricity storage for 

hours without sun.  

Additionally, Figure 5-14, shows the LCOH absolute difference between the 

“_base_complete” and “_affordable_battery” scenarios, where the LCOH reduction is a 

maximum of 1,77€/kg. From both visualizations, the largest battery capacities and the 

most noticeable LCOH cost reductions are found in countries with the highest country 

risk premiums, such as Ecuador, Venezuela, or South Sudan. This effect is explained 

through the above-mentioned correlation between the battery storage system lifetime 

and the country risk premiums with the annuity factor. The short component’s lifetime 

effect for high country risk premiums is not so significant in the annuity factor as for low 

country risk premiums. Therefore, the annuity factor for the battery system (ten years of 

lifetime) and other components (at least 20 years of lifetime) are in a similar range; see 

Table 5-9. This means that for high country risk premiums, the shorter lifetime of the 

battery does not represent a big disadvantage in its annualized costs as in low country 

risk premiums. Therefore, halving the battery cost has a more significant effect on the 

regions with high country risk premiums, where the annuity factors between the battery 

system and other technologies are similar. 

 

The “_affordable_battery” scenario conclusion is that modelling an affordable battery 

with 50% cost reduction does not entail any change in the worldwide distribution of the 

economically competitive LCOH, and no new economically competitive locations are 

encountered. 
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Figure 5-13 Affordable battery storage (50% cost reduction) installed capacity for “_affordable_battery” scenario 
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Figure 5-14 LCOH absolute difference between “_base_complete” and “_affordable_battery” scenarios 
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5. Hydrogen storage system 

For the “_base_complete” scenario, a hydrogen storage system is introduced in every 

optimized cell. Hydrogen storage enables the decoupling of hydrogen production and 

hydrogen supply. This decoupling is needed since not enough electricity is available in 

every timestep, and there no battery storage system is introduced in the optimizations. 

Consequently, the hourly hydrogen demand can be met thanks to the hydrogen storage 

system. 

Figure 5-15 illustrates the installed storage capacity in hours from a demand side 

perspective. It is observed that most hydrogen storage systems have a capacity under 

480 hours or 20 days. At the bottom of Figure 5-15, only the competitive cells with a 

LCOH under 5€/kg are shown with hydrogen storage capacities under 240 hours or 10 

days. Most hydrogen storage systems hold a minimum capacity of 50 hours. Long-term 

storage of hydrogen is not frequent in the results but only in some specific locations, 

which should be further analyzed to assess its plausibility. 

 

Figure 5-15 Scatter diagram for the installed hydrogen storage capacity against the LCOH Hybrid
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6 Conclusions and outlook 

This thesis focuses on the development of an electrolysis-based hydrogen production 

model using an open-source environment to minimize and analyze the levelized cost of 

hydrogen (LCOH) worldwide. The outcomes of this thesis are insights concerning the 

methodology for the hydrogen production model implementation and the analysis of the 

optimization results. 

 

The following conclusion section reviews the key points regarding the research 

questions. Afterward, the possible future work for the development of the model is 

discussed in the outlook section. 

 

6.1 Conclusions 

The findings of this thesis aim to answer three research questions. The first research 

question addresses the choice of the appropriate open-source software for the 

development of the model and is answered through a qualitative assessment. The other 

two research questions embrace the effects of the country risk premiums, battery storage 

system, and hybrid PV-wind configuration on the levelized cost of hydrogen (LCOH). 

These two questions are addressed by implementing a quantitative assessment through 

the development of the hydrogen production model with linear optimization. 

The conclusions are then divided into qualitative and quantitative parts. 

 

Conclusions for the qualitative assessment 

The selection of the appropriate open-source software requires a qualitative assessment 

of the existing open-source environments. Certain assessment criteria are identified for 

this task, concerning the suitability, automatability and flexibility, together with general 

key aspects. Respectively these criteria cover if the devised system can be modelled 

with the software, if the optimizations can be automated for multiple optimizations altering 

the input data and if the model is easily adjustable in case new assumptions are to be 

adopted. The general aspects concern mainly the update frequency of the software and 

the existence of a community behind it. 

Several open-source software was initially discarded, and a deeper analysis was 

implemented for urbs and PyPSA. Despite neither having clear exclusion points, PyPSA 

was finally chosen for developing the electrolysis-based hydrogen production model.  
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Conclusions for the quantitative assessment 

The implementation of the electrolysis-based hydrogen production model requires a 

structured approach. The first step in this methodology involves the definition of the 

hydrogen production system, including the components, the relationships among them, 

the assumptions, and the constraints. Once the system is devised, the needed input data 

are identified and classified in different levels, as specific data for a single optimization 

(cell level), for a group of optimizations (country level), or for all the optimizations (system 

level).  

Additionally, a consistent structure for storing and processing the input and output data 

is created in the FfE database to easily access the data during the optimizations process 

and the analysis of the results. Then the program code is prepared with a meaningful 

module structure that embodies the program’s flow. Also, strategies for improving the 

runtime performance of the program are implemented. 

Once the programming code is finished, the methodology’s final step is properly defining 

the calculation scenarios so that the results are enough to answer the research 

questions. The base scenario includes PV, very weak and very strong wind turbines, 

electrolyzer, battery storage, and hydrogen storage systems. The base scenario also 

considers the country risk premiums. 

 

The optimizations resolved for the different calculation scenarios lead to the data needed 

for the quantitative assessment. These data are then processed, visualized mainly on 

world maps, and employed to analyze the effects on the LCOH of the different 

components and assumptions. In the following points, the results are shortly reviewed. 

• The distribution of the lowest LCOH locations is consistent with other 

studies. Under the consideration of the country risk premiums, the locations with 

the cheapest LCOH are the United States, Canada, Australia, south of Chile, the 

North Sea in Europe, and the north of Brazil. Greenland also stands outs for its 

low LCOH, but no other studies that corroborate this result were found. Although 

with higher LCOH, Saudi Arabia also holds a good potential for electrolysis-based 

hydrogen production. 

• The country risk premiums have a big impact on the LCOH distribution 

worldwide. Without considering the country risk premiums, other locations with 

inexpensive electrolysis-based hydrogen potential are identified, such as south 

of Argentina, Kenia, and North African countries. The hydrogen production 

potential for these countries is high, but they embody low investment interest due 

to their political and economic situation reflected in the country risk premiums. 
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• The negative effect of the country risk premiums on the LCOH can be 

compensated with high full load hours of wind. South Argentina region 

exemplifies this effect. 

• The PV-wind hybrid configuration for electricity generation is more 

common than only PV or wind. 74,53% of all optimized cells have installed 

power of both electricity generation technologies. 

• Most locations are PV-based. 77,51% of all optimized cells hold at least 50% 

of installed PV in their total installed power for electricity generation. 

• Three clusters of cells concerning the share of installed PV and the LCOH 

are identified, only wind, hybrid, and only solar; see Figure 5-11. The only 

wind cluster (<5% PV share) is the smallest including 3,12% of the cells, but also 

with the lowest LCOH. Then the hybrid cluster (40%-70% PV share) is the largest 

cluster, with 49,29% of all the cells. This cluster has a relatively low LCOH which 

can compete with the wind cluster in some locations. Finally, the PV cluster 

(>95% PV share), with 22,35% of all the cells, holds the highest LCOH and is not 

competitive in most locations. The transition area between the wind and hybrid 

clusters also contains economically competitive locations. 

• Certain locations reach an economically competitive position thanks to the 

hybrid configuration. These cells are located in the United States, Australia, 

Saudi Arabia, and Greenland. 

• The battery storage does not bring an economical advantage to the system 

due to its high costs. Curtailment is preferred over installing a battery. 

Considering a battery system with a 50% cost reduction can lower the LCOH for 

PV-based cells. However, this LCOH decrease is not enough to make these 

locations economically competitive. 

• Hydrogen storage represents a flexibility component to meet the demand 

in every timestep. The hydrogen storage system enables the decoupling of 

hydrogen production and hydrogen supply of the demand. 

 

In conclusion, the results of the quantitative assessment show, on the one hand, that the 

hybrid PV-wind configuration for electricity generation and the country risk premiums 

hold respectively positive and negative significant effects on the LCOH. On the other 

hand, the battery storage system does not affect the LCOH, given its high costs. 
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6.2 Outlook 

The further development of the electrolysis-based hydrogen production model can take 

different approaches. 

• Expand the hydrogen production system with: 

o Further components such as offshore wind turbines, compressor, 

different kind of electrolyzers (AEL, SOEC additional to PEM), 

desalination system and heat production system (in case of SOEC). 

o Adjustment or flexibilization of the constant hourly hydrogen demand 

(Demand Side Management). 

o Input MERRA-2 weather data for different years (now, only 2012), so that 

the results are consistent independently of the weather conditions of a 

concrete weather year. 

• Include additional calculation scenarios considering other years (now, only 2020 

techno-economic parameters), using techno-economic parameter estimations for 

2030, 2040 and 2050 to see the development of the LCOH worldwide. 

• Include land use potential analysis and calculate cost-potential curves per 

country. 

o Exclude, among others, nature reserves and conservation areas, water 

scarcity regions, high-density populated areas, and steep slopes regions. 

o Obtain percentage of the still available land to be used for hydrogen 

production. 

• Include synthetic fuel production in the model. 

• Analyze if selling the produced electricity in each timestep is more profitable than 

using it to produce hydrogen. Additionally, analyze if marketing the curtailed 

electricity could significantly reduce the LCOH in certain locations. 
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8 Appendix 

This chapter contains the different appendix supporting the academic work. 

 

8.1 Appendix I: Country Risk Premiums (January 5, 2022) 

The following table shows the country risk premiums calculated by the Stern School of 

Business in the New York University. Updated in the January 5 from 2022 [14]. 

Country Moody's 
rating 

Adj. Default 
Spread 

Country Risk 
Premium 

Equity Risk 
Premium 

Abu Dhabi Aa2 0.42% 0.49% 4.73% 

Albania B1 3.83% 4.45% 8.69% 

Algeria NR 5.53% 6.43% 10.67% 

Andorra (Principality of) Baa2 1.62% 1.88% 6.12% 

Angola B3 5.53% 6.43% 10.67% 

Anguilla NR 5.88% 6.83% 11.07% 

Antigua & Barbuda NR 5.88% 6.83% 11.07% 

Argentina Ca 10.21% 11.87% 16.11% 

Armenia Ba3 3.06% 3.56% 7.80% 

Aruba Baa2 1.62% 1.88% 6.12% 

Australia Aaa 0.00% 0.00% 4.24% 

Austria Aa1 0.34% 0.39% 4.63% 

Azerbaijan Ba2 2.56% 2.97% 7.21% 

Bahamas Ba3 3.06% 3.56% 7.80% 

Bahrain B2 4.68% 5.44% 9.68% 

Bangladesh Ba3 3.06% 3.56% 7.80% 

Barbados Caa1 6.38% 7.41% 11.65% 

Belarus B3 5.53% 6.43% 10.67% 

Belgium Aa3 0.51% 0.60% 4.84% 

Belize Caa3 8.51% 9.89% 14.13% 

Benin B1 3.83% 4.45% 8.69% 

Bermuda A2 0.72% 0.84% 5.08% 

Bolivia B2 4.68% 5.44% 9.68% 

Bosnia and Herzegovina B3 5.53% 6.43% 10.67% 

Botswana A3 1.02% 1.19% 5.43% 

Brazil Ba2 2.56% 2.97% 7.21% 

British Virgin Islands NR 5.88% 6.83% 11.07% 

Brunei NR 0.72% 0.84% 5.08% 

Bulgaria Baa1 1.36% 1.58% 5.82% 

Burkina Faso B2 4.68% 5.44% 9.68% 

Cambodia B2 4.68% 5.44% 9.68% 

Cameroon B2 4.68% 5.44% 9.68% 

Canada Aaa 0.00% 0.00% 4.24% 

Cape Verde B3 5.53% 6.43% 10.67% 

Cayman Islands Aa3 0.51% 0.60% 4.84% 

Channel Islands NR 0.72% 0.83% 5.07% 

Chile A1 0.60% 0.70% 4.94% 

China A1 0.60% 0.70% 4.94% 

Colombia Baa2 1.62% 1.88% 6.12% 

Congo (Democratic 
Republic 

Caa1 6.38% 7.41% 11.65% 

Congo (Republic of) Caa2 7.66% 8.90% 13.14% 

Cook Islands B1 3.83% 4.45% 8.69% 

Costa Rica B2 4.68% 5.44% 9.68% 

Croatia Ba1 2.13% 2.47% 6.71% 
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Country Moody's 
rating 

Adj. Default 
Spread 

Country Risk 
Premium 

Equity Risk 
Premium 

Cuba Ca 10.21% 11.87% 16.11% 

Curacao Baa2 1.62% 1.88% 6.12% 

Cyprus Ba1 2.13% 2.47% 6.71% 

Czech Republic Aa3 0.51% 0.60% 4.84% 

Denmark Aaa 0.00% 0.00% 4.24% 

Dominican Republic Ba3 3.06% 3.56% 7.80% 

Ecuador Caa3 8.51% 9.89% 14.13% 

Egypt B2 4.68% 5.44% 9.68% 

El Salvador Caa1 6.38% 7.41% 11.65% 

Estonia A1 0.60% 0.70% 4.94% 

Ethiopia Caa2 7.66% 8.90% 13.14% 

Falkland Islands NR 5.88% 6.83% 11.07% 

Fiji B1 3.83% 4.45% 8.69% 

Finland Aa1 0.34% 0.39% 4.63% 

France Aa2 0.42% 0.49% 4.73% 

French Guiana NR 3.26% 3.79% 8.03% 

Gabon Caa1 6.38% 7.41% 11.65% 

Gambia NR 4.68% 5.44% 9.68% 

Georgia Ba2 2.56% 2.97% 7.21% 

Germany Aaa 0.00% 0.00% 4.24% 

Ghana B3 5.53% 6.43% 10.67% 

Gibraltar NR 0.72% 0.83% 5.07% 

Greece Ba3 3.06% 3.56% 7.80% 

Greenland NR 0.72% 0.83% 5.07% 

Guatemala Ba1 2.13% 2.47% 6.71% 

Guernsey Aa3 0.51% 0.60% 4.84% 

Guinea NR 7.66% 8.90% 13.14% 

Guinea-Bissau NR 5.53% 6.43% 10.67% 

Guyana NR 3.83% 4.45% 8.69% 

Haiti NR 8.51% 9.89% 14.13% 

Honduras B1 3.83% 4.45% 8.69% 

Hong Kong Aa3 0.51% 0.60% 4.84% 

Hungary Baa2 1.62% 1.88% 6.12% 

Iceland A2 0.72% 0.84% 5.08% 

India Baa3 1.87% 2.18% 6.42% 

Indonesia Baa2 1.62% 1.88% 6.12% 

Iran NR 5.53% 6.43% 10.67% 

Iraq Caa1 6.38% 7.41% 11.65% 

Ireland A2 0.72% 0.84% 5.08% 

Isle of Man Aa3 0.51% 0.60% 4.84% 

Israel A1 0.60% 0.70% 4.94% 

Italy Baa3 1.87% 2.18% 6.42% 

Ivory Coast Ba3 3.06% 3.56% 7.80% 

Jamaica B2 4.68% 5.44% 9.68% 

Japan A1 0.60% 0.70% 4.94% 

Jersey Aaa 0.00% 0.00% 4.24% 

Jordan B1 3.83% 4.45% 8.69% 

Kazakhstan Baa2 1.62% 1.88% 6.12% 

Kenya B2 4.68% 5.44% 9.68% 

Korea, D.P.R. NR 10.21% 11.87% 16.11% 

Kuwait A1 0.60% 0.70% 4.94% 

Kyrgyzstan B2 4.68% 5.44% 9.68% 

Laos Caa2 7.66% 8.90% 13.14% 

Latvia A3 1.02% 1.19% 5.43% 

Lebanon C 17.50% 20.34% 24.58% 

Liberia NR 7.66% 8.90% 13.14% 

Libya NR 3.83% 4.45% 8.69% 

Liechtenstein Aaa 0.00% 0.00% 4.24% 
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Country Moody's 
rating 

Adj. Default 
Spread 

Country Risk 
Premium 

Equity Risk 
Premium 

Lithuania A2 0.72% 0.84% 5.08% 

Luxembourg Aaa 0.00% 0.00% 4.24% 

Macao Aa3 0.51% 0.60% 4.84% 

Macedonia Ba3 3.06% 3.56% 7.80% 

Madagascar NR 5.53% 6.43% 10.67% 

Malawi NR 7.66% 8.90% 13.14% 

Malaysia A3 1.02% 1.19% 5.43% 

Maldives Caa1 6.38% 7.41% 11.65% 

Mali Caa1 6.38% 7.41% 11.65% 

Malta A2 0.72% 0.84% 5.08% 

Martinique NR 3.26% 3.79% 8.03% 

Mauritius Baa2 1.62% 1.88% 6.12% 

Mexico Baa1 1.36% 1.58% 5.82% 

Moldova B3 5.53% 6.43% 10.67% 

Mongolia B3 5.53% 6.43% 10.67% 

Montenegro B1 3.83% 4.45% 8.69% 

Montserrat Baa3 1.87% 2.18% 6.42% 

Morocco Ba1 2.13% 2.47% 6.71% 

Mozambique Caa2 7.66% 8.90% 13.14% 

Myanmar NR 10.21% 11.87% 16.11% 

Namibia Ba3 3.06% 3.56% 7.80% 

Netherlands Aaa 0.00% 0.00% 4.24% 

Netherlands Antilles NR 5.88% 6.83% 11.07% 

New Zealand Aaa 0.00% 0.00% 4.24% 

Nicaragua B3 5.53% 6.43% 10.67% 

Niger B3 5.53% 6.43% 10.67% 

Nigeria B2 4.68% 5.44% 9.68% 

Norway Aaa 0.00% 0.00% 4.24% 

Oman Ba3 3.06% 3.56% 7.80% 

Pakistan B3 5.53% 6.43% 10.67% 

Palestinian Authority NR 1.38% 1.60% 5.84% 

Panama Baa2 1.62% 1.88% 6.12% 

Papua New Guinea B2 4.68% 5.44% 9.68% 

Paraguay Ba1 2.13% 2.47% 6.71% 

Peru Baa1 1.36% 1.58% 5.82% 

Philippines Baa2 1.62% 1.88% 6.12% 

Poland A2 0.72% 0.84% 5.08% 

Portugal Baa2 1.62% 1.88% 6.12% 

Qatar Aa3 0.51% 0.60% 4.84% 

Ras Al Khaimah (Emirate 
of) 

A3 1.02% 1.19% 5.43% 

Reunion NR 4.51% 5.25% 9.49% 

Romania Baa3 1.87% 2.18% 6.42% 

Russia Baa3 1.87% 2.18% 6.42% 

Rwanda B2 4.68% 5.44% 9.68% 

Saint Lucia NR 5.88% 6.83% 11.07% 

Saudi Arabia A1 0.60% 0.70% 4.94% 

Senegal Ba3 3.06% 3.56% 7.80% 

Serbia Ba2 2.56% 2.97% 7.21% 

Sharjah Baa3 1.87% 2.18% 6.42% 

Sierra Leone NR 8.51% 9.89% 14.13% 

Singapore Aaa 0.00% 0.00% 4.24% 

Slovakia A2 0.72% 0.84% 5.08% 

Slovenia A3 1.02% 1.19% 5.43% 

Solomon Islands Caa1 6.38% 7.41% 11.65% 

Somalia NR 10.21% 11.87% 16.11% 

South Africa Ba2 2.56% 2.97% 7.21% 

South Korea Aa2 0.42% 0.49% 4.73% 
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Country Moody's 
rating 

Adj. Default 
Spread 

Country Risk 
Premium 

Equity Risk 
Premium 

Spain Baa1 1.36% 1.58% 5.82% 

Sri Lanka Caa2 7.66% 8.90% 13.14% 

St. Maarten Ba2 2.56% 2.97% 7.21% 

St. Vincent & the 
Grenadines 

B3 5.53% 6.43% 10.67% 

Sudan NR 17.50% 20.34% 24.58% 

Suriname Caa3 8.51% 9.89% 14.13% 

Swaziland B3 5.53% 6.43% 10.67% 

Sweden Aaa 0.00% 0.00% 4.24% 

Switzerland Aaa 0.00% 0.00% 4.24% 

Syria NR 17.50% 20.34% 24.58% 

Taiwan Aa3 0.51% 0.60% 4.84% 

Tajikistan B3 5.53% 6.43% 10.67% 

Tanzania B2 4.68% 5.44% 9.68% 

Thailand Baa1 1.36% 1.58% 5.82% 

Togo B3 5.53% 6.43% 10.67% 

Trinidad and Tobago Ba2 2.56% 2.97% 7.21% 

Tunisia Caa1 6.38% 7.41% 11.65% 

Turkey B2 4.68% 5.44% 9.68% 

Turks and Caicos Islands Baa1 1.36% 1.58% 5.82% 

Uganda B2 4.68% 5.44% 9.68% 

Ukraine B3 5.53% 6.43% 10.67% 

United Arab Emirates Aa2 0.42% 0.49% 4.73% 

United Kingdom Aa3 0.51% 0.60% 4.84% 

United States Aaa 0.00% 0.00% 4.24% 

Uruguay Baa2 1.62% 1.88% 6.12% 

Uzbekistan B1 3.83% 4.45% 8.69% 

Venezuela C 17.50% 20.34% 24.58% 

Vietnam Ba3 3.06% 3.56% 7.80% 

Yemen NR 10.21% 11.87% 16.11% 

Zambia Ca 10.21% 11.87% 16.11% 

Zimbabwe NR 6.38% 7.41% 11.65% 

 

 

 



  

119 

 

8.2 Appendix II: IEC 61400-1:2019 Wind classes criteria 

The following table from the IEC 61400-1:2019 shows the criteria for the classification of 

the different wind classes. 
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8.3 Appendix III: Output data stored in database 

The following table shows the data output extracted from the optimization results and 

stored in the database. 

 

Group Id Parameter Unit 

LCOH 1 Levelized Cost of Hydrogen €/kg 

Size 2 PV - Nominal power MW 

3 Wind very weak - Nominal power MW 

4 Wind very strong - Nominal power MW 

5 Electrolyzer - Nominal power MW 

6 Tank power dispatch of hydrogen - Nominal power MW 

7 Tank power store of hydrogen - Nominal power MW 

8 Tank capacity store unit hydrogen - Nominal capacity MWh 

9 Battery - Nominal power MW 

Timeseries 

(Hourly array) 

10 Generator PV - Produced power timeseries MW 

11 Generator Wind very weak - Produced power  MW 

12 Generator Wind very strong - Produced power  MW 

13 Link Electrolyzer - Lower shadow price  €/MW 

14 Link Tank power dispatch of hydrogen - Lower shadow price  €/MW 

15 Link Tank power store of hydrogen - Lower shadow price  €/MW 

16 Link Electrolyzer - Upper shadow price  €/MW 

17 Link Tank power dispatch of hydrogen - Upper shadow price  €/MW 

18 Link Tank power store of hydrogen - Upper shadow price €/MW 

19 Link Electrolyzer - Input power MW 

20 Link Tank power dispatch of hydrogen - Input power MW 

21 Link Tank power store of hydrogen - Input power MW 

22 Link Electrolyzer - Output power MW 

23 Link Tank power dispatch of hydrogen - Output power MW 

24 Link Tank power store of hydrogen - Output power MW 

25 Storage Unit soc battery - State of charge MWh 

26 Store Tank capacity store hydrogen - State of charge MWh 

27 Store Tank capacity store hydrogen - Dispatch or charge power MW 

28 Storage Unit dispatch Battery power MW 

29 Storage Unit store Battery power MW 

30 Generator power curtailed PV MW 

31 Generator power curtailed Wind very weak MW 

32 Generator power curtailed Wind very strong MW 
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8.4 Appendix IV: Pre-analysis results – 100 random cells 

id_cell id_country lcoh pv

wind_very

_weak

wind_

weak

wind_

middle

wind_

strong

wind_very

_strong electrolyzer

tank_pow_dispatch

_of_hydrogen

tank_pow_store_

of_hydrogen

tank_cap_store_

unit_hydrogen battery

tank e/p 

ratio

185316 36 3,78 0,097 0,091 0 0 0 0 0,084 0,0342 0,0153 2,857 0 187,1

103547 826 4,13 0,047 0,093 0 0 0 0 0,092 0,0342 0,0198 6,307 0 318,4

173039 36 4,16 0,090 0,104 0 0 0 0 0,090 0,0342 0,0187 4,109 0 219,8

45382 840 4,17 0,137 0,097 0 0 0 0 0,082 0,0342 0,0144 3,099 0 215,9

46463 840 4,18 0,143 0,095 0 0 0 0 0,084 0,0342 0,0154 2,875 0 186,4

177006 36 4,18 0,021 0,117 0 0 0 0 0,098 0,0342 0,0233 5,480 0 235,1

183506 36 4,52 0,141 0,102 0 0 0 0 0,092 0,0342 0,0201 4,070 0 202,8

41068 840 4,63 0,159 0,107 0 0 0 0 0,087 0,0342 0,0170 3,789 0 222,4

187101 36 4,71 0,129 0,100 0 0 0 0 0,098 0,0342 0,0237 6,001 0 252,9

96855 654 4,84 0,016 0,000 0 0 0 0,186 0,097 0,0342 0,0230 6,477 0 281,6

42163 124 4,88 0,108 0,117 0 0 0 0 0,093 0,0342 0,0207 7,016 0 338,9

64596 304 4,90 0,141 0,098 0 0 0 0 0,093 0,0342 0,0204 5,264 0 257,9

48686 124 4,91 0,111 0,120 0 0 0 0 0,101 0,0342 0,0254 5,373 0 211,8

127660 682 4,98 0,127 0,117 0 0 0 0 0,098 0,0342 0,0233 3,547 0 152,0

46164 124 5,09 0,125 0,123 0 0 0 0 0,110 0,0342 0,0303 4,654 0 153,7

40387 124 5,09 0,149 0,116 0 0 0 0 0,099 0,0342 0,0244 5,592 0 229,5

16542 840 5,16 0,201 0,104 0 0 0 0 0,104 0,0342 0,0268 4,259 0 159,1

56580 124 5,24 0,204 0,098 0 0 0 0 0,100 0,0342 0,0249 6,254 0 251,0

131321 398 5,38 0,127 0,107 0 0 0 0 0,092 0,0342 0,0199 5,349 0 268,1

47254 124 5,53 0,091 0,131 0 0 0 0 0,104 0,0342 0,0272 10,402 0 382,5

176079 156 5,55 0,135 0,120 0 0 0 0 0,099 0,0342 0,0240 7,299 0 304,1

47615 124 5,61 0,084 0,135 0 0 0 0 0,106 0,0342 0,0284 10,688 0 376,1

36064 124 5,68 0,039 0,161 0 0 0 0 0,115 0,0342 0,0334 8,916 0 267,2

116734 72 5,73 0,219 0,089 0 0 0 0 0,108 0,0342 0,0292 5,417 0 185,8

16907 840 5,79 0,263 0,101 0 0 0 0 0,120 0,0342 0,0360 4,373 0 121,4

114910 710 5,79 0,076 0,000 0 0 0 0,196 0,104 0,0342 0,0271 9,360 0 345,4

119263 72 5,82 0,317 0,044 0 0 0 0 0,152 0,0342 0,0551 1,337 0 24,3

152233 156 5,86 0,299 0,000 0 0 0 0,067 0,168 0,0342 0,0642 4,386 0 68,3

35685 124 6,11 0,086 0,170 0 0 0 0 0,117 0,0342 0,0347 8,088 0 233,2

165957 156 6,26 0,216 0,095 0 0 0 0 0,120 0,0342 0,0361 9,605 0 266,0

50152 124 6,26 0,180 0,146 0 0 0 0 0,118 0,0342 0,0351 7,183 0 204,4

60798 604 6,31 0,375 0,015 0 0 0 0 0,174 0,0342 0,0677 1,985 0 29,3

39984 840 6,34 0,274 0,115 0 0 0 0 0,139 0,0342 0,0476 3,716 0 78,1

48710 124 6,38 0,153 0,160 0 0 0 0 0,118 0,0342 0,0354 7,735 0 218,7

154103 643 6,47 0,116 0,130 0 0 0 0 0,106 0,0342 0,0279 8,028 0 287,6

58008 840 6,56 0,394 0,064 0 0 0 0 0,152 0,0342 0,0551 4,607 0 83,6

162700 156 6,57 0,366 0,000 0 0 0,047 0 0,193 0,0342 0,0784 3,993 0 50,9

20368 250 6,60 0,240 0,144 0 0 0 0 0,116 0,0342 0,0342 4,609 0 134,9

104564 12 6,64 0,138 0,094 0 0 0 0 0,086 0,0342 0,0166 3,163 0 190,7

160891 156 6,72 0,399 0,008 0 0 0 0 0,210 0,0342 0,0884 3,793 0 42,9

120340 710 6,78 0,308 0,054 0 0 0 0 0,149 0,0342 0,0533 1,976 0 37,1

61466 152 6,78 0,191 0,168 0 0 0 0 0,116 0,0342 0,0338 4,532 0 133,9

35647 840 6,94 0,240 0,158 0 0 0 0 0,131 0,0342 0,0425 5,896 0 138,6

47511 484 6,96 0,457 0,000 0 0 0 0 0,184 0,0342 0,0736 3,176 0 43,1

155548 643 7,03 0,108 0,152 0 0 0 0 0,120 0,0342 0,0361 7,423 0 205,4

123334 818 7,23 0,187 0,110 0 0 0 0 0,097 0,0342 0,0231 2,268 0 98,1

179332 156 7,33 0,325 0,120 0 0 0 0 0,144 0,0342 0,0503 4,753 0 94,5

141465 643 7,39 0,000 0,173 0 0 0 0 0,120 0,0342 0,0361 13,636 0 377,6

140363 643 7,48 0,112 0,188 0 0 0 0 0,111 0,0342 0,0309 6,180 0 200,0

108216 250 7,59 0,238 0,164 0 0 0 0 0,131 0,0342 0,0428 8,242 0 192,6

194146 643 7,59 0,285 0,052 0 0 0 0,066 0,119 0,0342 0,0355 11,868 0 334,1

148258 356 7,69 0,416 0,000 0 0 0 0 0,212 0,0342 0,0899 5,484 0 61,0

202614 554 7,72 0,256 0,139 0 0 0 0 0,129 0,0342 0,0416 15,492 0 372,3

202481 643 7,77 0,124 0,125 0 0 0 0 0,104 0,0342 0,0272 18,669 0 685,6

200304 643 7,85 0,159 0,172 0 0 0 0 0,115 0,0342 0,0331 8,088 0 244,4

137833 643 7,87 0,144 0,173 0 0 0 0 0,105 0,0342 0,0278 10,257 0 368,8

146874 643 8,23 0,136 0,211 0 0 0 0 0,118 0,0342 0,0349 5,723 0 163,9

173122 608 8,39 0,343 0,103 0 0 0 0 0,122 0,0342 0,0374 12,307 0 329,3

115476 752 8,54 0,239 0,217 0 0 0 0 0,144 0,0342 0,0505 9,511 0 188,5

77414 76 8,56 0,550 0,000 0 0 0 0 0,190 0,0342 0,0767 3,249 0 42,3

166228 360 8,61 0,622 0,000 0 0 0 0 0,193 0,0342 0,0786 3,466 0 44,1

161583 764 8,77 0,646 0,000 0 0 0 0 0,195 0,0342 0,0799 4,458 0 55,8

96601 478 8,78 0,251 0,128 0 0 0 0 0,113 0,0342 0,0320 2,859 0 89,4

33118 840 8,86 0,297 0,222 0 0 0 0 0,150 0,0342 0,0536 7,117 0 132,7

172068 156 8,99 0,616 0,000 0 0 0 0 0,239 0,0342 0,1054 7,069 0 67,1

58095 124 8,99 0,115 0,239 0 0 0 0 0,154 0,0342 0,0563 16,981 0 301,8

101999 384 9,12 0,534 0,029 0 0 0 0 0,178 0,0342 0,0699 2,468 0 35,3

160833 360 9,22 0,671 0,000 0 0 0 0 0,210 0,0342 0,0882 3,105 0 35,2

77423 76 9,25 0,615 0,000 0 0 0 0 0,199 0,0342 0,0820 2,934 0 35,8

77787 76 9,27 0,589 0,000 0 0 0 0 0,202 0,0342 0,0840 4,371 0 52,1

77782 76 9,28 0,609 0,000 0 0 0 0 0,197 0,0342 0,0812 3,788 0 46,7

162277 458 9,29 0,725 0,000 0 0 0 0 0,203 0,0342 0,0844 4,812 0 57,0

70918 76 9,34 0,612 0,000 0 0 0 0 0,200 0,0342 0,0827 3,725 0 45,0

165942 156 9,47 0,437 0,167 0 0 0 0 0,161 0,0342 0,0602 6,428 0 106,8

161183 360 9,71 0,700 0,000 0 0 0 0 0,200 0,0342 0,0825 6,465 0 78,3

182234 643 9,90 0,335 0,190 0 0 0 0 0,149 0,0342 0,0530 5,364 0 101,2

144638 586 9,93 0,446 0,009 0 0 0 0 0,198 0,0342 0,0817 2,855 0 35,0

74855 76 9,94 0,536 0,000 0 0 0 0 0,221 0,0342 0,0949 10,136 0 106,8

111034 562 9,99 0,385 0,066 0 0 0 0 0,146 0,0342 0,0514 4,122 0 80,2

180067 643 10,04 0,295 0,201 0 0 0 0 0,149 0,0342 0,0528 7,177 0 135,9

150118 643 10,09 0,081 0,307 0 0 0 0 0,127 0,0342 0,0403 6,874 0 170,4

19091 840 10,10 0,260 0,228 0 0 0 0 0,189 0,0342 0,0763 14,866 0 194,8

60487 170 10,14 0,773 0,000 0 0 0 0 0,202 0,0342 0,0836 4,988 0 59,7

131658 364 10,49 0,314 0,065 0 0 0 0 0,162 0,0342 0,0606 9,322 0 153,8

54353 188 10,68 0,381 0,000 0 0 0 0,191 0,131 0,0342 0,0427 11,076 0 259,4

184029 643 10,79 0,230 0,236 0 0 0 0 0,121 0,0342 0,0370 15,132 0 408,4

145736 586 11,24 0,448 0,000 0 0 0 0 0,208 0,0342 0,0872 10,255 0 117,6

20895 840 11,24 0,299 0,291 0 0 0 0 0,169 0,0342 0,0644 15,664 0 243,2

174677 643 11,32 0,286 0,227 0 0 0 0 0,140 0,0342 0,0476 14,810 0 310,9

55436 188 11,59 0,702 0,000 0 0 0 0 0,198 0,0342 0,0813 2,249 0 27,7

168528 643 11,61 0,145 0,297 0 0 0 0 0,125 0,0342 0,0389 16,652 0 427,8

173587 643 11,94 0,245 0,256 0 0 0 0 0,134 0,0342 0,0444 18,345 0 413,6

66182 32 12,25 0,206 0,135 0 0 0 0 0,109 0,0342 0,0300 2,660 0 88,5

95509 624 12,35 0,561 0,043 0 0 0 0 0,181 0,0342 0,0716 6,104 0 85,3

191862 598 12,47 0,715 0,000 0 0 0 0 0,213 0,0342 0,0902 4,882 0 54,1

117861 180 12,80 0,640 0,000 0 0 0 0 0,204 0,0342 0,0848 3,924 0 46,3

97674 324 12,81 0,581 0,000 0 0 0 0 0,194 0,0342 0,0791 3,238 0 40,9

60149 192 13,03 0,203 0,118 0 0 0 0 0,090 0,0342 0,0186 10,931 0 587,8

65534 862 24,38 0,679 0,000 0 0 0 0 0,209 0,0342 0,0878 3,984 0 45,4

62652 862 24,62 0,656 0,000 0 0 0 0 0,196 0,0342 0,0803 7,411 0 92,3  



  

122 

 

8.5 Appendix V: __main__.py module decision tree 
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8.6 Appendix VI: Electrolysis-based hydrogen production python 

model code 

The python code for the different modules is presented below. 

 

__main__.py module 

# h2_model __main__.py module 

 

########################################################################################

################################ 

 

from functools import partial 

import logging 

import os 

import pandas as pd 

import sys 

import time 

 

import input 

import opt 

import output 

import precalc 

 

logger = logging.getLogger(__name__) 

########################################################################################

################################ 

 

if __name__ == '__main__': 

    calculate_ann_costs_in_db = False  # only if major changes in costs 

    optimize_each_cell = True 

    import_data_db = True 

    save_imported_data_feather = False 

    load_data_feather = False 

    store_cells_as_files = False 

    work_output_data = True 

    save_results_as_files = False 

    insert_data_in_db = True 

    overwrite_scenario_results_in_db = True 

    print_time_summary = True 

 

    # ==== CHOSE NUMBER OF PARALLEL OPTIMIZATION PROCESSES (maximum 

num_parallel_processes = mp.cpu_count()/2) 

    num_parallel_processes = 8 

 

    # ==== CHOSE CALCULATION SCENARIO (to import the defined base components of PyPSA 

from the corresponding Excel) 

    h2_scenario_id = 1 

    scenario_year = 2020 

 

    h2_scenarios = { 

        1: "_base_complete", 

        2: "_constant_wacc", 

        3: "_only_pv", 
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        4: "_only_wind", 

        5: "_affordable_battery", 

        6: "_free_h2_storage", 

        7: "_min_only_pv_only_wind", 

        100: "_preanalysis_complete", 

        101: "_preanalysis_complete_only_very_weak", 

        102: "_preanalysis_complete_only_very_strong", 

        103: "_preanalysis_complete_very_weak_and_very_strong", 

        104: "_affordable_battery" 

    } 

 

    if h2_scenario_id in h2_scenarios.keys(): 

        scenario_name = h2_scenarios[h2_scenario_id] 

        print("The calcualtion scenario is " + scenario_name + " for the year " + 

str(scenario_year)) 

    else: 

        sys.exit("The chosen h2_scenario_id doesn't exist") 

 

    # ==== CALCULATE AND SAVE ANNUALIZED COSTS PER COUNTRY IN DB === 

    if calculate_ann_costs_in_db: 

        (cur, conn) = input.establish_connection_with_db() 

        tech_costs_data_df = input.import_tech_costs_data_from_db(cur) 

        crp_data_df = input.import_crp_data_from_db(cur) 

        cur.close() 

        ann_costs_per_country = 

precalc.calculate_tech_costs_per_country(tech_costs_data_df, crp_data_df) 

        input.save_import_as_feather_file(ann_costs_per_country, 

"ann_costs_per_country") 

        output.insert_ann_costs_in_db(ann_costs_per_country, scenario_year) 

 

    # ==== COMPLETE OPTIMIZATION OF CELLS WITH PARALLELIZATION 

    if optimize_each_cell: 

        time_10 = time.time() 

        # ==== IMPORT TECHNO-ECONOMICAL DATA FROM DATABANK AND SAVE IT IN FEATHER FORMAT 

FILE 

        if import_data_db is True and load_data_feather is False: 

            (cur, conn) = input.establish_connection_with_db() 

            tech_costs_data_df = input.import_tech_costs_data_from_db(cur) 

            crp_data_df = input.import_crp_data_from_db(cur) 

            id_cells_data_df = input.import_id_cells_data_from_db(cur) 

            cur.close() 

            if save_imported_data_feather: 

                input.save_import_as_feather_file(tech_costs_data_df, 

"tech_costs_data_df") 

                input.save_import_as_feather_file(crp_data_df, "crp_data_df") 

                input.save_import_as_feather_file(id_cells_data_df, "id_cells_data_df") 

        # ==== LOAD DATA FROM FEATHER FORMAT FILES === 

        elif import_data_db is False and load_data_feather is True: 

            tech_costs_data_df = input.load_input_feather_file("tech_costs_data_df") 

            crp_data_df = input.load_input_feather_file("crp_data_df") 

            id_cells_data_df = input.load_input_feather_file("id_cells_data_df") 

        else: 

            sys.exit("Impossible to optimize because you are not importing or loading 

any data. " 

                     "\nSet to True ONLY one of those parameters at the __main__ 

module.") 

        time_11 = time.time() 
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        output.truncate_preresults_timeseries_in_db() 

        if store_cells_as_files or save_results_as_files: 

            input.create_cells_results_structure(store_cells_as_files, id_cells_data_df, 

h2_scenario_id) 

        dict_scen_components = 

input.transform_excel_scenario_sheets_to_dfs_in_dict(scenario_name) 

        constant_wacc = True if scenario_name == "_constant_wacc" else False 

        affordable_battery = True if scenario_name == "_affordable_battery" else False 

        free_h2_storage = True if scenario_name == "_free_h2_storage" else False 

        time_12 = time.time() 

 

        # ==== OPTIMIZATION OF CELLS WITH PARALLELIZATION 

        (results) = opt.parallelize_df(num_parallel_processes, id_cells_data_df, 

                                       partial(opt.optimize_chunk_of_cells, 

                                               

dict_scen_components=dict_scen_components, 

                                               h2_scenario_id=h2_scenario_id, 

                                               constant_wacc=constant_wacc, 

                                               affordable_battery=affordable_battery, 

                                               free_h2_storage=free_h2_storage, 

                                               store_cells_as_files=store_cells_as_files 

                                               )) 

 

        time_13 = time.time() 

 

        # ==== WORK WITH OUTPUT -- SAVE DATA IN DB OR FILES 

        if work_output_data: 

            results_df = pd.DataFrame(results) if isinstance(results["id_region"], list) 

else pd.DataFrame([results]) 

            results_df = output.insert_id_scenario_time(results_df, h2_scenario_id) 

            if save_results_as_files: 

                results_df.to_csv(os.getcwd() + "\\results_id_scenario_" + 

str(h2_scenario_id) + "\\summary.csv", 

                                  index=False) 

                output.save_results_as_feather(results_df, h2_scenario_id) 

                output.save_results_as_parquet(results_df, h2_scenario_id) 

 

            if insert_data_in_db: 

                output.insert_scenario_in_db(h2_scenario_id, scenario_name, 

scenario_year) 

                output.insert_results_in_db(overwrite_scenario_results_in_db, 

results_df, h2_scenario_id, scenario_year) 

                output.insert_results_timeseries_in_db(overwrite_scenario_results_in_db, 

h2_scenario_id, scenario_year) 

 

        time_14 = time.time() 

 

        if print_time_summary: 

            print("\nImport or load data time: ", time_11 - time_10) 

            print("Preparations time: ", time_12 - time_11) 

            print("Optimization time: ", time_13 - time_12) 

            print("Work with output time: ", time_14 - time_13) 

            print("Total time: ", time_14 - time_10) 
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input.py module 

# h2_model - read input data and structure 

 

# READ INPUT DATA FUNCTIONS (from DB or others) 

#       transform_excel_scenario_sheets_to_dfs_in_dict 

#       establish_connection_with_db 

#       import_id_cells_data_from_db 

#       import_tech_costs_data_from_db 

#       import_crp_data_from_db 

#       import_single_cell_cf_series_frem 

#       import_single_cell_ann_costs 

#       import_exclusive_very_weak_wind_cells 

#       import_single_cell_scenario_ann_costs 

#       save_import_as_feather_file 

#       load_input_feather_file 

 

# CREATE RESULTS STRUCTURE 

#       cells_results_structure 

 

# DATAFRAME INPUTS IN PYPSA 

#       import_pypsa_dataframes 

 

########################################################################################

################################ 

 

import os 

import psycopg2 

 

import openpyxl 

import pandas as pd 

import shutil 

 

 

########################################################################################

################################ 

 

 

def transform_excel_scenario_sheets_to_dfs_in_dict(excel_name): 

    excel_path = os.getcwd() + "\\" + excel_name + ".xlsx" 

    excel = openpyxl.load_workbook(excel_path) 

    dict_model_components = {} 

    for sheet_name in excel.sheetnames: 

        component_df = pd.read_excel(excel_path, sheet_name, dtype=object, index_col=0) 

        dict_model_components[sheet_name] = component_df 

 

    return dict_model_components 

 

 

def establish_connection_with_db(): 

    # Establish a connection to the DB 

    while True: 

        dbuser = "mmartinezperez" 

        dbpass = "AbMamp@1797_doble" 

        try: 

            conn = psycopg2.connect(dbname='rem', host='10.71.0.11', port='5432', 

user=dbuser, password=dbpass) 
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            break 

        except Exception as e: 

            print('Failed to connect to DB: ' + str(e)) 

 

    cur = conn.cursor() 

 

    return cur, conn 

 

 

def import_id_cells_data_from_db(cur): 

    cur.execute("""SELECT * FROM u_mmartinezperez.t_h2_model_cells;""") 

 

    """SELECT * FROM u_mmartinezperez.t_h2_model_cells;""" 

 

    """SELECT a.id_pk as id_cell, a.iso[array_position(a.area_share, 

array_max(a.area_share))] as id_country 

    FROM u_mmartinezperez.t_h2_model_merra2_world as a 

    JOIN u_mmartinezperez.t_h2_model_100_random_cells as b using (id_pk);""" 

 

    data = cur.fetchall() 

    cols = [] 

    for elt in cur.description: 

        cols.append(elt[0]) 

    id_cells_data = pd.DataFrame(data=data, columns=cols) 

 

    return id_cells_data 

 

 

def import_tech_costs_data_from_db(cur): 

    cur.execute("""select CASE WHEN technology ilike '%PVA - Open%' then 'pv' 

                            WHEN technology ilike '%WEA_very_weak%' then 

'wind_very_weak' 

                            WHEN technology ilike '%WEA_weak%' then 'wind_weak' 

                            WHEN technology ilike '%WEA_middle%' then 'wind_middle' 

                            WHEN technology ilike '%WEA_strong%' then 'wind_strong' 

                            WHEN technology ilike '%WEA_very_strong%' then 

'wind_very_strong' 

                            WHEN technology ilike '%tank%' then 'tank' 

                            WHEN technology ilike '%battery%' then 'battery' 

                            WHEN technology ilike '%electrolyzer%' then 'electrolyzer' 

end as technology, 

                       investment_cost_power, 

                       case when investment_cost_capacity is null then 0  

                           else investment_cost_capacity end as 

investment_cost_capacity, 

                       operational_cost_power, 

                       case when operational_cost_capacity is null then 0  

                           else operational_cost_capacity end as 

operational_cost_capacity, 

                       lifetime, 

                       wacc, 

                       case when e_p_ratio is null then 0  

                           else e_p_ratio end as e_p_ratio 

                from u_mmartinezperez.v_h2_model_costs 

                where technology not ilike '%PVA - Roof%';""") 

    data = cur.fetchall() 

    cols = [] 
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    for elt in cur.description: 

        cols.append(elt[0]) 

    tech_costs_data = pd.DataFrame(data=data, columns=cols) 

 

    return tech_costs_data 

 

 

def import_crp_data_from_db(cur): 

    # Country Risk Premium Data 

    cur.execute("SELECT * FROM u_mmartinezperez.v_h2_model_country_risk_premium") 

    data = cur.fetchall() 

    cols = [] 

    for elt in cur.description: 

        cols.append(elt[0]) 

    crp_data = pd.DataFrame(data=data, columns=cols) 

 

    return crp_data 

 

 

def import_single_cell_cf_series_frem(cur, id_cell): 

    # Single Cell Capacity Factors Timeseries (PV and Wind) Data 

    cur.execute("""SELECT technology, series 

                    FROM  u_mmartinezperez.t_merra2_pv_max_erz 

                    WHERE id_region=(%s) 

                    UNION ALL 

                    select case when id_intern=101 then 'wind_very_weak' 

                                when id_intern=102 then 'wind_weak' 

                                when id_intern=103 then 'wind_middle' 

                                when id_intern=105 then 'wind_strong' 

                                when id_intern=104 then 'wind_very_strong' end as 

technology, 

                           wert as series 

                    FROM merra2.wea_erz_ft 

                    WHERE wetterjahr=2012 and id_region=(%s) and id_intern in 

(101,102,103,104,105);""", 

                (id_cell, id_cell)) 

    data = cur.fetchall() 

    cols = [] 

    for elt in cur.description: 

        cols.append(elt[0]) 

    cell_data = pd.DataFrame(data=data, columns=cols) 

    cell_data = cell_data.set_index("technology") 

 

    return cell_data 

 

 

def import_single_cell_ann_costs(cur, id_country): 

    # Single Cell for the specific country annualized costs 

    cur.execute("""SELECT * 

                    FROM  u_mmartinezperez.t_h2_model_ann_costs_per_country 

                    WHERE id_country=(%s);""", (id_country,)) 

    data = cur.fetchall() 

    cols = [] 

    for elt in cur.description: 

        cols.append(elt[0]) 

    cell_costs_data = pd.DataFrame(data=data, columns=cols) 



  

129 

 

    cell_costs_data = cell_costs_data.pivot(index="id_country", columns="parameter", 

values="value") 

 

    return cell_costs_data 

 

 

def import_exclusive_very_weak_wind_cells(cur): 

    # id_cells to exclude 

    cur.execute("""select id_region as id_cell 

                from u_mmartinezperez.v_max_auslegung_140m_cells as a 

                where v_max_complex_140m > 50;""") 

    data = cur.fetchall() 

    cols = [] 

    for elt in cur.description: 

        cols.append(elt[0]) 

    cells_to_exclude = pd.DataFrame(data=data, columns=cols) 

 

    return cells_to_exclude 

 

 

def import_single_cell_scenario_ann_costs(cur, constant_wacc, affordable_battery, 

free_h2_storage, id_cell, id_country): 

    cells_to_exclude = import_exclusive_very_weak_wind_cells(cur) 

    if constant_wacc: 

        single_cell_ann_costs = import_single_cell_ann_costs(cur, str(276)) 

        if id_cell in cells_to_exclude["id_cell"].values: 

            new_wind_cap_cost = single_cell_ann_costs.iloc[0]["wind_very_weak"] * 10000 

            single_cell_ann_costs.loc[id_country, "wind_very_weak"] = new_wind_cap_cost 

    if affordable_battery: 

        single_cell_ann_costs = import_single_cell_ann_costs(cur, str(id_country)) 

        new_battery_cost = single_cell_ann_costs.iloc[0]["battery"] * 0.5 

        single_cell_ann_costs.loc[id_country, "battery"] = new_battery_cost 

        if id_cell in cells_to_exclude["id_cell"].values: 

            new_wind_cap_cost = single_cell_ann_costs.iloc[0]["wind_very_weak"] * 10000 

            single_cell_ann_costs.loc[id_country, "wind_very_weak"] = new_wind_cap_cost 

    if free_h2_storage: 

        single_cell_ann_costs = import_single_cell_ann_costs(cur, str(id_country)) 

        single_cell_ann_costs.loc[id_country, "tank"] = 0 

        if id_cell in cells_to_exclude["id_cell"].values: 

            new_wind_cap_cost = single_cell_ann_costs.iloc[0]["wind_very_weak"] * 10000 

            single_cell_ann_costs.loc[id_country, "wind_very_weak"] = new_wind_cap_cost 

    else: 

        single_cell_ann_costs = import_single_cell_ann_costs(cur, str(id_country)) 

        if id_cell in cells_to_exclude["id_cell"].values: 

            new_wind_cap_cost = single_cell_ann_costs.iloc[0]["wind_very_weak"] * 10000 

            single_cell_ann_costs.loc[id_country, "wind_very_weak"] = new_wind_cap_cost 

 

    return single_cell_ann_costs 

 

 

def save_import_as_feather_file(df, name_feather_file): 

    # name_feather_file = df_variable_name 

    if df.first_valid_index() != 0: 

        df.reset_index(inplace=True) 

 

    tmp_feather_path = os.getcwd() + "\\import_data_feather" 
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    tmp_feather_file_path = os.getcwd() + "\\import_data_feather\\" + name_feather_file 

+ ".feather" 

    if not os.path.exists(tmp_feather_path): 

        os.mkdir(tmp_feather_path) 

    df.to_feather(tmp_feather_file_path) 

 

 

def load_input_feather_file(name_feather_file): 

    # name_feather_file = without .feather extension 

    tmp_feather_file_path = os.getcwd() + "\\import_data_feather\\" + name_feather_file 

+ ".feather" 

    df_to_load = pd.read_feather(tmp_feather_file_path) 

 

    return df_to_load 

 

 

def create_cells_results_structure(store_file_for_each_cell, id_cells_df, 

h2_scenario_id): 

    # import_data_from_frem_db must be called before, to take the id_cell as input 

    current_path = os.getcwd() 

 

    # Delete id_cells directory and create it again 

    id_cells_path = current_path + "\\results_id_scenario_" + str(h2_scenario_id) 

    if os.path.exists(id_cells_path): 

        shutil.rmtree(id_cells_path) 

    os.mkdir(id_cells_path) 

 

    # Create as many directories as cells 

    if store_file_for_each_cell: 

        for index_cell, data_row_cell in id_cells_df.iterrows(): 

            single_cell_path = id_cells_path + "\\" + str(data_row_cell["id_cell"]) 

            os.mkdir(single_cell_path) 

 

 

def import_pypsa_dataframes(network, dict_components): 

    network.set_snapshots(dict_components["snapshots"].index) 

 

    # Static Parameters 

    if "buses" in dict_components: 

        network.import_components_from_dataframe(dict_components["buses"], "Bus") 

    if "carriers" in dict_components: 

        network.import_components_from_dataframe(dict_components["carriers"], "Carrier") 

    if "generators" in dict_components: 

        network.import_components_from_dataframe(dict_components["generators"], 

"Generator") 

    if "global_constraints" in dict_components: 

        network.import_components_from_dataframe(dict_components["global_constraints"], 

"GlobalConstraint") 

    if "links" in dict_components: 

        network.import_components_from_dataframe(dict_components["links"], "Link") 

    if "lines" in dict_components: 

        network.import_components_from_dataframe(dict_components["lines"], "Line") 

    if "loads" in dict_components: 

        network.import_components_from_dataframe(dict_components["loads"], "Load") 

    if "shunt_impedances" in dict_components: 

        network.import_components_from_dataframe(dict_components["shunt_impedances"], 

"ShuntImpedance") 
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    if "storage_units" in dict_components: 

        network.import_components_from_dataframe(dict_components["storage_units"], 

"StorageUnit") 

    if "stores" in dict_components: 

        network.import_components_from_dataframe(dict_components["stores"], "Store") 

    if "transformers" in dict_components: 

        network.import_components_from_dataframe(dict_components["transformers"], 

"Transformer") 

 

    # Dynamic Parameters 

    if "generators-p_max_pu" in dict_components: 

        network.import_series_from_dataframe(dict_components["generators-p_max_pu"], 

"Generator", "p_max_pu") 

    if "generators-p_min_pu" in dict_components: 

        network.import_series_from_dataframe(dict_components["generators-p_min_pu"], 

"Generator", "p_min_pu") 

    if "links-p_max_pu" in dict_components: 

        network.import_series_from_dataframe(dict_components["links-p_max_pu"], "Link", 

"p_max_pu") 

    if "links-p_min_pu" in dict_components: 

        network.import_series_from_dataframe(dict_components["links-p_min_pu"], "Link", 

"p_min_pu") 

    if "storage_units-p_max_pu" in dict_components: 

        network.import_series_from_dataframe(dict_components["storage_units-p_max_pu"], 

"StorageUnit", "p_max_pu") 

    if "storage_units-p_min_pu" in dict_components: 

        network.import_series_from_dataframe(dict_components["storage_units-p_min_pu"], 

"StorageUnit", "p_min_pu") 

    if "storage_units-state_of_charge_set" in dict_components: 

        network.import_series_from_dataframe(dict_components["storage_units-

state_of_charge_set"], "StorageUnit", 

                                             "state_of_charge_set") 

    if "storage_units-soc" in dict_components: 

        dict_components["storage_units-state_of_charge_set"] = 

dict_components["storage_units-soc"] 

        network.import_series_from_dataframe(dict_components["storage_units-

state_of_charge_set"], "StorageUnit", 

                                             "state_of_charge_set") 

    if "stores-e_max_pu" in dict_components: 

        network.import_series_from_dataframe(dict_components["stores-e_max_pu"], 

"Store", "e_max_pu") 

    if "stores-e_min_pu" in dict_components: 

        network.import_series_from_dataframe(dict_components["stores-e_min_pu"], 

"Store", "e_min_pu") 
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precalc.py module 

# h2_model - precalculations 

 

# INTERMEDIATE FUNCTIONS 

#       append_value_to_dict 

#       append_new_row_to_dict 

#       merge_dictionaries 

#       transform_dict_to_df 

 

# PRECALCULATION FUNCTIONS 

#       calc_single_country_ann_costs 

#       calculate_tech_costs_per_country 

 

# SPECIFIC DF UPDATE FOR PYPSA INPUT 

#       update_gen_cf_timeseries_for_specific_cell 

#       update_comp_cap_costs_for_specific_cell 

 

########################################################################################

################################ 

 

import pandas as pd 

 

########################################################################################

################################ 

 

 

def append_value_to_dict(dict_obj, key, value): 

    # Append a specific value in a specific key of a dictionary 

    # Check if key exist in dict or not 

    if key in dict_obj: 

        # Key exist in dict. 

        # Check if type of value of key is list or not 

        if not isinstance(dict_obj[key], list): 

            # If type is not list then make it list 

            dict_obj[key] = [dict_obj[key]] 

        # Append the value in list 

        dict_obj[key].append(value) 

    else: 

        # As key is not in dict, 

        # so, add key-value pair 

        dict_obj[key] = value 

 

 

def append_new_row_to_dict(dict_obj, dict_new_row): 

    for key in dict_new_row: 

        if key in dict_obj: 

            # Key exist in dict. 

            # Check if type of value of key is list or not 

            if not isinstance(dict_obj[key], list): 

                # If type is not list then make it list 

                dict_obj[key] = [dict_obj[key]] 

            # Append the value in list 

            dict_obj[key].append(dict_new_row[key]) 

        else: 

            # As key is not in dict, 

            # so, add key-value pair 
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            dict_obj[key] = dict_new_row[key] 

 

 

def merge_dictionaries(dict_obj, dict_new): 

    for key, values in dict_new.items(): 

        if key in dict_obj: 

            # Key exist in dict. 

            # Check if type of value of key is list or not 

            if not isinstance(dict_obj[key], list): 

                # If type is not list then make it list 

                dict_obj[key] = [dict_obj[key]] 

            # Append the value or list 

            if not isinstance(values, list): 

                dict_obj[key] = dict_obj[key] + [values] 

            else: 

                dict_obj[key] = dict_obj[key] + values 

        else: 

            # As key is not in dict, 

            # so, add key-value pair 

            dict_obj[key] = values 

 

 

def transform_dict_to_df(dictionary, transform_to_float): 

    df = pd.DataFrame(dictionary) 

    df = df.iloc[1:, :] 

    df.reset_index(drop=True, inplace=True) 

    if transform_to_float: 

        df = df.astype(float) 

    return df 

 

 

def calc_single_country_ann_costs(inv_cost_pow, inv_cost_cap, op_cost_pow, op_cost_cap, 

                                  lifetime, wacc, e_p_ratio, crp): 

    # Calculate for a country the annualized costs of each technology considering the 

specific Country Risk Premium 

    if inv_cost_cap != 0 and e_p_ratio != 0:                # batteries (maybe also 

future tanks) 

        inv_cost = inv_cost_cap * e_p_ratio + inv_cost_pow 

        annualized_cost = inv_cost * ( 

                ((wacc + crp) * (1 + wacc + crp) ** lifetime) / ((1 + wacc + crp) ** 

lifetime - 1) + op_cost_pow) 

        e_p_cost_ratio = "NaN" 

    elif inv_cost_cap != 0 and e_p_ratio == 0:              # tanks (maybe also future 

batteries) 

        annualized_cost = inv_cost_pow * ( 

                ((wacc + crp) * (1 + wacc + crp) ** lifetime) / ((1 + wacc + crp) ** 

lifetime - 1) + op_cost_pow) 

        annualized_cost_cap = inv_cost_cap * ( 

                ((wacc + crp) * (1 + wacc + crp) ** lifetime) / ((1 + wacc + crp) ** 

lifetime - 1) + op_cost_cap) 

        e_p_cost_ratio = annualized_cost_cap/annualized_cost 

    else:                                                   # generators and links 

        annualized_cost = inv_cost_pow * ( 

                ((wacc + crp) * (1 + wacc + crp) ** lifetime) / ((1 + wacc + crp) ** 

lifetime - 1) + op_cost_pow) 

        e_p_cost_ratio = "NaN" 
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    return annualized_cost, e_p_cost_ratio 

 

 

def calculate_tech_costs_per_country(tech_costs_data, crp_data): 

    # Calculate DataFrame with annualized costs per country and component, with country 

specific WACC (WACC + CRP) 

    costs_components_dict = {} 

 

    # Loop to fill the dictionary with the calculated annualized costs per country 

(rows) and component (keys) 

    # Batteries and Tanks have a capacity and a power cost, so they have to be 

considered differently 

    for index_crp, data_row_crp in crp_data.iterrows(): 

        append_value_to_dict(costs_components_dict, "id_country", 

int(data_row_crp["id_country"])) 

        for index_costs, data_row_costs in tech_costs_data.iterrows(): 

            (value, e_p_cost_ratio) = 

calc_single_country_ann_costs(data_row_costs["investment_cost_power"], 

                                                                    

data_row_costs["investment_cost_capacity"], 

                                                                    

data_row_costs["operational_cost_power"], 

                                                                    

data_row_costs["operational_cost_capacity"], 

                                                                    

data_row_costs["lifetime"], 

                                                                    

data_row_costs["wacc"], 

                                                                    

data_row_costs["e_p_ratio"], 

                                                                    data_row_crp["crp"]) 

            append_value_to_dict(costs_components_dict, data_row_costs["technology"], 

value) 

            if e_p_cost_ratio != "NaN": 

                append_value_to_dict(costs_components_dict, data_row_costs["technology"] 

+ "_e_p_cost_ratio", 

                                     e_p_cost_ratio) 

 

    ann_costs_per_country = pd.DataFrame(costs_components_dict) 

 

    return ann_costs_per_country 

 

 

def update_gen_cf_timeseries_for_specific_cell(dict_scenario_components, 

cell_weather_series_data): 

    for gen in dict_scenario_components["generators"].index: 

        new_timeseries = cell_weather_series_data.loc[gen, "series"] 

        dict_scenario_components["generators-p_max_pu"][gen] = new_timeseries 

 

    return dict_scenario_components 

 

 

def update_comp_cap_costs_for_specific_cell(dict_scenario_components, 

single_cell_ann_costs): 

    if "generators" in dict_scenario_components: 

        for index, data_row_gen in dict_scenario_components["generators"].iterrows(): 

            if index in single_cell_ann_costs.columns: 
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                new_capital_cost = single_cell_ann_costs.iloc[0][index] 

                dict_scenario_components["generators"].loc[index, "capital_cost"] = 

new_capital_cost 

 

    if "links" in dict_scenario_components: 

        for index, data_row_link in dict_scenario_components["links"].iterrows(): 

            if index in single_cell_ann_costs.columns: 

                new_capital_cost = single_cell_ann_costs.iloc[0][index] 

                dict_scenario_components["links"].loc[index, "capital_cost"] = 

new_capital_cost 

 

    if "storage_units" in dict_scenario_components: 

        for index, data_row_storage in 

dict_scenario_components["storage_units"].iterrows(): 

            if index in single_cell_ann_costs.columns: 

                new_capital_cost = single_cell_ann_costs.iloc[0][index] 

                dict_scenario_components["storage_units"].loc[index, "capital_cost"] = 

new_capital_cost 

 

    if "stores" in dict_scenario_components: 

        for index, data_row_store in dict_scenario_components["stores"].iterrows(): 

            if index in single_cell_ann_costs.columns: 

                new_capital_cost = single_cell_ann_costs.iloc[0][index] 

                dict_scenario_components["stores"].loc[index, "capital_cost"] = 

new_capital_cost 

 

    return dict_scenario_components 
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opt.py 

# h2_model - optimization module 

 

# DYNAMIC INPUT DATA: for each cell 

#  Solar capacity factor timeseries 

#  Wind capacity factor timeseries 

#  Annualized capital cost per country 

#   PV, Wind, Electrolyzer, Battery, Tank 

#   Wind: different turbines already in MERRA2 

 

# OPTIMIZATION FUNCTIONS 

#       optimize_chunk_of_cells 

#       parallelize_df 

 

########################################################################################

################################ 

 

import copy 

import logging 

import multiprocessing as mp 

import os 

import time 

 

import numpy as np 

import pypsa 

 

from tqdm import tqdm 

import input 

import precalc 

import profiling 

import extra_pypsa 

import output 

 

logger = logging.getLogger(__name__) 

logging.disable() 

########################################################################################

################################ 

 

 

def optimize_chunk_of_cells(id_cell_data_df, dict_scen_components, h2_scenario_id, 

constant_wacc, affordable_battery, 

                            free_h2_storage, store_cells_as_files): 

    current_path = os.getcwd() 

    (cur, conn) = input.establish_connection_with_db() 

    scenario_id = str(h2_scenario_id) 

 

    dict_new_comp = copy.deepcopy(dict_scen_components) 

    override_component_attrs = extra_pypsa.multiple_input_output() 

 

    tqdm_disable = False if id_cell_data_df.first_valid_index() == 0 else True 

    id_cell_data_df.reset_index(drop=True, inplace=True) 

    results_chunk = {} 

 

    for index_cell, data_row_cell in tqdm(id_cell_data_df.iterrows(), 

total=id_cell_data_df.shape[0], 
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                                          desc="Aproximate optimization progress for 

each core: ", position=0, 

                                          disable=tqdm_disable, ncols=100): 

 

        time_1 = time.time() 

        id_cell = str(data_row_cell["id_cell"]) 

        single_cell_results_path_csv = current_path + "\\results_id_scenario_" + 

scenario_id + "\\" + id_cell 

        single_cell_results_path_netcdf = current_path + "\\results_id_scenario_" + 

scenario_id + "\\" + id_cell + ".nc" 

 

        # prepare single cell data 

        single_cell_series_data = input.import_single_cell_cf_series_frem(cur, id_cell) 

        dict_new_comp = 

precalc.update_gen_cf_timeseries_for_specific_cell(dict_new_comp, 

single_cell_series_data) 

 

        single_cell_ann_costs = input.import_single_cell_scenario_ann_costs(cur, 

constant_wacc, affordable_battery, 

                                                                            

free_h2_storage, 

                                                                            

data_row_cell["id_cell"], 

                                                                            

data_row_cell["id_country"]) 

        dict_new_comp = precalc.update_comp_cap_costs_for_specific_cell(dict_new_comp, 

single_cell_ann_costs) 

        time_2 = time.time() 

 

        network = pypsa.Network(name="Hydrogen_Island_" + id_cell + "_" + 

str(data_row_cell["id_country"]), 

                                override_component_attrs=override_component_attrs) 

        input.import_pypsa_dataframes(network, dict_new_comp) 

        extra_pypsa.replace_storage_units(network, single_cell_ann_costs) 

 

        profile_each_optimization = False 

        cp = profiling.start_profiling() if profile_each_optimization else 0 

 

        time_3 = time.time() 

        network.lopf(network.snapshots, pyomo=False, solver_name="gurobi", 

solver_options={"OutputFlag": 0, 

                                                                                           

"LogToConsole": 0, 

                                                                                           

"threads": 2}) 

        time_4 = time.time() 

 

        if profile_each_optimization: 

            name_csv_profiling_file = current_path + "\\performance\\cell_" + id_cell 

            profiling.end_profiling(cp, name_csv_profiling_file) 

 

        if store_cells_as_files: 

            network.export_to_csv_folder(single_cell_results_path_csv) 

            # network.export_to_netcdf(single_cell_results_path_netcdf) 

            # output.save_network_df_to_parquets(network, h2_scenario_id, id_cell) 

        time_5 = time.time() 
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        # Get data out 

        (results_row, results_timeseries_row) = 

output.calculate_new_row_results(network, data_row_cell["id_cell"], 

                                                                                 

data_row_cell["id_country"]) 

        precalc.append_new_row_to_dict(results_chunk, results_row) 

        output.insert_cell_preresults_timeseries_in_db(results_timeseries_row, 

data_row_cell["id_cell"], h2_scenario_id) 

 

        time_6 = time.time() 

 

        print_cell_times = False 

        if print_cell_times: 

            print("\nZeit Vorbereitung Components DataFrame: ", time_2 - time_1) 

            print("Zeit PyPSA Override + import + extra_fun", time_3 - time_2) 

            print("Zeit PyPSA Optimierung: ", time_4 - time_3) 

            print("Zeit PyPSA CSV Files Export: ", time_5 - time_4) 

            print("Zeit für Output: ", time_6 - time_5) 

            print("\nCell " + id_cell + " optimization completed") 

 

    cur.close() 

    return results_chunk 

 

 

def parallelize_df(num_parallel_processes, df, func): 

    if num_parallel_processes > mp.cpu_count()/2: 

        num_parallel_processes = mp.cpu_count()//2 

    data_split = np.array_split(df, num_parallel_processes) 

    with mp.Pool(num_parallel_processes) as pool: 

        results = {} 

        for results_chunk in pool.imap(func, data_split): 

            precalc.merge_dictionaries(results, results_chunk) 

        # Shutdown the process pool 

        pool.close() 

        # Wait for all issued tasks to complete 

        pool.join() 

 

    return results 
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extra_pypsa.py module 

# h2_modell - pypsa additional functions 

 

# PYPSA EXTRA FUNCTIONS 

#       multiple_input_output 

#       replace_single_su (pypsa extra_functionality) 

#       replace_storage_units (pypsa extra_functionality) 

 

########################################################################################

################################ 

 

import numpy as np 

import pandas as pd 

import pypsa 

 

########################################################################################

################################ 

 

 

def multiple_input_output(): 

    # To tell PyPSA that links will have a 2nd bus by overriding the component_attrs. 

    # This is needed so that electrolyzer or other components can have more than just 

one input or output 

    override_component_attrs = pypsa.descriptors.Dict({k: v.copy() 

                                                       for k, v in 

pypsa.components.component_attrs.items()}) 

 

    override_component_attrs["Link"].loc["bus2"] = [ 

        "string", 

        np.nan, 

        np.nan, 

        "2nd bus", 

        "Input (optional)", 

    ] 

    override_component_attrs["Link"].loc["bus3"] = [ 

        "string", 

        np.nan, 

        np.nan, 

        "3rd bus", 

        "Input (optional)", 

    ] 

    override_component_attrs["Link"].loc["efficiency2"] = [ 

        "static or series", 

        "per unit", 

        1.0, 

        "2nd bus efficiency", 

        "Input (optional)", 

    ] 

    override_component_attrs["Link"].loc["efficiency3"] = [ 

        "static or series", 

        "per unit", 

        1.0, 

        "3rd bus efficiency", 

        "Input (optional)", 

    ] 

    override_component_attrs["Link"].loc["p2"] = [ 
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        "series", 

        "MW", 

        0.0, 

        "2nd bus output", 

        "Output", 

    ] 

    override_component_attrs["Link"].loc["p3"] = [ 

        "series", 

        "MW", 

        0.0, 

        "3rd bus output", 

        "Output", 

    ] 

 

    return override_component_attrs 

 

 

def replace_single_su(network, su_to_replace, e_p_cost_ratio): 

    """Replace the storage unit su_to_replace with a bus for the energy 

    carrier, two links for the conversion of the energy carrier to and from electricity, 

    a store to keep track of the depletion of the energy carrier and its 

    CO2 emissions, and a variable generator for the storage inflow. 

 

    Because this function can only be entered by those components with free energy size 

and power size ratio, 

    no extra functionality is needed to add a constraint. e/p ratio will be free""" 

 

    su = network.storage_units.loc[su_to_replace] 

 

    bus_name = "{}_{}".format(su["bus"], su["carrier"]) 

    link_1_name = "{}_pow_store_of_{}".format(su_to_replace, su["carrier"]) 

    link_2_name = "{}_pow_dispatch_of_{}".format(su_to_replace, su["carrier"]) 

    store_name = "{}_cap_store_unit_{}".format(su_to_replace, su["carrier"]) 

 

    network.add("Bus", bus_name, carrier=su["carrier"]) 

 

    # dispatch link 

    network.add( 

        "Link", 

        link_2_name, 

        bus0=bus_name, 

        bus1=su["bus"], 

        capital_cost=(su["capital_cost"] * su["efficiency_dispatch"]/2), 

        p_nom=su["p_nom"] / su["efficiency_dispatch"], 

        p_nom_extendable=su["p_nom_extendable"], 

        p_nom_max=su["p_nom_max"] / su["efficiency_dispatch"], 

        p_nom_min=su["p_nom_min"] / su["efficiency_dispatch"], 

        p_max_pu=su["p_max_pu"], 

        marginal_cost=su["marginal_cost"] * su["efficiency_dispatch"], 

        efficiency=su["efficiency_dispatch"], 

    ) 

 

    # store link 

    network.add( 

        "Link", 

        link_1_name, 

        bus1=bus_name, 
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        bus0=su["bus"], 

        capital_cost=(su["capital_cost"] * su["efficiency_store"] / 2), 

        p_nom=su["p_nom"], 

        p_nom_extendable=su["p_nom_extendable"], 

        p_nom_max=su["p_nom_max"], 

        p_nom_min=su["p_nom_min"], 

        p_max_pu=-su["p_min_pu"], 

        efficiency=su["efficiency_store"], 

    ) 

 

    if ( 

        su_to_replace in network.storage_units_t.state_of_charge_set.columns 

        and ( 

            ~pd.isnull(network.storage_units_t.state_of_charge_set[su_to_replace]) 

        ).any() 

    ): 

        e_max_pu = pd.Series(data=1.0, index=network.snapshots) 

        e_min_pu = pd.Series(data=0.0, index=network.snapshots) 

        non_null = ~pd.isnull( 

            network.storage_units_t.state_of_charge_set[su_to_replace] 

        ) 

        e_min_pu[non_null] = network.storage_units_t.state_of_charge_set[su_to_replace][ 

            non_null 

        ] 

    else: 

        e_max_pu = 1.0 

        e_min_pu = 0.0 

 

    # Battery FfE has e_p_cost_ratio = 0. All capital cost in Link €/MW (as e_p_ratio = 

max_hours is fixed) 

    # Tank in FfE has e_p_cost_ratio != 0. Capital cost in Link €/MW and in Store €/MWh 

    network.add( 

        "Store", 

        store_name, 

        bus=bus_name, 

        e_nom=su["p_nom"] * su["max_hours"], 

        e_nom_min=su["p_nom_min"] / su["efficiency_dispatch"] * su["max_hours"], 

        e_nom_max=su["p_nom_max"] / su["efficiency_dispatch"] * su["max_hours"], 

        e_nom_extendable=su["p_nom_extendable"], 

        e_max_pu=e_max_pu, 

        e_min_pu=e_min_pu, 

        standing_loss=su["standing_loss"], 

        e_cyclic=su["cyclic_state_of_charge"], 

        e_initial=su["state_of_charge_initial"], 

        capital_cost=su["capital_cost"] * e_p_cost_ratio 

    ) 

 

    network.remove("StorageUnit", su_to_replace) 

 

 

def replace_storage_units(network, single_cell_ann_costs): 

    e_p_cost_ratio_df = single_cell_ann_costs.filter(regex="e_p_cost_ratio") 

    e_p_cost_ratio_df.columns = e_p_cost_ratio_df.columns.str.replace("_e_p_cost_ratio", 

"") 

    e_p_cost_ratio_df = e_p_cost_ratio_df.transpose() 

    e_p_cost_ratio_df.rename(columns={e_p_cost_ratio_df.columns[0]: "e_p_cost_ratio"}, 

inplace=True) 
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    idx_su_network = network.storage_units.index 

    idx_su_costs = e_p_cost_ratio_df.index 

    intersection = idx_su_network.intersection(idx_su_costs) 

 

    if not intersection.empty: 

        for index, data_row_e_p in e_p_cost_ratio_df.iterrows(): 

            if index in intersection: 

                replace_single_su(network, index, data_row_e_p["e_p_cost_ratio"]) 
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output.py module 

# h2_model - output 

# here we define the functions for the output of the pypsa optimization network. 

# That is which output do we want for each cell 

 

# WORK WITH OUTPUT FUNCTIONS 

#       curtailment_diagramms 

#       prepare_results_new_row 

#       prepare_results_timeseries_new_row 

#       calculate_new_row_results 

#       insert_id_scenario_time 

 

# INSERT/TRUNCATE IN DB FUNCTIONS 

#       insert_cell_preresults_timeseries_in_db 

#       truncate_preresults_timeseries_in_db 

#       insert_scenario_in_db 

#       insert_results_in_db 

#       insert_results_timeseries_in_db 

#       insert_ann_costs_in_db 

 

# ALTERANTIVE SAVE AND LOAD FUNCTIONS 

#       save_results_as_feather 

#       load_results_from_feather 

#       save_results_as_parquet 

#       load_results_from_parquet 

#       save_network_df_to_parquets 

#       load_single_network_from_parquets 

#       load_all_scenario_networks_from_parquets 

# 

 

########################################################################################

################################ 

 

import git 

import os 

import pandas as pd 

import psycopg2 

import shutil 

from io import StringIO 

import sys 

import datetime 

 

import input 

import precalc 

 

########################################################################################

################################ 

 

 

def curtailment_diagrams(): 

    """ 

    ### Curtailment Graph ### 

    p_by_carrier = network.generators_t.p.groupby(network.generators.carrier, 

axis=1).sum() 

    #p_by_carrier.drop( 

    #    (p_by_carrier.max()[p_by_carrier.max() < 1700.0]).index, axis=1, inplace=True 
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    #) 

    # print(p_by_carrier) 

 

    carrier = "wind" 

 

    capacity = network.generators.groupby("carrier").sum().at[carrier, "p_nom_opt"] 

    p_available = 

network.generators_t.p_max_pu.multiply(network.generators["p_nom_opt"]) 

    p_available_by_carrier = p_available.groupby(network.generators.carrier, 

axis=1).sum() 

    p_curtailed_by_carrier = p_available_by_carrier - p_by_carrier 

    p_df = pd.DataFrame( 

        { 

            carrier + " available": p_available_by_carrier[carrier], 

            carrier + " dispatched": p_by_carrier[carrier], 

            carrier + " curtailed": p_curtailed_by_carrier[carrier], 

        } 

    ) 

 

    p_df[carrier + " capacity"] = capacity 

    #p_df["Wind Onshore curtailed"][p_df["Wind Onshore curtailed"] < 0.0] = 0.0 

    fig, ax = plt.subplots(figsize=(15, 4)) 

    p_df[[carrier + " dispatched", carrier + " curtailed"]].plot( 

        kind="area", ax=ax, linewidth=1 

    ) 

    p_df[[carrier + " available", carrier + " capacity"]].plot(ax=ax, linewidth=1) 

 

    ax.set_xlabel("") 

    ax.set_ylabel("Power [MW]") 

    ax.set_ylim([0, 0.15]) 

    ax.legend() 

    fig.tight_layout() 

 

    plt.savefig("curtailment_"+ carrier + id_cell + ".svg", dpi=150) 

 

    carrier = "solar" 

 

    capacity = network.generators.groupby("carrier").sum().at[carrier, "p_nom_opt"] 

    p_available = 

network.generators_t.p_max_pu.multiply(network.generators["p_nom_opt"]) 

    p_available_by_carrier = p_available.groupby(network.generators.carrier, 

axis=1).sum() 

    p_curtailed_by_carrier = p_available_by_carrier - p_by_carrier 

    p_df = pd.DataFrame( 

        { 

            carrier + " available": p_available_by_carrier[carrier], 

            carrier + " dispatched": p_by_carrier[carrier], 

            carrier + " curtailed": p_curtailed_by_carrier[carrier], 

        } 

    ) 

 

    p_df[carrier + " capacity"] = capacity 

    #p_df["Wind Onshore curtailed"][p_df["Wind Onshore curtailed"] < 0.0] = 0.0 

    fig, ax = plt.subplots(figsize=(15, 4)) 

    p_df[[carrier + " dispatched", carrier + " curtailed"]].plot( 

        kind="area", ax=ax, linewidth=1 

    ) 
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    p_df[[carrier + " available", carrier + " capacity"]].plot(ax=ax, linewidth=1) 

 

    ax.set_xlabel("") 

    ax.set_ylabel("Power [MW]") 

    ax.set_ylim([0, 0.6]) 

    ax.legend() 

    fig.tight_layout() 

 

    plt.savefig("curtailment_"+ carrier + id_cell + ".svg", dpi=150) 

 

 

    curt = pypsa.stats.calculate_curtailment(network) 

    print("Curtailment is:", curt) 

    """ 

 

 

def calculate_results_for_cell(network): 

    yearly_cost = 0 

    cell_opt_comp_size_dict = {} 

    for gen, data_row_gen in network.generators.iterrows(): 

        yearly_cost += data_row_gen["p_nom_opt"] * data_row_gen["capital_cost"] 

        precalc.append_value_to_dict(cell_opt_comp_size_dict, gen, 

data_row_gen["p_nom_opt"]) 

    for link, data_row_link in network.links.iterrows(): 

        yearly_cost += data_row_link["p_nom_opt"] * data_row_link["capital_cost"] 

        precalc.append_value_to_dict(cell_opt_comp_size_dict, link, 

data_row_link["p_nom_opt"]) 

    for store, data_row_store in network.stores.iterrows(): 

        yearly_cost += data_row_store["e_nom_opt"] * data_row_store["capital_cost"] 

        precalc.append_value_to_dict(cell_opt_comp_size_dict, store, 

data_row_store["e_nom_opt"]) 

    for su, data_row_su in network.storage_units.iterrows(): 

        yearly_cost += data_row_su["p_nom_opt"] * data_row_su["capital_cost"] 

        precalc.append_value_to_dict(cell_opt_comp_size_dict, su, 

data_row_su["p_nom_opt"]) 

 

    # Define the low heating value of hydrogen MWh/kg 

    h2_lhv = 0.03333 

    h2_amount = network.loads.loc["load", "p_set"] * len(network.snapshots) / h2_lhv 

 

    cell_lcoh = yearly_cost/h2_amount 

 

    return cell_lcoh, cell_opt_comp_size_dict 

 

 

def prepare_results_new_row(id_cell, id_country, cell_lcoh, cell_opt_comp_size_dict): 

    results_new_row = {"id_region": id_cell, "id_country": id_country, "lcoh": 

cell_lcoh} 

    results_new_row.update(cell_opt_comp_size_dict) 

 

    return results_new_row 

 

 

def prepare_results_timeseries_new_row(network): 

    results_timeseries_new_row = {} 

    for (columnName, columnData) in network.generators_t.p.iteritems(): 

        key_name = "generator_p_" + columnName 
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        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.links_t.mu_lower.iteritems(): 

        key_name = "link_mu_lower_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.links_t.mu_upper.iteritems(): 

        key_name = "link_mu_upper_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.links_t.p0.iteritems(): 

        key_name = "link_p0_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.links_t.p1.iteritems(): 

        key_name = "link_p1_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.storage_units_t.state_of_charge.iteritems(): 

        key_name = "storage_unit_soc_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.storage_units_t.p_dispatch.iteritems(): 

        key_name = "storage_unit_p_dispatch_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.storage_units_t.p_store.iteritems(): 

        key_name = "storage_unit_p_store_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.stores_t.e.iteritems(): 

        key_name = "store_e_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    for (columnName, columnData) in network.stores_t.p.iteritems(): 

        key_name = "store_p_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

    # Curtailment 

    max_pu = network.generators_t.p_max_pu 

    p_avail = max_pu.multiply(network.generators.p_nom_opt.loc[max_pu.columns]) 

    p_used = network.generators_t.p[max_pu.columns] 

    p_curtailed = p_avail.sub(p_used, axis=1) 

    for (columnName, columnData) in p_curtailed.iteritems(): 

        key_name = "generator_p_curtailed_" + columnName 

        precalc.append_value_to_dict(results_timeseries_new_row, key_name, 

str(columnData.to_numpy().tolist())) 

 

    return results_timeseries_new_row 

 

 

def calculate_new_row_results(network, id_cell, id_country): 

    (cell_lcoh, cell_opt_comp_size_dict) = calculate_results_for_cell(network) 

    results_new_row = prepare_results_new_row(id_cell, id_country, cell_lcoh, 

cell_opt_comp_size_dict) 

    results_timeseries_new_row = prepare_results_timeseries_new_row(network) 
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    return results_new_row, results_timeseries_new_row 

 

 

def insert_id_scenario_time(results_df, h2_scenario_id): 

    results_df.insert(1, "id_scenario_h2_model", h2_scenario_id) 

    current_time = datetime.datetime.now() 

    results_df["time"] = current_time 

 

    return results_df 

 

 

def insert_cell_preresults_timeseries_in_db(results_timeseries, id_cell, 

h2_scenario_id): 

    results_series = pd.Series(results_timeseries) 

    results_timeseries_db = pd.DataFrame(results_series) 

    results_timeseries_db = results_timeseries_db.rename(columns={0: "values"}) 

    results_timeseries_db["values"] = results_timeseries_db["values"].apply(lambda x: 

x.replace("[", "{")) 

    results_timeseries_db["values"] = results_timeseries_db["values"].apply(lambda x: 

x.replace("]", "}")) 

    results_timeseries_db = results_timeseries_db.reset_index() 

    results_timeseries_db = results_timeseries_db.rename(columns={"index": "parameter"}) 

    results_timeseries_db.insert(0, "id_scenario_h2_model", h2_scenario_id) 

    results_timeseries_db.insert(0, "id_regionstyp", 59) 

    results_timeseries_db.insert(0, "id_region", id_cell) 

 

    buffer = StringIO() 

    results_timeseries_db.to_csv(buffer, index=False, header=False, sep="|") 

    buffer.seek(0) 

    (cur, conn) = input.establish_connection_with_db() 

    try: 

        cur.copy_expert("COPY u_mmartinezperez.t_h2_model_preresults_timeseries FROM 

STDIN DELIMITER '|' CSV", buffer) 

        # cur.copy_from(buffer, "rem.u_mmartinezperez.t_h2_model_preresults_timeseries", 

sep="|") 

    except (Exception, psycopg2.DatabaseError) as error: 

        print("Error_a: %s" % error) 

        print("Execute Queries failed.") 

        conn.rollback() 

        cur.close() 

    conn.commit() 

    cur.close() 

 

 

def truncate_preresults_timeseries_in_db(): 

    (cur, conn) = input.establish_connection_with_db() 

    try: 

        cur.execute("TRUNCATE u_mmartinezperez.t_h2_model_preresults_timeseries") 

    except (Exception, psycopg2.DatabaseError) as error: 

        print("Error_b: %s" % error) 

        print("Execute Queries failed.") 

        conn.rollback() 

        cur.close() 

    conn.commit() 

    cur.close() 
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def insert_scenario_in_db(h2_scenario_id, scenario_name, scenario_year): 

    repo = git.Repo(search_parent_directories=True) 

    sha = repo.head.object.hexsha 

    sql_text = "see function insert_scenario_in_db in python module output.py " 

    sql_check_scenario = "DELETE FROM u_mmartinezperez.t_h2_model_scenario_description 

WHERE id_scenario_h2_model = %s;" 

    sql_insert_scenario = """INSERT INTO 

u_mmartinezperez.t_h2_model_scenario_description (id_scenario_h2_model,  

                            description_de, description_en, year, commit, sql) VALUES 

(%s, %s, %s, %s, %s, %s);""" 

    (cur, conn) = input.establish_connection_with_db() 

    try: 

        cur.execute(sql_check_scenario, (h2_scenario_id,)) 

        cur.execute(sql_insert_scenario, (h2_scenario_id, scenario_name, scenario_name, 

scenario_year, sha, sql_text)) 

    except (Exception, psycopg2.DatabaseError) as error: 

        print("Error_c: %s" % error) 

        print("Execute Queries failed.") 

        conn.rollback() 

        cur.close() 

    conn.commit() 

    cur.close() 

 

 

def insert_results_in_db(overwrite_scenario_results, results_df, h2_scenario_id, 

scenario_year): 

    results_db = results_df.drop(["id_country", "time"], axis=1) 

 

    results_db = results_db.melt(id_vars=["id_region", "id_scenario_h2_model"], 

                                 var_name="parameter", 

                                 value_name="value") 

    results_db.insert(len(results_db.columns), "year", scenario_year) 

    results_db.insert(1, "id_regionstyp", 59) 

 

    buffer = StringIO() 

    results_db.to_csv(buffer, index=False, header=False) 

    buffer.seek(0) 

    sql_check_scenario = "DELETE FROM u_mmartinezperez.t_h2_model_results WHERE 

id_scenario_h2_model = %s;" 

    sql_truncate_preresults = "TRUNCATE u_mmartinezperez.t_h2_model_preresults;" 

    sql_insert_results = """INSERT INTO u_mmartinezperez.t_h2_model_results (id_region, 

id_regionstyp,  

                                        id_scenario_h2_model, id_parameter, value, year) 

                                SELECT id_region, 

                                       id_regionstyp, 

                                       id_scenario_h2_model, 

                                       id_parameter, 

                                       value, 

                                       year 

                                FROM u_mmartinezperez.t_h2_model_preresults as a 

                                JOIN u_mmartinezperez.t_h2_model_parameter_description 

as b on (a.parameter=b.name);""" 

 

    (cur, conn) = input.establish_connection_with_db() 

    try: 

        if overwrite_scenario_results: 

            cur.execute(sql_check_scenario, (h2_scenario_id,)) 
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        cur.execute(sql_truncate_preresults) 

        cur.copy_expert("COPY u_mmartinezperez.t_h2_model_preresults FROM STDIN CSV", 

buffer) 

        # cur.copy_from(buffer, "rem.u_mmartinezperez.t_h2_model_preresults", sep=",") 

        cur.execute(sql_insert_results) 

    except (Exception, psycopg2.DatabaseError) as error: 

        print("Error_d: %s" % error) 

        print("Execute Queries failed.") 

        conn.rollback() 

        cur.close() 

    conn.commit() 

    cur.close() 

 

 

def insert_results_timeseries_in_db(overwrite_scenario_results, h2_scenario_id, 

scenario_year): 

    sql_check_scenario = "DELETE FROM u_mmartinezperez.t_h2_model_results_timeseries 

WHERE id_scenario_h2_model = %s;" 

    sql_insert_results = """INSERT INTO u_mmartinezperez.t_h2_model_results_timeseries 

(id_region, id_regionstyp,  

                                                                    

id_scenario_h2_model, id_parameter, values) 

                             SELECT id_region, 

                                    id_regionstyp, 

                                    id_scenario_h2_model, 

                                    id_parameter, 

                                    values 

                             FROM u_mmartinezperez.t_h2_model_preresults_timeseries as a 

                             JOIN u_mmartinezperez.t_h2_model_parameter_description as b 

on (a.parameter=b.name);""" 

    sql_update_year_results = """UPDATE u_mmartinezperez.t_h2_model_results_timeseries 

                                SET year=%s WHERE id_scenario_h2_model=%s;""" 

    (cur, conn) = input.establish_connection_with_db() 

    try: 

        if overwrite_scenario_results: 

            cur.execute(sql_check_scenario, (h2_scenario_id,)) 

        cur.execute(sql_insert_results) 

        cur.execute(sql_update_year_results, (scenario_year, h2_scenario_id)) 

    except (Exception, psycopg2.DatabaseError) as error: 

        print("Error_e: %s" % error) 

        print("Execute Queries failed.") 

        conn.rollback() 

        cur.close() 

    conn.commit() 

    cur.close() 

 

 

def insert_ann_costs_in_db(ann_costs_per_country_df, scenario_year): 

    if ann_costs_per_country_df.first_valid_index() != 0: 

        ann_costs_per_country_df = ann_costs_per_country_df.reset_index() 

    ann_costs_per_country_db = ann_costs_per_country_df.melt(id_vars=["id_country"], 

                                                             var_name="parameter", 

                                                             value_name="value") 

    ann_costs_per_country_db.insert(len(ann_costs_per_country_db.columns), "year", 

scenario_year) 

 

    buffer = StringIO() 
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    ann_costs_per_country_db.to_csv(buffer, index=False, header=False) 

    buffer.seek(0) 

    (cur, conn) = input.establish_connection_with_db() 

 

    try: 

        cur.execute("TRUNCATE u_mmartinezperez.t_h2_model_ann_costs_per_country;") 

        cur.copy_expert("COPY u_mmartinezperez.t_h2_model_ann_costs_per_country FROM 

STDIN CSV", buffer) 

        # cur.copy_from(buffer, table_ann_costs_per_country, sep=",") 

    except (Exception, psycopg2.DatabaseError) as error: 

        print("Error_f: %s" % error) 

        print("Execute Queries failed.") 

        conn.rollback() 

        cur.close() 

    conn.commit() 

    cur.close() 

 

 

def save_results_as_feather(results_df, h2_scenario_id): 

    feather_results_path = os.getcwd() + "\\results_id_scenario_" + str(h2_scenario_id) 

    feather_results_file_path = feather_results_path + "\\summary.feather" 

    if not os.path.exists(feather_results_path): 

        os.mkdir(feather_results_path) 

    results_df.reset_index(drop=True, inplace=True) 

    results_df.to_feather(feather_results_file_path) 

 

 

def load_results_from_feather(h2_scenario_id): 

    feather_results_path = os.getcwd() + "\\results_id_scenario_" + str(h2_scenario_id) 

    dir_list = os.listdir(feather_results_path) 

    if len(dir_list) == 0: 

        sys.exit("There is no data in" + feather_results_path + "directory") 

    results = pd.read_feather(feather_results_path + "\\summary.feather") 

 

    return results 

 

 

def save_results_as_parquet(results_df, h2_scenario_id): 

    parquet_results_path = os.getcwd() + "\\results_id_scenario_" + str(h2_scenario_id) 

    parquet_results_file_path = parquet_results_path + "\\summary.parquet" 

    if not os.path.exists(parquet_results_path): 

        os.mkdir(parquet_results_path) 

    results_df.reset_index(drop=True, inplace=True) 

    results_df.to_parquet(parquet_results_file_path) 

 

 

def load_results_from_parquet(h2_scenario_id): 

    parquet_results_path = os.getcwd() + "\\results_id_scenario_" + str(h2_scenario_id) 

    dir_list = os.listdir(parquet_results_path) 

    if len(dir_list) == 0: 

        sys.exit("There is no data in" + parquet_results_path + "directory") 

    results = pd.read_parquet(parquet_results_path + "\\summary.parquet") 

 

    return results 

 

 

def save_network_df_to_parquets(network, h2_scenario_id, id_cell): 
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    # Here only the most interesting df will be saved 

    parquets_path = os.getcwd() + "\\parquet_results_scenario_" + str(h2_scenario_id) 

    cell_parquets_path = parquets_path + "\\" + id_cell 

    if os.path.exists(cell_parquets_path): 

        shutil.rmtree(cell_parquets_path) 

    os.makedirs(cell_parquets_path) 

 

    network.buses.to_parquet(cell_parquets_path + "\\buses.parquet") 

    network.buses_t.marginal_price.to_parquet(cell_parquets_path + "\\buses-

marginal_price.parquet") 

    network.buses_t.p.to_parquet(cell_parquets_path + "\\buses-p.parquet") 

    network.carriers.to_parquet(cell_parquets_path + "\\carriers.parquet") 

    network.generators.to_parquet(cell_parquets_path + "\\generators.parquet") 

    network.generators_t.p.to_parquet(cell_parquets_path + "\\generators-p.parquet") 

    network.generators_t.p_max_pu.to_parquet(cell_parquets_path + "\\generators-

p_max_pu.parquet") 

    network.links.to_parquet(cell_parquets_path + "\\links.parquet") 

    network.links_t.mu_lower.to_parquet(cell_parquets_path + "\\links-mu_lower.parquet") 

    network.links_t.mu_upper.to_parquet(cell_parquets_path + "\\links-mu_upper.parquet") 

    network.links_t.p0.to_parquet(cell_parquets_path + "\\links-p0.parquet") 

    network.links_t.p1.to_parquet(cell_parquets_path + "\\links-p1.parquet") 

    network.loads.to_parquet(cell_parquets_path + "\\loads.parquet") 

    network.storage_units.to_parquet(cell_parquets_path + "\\storage_units.parquet") 

    network.storage_units_t.state_of_charge.to_parquet(cell_parquets_path + 

                                                       "\\storage_units-

state_of_charge.parquet") 

    network.stores.to_parquet(cell_parquets_path + "\\stores.parquet") 

    network.stores_t.e.to_parquet(cell_parquets_path + "\\stores-e.parquet") 

    network.stores_t.p.to_parquet(cell_parquets_path + "\\stores-p.parquet") 

 

 

def load_single_network_from_parquets(parquet_path, id_cell): 

    dict_network_cell = {} 

    for file in os.listdir(parquet_path + "\\" + id_cell): 

        key_name = os.path.splitext(file)[0] 

        file_path = os.path.join(parquet_path + "\\" + id_cell, file) 

        dict_network_cell[key_name] = pd.read_parquet(file_path) 

 

    return dict_network_cell 

 

 

def load_all_scenario_networks_from_parquets(h2_scenario_id): 

    dict_scenario_networks_cells = {} 

    parquet_scenario_folder = os.getcwd() + "\\parquet_results_scenario_" + 

str(h2_scenario_id) 

    for id_cell in os.listdir(parquet_scenario_folder): 

        dict_scenario_networks_cells[id_cell] = 

load_single_network_from_parquets(parquet_scenario_folder, id_cell) 

 

    return dict_scenario_networks_cells 

 


