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Abstract 

In this paper, the analytical and numerical solutions of a non-steady state mathematical model are developed and analyzed. The 
mathematical model development of a non-steady state heat transport for a one-dimensional system is shown, and the analytical 
solution of the model is presented. The numerical solution of the model, using the finite element method, is compared to its 
analytical solution, proving its consistency. One of the advantages of using numerical tools is that more complex solutions can 
be obtained, even if the corresponding analytical solution does not exist or is not known, which is useful for engineering 
students. To demonstrate the applications and possibilities of this work, it is shown that changing the boundary conditions, 
geometry, or dimension in the system and the mathematical model, it can be solved through a numerical solution method. This 
is easier and more comprehensive for students rather than facing the complexity of the analytical solutions. The paper shows 
that it is possible to use the finite element method in a university teaching context to complementarily explain the underlying 
physical phenomena of an engineering problem, here applied to a heat transfer problem in a vegetable. 

Keywords: heat transfer, FEM, modelling, methodologies for learning

1. Introduction 

The study of heat transfer problems is a research area that 
has gained importance as it plays a fundamental role in 
sustainability and environmental care. The application fields 
of this physics branch are related to both science and 
engineering, including medicine [1], automotive, thermal 
management of electronic devices and systems [2], design of 
refrigeration and air conditioning systems [3], water heating 
or food preservation [4], and domestic [5] and industrial 
applications. 

When two systems at different temperatures are in contact, 
there is a heat transfer process until a thermal equilibrium is 
achieved between them. This transfer process would also 
occur if one of them was in contact with a third, as stated in 
the zeroth law of thermodynamics [6]. There are three 
mechanisms of heat transfer: conduction, convection, and 
radiation. We are going to study conduction (contact heat 

transfer without matter transfer) and convection (heat transfer 
by the transfer of the heat-carrying matter itself). These two 
mechanisms can be studied in both steady state and non-
steady state. For the steady state, the energetic content of the 
system remains constant over time as the temperature does, 
while for the non-stady state, the variation of the energetic 
content in time must be considered because the temperature 
changes. 

The physical laws describing the property transport 
mechanisms are simple and easily understandable, but the 
analytical description is complex. In general, transport 
phenomena are all those processes in which there is a net 
transfer or transport of matter, energy, or linear momentum in 
macroscopic or microscopic quantities. 

It is essential to present the phenomenon of heat transfer 
by exposing the corresponding physical law through the 
mathematical expression of heat transfer and its analytical 
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resolution, but also offering a numerical resolution [7]. The 
complexity of the analytical solution of the mathematical 
expression depends on the number of spatial dimensions 
considered, the form of the governing equation obtained from 
the calorific energy balance in the system, and the initial and 
boundary conditions established. Whether or not there is an 
analytical solution to the mathematical model, it is possible to 
solve it numerically by applying simulation methods and tools 
that make it possible to visualize the evolution of the 
temperature in the system. 

Providing students with all these tools allows them to 
extrapolate their knowledge to other areas with similar 
equations, such as the diffusion of a solute in a solvent. 
Moreover, in this way, they work on computational skills at 
the same time.  

This approach is intended for undergraduate engineering 
students. It is important that students of engineering degrees 
more related to the biological part perceive physics as a 
mundane and useful subject, beyond the mechanical part. 
Thus, the study case presented considers the problem of 
heating a vegetable slice for its preservation and subsequent 
use. 

In terms of paper structure, the mathematical model is first 
explained and detailed. It starts with the theoretical 
foundations and their simplification for the case of study. 
Then, the analytical solution for the proposed case study is 
calculated and the computational model to obtain a numerical 
solution is developed and validated. The details of the model 
are based on the formulated theory. Finally, to analyze the 
importance of different controllable parameters in the solution 
of the problem, different solutions for changing temperature 
and thickness are shown.  

2. Theory 

In this section, the transient heat conduction model is 
developed from the energy balance for a one-dimensional 
case considering that the system behaves as an infinite sheet. 
The situation for the bi- and tri-dimensional case can be 
solved by applying the superposition principle. 

2.1 General equation of heat conduction 

 

 
 
 
 
 

Applying the general equation of the property balance in the 
differential element considered (Input + Generation = Output 
+ Accumulation), the governing equation obtained from the 
energy balance (1) is: 

 

𝑞!"#! − 𝑞! +
𝜕%𝜌𝐶$𝑇𝑑𝑉+

𝜕𝑡
= 𝑔𝑑𝑉 (1) 

If no heat is generated (𝑔 = 0) then  
 

𝑑𝑞! +
𝜕%𝜌𝐶$𝑇𝑑𝑉+

𝜕𝑡
= 0 (2) 

For one-dimensional heat transfer conduction in the x 
direction, the temperature of each point depends on both the 
time and its position so it can be expressed as 𝑇(𝑥, 𝑡) as in 
equation (3), and it is possible to apply the Fourier’s law in 
one dimension [8],  

𝑞! = −𝑘𝐴
𝜕𝑇
𝜕𝑥

 (3) 

Considering that 𝑑𝑉 = 𝐴𝛿𝑥, and applying the Fourier's Law 
in equation (2), it remains, 

𝛼
𝜕%𝑇
𝜕𝑥%

=
𝜕𝑇
𝜕𝑡

 (4) 

where α is the thermal diffusivity of the sample [9] (𝛼 = &
'(!

). 

To conclude the formulation of the mathematical model and 
solve equation (4) analytically, initial and boundary 
conditions must be established accounting for some 
considerations such as: 

1. Temperature 𝑇! is initially uniform throughout the system. 

t = 0	∧ ∀𝑥 → 𝑇(𝑥, 0) = 𝑇! (5) 

2. The conduction heat flux that arrives at the surface of the 
system is interchanged by convection with the fluid 
around the system (figure 2). 
        t > 0	→ −𝑘 𝜕𝑇(𝐿,𝑡)𝜕𝑥 = ℎ[𝑇(𝐿, 𝑡)−𝑇∞] 		 (6a) 

or 𝑇(𝐿, 𝑡) = 𝑇0, 

 

(6b) 

Figure 1. Scheme to obtain heat balance, where 
A is the area and dV is the differential volume of 
the sample. The specific heat flux is represented 
by q. 
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3. if h is very high, i.e., when external resistance to heat 
transfer is negligible, there is a symmetrical distribution of 
temperature in the system with respect to the central axis 
(figure 2). 

t > 0	→ 12(4,5)
1!

= 0 (7) 

4. The temperature surrounding the system (𝑇$) does not 
change with time. 

5. The physical properties remain constant throughout the 
process. 

6. The system material is not shrinking. 

 

 

 

 

 

 

 

 

2.2. Analytical solution 

By making the following variable change, 

𝜓(𝑥, 𝑡) =
𝑇(𝑥, 𝑡) − 𝑇0
𝑇7 − 𝑇0

 
(8) 

the mathematical model (equations 4, 5, 6, 7) result in: 

𝛼
𝜕%𝜓
𝜕𝑥%

=
𝜕𝜓
𝜕𝑡

 (9) 

𝜓(𝑥, 0) = 1 (10) 

−𝑘
𝜕𝜓(𝐿, 𝑡)
𝜕𝑥

= ℎ	𝜓(𝐿, 𝑡) (11) 

𝜕𝜓(0, 𝑡)
𝜕𝑥

= 0 (12) 

This model meets the conditions for applying the method of 
separation of variables (all the equations, except one, are 
homogeneous and of constant coefficients), 

𝜓(𝑥, 𝑡) = 𝐹(𝑥)𝐺(𝑡) (13) 

resulting: 

1
𝐹(𝑥)

𝑑%𝐹(𝑥)
𝑑𝑥%

=
1

𝐺(𝑡)
𝑑𝐺(𝑡)
𝑑𝑡

= −𝜔% (14) 

The equation 𝐺(𝑡) is a first order equation and 𝐹(𝑥) is a 
second order, so by integrating them, it results: 

A 𝐺(𝑡) = 𝐶8𝑒9:;
"5

𝐹(𝑥) = 𝐶% 𝑠𝑖𝑛(𝜔𝑥) + 𝐶< 𝑐𝑜𝑠(𝜔𝑥)
 

(15) 

Now, substituting equation (15) into equation (13), results 
in: 

𝜓(𝑥, 𝑡) = 𝑒9:;"5[𝐴 𝑠𝑖𝑛(𝜔𝑥) + 𝐵 𝑐𝑜𝑠(𝜔𝑥)] (16) 

where 𝐴 and 𝐵 are integration constants obtained from the 
boundary conditions. 

Imposing the boundary condition of symmetry (equation 7) 
on equation (16) we get, 

𝜕𝜓(0, 𝑡)
𝜕𝑥 = 8𝑒−𝛼𝜔2𝑡[𝐴𝜔𝑐𝑜𝑠(𝜔𝑥)

−𝐵𝜔	𝑠𝑖𝑛	(𝜔𝑥)]9
𝑥=0

= 0 

(17) 

Then, it is obtained 𝐴 = 0 and equation (16) is rewritten as: 

𝜓(𝑥, 𝑡) = 𝑒9:;"5[	 𝐵 𝑐𝑜𝑠(𝜔𝑥)] (18) 

Imposing the boundary condition represented in equation 
(6a) or (6b) on equation (18), results in: 

𝜕𝜓(𝐿, 𝑡)
𝜕𝑥 = 8𝑒−𝛼𝜔2𝑡[	 −𝐵𝜔𝑠𝑖𝑛(𝜔𝑥)]9

𝑥=𝐿

= −
ℎ
𝑘 𝑒

−𝛼𝜔2𝑡[	 𝐵 𝑐𝑜𝑠(𝜔𝐿)]	 
(19a) 

𝑜𝑟	𝜓(𝐿, 𝑡) = 𝑒9:;"5[	 𝐵 𝑐𝑜𝑠(𝜔𝑥)] = 0, 
(19b) 

if h is very high: 

𝑡𝑎𝑛(𝜔𝐿) =
ℎ𝐿
𝑘𝜔𝐿

=
𝑁BC
𝜔𝐿

,	 

		𝑏𝑒𝑖𝑛𝑔	𝑁%& 	𝑡ℎ𝑒	𝐵𝑖𝑜𝑡	𝑛𝑢𝑚𝑏𝑒𝑟 =
ℎ𝐿
𝑘  

 

(20a) 

Figure 2. Transversal section of the system; h is the 
convective heat transfer coefficient. 
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𝑜𝑟 	𝑐𝑜𝑠(𝜔𝐿) = 0	 

	 

(20b) 

The eigenvalues 𝜔' are the positive roots of the equation 
(20a) 

𝜔D𝐿 = 𝑓(𝑁BC)			𝑤𝑖𝑡ℎ	𝑛 = 1,2, … 

or of the equation 20b if h is very high, 

 

𝜔'𝐿 = (2𝑛 − 1)
𝜋
2 			𝑤𝑖𝑡ℎ	𝑛 = 1,2,… 

(21) 

Therefore, the function 𝜓(𝑥, 𝑡) will be a lineal combination 
of all possible solutions: 

𝜓(𝑥, 𝑡) = F𝐵!𝑒−𝛼𝜔𝑛
2	𝑡

"

!#$

	

𝑐𝑜𝑠(𝜔!𝑥)	 
(22) 

To solve the coefficients 𝐵' the initial condition is applied, 

𝜓(𝑥, 0) = F𝐵!

"

!#$

	

𝑐𝑜𝑠(𝜔!𝑥) = 1	 (23) 

And, by orthogonality of eigenfunctions: 

" 𝑐𝑜𝑠(𝜔𝑛𝑥)	cos	(𝜔𝑚𝑥)dx
(

)
=

= &
0	𝑖𝑓	𝑛 ≠ 𝑚

𝐿
2 +

1
4𝜔*

sin(2𝜔*𝐿) 𝑖𝑓	𝑛 = 𝑚 

(24) 

At this point, introducing the 𝑐𝑜𝑠(𝜔!𝑥)		on both sides of 
equation (23) and integrating, equation (25) is obtained. 

𝐵! R
𝐿
2+

1
4𝜔𝑛

sin(2𝜔𝑛𝐿)S =
1
𝜔𝑛
sin(𝜔𝑛𝐿) (25) 

Then: 

𝐵! =
2	𝑠𝑖𝑛(𝜔!𝐿)

𝜔!𝐿 + 𝑠𝑖𝑛(𝜔!𝐿) 𝑐𝑜𝑠(𝜔!𝐿)

	

 (26) 

where the eigenvalues 𝜔! are the positive roots of the 
transcendent equation (20), being  

𝐵! =
2(−1)!($

	𝜔!𝐿

	

 (27) 

when h is very high. 

The resulting equation is 

𝜓(𝑥, 𝑡)

= 2F
𝑠𝑖𝑛(𝜔!𝐿)

𝜔!𝐿 + 𝑠𝑖𝑛(𝜔!𝐿) 𝑐𝑜𝑠(𝜔!𝐿)
𝑒−𝛼𝜔𝑛2

	𝑡 𝑐𝑜𝑠 	 (𝜔!𝑥)
"

!#$

		

 

with 𝜔D such that		𝑡𝑎𝑛(𝜔D𝐿) =
X,-
;.Y

, 𝑜𝑟 

(28a) 

𝜓(𝑥, 𝑡) = 2F
(−1)!($

	𝜔!𝐿
𝑒−𝛼𝜔𝑛2

	𝑡
"

!#$

	

𝑐𝑜𝑠 	 (𝜔!𝑥)	 
(28b) 

with 𝛚𝐧𝐋 = (𝟐𝐧 − 𝟏) 𝛑
𝟐
,	when h is very high. 

3. Modelling 

One of the most widely used methods to perform simulations 
is the Finite Element Method (FEM). It is a flexible method 
that can be used in multiple areas of science and engineering 
[10-14]. Through the FEM, it is possible to generate 
numerical solutions to problems of different complexity. To 
do this, it is necessary to know the initial and boundary 
conditions of the problem to be solved. The commercial 
software COMSOL Multiphysics [15] allows applying the 
FEM, working with problems of various dimensions and 
degrees of freedom. In order to simulate a non-steady state 
heat problem, the geometry (1D, 2D or 3D) must first be 
defined. In order to reduce the degrees of freedom, and 
therefore the computational cost, it is important to start with 
simple problem approaches that allow to obtain valid 
solutions. Once the geometry of the problem is defined, by 
selecting the module - in this case the one containing the heat 
equation -, the physical conditions of the problem are defined. 

COMSOL Multiphysics has several modules that allow 
solving heat transport problems. One of the available options 
is to use the specific heat transport module. This module can 
be used to solve many types of problems with various 
boundary conditions. In our case, since this is a simple 
problem, the mathematical module can be used directly. In the 
mathematical module, classical partial differential equations 
(PDEs) can be added. In this case, the equation to be solved 
(for 1D case for example) is: 

𝒅𝒂
𝝏𝑻
𝝏𝒕
+ 𝛁 · (−𝒄𝛁𝑻) = 𝒇; 			𝛁 = 𝝏

𝝏𝒙
     (i) 
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Where 𝒅𝒂 = 𝝆 · 𝒄𝒑 and 𝒄 = 𝒌 = 𝒅𝒂 · 𝜶. To solve the 
governing equation (9); the conditions that we must introduce 
are: 𝒅𝒂 = 𝟏; 𝒇 = 𝟎. Therefore, 𝒌 = 𝜶. 

Once the physical module to be used has been 
defined, boundary and initial conditions have to be 
specified. In the case of the one-dimensional system, 
an initial temperature T = T0 is set on the whole line 
defining the sheet. The boundary conditions defined 
at the two ends of the line are as follows:  

- At the point in contact with the fluid, a Dirichlet 
condition is used with a temperature T = T∞.  

- At the other end, a zero flow condition is used.  

Once the physics of the problem is configured, the 
size and typology of the mesh is selected. The mesh 
generates a finite number of points called nodes 
where the equations with partial derivatives will be 
solved to obtain the numerical solution of the 
problem. In the 1D case, the mesh consists of a 
number of points. When the problems become two-
dimensional, different geometries can be used, such 
as triangular geometry. The number of nodes to 
solve has to fulfill certain conditions for the solution 
to be convergent and robust; it needs a minimum 
number of elements limiting the maximum element 
size.  In the case of the one-dimensional system, 
there are uniformly distributed points every 30 µm. 
In the two-dimensional case, a triangular type mesh 
is used. There is a maximum element size of 125 µm 
and a minimum element size of 0.25 µm. This results 
in an element size of 1600 elements. These sizes are 
enough to avoid any error-causing numerical 
dispersion. In the end, it is a compromise between 
the number of points and the computational cost (the 
higher the number of points, the higher the 
computational cost). Once the mesh type and the 
number of elements has been stablished, the solver 
is defined. The solver of choice is MUMPS. This 
solver is of the direct type and has a high memory 
consumption but is very robust. COMSOL allows 
the use of other solvers (direct and indirect) with less 
memory consumption. For non-steady state 
problems, a temporary solver is used. Therefore, the 
time range as well as the time steps must be 
configured.  In the case of the proposed problem, 
time solutions between 0 and 5 seconds have been 
calculated in steps of 50 ms. It is important to define 
a proper time step to avoid excessively increasing the 
computational cost and, at the same time, obtaining 
a good time solution that allows to see and 
understand the physics of the problem. 

4. Food conservation: Practical application. 

In the food industry, the importance of thermal treatment of 
food, both heating and cooling, is trivial ([3], [4], [16]). For 
the design of such processes, the optimisation of their 
operation, or the layout and sizing of the related equipment, it 
is essential to know the mechanisms of heat and matter 
transfer that take place ([1], [2], [3], [9]). Simulating 
processes or equipment operation mathematically is a 
powerful tool for their design and optimisation. This requires 
knowledge on the development of mathematical models 
applying general and particular laws of energy and matter. It 
is also necessary to use calculation tools for solving the 
mathematical models and, consequently, simulating the 
processes ([10], [12], [17], [18]). All this is necessary for 
students to comprehend the heat transfer phenomenon for 
food preservation and how it is distributed through the food, 
even if it is a homogeneous food. Furthermore, the approach 
presented offers a way for them to visualise it and to see how 
the different parameters affect the heat transfer phenomenon, 
which can be helpful in the first courses of the degree. 

An excellent example of non-steady state heat transfer is a 
practical case for food preservation, as we mentioned before. 
Thus, we raise the following issue:  Let us consider that we 
want to produce slices of a vegetable to be used in salads. In 
this particular case, we will choose carrots in order to assign 
a numerical value to the characteristic parameters of the 
material. The manufacturing procedure consists of immersing 
the slices in a solution of different compounds and at 25ºC to 
prevent vegetable browning.  

In addition, the slices must be kept at a temperature of 1ºC. 
For this reason, after the previous treatment, they are placed 
in another bath with other preservatives at a temperature of -
1ºC. The slices will remain in this second bath until all its 
points reach a temperature less than or equal to the desired 
temperature (1ºC); therefore, we will have to determine how 
long they have to be. 

We will consider that the slices are cylindrical in shape with 
a diameter of 2.5 cm and a thickness (2L) of 1.5 mm; the 
thermal diffusivity (α) of the carrot is 0.002 cm2/s [16]; the 
convective heat transfer coefficient is very high (i.e., the 
external resistance to convective heat transfer is negligible). 

4.1 Analytic Solution 

Since the diameter of the slice is much greater than its 
thickness, the heat that the slice exchanges with the water 
through its peripheral surface could be neglected with respect 
to the heat that it exchanges through its other surfaces. 
Therefore, the problem is simplified to a heat transfer in a 
single direction. Because of this high convective heat transfer 
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coefficient (h) and, therefore, a high value of 𝐍𝐁𝐢, equation 
(28b) was used. 

The objective is to determine the time required for the center 
of the carrot slice to reach 1ºC: 

𝑡/𝜓(0, 𝑡) =
𝟏− (−𝟏)
𝟐𝟓− (−𝟏) = 2;

(−1)*/0

𝜔*𝐿
𝑒/12$3

4

*50

		

 
(29) 

The time required for the center of the carrot slice to reach 
1ºC is obtained by iterating equation (29). To determine an 
initial value of t, it was assumed that considering only the first 
term would be sufficient: 

𝟏
𝟏𝟑 =

𝟒
𝝅𝒆

1𝟎.𝟎𝟎𝟐4 𝝅
𝟎.𝟏𝟓8

𝟐

𝒕 

𝒕 = 𝟑. 𝟐𝒔 

As the Fourier number to the calculated time (𝑭𝒐 =
∝		𝒕
𝐋𝟐
=1.138) is higher than 0.2 [1], the error produced by 

considering the first term of the series and disregarding all the 
others is less than 2%, a margin that is more than valid for 
making the calculations. Therefore, the result will be:                           

𝒕 = 𝟑. 𝟐𝒔 

4.2 Numerical Solution and modelling 

First, given the type of problem, a one-dimensional system is 
proposed to obtain the solution initially. As explained in 
section 3, it is first necessary to define the geometry of the 
problem. In this case, it is a line of length half the thickness 
of the carrot. The next step is to define the physics of the 
problem. Using the heat module, the initial and boundary 
conditions must be set. In this sense, the initial condition for 
all points on the initial temperature line is the proposed one 
(25ºC). The boundary conditions are defined as follows: the 
heat equation must be configured with a diffusion coefficient 
of 2·10-7 W/(m·K); symmetry at the 0 coordinate of the line 
that acts as the center of the carrot; and, the Dirichlet 
condition at the other end of the straight line that behaves as 
a fixed temperature value is, in this case, -1ºC. Regarding the 
meshing, a number of equidistant nodes detached along the 25 
µm line are selected.  results were shown in figure 3. The 
convergence graph of the solution as a function of the time 
steps is shown in figures (3i).  

 

Figure 3i. Convergence plot of the one-dimensional 
numerical solution as a function of time steps. 

Figure 3 shows the solution to the first one-dimensional 
model. In this case, the temperature is shown as a function of 
time, and it can be stated that the solution is consistent in 
obtaining the value of t = 3.2 seconds to achieve the target 
temperature. Thus, the analytical and numerical results are in 
agreement and therefore the model is validated. 

 

Figure 3. Numerical solution for 1D FEM model T(t). 

The model was obtained by performing energy balance in a 
controlled volume, applying Fourier's particular law, and 
making the corresponding simplifications and assumptions. In 
addition, a logical value for the thermal diffusivity parameter 
was determined from experience and the literature. The 
objective was to develop, in a reasoned way, the mathematical 
model, to apply the mathematical knowledge and the tools to 
solve it analytically and numerically to compare both results. 
Based on the literature and experience, the derived model 
reliably explains what happens in reality [16]. The aim is not 
to develop an innovative model or a model for a specific food 
but to describe the methodology to create the model and use 
methods and tools to solve it. The aim is for the student to 
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compare and visualise the most significant parameters in the 
model and the process. 

One of the advantages of FEM is that the degrees of freedom 
can be increased easily. The solution for a two-dimensional 
model is shown below (Figure 4). In this case, in order to 
reduce the degrees of freedom, a simplification using the 
geometry of the carrot cut was preferred. The boundary 
conditions remain the same as in the previous model, except 
that a single point on the line is no longer defined, but a 
contour in each zone that meets the conditions of the problem. 
As in the one-dimensional case, the convergence graph of the 
solution as a function of time steps is shown (Figure 4i)skype 

. 

 

Figure 4i. Convergence plot of the one-dimensional 
numerical solution as a function of time steps. 

Figure 4 shows the 2D solution of the proposed problem for 
time t=3.2 seconds. It is possible to obtain a picture of how 
the heat is distributed at each instant of time. Later, the 
possibility of generating an animation such as the one 
provided in supplementary material is discussed.  

 

 

Figure 4. Numerical solution using two-dimensional FEM 
for time t = 3.2 seconds. 

Finally, the solving of the same problem is proposed in a 
three-dimensional way. In this case, one has to take advantage 
of the geometric characteristics of the carrot. In this sense,  It 
can be stated that a cross section can be reproduced by 
generating a revolution. That is, it has 2D-axisymmetric 
geometry. To define the proposed model, a rectangle has been 
prepared; when rotated 360º, it generates a carrot slice. In this 
case, Figure 5 shows a two-dimensional XY slice for the 
solution time. 

 

Figure 5. Numerical solution generating a 3D-solution using 
2D-axisymmetric FEM model for time t = 3.2 seconds. 
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An animation showing all the temporary solutions of the 3D 
model has been included in the supplementary material (S1), 
so that the cooling of the carrot cut can be appreciated and the 
evolution of the problem can be seen.  

In view of the foregoing, heat transfer problems can be 
understood intuitively. However, finding in the equations 
which are the most relevant parameters for the solution is not 
trivial. We propose that the student will be able to deduce 
which parameters are influential by  modifying the conditions 
of the problem - at the numerical level, once the model has 
been validated with consistent analytical and numerical 
results -. Two additional types of simulations are shown 
below. In the first one, different vegetation thickness values 
are used (Figure 6), while in the second one, different initial 
temperatures of the vegetable have been considered (Figure 
7). 

 
Figure 6. Numerical solutions for different thicknesses.The 
dashed red lines mark the desired temperature point (1°C). 

The time values achieved are shown in Table 1.  

It can be observed that if the thickness of the plant is increased 
by 1 mm, the increase in cooling time almost triples, from 3.2 
s to 8.9 s (Table 1). 

Table 1. Numerical solutions for different thicknesses 

Thickness (mm) Time (s) 
1.5 3.20 
2.0 5.70 
2.5 8.90 

 

Contrarly, changing the initial temperature of the vegetable 
from  20 ºC to 35 ºC with 5 ºC steps does not make much 
difference in the cooling time (Figure 7 and Table 2).  

 

Figure 7. Numerical solutions for different temperature. The 
dashed red lines mark the time cut-off at the desired 

temperature. The time values achieved are shown in Table 2. 

Table 2. Numerical solutions for different initial 
temperatures (𝑇0). 

Temperature (ºC) Time (s) 
20 3.00 
25 3.20 
30 3.45 
35 3.60 

In this case, the student can see that the thickness of the plant 
is much more influential in heat transport and cooling than the 
initial temperature of the vegetable. Therefore, the learning 
outcome related to the analysis of the factors influencing this 
type of problem is achieved. 

5. Conclusions 

A non-steady state heat transport problem has been proposed 
in order to understand such an important phenomenon in the 
field of engineering and science. The underlying physics has 
been explained for the case of an infinite sheet. A proposed 
problem related to this type of physics has been solved 
analytically. Using FEM, we have solved the same problem 
both one-dimensionally, 2D and 3D, obtaining a consistent 
solution that validates the model. One of the advantages of 
using FEM is that it allows starting from a simple model 
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explained theoretically, as proposed in this work. 
Subsequently, 2D or 3D models can be generated, whose 
solution is more complicated to demonstrate and validate 
analytically. Furthermore, allowing to change boundary and 
initial conditions, FEM  offers students a complete and 
comprehensive way to see the time evolution  and understand 
the physical behaviour of the problem. 
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Abbreviations 

A: Area that is traversed by the heat flow (m2) 

V: Sample volume analysed (m3) 

Q: Heat flow per unit time (J/s) 

qx:Heat flow per unit time in the x-direction (J/s) 

k : diffusion coefficient (W/m·K) 

ρ: volume density (kg/m3) 

Cp: Specific heat at constant pressure (J/kg·K)) 

T: Temperature (K) 

T(x,t): Temperature as a function of time and position (K) 

To: Initial temperature (K) 

T∞: Steady-state temperature (K) 

α: Thermal conductivity (m2/s) 

t: Time (s) 

h: Convective heat transfer coefficient (W/m2·K) 

L: Position of the separation surfaces between the sample and 
the surrounding fluid (air) (m) 

ψ(x,t): Normalised function heat flow per unit time  

F(x): Position-dependent function 

G(t): Time-dependent function 

ω: Angular frequency (rad/s) 

ωn: Eigenvalues  

NBi: Biot number 
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