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Abstract
Autonomous capabilities are required in AmI environments in order to adapt systems to new environmental conditions and
situations. However, keeping the human in the loop and in control of such systems is still necessary because of the diversity of
systems, domains, environments, context situations, and social and legal constraints, which makes full autonomy a utopia within
the short or medium term. Human-system integration introduces an important number of challenges and problems that have to be
solved. On the one hand, humans should interact with systems even in those situations where their attentional, cognitive, and
physical resources are limited in order to perform the interaction. On the other hand, systems must avoid overwhelming the user
with unnecessary actions. Therefore, appropriate user-centered methods for AmI development should be used to help designers
analyze and design human-in-the-loop interactions in AmI environments. This paper presents a user-centered design method that
defines a process with a set of tools and techniques that supports the process steps in order to systematically design, prototype,
and validate human-in-the-loop (HiL) solutions. The process starts with the definition of the HiL design, which defines how the
system cooperates with the human. This HiL design is built using a conceptual framework that focuses on achieving human-
system interactions that get human attention and avoid obtrusiveness. Then, we provide a software infrastructure to generate a
prototype based on the HiL design and validate it by having end-users use a web simulator. The feedback data generated during
the prototype user validation is gathered and used by a machine learning tool that infers the user’s needs and preferences. Finally,
these inferences are used to automatically enhance the human-in-the-loop designs and prototypes. We have validated the
proposed method through a twofold perspective: an experiment to analyze the perception of interaction designers regarding their
acceptance of the design method and another experiment to evaluate the usefulness of the “smart” prototyping technique. The
results obtained point out the acceptability of the proposed method by designers and the useful adaptations provided by the
“smart” prototyping technique to achieve a HiL design that adapts well to users’ preferences and needs.

Keywords Human in the loop . Human-system interactions . Context-aware interactions . Human-centered design . Smart
prototyping .Machine learning

1 Introduction

Autonomous capabilities are required in the next generation of
systems in order to adapt themselves to new environmental

conditions and situations. This is especially relevant in
Ambient Intelligence (AmI) environments (e.g., from smart
objects to smart nations), where “smart” systems should adapt
at runtime to changing user needs and intentions, new types of
devices, new technologies, and new services [1]. However,
the diversity of systems, domains, environments, context sit-
uations, and social and legal constraints all point to the need
for going beyond “smart-only,” technology-driven ubiquitous
instrumentations and installations and keeping the human in
the loop and in control of such systems [2].

As discussed in [2], the term “ambience” is an important
aspect of the concept of “ambient intelligence,”which stresses
the environmental character of these systems and the experi-
ences that they evoke. The concept of ambience in AmI
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implies that computation becomes unobtrusively integrated
into objects and spaces and that the integration of humanswith
systems should not be disturbing. This human-system inte-
gration introduces an important number of challenges and
problems to be solved [3]. Some of the challenges are in-
herent to the complexity of human beings. Humans should
interact with systems even in those situations where their
attentional, cognitive, and physical resources are limited in
order to perform the interaction. This leads to the challenge
of managing the user’s attention in order to get the human
involved when required and help him/her to maintain a
suitable level of attention. At the same time, the system
must avoid overwhelming the user with unnecessary ac-
tions or information that can require too much attention or
cause undesired results or bad user experiences. However,
good interaction designs are very difficult to develop espe-
cially when properties related to quality, such as obtrusive-
ness, must be taken into account together with the need for
acquiring the correct level of human attention. A recent
accident involving an Uber self-driving test car in Arizona
illustrates these challenges. The accident was due to an
improper collaboration between the human and the system.
The car setup required that the human not be distracted
while the car was driving autonomously, and it did not
achieve getting the human’s attention when his participa-
tion was required [4].

To confront the aforementioned challenge, appropriate
user-centered methods and strategies for AmI development
should be used to help designers analyze and design human-
in-the-loop (HiL) interactions. Research in the field of
Ambient Intelligence has highlighted the relationship between
Artificial Intelligence (AI) and AmI and has studied their role
in the advancement of the AmI vision [5, 6]. Furthermore, it is
well known that AI is leading a revolution in software. The
rise of AI may significantly transform the practice of software
engineering (SE), helping us to build better software faster. AI
can accelerate the lifecycle of software development, facilitate
rapid prototyping, build intelligent programming wizards, an-
alyze and manage errors automatically, improve code quality
(through automatic refactoring), etc. In summary, AI can be
used to support more efficient software development and con-
struction processes.

Taking these aspects into consideration, this work provides
a user-centered solution for helping designers to design, pro-
totype, and validate human-in-the-loop interactions in AmI
systems at the early stages of the software lifecycle. The pro-
posal starts with a technique for modeling user engagement in
AmI systems that defines both the control strategies for
human-system integration and the human-system interactions
that are required to specify how the system operates with the
human. This technique is built under the premise of managing
human attention in a way that achieves human-in-the-loop
interactions that get the human’s attention and avoid

obtrusiveness. In [7, 8], the authors introduced a conceptual
framework to model human-in-the-loop interactions, which is
consolidated in this paper. Based on this conceptual frame-
work, the proposal is extended with a software infrastructure
that helps designers to easily and automatically obtain a
“smart” prototype from the human-system collaboration de-
sign. The prototype is characterized as “smart” since it uses a
machine learning technique that leverages the feedback that
users provide during the prototype validation to infer the
users’ preferences. Moreover, the prototypes are endowed
with autonomous reconfiguration capabilities that allow them
to adapt themselves automatically to the inferred users’ pref-
erences and to refine the human-system collaboration design
accordingly. Among the most important properties of AmI
systems, we find that they are often tailored to the user’s needs
[6]. Therefore, the human-in-the-loop interactions are en-
hanced to fit the needs and preferences that users exhibit
through the use of the prototypes. The improvements in the
designs are related to changes in the attention level of interac-
tions, which range from using more intrusive interactions to
using unobtrusive interactions. To tie the different techniques
that we introduce in this approach together, we propose a
method that guides the entire process.

We illustrate our approach by applying it to the domain of
autonomous cars in which there are some situations that re-
quire human-in-the-loop interactions. Recent advances to-
wards autonomous driving have been hindered by failures
(e.g., not recognizing speed-limit signs or being fooled by
so-called scam stickers); therefore, humans are necessary to
be able to achieve safe driving. The design of human-in-the-
loop interactions in an autonomous car requires a user-
centered approach to better suit the drivers and achieve trust-
worthy systems and a good user experience.

The remainder of the paper is organized as follows.
Section 2 presents the state of the art. Section 3 introduces
the method overview, which provides insight about how we
face the challenge of designing, prototyping, and validating
human-in-the-loop solutions. Section 4 presents the conceptu-
al framework to model the user engagement in AmI systems.
Section 5 describes a “smart” prototyping technique for de-
signers to validate human-system collaboration designs with
users in order to use their feedback to improve the designs.
Section 6 introduces an experiment to analyze the perception
of interaction designers regarding their acceptance of the de-
sign method. Section 7 presents an experiment performed to
evaluate the usefulness of the “smart” prototyping technique.
Finally, Section 8 presents conclusions and further work.

2 State of the art

A lot of work has been done on characterizing the interaction
that should be established between humans and systems that
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automatize tasks [9]. These automation capabilities shift the
role that humans play in task control, from the role of plan-
ning, executing, and monitoring to a supervisory role [10].
The roadmap to achieving fully autonomous systems involves
a progressive shift in the control and supervision by humans
and machines [10]. Other works have tried to identify prob-
lems that are related to human automation interactions. For
example, [11, 12] deal with the human mistrust problem
caused by delegating the control responsibilities to the sys-
tems. These works encourage the development of autonomous
systems that keep the human informed, that provide him/her
with feedback, and that reduce cognitive responsibilities and
stress as well as keeping the human with “situational con-
science” of the automated processes. They argue the need
for designing solutions that satisfy these requirements in order
to achieve wide acceptance of autonomous systems by
humans.

The problems that can arise from considering the human as
an active participant in a shared or switched control loop have
also been studied in the literature. Some proposals such as
[13–15] provide a partial solution (focusing on execution
tasks) to reason about the integration of the user in the self-
adaptation processes. However, none of them provides mech-
anisms or techniques to specify how human integration and
participation should be. In [16], Cranor proposes a framework
for reasoning about human-in-the-loop in secure systems. It
provides a systematic approach to identify potential causes for
human failure. However, it is domain dependent (only appli-
cable on secure systems). Nothwang et al. in [17] investigate
the contributors to success/failure in current human-autonomy
integration frameworks and propose guidelines for the safe
and resilient use of humans and autonomy with regard to
performance, consequence, and the stability of human-
machine switching. This is still an unresolved issue in the
work on the human-machine collaboration.

As stated in [18], the characteristics of the new software
systems force a change in the way of understanding the
human-system interaction. In these new software systems,
humans and systems collaborate together in the performance
of certain tasks. Thus, it is necessary to change the focus in the
design of the interactions towards a holistic conception of the
collaboration between the human and the system in order to
achieve systems that integrate the human in a natural way. The
natural integration of humans with systems is especially rele-
vant in AmI environments, where the computation becomes
non-obtrusively integrated into everyday objects and spaces
[2]. Consequently, the physical environment becomes a me-
dium for supporting interaction between the user and the AmI
functionality; hence, the interface becomes spatialized [19].
The problem with these interfaces is that users are often not
fully aware of the interaction options provided in an AmI
environment. From this problem, some authors introduced
the concept of “affordances” as the set of possible actions

[20, 21]. Wrong designs can lead to having a lack of informa-
tion (hidden affordances) or wrong information (false
affordances) [22]. To face this challenge in developing
human-in-the-loop interactions, it is important to do some
kind of rapid prototyping in a way that designers can early
find out the users’ preferences [23]. In this work, we propose a
“smart” prototyping technique that allows users to validate the
interactions designed and learn from their feedback to self-
adapt the designs and the prototypes automatically.

Furthermore, AI and AmI are thoroughly connected as
stated in [5, 6]. The authors argue that we humans are satisfied
if the advanced technologies take care of us and do not want
our attention or even additional activities besides giving occa-
sional guidelines and orders. This leads to an outstanding
problem when dealing with humans participating in AmI en-
vironments, which is the need for adapting the human-system
communication to what the user needs or prefers. This is a key
aspect to be achieved when designing human-system interac-
tions in AmI systems. AI can help AmI to face this challenge.
More than two decades ago, in [24], Langley explored the
potential of machine learning in helping to build personalized
user interfaces. The author concluded that machine learning
plays a central role in personalizing interfaces to the user’s
needs. Different AI techniques have been studied throughout
the following two decades to build human-interactive systems
specifically for each particular user. In [25], the authors build
user-adaptive models for activity and emotion recognition.
These models are predictive models that adapt to each user’s
characteristics and behaviors with reduced training data. The
authors applied deep transfer learning and data augmentation.
In this work, we use machine learning techniques to infer the
users’ feedback and adapt the prototypes to the users’ needs
and preferences.

3 Method overview

One of the main challenges of “keeping the human in the loop
and in control” is: How much attention is required from users
to do some tasks? Howmuch data can users process? Is all the
information relevant for users? [2, 26]. In some cases, it might
be useful for a system not to ask for the user’s feedback and
confirmation for every single step in an analysis, diagnosis,
and action chain because this would result in an information
and processing overload. However, finding the trade-off be-
tween getting human attention and not overwhelming users is
a tricky issue. This leads to the challenge of managing the
user’s attentionwhen designing the human in the loop in order
to:

& Get human attention when required and maintain a suit-
able level of attention
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& Avoid overwhelming the user with unnecessary actions or
information

Furthermore, there is a clear need for integrating humans
into systems in a way that takes into account their preferences
and needs [6]. Users will likely have different preferences in
the use of the interaction mechanisms or interaction devices
than the designers. It is necessary to adapt the designs to the
users’ preferences and needs in terms of the interaction mech-
anisms used and interaction devices.

Our proposal aims to cover the lack of engineering ap-
proaches to design and develop the human-system collabora-
tion required to achieve the system’s goals [27] in AmI envi-
ronments. To do so, we provide an agile method to design,
prototype, and validate human-in-the-loop solutions in the
early stages of development. This method allows designers
to model the human-in-the-loop interactions focusing on man-
aging the user attention and then validate the modeled inter-
actions by means of “smart” prototyping. The “smart”
prototyping is applied to automatically and dynamically adapt
HiL solutions to the users’ preferences and needs.
Specifically, the method proposes the use of machine learning
and autonomous reconfiguration capabilities in order to ex-
tract knowledge about the users’ preferences and needs from
the use of the prototypes and based on them to adapt the
prototypes and the human-system collaboration designs.
Performing this kind of “smart” prototype validation with
users provides valuable feedback that can be used early in
the design process to achieve designs that offer good user
experience. A key point of our design method is the consid-
eration of obtrusiveness as a key factor together with the need
for acquiring the correct human attention to involve the
humans.

Figure 1 shows the method overview of the proposal. The
lifecycle of a human-in-the-loop design starts with the follow-
ing steps:

1) Design how the human should participate in the system
(Design HiL Interactions of Fig. 1)

This is usually a time-consuming step, which in practical
settings often relies on the knowledge of domain experts. In
order to help designers with this specification, our approach
provides a conceptual framework with the main concepts re-
quired to specify how the human collaborates with the AmI
system. An important aspect of the conceptual framework is
the consideration of human attention as a first-class concept.
In this way, designers and domain experts only have to take
these concepts into account to define the human-system
collaboration.

Even though we provide designers with a technique to
specify human-system collaboration, additional techniques
for rapid prototyping, validating, and then enhancing the spec-
ifications in an iterative way are needed. To fill this gap, we
provide a software infrastructure that allows designers to:

2) Automatically generate prototypes from the designs
(obtain HiL prototype of Fig. 1)

These generated prototypes are early samples of HiL solu-
tions that focus on representing how humans and the system
work in a collaborative way. We also provide a simulation
infrastructure to execute the prototypes and validate the de-
signed human-in-the-loop interactions. By means of this sim-
ulation infrastructure, users can:

3) Validate the HiL prototype (validate HiL prototype of
Fig. 1)

Furthermore, the software infrastructure is endowed with a
machine learning technique and reconfiguration capabilities
that allow the system to:

Fig. 1 Method overview of the proposal
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4) Leverage this feedback and adapt the human-system col-
laboration design and the prototype according to the
users’ feedback (adapt HiL interactions and HiL
prototype of Fig. 1)

In this way, the design and the prototype are enhanced
automatically until they fit the users’ preferences. The smart
prototyping validation allows designers to know the users’
preferences. After the validation process, designers should
evaluate the designs that have been obtained for each user
and build the final HiL design.

Finally, it is also important to highlight that the obtained
prototype can be used as input for the development phase to
evolve it into the target human-in-the-loop system.

4 Conceptual framework to design
human-in-the-loop interactions

This section introduces the conceptual framework that we
propose to deal with the design of human-in-the-loop interac-
tions for AmI systems. The conceptual framework (1) iden-
tifies and defines the concepts that are required to describe the
main aspects of a HiL solution and (2) defines the behavior
semantics that underpins the operationalization of a human-
system collaboration solution. This framework is an evolution
of the work presented in [7].

4.1 Main concepts

4.1.1 The root concept: collaborative task

What a human and a system are required to do in a collabora-
tive way in order to complete a particular functionality is rep-
resented by the concept of collaborative task. For example,
in the case of the autonomous car, a collaborative task is the
work done by the system and the human when the system
transfers control of the car to the human in a situation that
does not require hurry (e.g., the car is approaching a city,
and it cannot continue driving autonomously). This transition
of control from the autonomous system to the driver is called
takeover according to [28]. We are using the Takeover task as
a collaborative task example throughout the section.

4.1.2 Who can participate in the task?

A collaborative task requires a human with specific capabili-
ties, knowledge, and background in order to be executed.
These human features are represented by the concept of hu-
man profile. The humans that fit the profile/s associated with
the task are the only ones that can assist in performing that
task. For example, the Takeover task is associated with the
driver profile, meaning that only a person with driving

capabilities (he/she has a driving license) can help in
performing that task. Humans can participate in tasks by
playing different roles. They can perform actions to provide
information or identify situations in the context of the running
task (acting as sensors), or they can incorporate input into the
decision-making process to provide better insight about the
best way of performing that task, or they can even be respon-
sible for managing, executing, and leading the task execution
and control (totally by themselves or assisted by the system).

4.1.3 When can the task be executed?

An appropriate context situation is required to execute a task.
This context situation can be considered as the precondition
of the task. The precondition represents the context in which
the system, its environment, and the human are prepared to
execute the task under appropriate conditions in order to
achieve proper task performance. For example, to maximize
the success of a safe takeover, the volume on the radio should
not be high, the human should pay attention to the driving
task, he/she should be in the driver seat, and his/her hands
should take the wheel. These conditions constitute the precon-
dition of the Takeover task.

At this point, the question about what this context means
arises. We adopt the semantics of the context concept intro-
duced by Dey in [29]: “any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is relevant to the interaction between a
user and an application, including the user and applications
themselves.” From this definition, it is possible to derive the
relevant properties of the context as the state of the physical
environment (e.g., temperature, noise, etc.), the state of the
resources regarding the system surroundings, the state of the
system itself, and the user’s situation (e.g., its location, activ-
ity, etc.). However, in this approach, the situation or context of
the user acquires special importance in determining whether
the task can be executed under appropriate conditions.
Therefore, the “opportunity-willingness-capability” (OWC)
model [30] is used to define the required characteristics of
the human factors. The OWC model classifies human factors
into three categories: Opportunity, which identifies the set of
variables that humans need to fulfill in order to attempt a task
(e.g., human.location or human.hands); Willingness, which
indicates the human predisposition to perform the task (e.g.,
human.attention or human.stressLevel); and Capacity, which
defines the human skills and abilities that are necessary to
successfully execute the task (e.g., human.experience or
human.hasSmartPhone).

4.1.4 Decomposing tasks

Collaborative tasks can be decomposed into more fine-grained
units called HiL actions. Each HiL action represents a
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perceivable interaction that is performed either by the system or
by the human, or an internal function carried out by the system.
Actions are inter-related to determine a partial order in which
they must be processed. For example, the Takeover task can be
decomposed into three actions that are executed sequentially:

& Notify takeover: the system notifies the human that he/she
is required to take over control of the car.

& Confirm takeover: the human confirms the takeover.
& Transfer control: the system transfers the control to the

human.

These three actions are the core actions that allow the
human and the system to collaborate and to perform the task.

In order to build trust in AmI systems, the systems must
include a number of essential actions that are oriented towards
enhancing the human’s confidence. This can be done by in-
cluding explanations about what and why the system operates
as it does. Therefore, we propose collaborative tasks that in-
clude actions that are oriented to providing explanations to
humans so that they properly receive knowledge to collabo-
rate. These actions are called feedback actions. For example,
for the Takeover task, we include the feedback action:

& Inform about driving mode: the system informs the driver
about the new driving mode.

This action should be executed once the human takes con-
trol of the car.

4.1.5 Setting a favorable context for human participation

In addition to the actions that perform the task functionality
(the core and feedback actions), collaborative tasks include
actions that aim at preparing the system, the environment,
and the human to maximize the success of the task. These
actions are oriented to achieving the fulfillment of the precon-
dition. We call these actions preparatory actions. Thus,
when a task initiates, this task will execute the preparatory
action/s to achieve a proper context for executing the task.
Consider again the Takeover task. When the system runs that
task, if the human has no situational awareness, or he/she is in
the passenger seat, or his/her hands do not take the wheel, or
the volume on the radio is too loud, the three actions defined
above for the task are insufficient to guarantee a safe takeover
(the human is not likely to be aware of the notification about
taking control of the car). The context situation requires addi-
tional actions in the task to correct it. Therefore, the task may
include four preparatory actions:

& Pay attention: the system warns the human to pay
attention.

& Move to the driver’s seat: the system asks the human to
move to the driver’s seat.

& Take the wheel: the system asks the human to take the
wheel.

& Turn down the radio volume: the system turns down the
radio volume.

Preparatory actions are executed before core actions.

4.1.6 Context-dependent interactions

Actions can be dependent on a context condition that estab-
lishes whether it is necessary to execute that action. We call
this type of context condition an execution condition. For
example, consider the feedback action we have defined for
the Takeover task: Inform about driving mode. This action
is likely not required if the human is an expert in autono-
mous driving; therefore, this action should not be always
executed. The execution condition is defined upon context
factors. By taking into account the context to set the actions
to be executed within a task, we avoid annoying the human
with notifications that are not necessary and thereby avoid
obtrusiveness.

4.1.7 Managing errors, exceptions, or abnormal situations

A task can have a constraint associated to it. Constraints
are conditions that must always be fulfilled during the exe-
cution of tasks. They describe a required system state or a
limit on a task execution (e.g., an execution time limit). For
example, in the case of the Takeover task, it has the con-
straint before 10 s associated to it because if the human does
not take control before 10 s, the system should cancel the
task.

Having human-in-the-loop poses challenges that are related
to the unexpected behavior of humans. Therefore, the design
of tasks with human integration requires a safeguard, or a
fallback plan, to be executed when the task is not working
as planned. When executing a task, a fallback plan can be
launched due to:

& The non-presence of a human with the specific human
profile.

& The incapacity to achieve the appropriate context situation
(in fact, this occurs when the appropriate context situation
is not accomplished within the limits forced by the
constraint).

& The execution of actions is not as expected (i.e., it does not
fulfill some constraint).

Fallback plans are, in turn, tasks. Some of the fallback
plans are also autonomous tasks that may or may not require
human integration. In the example of the Takeover task, the
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fallback plan Drive the car to a minimal risk condition is
specified with a constraint of 10 s, which indicates that this
fallback plan must be executed if the task is not performed
within that time limit.

4.1.8 Managing user attention

Actions usually entail an interaction between the human and
the system. The actions that involve an interaction should be
designed to manage human attention resources in order to get
the human’s attention while at the same time avoiding over-
whelming the human. The specification of human attention
resources required for the actions serves as a guide for inter-
action designers in the selection of the most suitable concrete
interaction mechanisms. Actions that are associated with a
high attention demand will require concrete interaction mech-
anisms that are more noticeable or more intrusive, while a low
attention demand will require mechanisms that are less notice-
able or less intrusive.

The HCI field has proposed solutions to manage human
attention based on the levels of automation and the workload
[31–33]. We analyzed and designed the actions from two
points of view:

& Who initiates the interaction (the system or the human)
& The attentional resources needed to assist the interaction

(the attentional demand imposed on the human)

We consider this specification of initiative and attention
(attentional demand) to be appropriate since these are factors
that vary independently. For example, an interaction of feed-
back (initiated by the system) may require more attention or
less depending on the importance/criticality of the information
to be offered. In the same way, a preliminary interaction could
be initiated by the system (if it tries to capture the user’s
attention) or by the human (if the system waits for an answer
from the human to confirm that he/she is prepared). Therefore,
establishing an initiative and an attention level helps designers
in selecting the most suitable interaction mechanisms. The
intersection of the initiative and attention level constitutes
what we call the obtrusiveness level, which determines the
level of human involvement required by an action. Each HiL
action is associated to an obtrusiveness level, for example:

& ObtrusivenessLevel(NotifyTakeover) = (system, high
attention)

& ObtrusivenessLevel(ConfirmTakeover) = (human, slight
attention)

& ObtrusivenessLevel(TransferControl) = (system, low
attention)

& ObtrusivenessLevel(InformAboutDrivingMode) = (syste-
m, slight attention)

4.1.9 Selection of concrete interaction mechanisms

Defining the obtrusiveness level of an action helps interaction
designers to select the most appropriate interaction mecha-
nism to support that action; the interaction designer should
choose the concrete interaction mechanisms for each HiL ac-
tion based on this obtrusiveness level. Obtrusiveness levels
that require more attention must be associated with interaction
mechanisms that are more obtrusive or that draw more atten-
tion. Conversely, obtrusiveness levels that require less atten-
tion must be associated with discreet interaction mechanisms.
It is important to note that actions initiated by the system
(system initiative) will be supported by output interaction
mechanisms and that actions initiated by the human (human
initiative) will use input interaction mechanisms.

Due to the nature of AmI environments, interaction is not
confined to one device, but it should encompass multiple
physical devices. Therefore, interaction mechanisms that are
domain dependent are described by means of:

& The interface element that supports the interaction modal-
ity (e.g., a button, a vibration, a screen, etc.)

& The computing device that offers the interaction mecha-
nism (e.g., a smartphone, a smart car, etc.)

For example, concrete interaction mechanisms can be a
visual message on the head-up display of a smart car or a text
message on the screen of a smartphone. It is worth noting that
we include the computing/physical device that offers the in-
teraction mechanisms in the specification of the interaction
mechanisms. This is useful in AmI systems where the inter-
action mechanisms are in different computing devices. In our
example, we only use interaction mechanisms of the car, but
we could use interaction mechanisms of a smartphone such as
mobile speakers or notification messages.

Continuing with the example of the autonomous car do-
main, several systems under research have been described in
the literature that identifymethods that warn drivers in order to
improve situational awareness. These methods include vibra-
tion on the steering wheel [34] or the driver’s seat [35], audio
alerts, and visuals on the head-up display [36, 37]. From these
studies, Table 1 defines the possible interaction mechanisms
of the car device that can be used for each obtrusiveness level.

In order to specify which interaction mechanisms support a
certain action for a given obtrusiveness level, we use the
Superimposition operator ⨀. This operator takes an action
and an obtrusiveness level and returns the set of concrete
interaction mechanisms required for that action. Some exam-
ples of the relationship between the obtrusiveness levels and
the actions for the Takeover task are the following:

⨀Not i f yTakeove r ( sy s t em ; h i gh a t t en t i on ) =
{Car.speakers.voice_feedback, Car.head-up_display.textual}
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⨀ConfirmTakeover(human; sl ight at tent ion) =
{Car.steering_wheel.pressure}

⨀InformAboutDrivingMode(system; slight attention) =
{Car.head-up_display.image, Car.Speakers.beep}

The selection of the concrete interaction mechanisms that
best suit each obtrusiveness level can be based on existing
multimodal design taxonomies and frameworks that depend
on the cognitive characteristics of interaction modalities, i.e.,
how information carried by different modalities is perceived
by the human perceptual-sensory system [39–41, 42]. For
example, an image uses less mental workload than a text,
and visual-auditory combinations impose less cognitive load
than visual combinations [39]. Auditory mechanisms are use-
ful for attention alerting [43], and vibration or lighting feed-
back does no interrupt other activities [44].

Figure 2 presents a metamodel that describes the concepts
used to specify HiL designs, which have just been introduced.
The MOF standard1 is used to build the metamodel, which
describes the concepts and their relationships.

4.2 Operationalization of human-system
collaboration

To run a human-in-the-loop solution that is designed using the
proposed concepts, it is necessary to know the behavior se-
mantics that is associated to these concepts. This subsection
introduces how to operationalize the abstractions we have
proposed. To do this, we define the sequence of steps that
must be performed to execute a collaborative task and that
indicates how to operationalize the concepts introduced. The
sequence of steps is the following:

Step 1. Trigger the collaborative task. The system is
continuously monitoring its environment to identify situ-
ations in which it should take an action. If it detects that a
collaborative task needs to be executed, it raises an event

that triggers the need for human help to carry out that task
and goes to Step 2.

Step 2. Check the availability of the human profile.
Before executing a collaborative task, the presence of a
human that fits the human profile required for that task
must be verified:
• If the human exists, the system continues the execution
of the collaborative task and goes to Step 3.
• If the human does not exist, the system must perform a
fallback plan and goes to Step 5.

Step 3. Check the fulfillment of the precondition. The
context conditions that determine the suitability of the
context for proper human collaboration are verified:
• If the context conditions are fulfilled, it means that the
context is suitable for continuing the execution of the
collaborative task, and the system goes to Step 4.
• If some context conditions are not fulfilled, it means that
the context is not optimal to perform the task execution.
The corresponding preparatory action is executed, and
the system returns to Step 3.

Step 4. Execute the actions. The system must perform
the actions according to its specification.
• The core and feedback actions are executed according to
the established order. When all of the actions are execut-
ed, the task is completed, and the system returns to the
autonomous mode.

Step 5. Launch the fallback plan if something is not
working as planned. The system executes a fallback
plan or alternative actions that leave the system in a safe
state when a human profile does not exist or a constraint
is violated. Then, the system returns to the autonomous
mode.

The system is continuously checking the fulfillment of
the constraints during Steps 2–4. These steps must be1 https://www.omg.org/mof/

Table 1 Concrete interaction
mechanisms for each
obtrusiveness level

Obtrusiveness level Interaction mechanisms

(System, high attention) Car.speakers.voice_feedback,

Car.head_up_display.textual

(System, slight attention) Car.head_up_display.image, Car.speakers.beep, Car.steering_wheel.vibration

(System, low attention) Car.head_up_display.icon

Car.driver_seat.vibration

(Human, high attention) Car.microphone.voice_recognition,

Car.head_up_display.textual_input

(Human, slight attention) Car.steering_wheel.pressure,

(Human, low attention) Car.cam.gesture, Car.cam.body_recognition
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carried out without violating the task constraints (temporary,
contextual, etc.). The system is responsible for checking them
at any moment during the execution of the HiL actions. If
these constraints are not satisfied at any time, the fallback plan
must be executed, and the system goes to Step 5.

These steps constitute the execution model that specifies
the behavior of the elements introduced in the metamodel.
This execution model is used as the basis to implement the
behavior of the collaborative tasks of HiL solutions.

5 Human-in-the-loop “smart” prototyping

Gathering feedback from users through prototype validation is
a crucial element in all human-centered design processes. On
that basis, our approach proposes the use of prototypes in
order for designers to validate human-system collaboration
designs with users and to use their feedback to achieve im-
proved designs.

As introduced in the above section, HiL designs focus on
the specification of the shared control and interactions re-
quired to perform the collaborative work between humans
and the system. Therefore, our prototypes, which we call
HiL prototypes, are representations of those elements.
Specifically, a HiL prototype is a way for designers to validate
the flow of interactions, the attentional resources assigned to
these interactions, and the feedback/information provided to
the human. These prototypes also allow different context set-
tings to be simulated to check the different behavior of these
aspects according to each context. This kind of validation does
not require an in situ evaluation in a real usage context with a
fully functional prototype. A minimum infrastructure for sim-
ulating the execution environment is enough to represent the
aspects that enable designers to check whether the design is
suitable before other parts of the system are defined.

User validation of the prototypes provides valuable user
feedback that must be analyzed. Designers must pay specific
attention to how users interact with the prototype in order to
figure out the users’ preferences and needs and adapt the de-
signs according to them. Thus, for example, if designers iden-
tify that users are not aware of some actions when participat-
ing in a specific task, this may lead to a change in the design of
the task that entails increasing the attentional resources
demanded by that task.

In traditional prototype user validation, designers observe
the users interacting with the prototype and collect the users’
feedback. Then, based on this feedback, they change both the
design and the prototype (and begin the validation again). Our
approach proposes doing this cycle “smartly” using (1) super-
vised machine learning, which allows the users’ perception of
the obtrusiveness from the HiL prototype usage to be extracted
automatically, and (2) autonomous reconfiguration capabilities,
which allow the prototype to be adapted automatically at
runtime from the knowledge extracted using machine learning.
Smartly doing this cycle allows (1) performing the iterations of
the prototype validation faster and (2) changing the prototype
implementation automatically according to the user’s feedback.
To do this, we propose a “smart” prototype validation process
that is composed of four steps and a prototyping infrastructure
that contains a set of components to support them (see Fig. 3):

& Step 1: Generating the HiL prototype. We provide a
software framework (aka the HiL framework) and a code
generator that takes a HiL design as input and automati-
cally generates the HiL prototype based on the HiL
framework.

& Step 2: Validating the HiL prototype. Since executing a
HiL prototype in a real environment is complex, we pro-
vide a simulation infrastructure (aka HiL simulator) to
visually reproduce the execution of a HiL prototype. The

Fig. 2 Metamodel that represents the concepts proposed to build HiL models
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HiL simulator allows users to perform the validation of the
HiL prototype at the same time that it gathers the user’s
implicit feedback, which feeds into an AI tool that infers
knowledge from this feedback.

& Step 3: Inferring the users’ preferences. We have built
an AI tool that continuously receives the user’s implicit
feedback from the HiL simulator to infer the user’s pref-
erences in terms of obtrusiveness. This inference is based
on a prediction model that is built using machine learning
techniques.

& Step 4: Adapting the HiL prototype. The inference of
the AI tool is used to self-adapt the HiL prototype to the
user’s obtrusiveness preferences at runtime. This self-
adaptation is done by using a reconfiguration framework
(aka the FADA framework) that assists designers in engi-
neering, building, and deploying solutions with autonomic
computing capabilities. We have used the FADA frame-
work to endow the HiL prototype with autonomous recon-
figuration capabilities.

The “smart” prototyping process begins with the automatic
generation of the HiL prototype (Step 1). Once the HiL pro-
totype has been created, designers initiate the prototype vali-
dation with users (Step 2). During the prototype validation, the
simulator is continuously providing the user’s usage data to
the AI tool. From this data, the AI tool infers the user’s pref-
erences (Step 3). These inferences are reported to the recon-
figuration framework, which adapts the HiL prototype at
runtime according to these preferences (Step 4). Then, the
HiL design is adapted accordingly. For example, while the
user is validating the HiL prototype through the HiL

simulator, the simulator provides the user’s usage data to the
AI tool, which interprets that the human is feeling disturbed by
a HiL action and infers that less attentional resources are re-
quired to perform this HiL action. Then, the reconfiguration
framework adapts the prototype by changing the interaction
mechanism associated with the action to a less intrusive inter-
action mechanism, and the HiL design is refined to decrease
the attention level of the action. Note that Step 1 is performed
only once at the beginning of the process, while Steps 2 to 4
are performed iteratively throughout the validation process.
The whole process is automatically carried out with just the
designer’s supervision. At the end of the prototype validation,
the designer gets the HiL designs refined according to each
user’s preferences. This allows designers to uncover insights
about the user’s preferences and to figure out a user’s mental
model. Based on this knowledge, the designer builds the final
HiL design.

In the following subsections, we provide details about the
four steps of the proposal and describe the software compo-
nent that we provide to support each step.

5.1 Automatic generation of HiL prototypes: the HiL
framework

The first step of the prototyping process is to build a HiL
prototype. A HiL prototype is an early sample of a HiL solu-
tion that focuses on representing how humans and the system
work in a collaborative way. This prototype is not required to
provide a complete representation of the system functionality
but rather the part that is related to how the collaborative work
is shared between the human and the system and the interac-
tions that are required to establish the human-system

Fig. 3 Process overview of the HIL prototyping
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communication. According to our proposal, this collaborative
work is specified by means of HiL tasks. Therefore, a HiL
prototype is an implementation of the HiL tasks that have been
specified for a specific system.

We provide a software infrastructure (aka HiL Framework)
and a code generator that are capable of generating a HiL
prototype automatically taking the task specifications (HiL
design) as input (see Fig. 4). In this way, we allow developers
to focus on designing the characteristics of the human-system
interaction, without worrying about operational aspects. This
HiL prototype can evolve into the final solution during the
development phase. The following subsections describe the
HiL framework and how the HiL prototypes are automatically
generated using it.

5.1.1 The HiL framework

The HiL framework is a common reusable software infrastruc-
ture that provides support to the conceptual framework pro-
posed in Section 4. It has been developed to be applied for
different solutions in any domain.

Figure 5 illustrates the HiL framework architecture. It is
composed of two layers: the infrastructure layer, which is
made up of a common infrastructure module with libraries
and utilities to support communications between modules
and an interaction mechanism module that provides compo-
nents to implement the interaction with the user (within our
prototyping solution, the interaction mechanisms are imple-
mented in the simulation infrastructure), and the task manage-
ment layer, which is built on top of the infrastructure layer and
provides support to the implementation of HiL tasks.
Specifically, the implementation of the task management
layer is composed of the following elements (see Fig. 6):

& Event monitor. It defines an abstract component
(HiL_EventMonitor) that is responsible for receiving
events triggered from an external component (that
may be the autonomous system or the HiL simulator).
It launches the execution of the corresponding collab-
orative task.

& Execution strategy. It is a concrete component
(HiL_ExecutionStrategy) that implements the strategy
for executing the collaborative tasks (through the
executeTask()method). This strategy is defined according
to the operationalization of collaborative tasks that was
introduced in Subsection 4.2. This component encapsu-
lates a strategy that is common for every collaborative
task. Encapsulating the strategy in a separate component
allows better separation of concerns to be achieved and
lets developers vary the execution strategy independently
of the tasks, making it easier to understand and extend.

& Collaborative task components. These components im-
plement the concepts of the conceptual framework (e.g.,
collaborative task, human profile, precondition, action,
constraint, fallback plan, etc.) according to its execution
semantics. Themain component is the abstract component
HiL_CollaborativeTask, which is instantiated to create
new collaborative tasks. This component maintains a ref-
erence to the execution strategy component. Then, the
execute() method delegates the task execution to the exe-
cution strategy component. The collaborative task compo-
nent maintains a reference to the components that imple-
ment the elements involved in a collaborative task and
defines a method to execute the core and feedback actions
(executeCoreActions()). A HiL_CollaborativeTask is
composed by a HiL_FallbackPlan, several HiL_Action
( w h i c h i n t u r n a r e c omp o s e d o f s e v e r a l
HiL_InteractionMechanism), a HiLConstraint, a
HiL_Precondition (which in turn is composed of several
HiL_PreparatoryAction), and a HiL_HumanProfile.

The HiL framework has been implemented in Java/OSGi.2

OSGi provides a service-oriented architecture that enables
components (i.e., bundles) to dynamically discover each other
for collaboration. An installed component can register ser-
vices by publishing their interfaces using the service registry
of the OSGi framework. Thus, when a component queries the
registry, it obtains references to actual service objects that are
registered under the desired service interface. Therefore, each

Fig. 4 Step 1 of the “smart” prototyping process: generating the HiL
prototype

Fig. 5 HiL framework architecture

2 http://www.osgi.org/
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HiL_CollaborativeTask is encapsulated in an OSGi bundle. In
this way, we can add as many collaborative tasks as we need
without having to stop the system. This provides flexibility for
adding new collaborative tasks.

5.1.2 Code generation

We have also built a code generator for transforming the HiL
designs into operational HiL prototypes based on the HiL
framework. This generator is implemented by means of
model-to-code transformations. These transformations are im-
plemented using a template strategy as defined in the Model-
to-Text (M2T) project,3 which is part of the Eclipse Modeling
Project.

Specifically, model-to-code transformations are provided
for three different resources: (1) the interaction mechanisms,
(2) the HiL actions, and (3) the collaborative tasks. Note that
other components (such as components of the common infra-
structure module) do not need to be generated since they are
reused (because they are not specific for a HiL solution). The
code-generation process instantiates the HiL framework, tak-
ing a HiL specification as input, according to the following
mappings:

& For each concrete interaction mechanism, a new instance
of the HiL_InteractionMechanism class is generated and
assigned to its supported obtrusiveness levels.

& For each action, a new component extending the
HiL_Action class is created. This component is bound to
the available interaction mechanisms according to its ob-
trusiveness level.

& For each collaborative task, a HiL_CollaborativeTask
class is instantiated as well as all of its components: a
human profile (HiL_HumanProfile), fallback plan
(HiL_FallbackPlan), preconditions (HiL_Precondition),
its related preparatory actions (HiL_PreparatoryAction),

and the constraints (HiL_Constraint). The task is assigned
to its previously defined HiL_Actions.

5.1.3 Code-generation example: Takeover task.

To better exemplify the code-generation process, we illustrate
the generation of the Takeover collaborative task (which has
been specified throughout Section 4). Figure 7 shows an ex-
cerpt of the code generated. Below, we provide some details
about this code:

& The interaction mechanisms that are involved in the sys-
tem (the smart car) are generated and configured by cre-
ating instances of the HiL_InteractionMechanism class
(lines 1 to 19). In this case, the interaction mechanisms
that are included in Table 1 are generated.

& The actions of the task are generated as classes that inherit
from the HiL_Action class. Lines 20 to 29 show the defi-
nition of the notify takeover action. Three more actions
(Confirm takeover, Transfer control, and Inform about
driving mode) are also generated for the Takeover task;
however, they are not shown due to space limitations.
The Notify takeover action is assigned to the system
initiative and high attention level (line 25). According to
this obtrusiveness level, this action is bound to the
Speakers.VoiceFeedback and HeadUpDisplay.Textual in-
teraction mechanisms (lines 26 and 27, respectively).

& The Takeover task is defined as a class and is initialized
(lines 30 to 55), which includes the declaration of:

– The Takeover task,
– An event monitor (‘hil/Takeover’, line 35)
– A human profile (‘human.driver = true’, lines 37 to 39)
– A set of preconditions with their corresponding prepara-

tory actions (lines 41 to 44)
– A fallback plan (line 46)
– A constraint (line 47)
– The core and feedback actions (lines 49 to 52)3 https://www.eclipse.org/modeling/m2t/

Fig. 6 Task management layer implementation
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& All of these components are declared and assigned to the
Takeover task.

& Finally, the task is registered (line 54) to make it available
and executable.

5.2 Validating the HiL prototype: the HiL simulator

Once the HiL prototype is built, it must be validated. This
validation requires executing the HiL prototype; however,
since these prototypes are complex to execute in real situa-
tions, we have built a HiL simulator that allows the execution
of the HiL prototypes. The HiL simulator visually recreates
the execution of the collaborative tasks that are implemented
in a HiL prototype (see Fig. 8) allowing users to experience an

artificial recreation of the interactions that occur during their
execution. Also, the HiL simulator gathers data from its usage,
what we call the users’ feedback. Specifically, it captures the
following at each time step:

& The user context situation (such as the user’s face position,
the user’s location, or if the user is accompanied)

& The HiL action being performed by the system or by the
human

& The human response time, which is the number of seconds
that it takes for the human to respond from the moment the
system requests him/her to act

During the execution of the HiL simulator, the users’ feed-
back is provided to the AI tool at each time step. From this
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Fig. 7 Code generated for the takeover collaborative task using the HiL framework
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feedback, the AI tool infers the users’ preferences and en-
hances the HiL prototype according to them at runtime.

5.2.1 The HiL simulator

The HiL simulator has been implemented using the Unity
platform and is provided as a web application. Unity allows
the generation of graphics and sounds that represent the sys-
tem actions and interactable elements that support human ac-
tions. The HiL simulator is connected to a HiL prototype and
to the AI tool by means of MQTT messaging. In this way, the
HiL simulator executes the collaborative tasks of the HiL pro-
totype through its interaction mechanisms, and at the same
time, it continuously provides the data captured of the users’
usage to the AI tool.

The HiL simulator provides a display from the user’s per-
spective to allow the user’s participation in a simulation of the
execution of the HiL prototype. It is intended to graphically
represent:

& The shared control flow of actions
& The interactions required to perform the collaborative

work between humans and the system

Thus, the HiL simulator allows designers to validate the
flow of actions between the human and the system that is
designed for a collaborative task and the attention level asso-
ciated with each action (which is determined by the interaction
mechanisms used for each action).

Specifically, the HiL simulator is a web application that
consists of a main panel that shows a scene where the actions
that occur during the task simulation are visually represented.
In addition, the panel displays a graphical representation of all
of the available interaction mechanisms. The current imple-
mentation of the HiL simulator contains a basic set of interac-
tion mechanisms that are commonly used in most systems.
The interaction devices that the simulator uses are the follow-
ing: speakers, microphone, screen, steering wheel, and light
bulbs. These devices provide support to the following interac-
tion mechanisms: beep from the speakers, synthetic voice

from the speakers, voice recognition using the microphone,
icons on the screen, visual text on the screen, touch button on
the screen, haptic vibration on the steering wheel, haptic touch
on the steering wheel, and light signals on the light bulbs. The
interaction mechanisms are interactable and allow users to
interact with the system through the selected interactionmech-
anism. For example, by clicking on the wheel element, the
user performs the interaction to take the wheel.

Also, the simulator includes a representation of the context
variables that may impact the behavior of the HiL prototype.
The users can modify the context variables to simulate changes
in the human and system context. This allows users to figure out
how the AmI system works depending on the context since it
leads to a different behavior of the human-system cooperation.
Currently, the simulator includes the following context vari-
ables: user’s face position, user’s location, user’s hand position,
speaker’s volume, user’s activity, and users accompanied. The
state of the context variables can be changed by clicking on the
interactable elements or by means of shortcut keys. The HiL
simulator gathers the value of these context variables together
with the HiL action that is being executed in the system and the
human response time at each time step to feed the AI tool.

The HiL simulator allows designers to configure it to in-
clude the appropriate visual representation of the scene, the
interaction mechanisms used in the prototype, and the context
variables needed. Also, to initiate a simulation, some data is
required to configure a task execution. This data is:

& The timing of system actions.
& The notification text that should be shown to the user in

case of notification actions.

This data is specified as properties of each action when
modeling the collaborative tasks.

5.2.2 HiL simulator example: the autonomous car simulator

In the case of the autonomous car, the main panel of the HiL
simulator shows a car dashboard with the in-vehicle interac-
tion mechanisms available: the steering wheel, a head-up dis-
play, and the speakers, as shown in Fig. 9. The context vari-
ables that are shown and can be modified in the simulator are
the following:

& User’s face position: A graphical metaphor is shown in the
upper-right corner of the window to indicate the value of
this context variable. This element can change its value by
means of the arrow keys and can take the values: looking
forward or not looking forward.

& User’s hands on wheel: An image of hands on the wheel is
shown when the human has his/her hands on the wheel
and no image of hands when the human does not have his/

users

HiL Prototype

HiL Simulator

users' feedaback

gathers

validate

executes

Fig. 8 Step 2 of the “smart” prototyping process: validating the HiL
prototype
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her hands on the wheel. The user can switch this value by
clicking on the wheel.

& User’s location: An image of legs on the car’s seat is
shown to indicate where the human is located. The user
can switch this value by clicking on one seat.

& Radio volume: A sound icon is shown in the upper-right
corner of the window to indicate the value of this context
variable. The user can turn the radio volume up or down
by clicking on the radio element.

& User’s activity: A finger near the head-up display is shown
when the human is busy. The user can switch this value by
clicking on the head-up display.

This smart car simulator is used in the evaluation section
(Section 7), where we show an example of the use of the
simulator.

5.3 Gathering user feedback and inferring user needs:
the AI tool

The HiL simulator gathers feedback from users as mentioned
above. Traditionally, this feedback is analyzed by designers
who extract knowledge by hand and then enhance their designs
and prototypes. However, in our proposal, we apply AI tech-
niques to smartly extract this knowledge. In the last few de-
cades, AI techniques have been extensively studied seeking
new ways to automate Software Engineering tasks and help
developers make better decisions. Specifically, there is growing
interest in exploring how to use techniques frommachine learn-
ing to personalize interfaces based on the observation of user
activity [24]. We have brought this practice to the validation
phase and propose “smart” prototyping to self-adapt HiL solu-
tions to the user’s preferences at runtime. Specifically, our

solution proposes the use of machine learning techniques to
learn from the user’s experience which attentional demand best
fits their preferences and needs. Then, using this knowledge,
the human-system collaboration designs can be enhanced be-
fore developing the system.

5.3.1 The AI tool

We have built an AI tool that uses the data that the simulator
provides to infer the user’s obtrusiveness perception (see Fig.
10). The AI tool is continuously receiving usage data from the
HiL simulator. This data contains information about the user
context situation (which includes six context variables, such
as the user’s face position and the user’s location), the HiL
action being performed at a given time, and the human re-
sponse time. From this data, the AI tool infers the user’s ob-
trusiveness perception for the HiL action executed in the HiL
simulator. Specifically, for each HiL action, the AI tool infers

Fig. 9 Main panel of HiL
simulator for the autonomous car

Users' preferences
predictive model

training
dataset

supervised machine
learning classification

algortihm

users' feedback

Fig. 10 Step 3 of the “smart” prototyping process: inferring users’
preferences
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whether the action is annoying the user, if it has not been
perceived, or whether it is suitable. As mentioned above, the
communication between the AI tool and the HiL simulator is
performed using messaging queues.

The knowledge inferred by the AI tool allows the HiL
prototype and the HiL design to be adapted using the recon-
figuration framework. The output of the AI tool is analyzed by
the reconfiguration framework that, when necessary, adapts
the HiL prototype by changing the interaction mechanisms
used to perform the action. Then, the HiL design is adapted
to refine the level of attention defined for the action.

The behavior of the AI tool is executing the following se-
quence in an endless loop, while the simulator is being executed:

1. It reads the data about the user’s context and the system
activity that the HiL simulator provides to the queue.

2. It processes this data to fit it to the predictive model that
we have built.

3. It calls the predictive model passing the input data as
argument, which classifies this input into three classes:

& Is annoying the user (0: DISTURBING)
& Has not been perceived (1: NOT-AWARE)
& Is suitable (2: OK)

4. It builds and returns a tuple made up of the HiL action that
is involved in the input and the user perceived obtrusive-
ness that is inferred by the predictive model, for example,
(NotifyTakeover, DISTURBING).

In order for the AI tool to be able to infer the perceived
obtrusiveness preferences, a predictive model should be built.
The following section describes the predictive model that the
AI tool uses in Step 3.

5.3.2 Building the predictive model

The predictive model has been built by applying a supervised
machine learning classification algorithm [45], whichmaps an
input to an output based on example input-output pairs. The
classification algorithm is in charge of identifying the relation-
ship between the inputs and outputs from these example pairs
and producing a predictive model that can be used for map-
ping new examples.

We have implemented this algorithm as a neuronal network
with TensorFlow.4 The algorithm builds a prediction model
that classifies the input data into three classes: (0)
DISTURBING, (1) NOT-AWARE, or (2) OK. The data in-
clude eight input variables, such as the user’s face position, the
user’s hand position, the user’s location, and the user’s re-
sponse time. The algorithm has been implemented as a neural

network with five fully connected layers since this number of
layers has resulted in the best classification accuracy. The
activation functions that are used to define the behavior of
each layer and that determine the output of a node given an
input or set of inputs are the following: the “ReLU” function
[46] for the four hidden layers and the “softmax” function [47]
for the output layer. The activation function “softmax” is often
found in the output layer of a neural network and returns the
probability distribution over the mutually exclusive output
classes. The “ReLU” trigger function has proven to work in
many different situations and is now widely used. As a loss
function, one of the parameters necessary to quantify how
close a particular neural network is to the ideal weight during
the training process, “sparse_categorical_crosentropy,” has
been used since our output must be in categorical format.
Choosing the best loss function requires understanding what
type of error is or is not acceptable for the particular problem.
As an optimizer, another of the elements required to perform
the inference, “Adam” has been used which implements a
stochastic gradient descent method [48]. Of the different
existing optimizers (SGD, RMSprop, Adagrad, Adadelta,
Adam, Adamax, Nadam), “Adam” is the one that best mini-
mizes the loss function in our classification problem.

In order to build the predictive model, the algorithm must
be trained with a labeled dataset with input-output pairs. The
training data has special importance in a machine learning
tool, and it must be specific for each HiL prototype.
Therefore, designers can use our AI tool, but they must build
their own dataset to train the algorithm, and they must check
the accuracy of the prediction in order to validate it by means
of test datasets. In the following section, we detail how we
have built the dataset and have obtained the prediction model
for the autonomous car.

5.3.3 The example of the autonomous car

To illustrate the process for building the predictive model by
means of the supervised machine learning classification algo-
rithm, we have implemented an example for the case of the
autonomous car.

We did not find any public dataset to train our machine
learning algorithm. Therefore, we built our own dataset using
the web simulator. The dataset was made up of 400 samples.
The data was obtained by the web simulator from 10 different
users with different levels of driving expertise. The users par-
ticipated in different collaborative tasks in different situations.
As mentioned in Section 5.2, the web simulator registered the
user’s context, the HiL action performed by the system or the
human, and the human response time at each instance.

The 400 registers of the obtained data were hand-labeled
by designers based on the observed user’s perception of ob-
trusiveness in each situation: (0) DISTURBING, (1) NOT-
AWARE, or (2) OK. Table 2 shows a few examples of the4 https://www.tensorflow.org/
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dataset that was used for training the data. The dataset was
composed of 400 registers (90% was for the training dataset,
and 10% was for the test dataset).

As Table 2 shows, register 1 corresponds to a situation
where the Notify Takeover action was being executed by the
system. At that moment, the user was looking forward, was
seated in the driver’s seat, had their hands on the wheel, and
was not performing any activity other than driving. Moreover,
the fallback plan was not activated, and the user turned down
the radio volume. The user answered the system’s demand in
3 s. At that moment, we observed that the user was feeling
annoyed by the system. Therefore, we labeled this row as
DISTURBING. In contrast, register 3 corresponds to a situa-
tion that was labeled as NOT-AWARE. In this situation, the
Take the wheel action was being executed by the system. At
that moment, the user was not looking forward, was seated in
the driver’s seat, did not have their hands on the wheel, and
was not performing any activity other than driving. Moreover,
the fallback plan was not activated, and the user turned up the
radio volume. The user answered the system’s demand in
4.1 s. At that moment, we observed that the user was not
aware of the system action.

To build the predictive model, we used the neural network
specified in Section 5.3.2. Once the algorithm was trained, we
evaluated the obtained prediction model by using the test
dataset. This evaluation confirms (or rejects) that the predic-
tive model infers the output that actually corresponds to the
input by checking the input-output pairs of the test dataset.
Figure 11 shows the confusion matrix that indicates how the
algorithm behaved for the three output classes. The matrix
indicates the percentage of the predicted classes with regard
to the true class. DISTURBING was occasionally confused
with NOT-AWARE (13%), and NOT-AWAREwas confused
with OK (2%) a few times. This picture gives us insight into
the prediction accuracy (the percentage of correct predictions
divided by the total number of predictions), which was
96.75% in our algorithm.

Note that our proposal currently focuses on refining the level
of attention defined for each action and thus adapting the inter-
action mechanisms used to perform the action. However, the
proposed infrastructure could be used to enhance other aspects
of HiL designs. Using AI to infer further knowledge about
users’ preferences and needs can help to obtain the HiL designs
that are best adapted to the users, achieving better user experi-
ences. For example, AI can infer knowledge about the level of a
user’s understanding of the system, which can help to adjust the
number of feedback actions that the system provides to the
user. Likewise, AI can extract knowledge about how specific
context situations impact the success or failure of the task,
which would help to refine the preconditions of the tasks.
Machine learning algorithms can also be used to extract the
way users work and achieve HiL designs that fit it.

5.4 Run-time refinement of HiL designs and
prototypes: the FADA framework

An inference of the AI tool could imply that the HiL prototype
and the HiL design need to be refined. This refinement should
be performed automatically at runtime, that is, while the users

Table 2 Examples from the training dataset

Input Output

HiL
action

User’s face
position

User in driver’s
seat

User’s hands on
wheel

User’s
activity

Fallback plan
activated

Speaker
volume
action

User response
time

Class

Notify
takeover

Looking
forward

True True notBusy False Volume
down

3.0 s DISTURBING

Confirm
takeover

Looking
forward

True True notBusy True No action 2.8 s DISTURBING

Take the
wheel

Not looking
forward

True False notBusy False Volume up 4.1 s NOT-AWARE

Transfer
control

Looking
forward

True True notBusy False No action 2.6 s OK

Fig. 11 Confusion matrix table
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are interacting with the HiL simulator. For each inference, the
prototype should be adjusted by increasing or decreasing the
obtrusiveness level of the HiL action referred by the inference.
Then, the HiL design is refined according to the changes of the
HiL prototype.

To cope with this requirement, we included a new compo-
nent to the HiL prototypes, the FADA - Adaptation Loop (see
Fig. 12). It endows the HiL prototypes with autonomic recon-
figuration capabilities, which allow them to automatically
adapt themselves at runtime. This component is responsible
for (1) monitoring the outputs from the AI tool, (2) analyzing
and deciding what changes are required, and (3) performing
those changes to both the HiL prototype and then the HiL
design.

We used the FADA framework5 to implement this compo-
nent. The FADA framework assists designers in engineering,
building, and deploying systems with autonomic computing
capabilities. This framework was built taking the self-adaptive
engineering principles as basis, which promotes the usage of
control loops [49] (Control Layer) on top of the system being
managed (Managed System). The following subsections de-
scribe the FADA framework and how we use this framework
to endow HiL prototypes with self-adaptive capabilities.

5.4.1 The FADA framework

The FADA framework provides us with tools and code gen-
erators to define and implement the elements of a MAPE-K
control loop for both the managed system and the adaptation
loop. Specifically, the FADA framework is based on the
MAPE-K design pattern [50] as the specific conceptualization
to build the adaptation control loop. Following this pattern, the
FADA framework is composed of the following components
(see Fig. 13):

Managed system:

& Sensors: They take system measurements and send those
measurements to an adaptation loop monitor.

& Effectors: They receive inquiries to change the system
configuration and are responsible for performing those
change actions.

MAPE-K adaptation loop:

& Monitors: They collect, filter, and process system mea-
surements and correlate this information into symptoms
that can be analyzed. The monitor stores these symptoms
as adaptation properties. These monitors are part of the
monitoring module.

& Adaptation properties: They are used to support adapta-
tion processes and represent relevant knowledge to per-
form an adaptation. These properties are stored in the
knowledge module.

& Adaptation rules: They are tied to changes in adaptation
properties and define a set of changes to the system. These
rules are part of the analyzing module.

& Planner: It takes a set of changes proposed by the adapta-
tion rules to calculate an adaptation plan. It delivers this
plan to the executor module. This plan is made up of ac-
tions that describe changes in the infrastructure of the man-
aged system. The planner is part of the planning module.

& Executor: It provides the mechanism to schedule and per-
form the necessary changes to the system defined by the
adaptation plan using effectors. The executor is part of the
executor module.

The FADA framework provides a set of pre-implemented
components (such as a planner, an executor, or a set of effec-
tors) to speed up the development stage.

5.4.2 Implementing the self-adaptive capabilities for the HiL
prototypes

We used the FADA framework to implement the following
components (see Fig. 13):

& A sensor that handles the outputs of the AI tool. These
outputs refer to tuples made up of a HiL action and a value
that determines the user perceived obtrusiveness (as
explained in Subsection 5.3.1). An example of a tuple is:
(NotifyTakeover, DISTURBING). The sensor reports this
information to the monitor.

& A monitor that collects data from the sensor. It detects if
there is a potential need to adapt (aka symptom) and then
upgrades the knowledge module by updating an adaptation
property. For example, if the monitor receives the tuple

HiL Prototype

Users'
preferences

from the AI tool

FADA - Adaptation Loop

Prototyping tool - Managed System

HiL Design

changes

bases on

monitors

Fig. 12 Step 4 of the “smart” prototyping process: run-time refinement of
HiL prototypes

5 http://fada.tatami.webs.upv.es
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(NotifyTakeover, DISTURBING), the monitor updates the
adaptation property NotifyTakeoverObtrusiveness to
disturbing.

& A set of adaptation properties that establishes the percep-
tion of the obtrusiveness level for each action. It is stored in
t h e k n o w l e d g e m o d u l e . F o r e x a m p l e :
NotifyTakeoverObtrusiveness, disturbing.

& An adaptation rule that listens to changes in the set of
adaptation properties and requests a set of changes to the
system. For example, when the adaptation property
NotifyTakeover Obtrusiveness changes, a rule is triggered
to adjust the current HiL prototype by increasing or de-
creasing the obtrusiveness level related to this action. The
rule requires changing the current interaction mechanisms
that this action is using (that no longer satisfy the desired
obtrusiveness level) by other interaction mechanisms that
support the new required obtrusiveness level.

5.4.3 Adaptation example: decreasing the obtrusiveness level
of the Notify Takeover action

Figure 13 shows an execution example of how these compo-
nents work when a user perceived obtrusiveness request is
made. For instance, the AI tool reports that the
NotifyTakeover action of the Takeover task is “disturbing”
the user (1). Then, the user obtrusiveness preference sensor
sends this measurement to the monitor in the control loop (2).

This monitor updates the NotifyTakeoverObtrusiveness adap-
tation property in the knowledge module, setting it to
disturbing (3). The defined adaptation rule is then triggered
to analyze and evaluate how to handle this situation (4). In this
case, the adaptation rule decides to lower the attention level of
this action by changing its connected interaction mechanisms.

Let us assume that the NotifyTakeover action was ini-
tially configured in a high attention obtrusiveness level. As
Fig. 14 shows, at time tn, the Speakers.VoiceFeedback and
HeadUpDisplay.Text interaction mechanisms are assigned
to this action. In order to lower the obtrusiveness level of
this action, the adaptation rule performs a Change Request
to unbind these mechanisms (red-dashed lines) and to con-
nect the HeadUpDisplay.Image, Speakers.Beep, and
SteeringWheel.Vibration (black line) to this action
(according to Table 1). Finally, the rule notifies the planner
of this change request (5).

The planner compares the change request with the cur-
rent state of the HiL prototype regarding the current state
of the NotifyTakeover action and then calculates an adap-
tation plan to change the system to satisfy the request.
This adaptation plan contains a set of (structural) actions
to change the current system configuration: unbind the
high attention level interaction mechanisms and deploy
and bind the slight attention level interaction mechanisms
(6). The planner sends this adaptation plan to the
executor, who uses the effector layer of the managed sys-
tem to perform the change actions described in the

Fig. 13 HiL prototype with a MAPE-K control loop
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adaptation plan (7). Finally, the effectors perform the
changes within the running system (8) to obtain the next
system configuration at tn + 1, which is a configuration
that is less obtrusive than the previous one.

6 Validating the proposed method

The method proposed in this paper is conceived for helping
interaction designers to design, prototype, and validate HiL
systems. In this section, we present an experiment to analyze
the perception of interaction designers regarding to which ex-
tent they would accept or not the design method proposed.
This acceptance is related to the perceived usefulness, the
perceived ease of use, and the intention to use in the future.
In this experiment, several interaction designers applied the
proposed method to design, prototype, and validate the HiL
interactions in one of the most typical tasks of an autonomous
car, the Takeover task, which has been used as a running
example throughout the paper. This experiment followed the
guidelines presented by Kitchenham et al. [51] and Wohlin
et al. [52].

6.1 Goal

According to the Goal/Question/Metric template [38], the ob-
jective of the experiment was to:

Analyze our method to design, prototype, and validate
HiL interactions
For the purpose of evaluating the acceptance for using
the method
With respect to the perceived ease of use, the perceived
usefulness, and the intention to use
From the viewpoint of the researchers
In the context of interaction designers

6.2 Research question and hypothesis formulation

The research questions and the null hypothesis proposed for
the experiment are:

& RQ1: Is our proposed method perceived as easy to use?
The null hypothesis tested to address this research ques-
tion is: H01: The proposed method is perceived as difficult
to use.

& RQ2: Is our proposed method perceived as useful? The
null hypothesis tested to address this research question is:
H02: The proposed method is perceived as not useful.

& RQ3: Is there an intention to use our proposed method in
the future? The null hypothesis tested to address this re-
search question is: H03: There is no intention to use the
proposed method in the future.

Fig. 14 An example of self-adaptation of the HiL prototype
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6.3 Identification of variables and metrics

We identified two types of variables:

& Independent variables: Variables that affect the depen-
dent variables. The process that is applied to design the
HiL interactions was identified as a factor (aka indepen-
dent variable) that affects the dependent variables.

& Dependent variables: Variables that correspond to the
outcomes of the experiment. In this experiment, we eval-
uated our method with regard to the following dependent
variables:

& Perceived ease of use (PEOU), evaluated by means of
RQ1, refers to the degree to which an interaction designer
believes that using our method would be effort-free.

& Perceived usefulness (PU), evaluated by means of RQ2,
refers to the degree to which an interaction designer be-
lieves that our method will achieve her/his intended
objectives.

& Intention to use (ITU), evaluated by means of RQ3, refers
to the extent to which an interaction designer intends to
use the method.

The instrument used to measure these variables was an
adapted Technology Acceptance Model (TAM) [53], as
well-known and thoroughly validated model for evaluating
information technologies. This instrument defines a 5-point
Likert with 16 items. Table 3 shows all the adapted items.
PEOU1 to PEOU6 are associated with the dependent variable
PEOU, PU1 to PU8 are associated with the dependent

variable PU, and ITU1 and ITU2 are associated with the de-
pendent variable ITU.6

6.4 Experimental context

Experimental subjects. The experiment was conducted in the
context of the Universitat Politècnica de València (Spain). Six
subjects participated in the experiment (3 males and 3 fe-
males) between 35 and 47 years old who were researchers of
the PROS Research Center.7 The background and experience
of the subjects with regard to the tools and techniques used in
the experiment were found through a demographic question-
naire handed out at the beginning of the experiment.
According to the questions included in the demographic ques-
tionnaire, we concluded the following:

& All of the subjects had an extensive background in Java
programming and modeling tools.

& All of the subjects had knowledge about HCI, but only
some of them had experience in developing HiL
interactions.

Experimental objects. The experiment was conducted using
the running example used throughout the paper, i.e., the au-
tonomous car. The object used in the experimental investiga-
tion was a requirement specification created for this purpose.

Table 3 Questions to evaluate the
dependent variables PEOU, PU,
and ITU

Item Item statement

PEOU1 The process proposed by the design method was simple and easy to follow

PEOU2 Overall, the design method was easy to use

PEOU3 The design method was easy to learn

PEOU4 It was easy for me to apply the design method to the autonomous car example

PEOU5 It was easy for me to understand the rules of the design method

PEOU6 I believe that I can apply the method in practice

PU1 I believe that this design method would reduce the effort required to design HiL interactions

PU2 I believe that the HiL interactions designed with this method are easy to understand for users

PU3 This design method would help to obtain HiL interactions adapted to the user’s preferences

PU4 Overall, I believe that the design method is useful

PU5 I believe that the use of this design method would help me to design HiL interactions

PU6 Overall, I think that the use of this design method provides an effective means for designing HiL
interactions

PU7 Overall, I believe that this design method would improve the design of HiL interactions

PU8 I believe that the use of this design method would help interaction designers to design HiL
interactions adapted to the user’s preferences

ITU1 Definitively, I would use this design method to design HiL interactions

ITU2 I intend to use this design method in the case I would have to design HiL interactions in the future

6 We are aware that Likert scales are qualitative data, but some studies propose
converting them to quantitative data to work with statistical tests [54]
7 http://www.pros.webs.upv.es/
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It contained the description of the Takeover task.8 In order to
shorten the evaluation process, we provided the subjects with
an example of theHandover task (in this task, the driver gives
the order to the system for it takes over control of the car)
designed with our method to guide the design of the
Takeover task.

Instrumentation. The instruments that were used to carry out
the experiment were the following:

& A demographic questionnaire: A set of questions to know
the level of the user’s experience in Java/OSGi program-
ming, modeling tools, and task modeling. This document
included questions containing Likert-scale values ranging
from 1 (strongly disagree) to 5 (strongly agree).

& Task description9: A document that describes the work/
activities to be performed in the experiment using our
method. This document contains guidelines to guide the
subject throughout the experiment.

& Satisfaction in use questionnaire based on TAM: A ques-
tionnaire with the 16 items of Table 3 containing Likert-
scale values ranging from 1 (strongly disagree) to 5
(strongly agree) to evaluate satisfaction with the entire
process.

6.5 Experiment design and procedure

In this experiment, we followed a simple design (one factor
with one treatment), where all subjects were exposed to the
treatment. The subjects must design, prototype, and validate
the HiL interactions of the takeover task of the autonomous
car applying the proposed designmethod. To start the process,
the subjects were provided with a requirements specification
where the HiL interactions of the takeover task were described
in natural language.

The study was initiated with a short presentation in which
general information and instructions were given. Then, the
experiment started with the demographic questionnaire to cap-
ture the users’ backgrounds. Afterwards, the HiL task descrip-
tion document was given to the subjects, and they started to
design the HiL interactions following our method. After the
final design of the HiL task, subjects filled in the satisfaction
in use questionnaire. Specifically, the activities carried out to
apply our design method were the following (see Fig. 15):

1) Designing HiL interactions. The participants designed the
HiL task using our conceptual framework according to
the HiL task requirements specification document provid-
ed. We provided the subjects with a tutorial where the
design language and the provided tools were explained.
The output of this activity was the HiL task design. The
experimenters supervised this phase with the aim of help-
ing participants to obtain a suitable HiL design.

2) Generating a HiL prototype. Using the software infra-
structure of our method, the participants generated the
prototypes for the autonomous car from their HiL task
design automatically.

3) Validating the HiL prototype and automatically updating
the HiL designs and prototypes. The prototypes were test-
ed by two end-users during 30 min. The end-users where
two experimenters, which took the role of end-users to
test the prototypes obtained by each participant. The two
experimenters behaved the same for all participants. By
means of the AI tool and the autonomous capabilities of
the generated prototype, the HiL task design and the pro-
totype were automatically enhanced according to the end-
users’ preferences and needs. In this activity, the partici-
pants only observed the end-users testing the prototype.

4) Obtaining the final HiL design and the prototype. When
the experimenters finished testing the prototype, the par-
ticipants analyzed the adapted HiL task design of both
experimenters and modified the initial HiL task design
proposed to fit the preferences of both experimenters.
Then, from the final HiL task design, the final prototype
was automatically generated.

6.6 Threats to validity

The various threats that could affect the results of this exper-
iment and the measures that we took were the following:

& Conclusion validity: This validity is concerned with the
relationship between the treatment and the outcome.
Our experiment was threatened by the random hetero-
geneity of subjects. This threat appears when some users
within a user group have more experience than others.
This threat was minimized with a demographic ques-
tionnaire that allowed us to evaluate the knowledge
and experience of each participant beforehand. This
questionnaire revealed that participants had a very sim-
ilar experience in the tools and techniques to be used in
the experiment.

& Internal validity: This validity concern is related to the
influences that can affect the factors with respect to
causality, without the researchers’ knowledge. Our
evaluation had the maturation threat that refers to

8 The requirement specification document can be downloaded from: http://hil.
t a t am i .w e b s . u p v . e s / d o c s /m e t h o dEv a l u a t i o nE x p e r im e n t /
RequirementsSpecification.pdf
9 The task description document can be downloaded from: http://hil.tatami.
webs.upv.es/docs/methodEvaluationExperiment/TaskDescriptionDocument.
pdf
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the effect that users react differently as time passes
(because of boredom or tiredness). We solved this
threat limiting the evaluation to 2 h. Also, the
instrumentation threat could affect the evaluation due
to an incorrect interpretation of the tasks to be done
and the questionnaires. This threat was minimized by
the researcher, who helped the subjects to understand
the tasks.

& Construct validity: Threats to construct validity refer to
the extent to which the experiment setting actually reflects
the construct under study. Our experiment was threatened
by the hypothesis guessing since users might try to figure
out what the purpose and intended result of the experiment
are, and they are likely to base their behavior on their
guesses. We minimized this threat by hiding the goal of
the experiment.

& External validity: This validity concern is related to
conditions that limit our ability to generalize the results
of the experiment to industrial practice. Our experiment
might be affected by the representativeness of the
results threat. Even though the experiment was per-
formed in an academic context, the results could be
representative with regard to interaction designers with
no experience in our method. With respect to the use of
researchers as experimental subjects, several authors
suggest that the results can be generalized to industrial
practitioners [55].

6.7 Data analysis and interpretation of results

The analysis was performed using the SPSS v.26 statistical
tool. First, a descriptive study was performed, where we stud-
ied the response variables in terms of their descriptive statis-
tics. Figure 16 shows the results obtained. The descriptive
statistics indicate that the average values of PEOU (mean =
3.47), PU (mean = 4.19), and ITU (mean = 4.33) exceed the
neutral score of 3, that is the midpoint of the 5-point Likert
scale. These results indicate that designers perceived our
method as a useful and easy-to-use method, and they will
intend to use the method in the future if they had to design
HiL interactions. Even though, the PEOU is the worst-rated
variable, which indicates that a weak point of our method is
the ease of use.

To deeply analyze the descriptive statistics, Fig. 17 pre-
sents the results obtained for PEOU, PU, and ITU variables
according to the 16 items of the users’ satisfaction question-
naire shown in Table 3. In the figure, we can show that most of
the items was rated with the 4–5 score that means a great
acceptance of our method by the users. The PEOU items were
the worst rated. PEOU1 stated that the process proposed by
the design method was simple and easy to follow and PEOU3
stated that the design method was easy to learn. As some
participants did not have experience in developing HiL inter-
actions, they had more difficulties to learn the design method
and to follow the process. Also, some users (33.3%) perceived

Fig. 15 Steps of the performed experiment

Fig. 16 Box-and-whisker plot
and descriptive statistics of
PEOU, PU, and ITU
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the method not easy to use (PEOU2) and found difficulties to
apply it to the autonomous car example (16.7%, PEOU4).
However, once they learnt it, they perceived the design meth-
od as useful (see PU4). In PU6 (Overall, I think that the use of
this design method provides an effective means for designing
HiL interactions), some users also commented us that did not
rated the item with the high score because then cannot com-
pare the method with another existing method to design HiL
interactions. Despite this, in PU7 and PU8, 83.3% of users
considered that the design method would improve the design
of HiL interactions and they believed that the use of this de-
sign method would help interaction designers to design HiL
interactions adapted to the user’s preferences.

To confirm the observations of the descriptive study, we
carried out the analytical study to each variable applying a
statistical method. The statistical method allowed us to verify
if the responses of the participants were significantly different
from the neutral value (3) of the Likert scale.

A normality test using the Shapiro Wilk test was required
to verify whether the data was normally distributed. We used
this test as our numerical means of assessing normality be-
cause it is more appropriate for small sample sizes (< 50 sam-
ples). Then, using the Shapiro Wilk test, we obtained the fol-
lowing p values: PEOU p value = 0.456, PU p value = 0.834,
and ITU p value = 0.091; therefore, as all the p value > 0.05,
we retained the null hypothesis of population normality.
Therefore, we can apply the t test. The t test was configured

with the hypothesis value equal to 3 (the neutral value). The
result obtained with this test was as follows:

& Perceived ease of use: The value obtained for the PEOU
variable was p value = 0.05 > = 0.05. Therefore, we can-
not reject the null hypothesis H01 and can conclude that
our method is perceived as not easy to use. However, as
the results of the questionnaire show, some users per-
ceived the method not easy to use at the first time, but they
rated the method as useful.

& Perceived usefulness. The value obtained with this test for
the PU variable was p value = 0.000 < 0.05. Therefore,
we can reject the null hypothesis H02 and can conclude
that our method is perceived as useful.

& Intention to use. The value obtained with this test for the
ITU variable was p value = 0.000 < 0.05. Therefore, we
can reject the null hypothesis H03 and can conclude that
our method is perceived as useful.

The experiment has revealed that the method is useful, and
participants have expressed their intention to use it, but they
have not perceived it easy to use at a high degree. Feedback
from questions PEOU1 to PEOU4 shows a need to provide a
more guided process for applying the method. Therefore, we
want to improve the usability of the method by providing tool
support to help and guide interaction designers to specify the
HiL task designs. In this way, we are planning to develop an

Fig. 17 Results of the user’s
satisfaction in use questionnaire
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editor to build and validate HIL designs and an assistant (e.g.,
a dashboard) to guide interaction designers through the pro-
posed method.

7 Evaluation of the smart prototyping
technique

This section presents an evaluation of the usefulness of the
“smart” prototyping technique. On the contrary to the previ-
ous section, which focuses on obtaining an evaluation of the
own method by interaction designers, this section focuses on
the product obtained by our technique.We used the case of the
autonomous car that has been used throughout the paper. To
perform the evaluation, we compared the initial HiL design
that the designers defined with the enhanced version that the
smart prototyping obtained in terms of users’ satisfaction. This
evaluation allowed us to explore whether the “smart”
prototyping technique was helpful in achieving a HiL design
that adapts to users’ preferences and needs.

7.1 Variables

We identified two kinds of variables in the experiment: inde-
pendent variables, which are the variables that are manipulat-
ed and controlled in the experiment, and dependent variables
(or response variables), which are those variables that we want
to study to see the effect of the changes in the independent
variables. The variables in our experiment are described
below.

Independent variables: The HiL design implemented in
the HiL prototype was identified as a factor that affects
the dependent variables. This factor had two treatments:
• The “initial HiL design” specified by designers
• The “adapted HiL design” where the run-time refine-
ment had been applied after the “smart” prototyping
process
Dependent variables: The dependent variable was the
subjects’ satisfaction regarding the proposed HiL proto-
type. The users’ satisfaction was measured for the two
aspects related to the challenge of managing user atten-
tion. These aspects are as follows:
• Human attention achievement. To measure this aspect,
we used:
– The number of times that the fallback plans have been
launched. One of the reasons for launching a fallback
plan is the inability to achieve the human’s attention in
order to involve the human in the task. Therefore, the less
the fallback plans were launched, the more human atten-
tion was achieved.
–The time period that the preparatory actions have been
executing. Preparatory actions aim at preparing the

human to maximize the success of the task. Therefore,
the shorter the time period that the preparatory actions
were executing, the more human attention was achieved.
• Perceived obtrusiveness. To measure this aspect, we
used a 5-point Likert scale to assess the users’
satisfaction.

7.2 Participants

The experiment was conducted at the Universitat Politècnica
de València (Spain). Fifteen students that were recruited ran-
domly by the authors’ colleagues participated in the experi-
ment. Their education level was balanced. They were between
21 and 35 years old. The background and experience of the
subjects were determined using a demographic questionnaire
that was handed out in the first session of the experiment. This
instrument consisted of 10 questions on a 5-point Likert scale.
The participants had to be subjects with different profiles (dif-
ferent ages, gender, and expertise) since we considered it nec-
essary to conduct the experiment with a heterogeneous group
in order to avoid any bias in the sample. According to the
questions included in the demographic questionnaire, we
concluded:

& The subjects were between 21 and 35 years old (10 males
and 5 females).

& All of the subjects had taken a human-computer interac-
tion (HCI) course as part of the curriculum of the
Computer Science degree.

& None of the subjects had used an autonomous car or a
simulation of it.

7.3 Tasks

The participants made use of the HiL simulator to interact with
the HiL prototype. The HiL prototype was composed of six
tasks for an autonomous car at L3 of autonomy [56]. Within
an L3 autonomy, a car is capable of traveling thousands of
kilometers without human intervention under restricted con-
ditions (specially marked roads and good weather).
Nevertheless, the driver is required to be ready to intervene
at any moment in conflictive situations [57]. Thus, the tasks
we designed that require human integration were the
following10:

& T1 Supervised Autonomous Driving: This represents the
collaborative work that the system and the human perform

10 The task specification document with the initial HiL design of the autono-
mous car can be downloaded from: http://hil.tatami.webs.upv.es/docs/
AutonomousCarSpecification.pdf
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in AutoPilot mode. The AutoPilot (an autonomous system
process) is responsible for performing the automated driv-
ing task (lane keeping with adaptive cruise control) in an
operational situation. However, the L3 AutoPilot mode
requires a driver to always be in attentive mode and ready
to take over (if required).

& T2 Supervised Manual Driving: This represents the col-
laborative work that the system and the human do in
Manual mode. The human is responsible for performing
the driving task. However, the L3 Manual mode requires
the system to supervise the state of the human (and take
the appropriate actions when necessary).

& T3 Handover: The driver gives the order to the system for
it to take over control of the car.

& T4 Emergency Handover: The system realizes that the
human cannot continue driving (e.g., it realizes the driver
has fallen asleep) and takes control of the car in a rush.

& T5 Takeover: The system transfers the control of the car to
the human in a situation that does not require hurry (e.g.,
the car is approaching a city and the car cannot continue
driving autonomously).

& T6 Emergency Takeover: The systemmust leave the car in
a safe situation while it transfers control of the car to the
human. This task takes place in emergency situations (e.g.,
a sensor fails and the system cannot continue driving
autonomously).

7.4 Instrumentation

The instruments that were used to carry out the experiment
were as follows:

& A demographic questionnaire: This questionnaire con-
tains a set of 10 questions on a 5-point Likert scale that
provide knowledge about the background and experience
of the subjects.

& A script to recreate the user context situation: This is a
description of the initial user context situation.

& A users’ satisfaction questionnaire: We used a question-
naire of 11 questions containing a 5-point Likert-scale to
assess the user’s perception of obtrusiveness of the inter-
actions when using the HiL simulator. This questionnaire
was created based on similar instruments used in [58, 59].
Table 4 shows the users’ satisfaction questionnaire that
was used to measure the obtrusiveness aspect.

& A HiL prototype for the autonomous car simulator: We
generated a HiL prototype for the autonomous car accord-
ing to what is described in Subsection 5.1. This prototype
was an implementation of the six collaborative tasks in-
troduced above.

& AHiL simulator for the autonomous car: We used the HiL
simulator introduced in Subsection 5.2. This simulator
recreated the execution of the tasks that were implemented
in the HiL prototype.

& AMac Pro 2017 Server with MacOs 10.6 (Catalina): This
PC was used to run the HiL simulator.

7.5 Procedure

Each participant took part in the experiment throughout sev-
eral validation sessions on different days. The experiment was
conducted in our laboratory. Before starting the experiment,
the participants were briefly presented the experiment and the
main features of the autonomous car, and each participant
signed a consent form. Then, they filled in the demographic
questionnaire. During the validation sessions, the participants
were alone in the laboratory with the experimenter. The ex-
perimenter observed the process and guided the participant
when necessary.

Table 4 Users’ satisfaction questionnaire

General acceptability and presentation Q1. General acceptability (Not acceptable—very acceptable)

Q2. Presentation (Not acceptable—very acceptable)

Q3. Preferred presentation for actions (Less intrusive—more intrusive)

General obtrusiveness of actions Q4. Appropriate attention level (Strongly disagree—strongly agree)

Q5. Some actions have disturbed me (Strongly disagree—strongly agree)

Q6. I was not aware of some actions (Strongly disagree—strongly agree)

Q7. I would prefer more intrusive actions (Strongly disagree—strongly agree)

Q8. General obtrusiveness (Not acceptable—very acceptable)

Interaction mechanisms Q9. The interaction mechanisms were appropriate (Strongly disagree—strongly agree)

Q10. I like using the interaction mechanisms (Strongly disagree—strongly agree)

Q11. The context-dependent interactions were useful (Strongly disagree—strongly agree)
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Each Sb subject that was recruited for the experiment par-
ticipated in the validation sessions according to the following
procedure:

& Sb participated in a first validation session where the car
simulator executed the prototype generated from the
initial HiL design. During the validation session, the
feedback gathered by the simulator was provided as
input to the AI tool to infer whether the HiL actions that
were executed for each task were appropriate for Sb.
The HiL prototype self-adapted itself at runtime accord-
ing to the inferences of the AI tool and refined the HiL
design accordingly.

& Sb continued participating in validation sessions until
δ(pini, pend) = 0, where pini was the prototype at the begin-
ning of the session, pend was the prototype at the end of the
session, and δ is an operation that calculates the difference
between pini and pend in terms of the number of changes
performed. Thus, Sb finished when pend equaled pini,
which meant that the prototype had not changed during
the session since it was already fitted to the user’s prefer-
ences. The last version of the prototype was achieved in a
minimum of two sessions and a maximum of four
sessions.

After the first validation session and the last validation
session, the participants filled in the users’ satisfaction ques-
tionnaire. Each session took around 30 min. At the beginning
of each session, the participants were given a script to recreate
the initial user context situation (e.g., user in the driver seat,
attentive to the road, etc.). During the session, the user was
able to change the context variables and check how the system
reacted to these changes. The user was also able to keep an eye
on his/her smartphone or perform other activities to not be
excessively and unnaturally attentive to the system (this was
particularlymeaningful during the validation of the supervised
autonomous driving task). All of the sessions started in the
autonomous driving mode. From this mode, the set of tasks
being validated were performed according to the following
plan:

& T1 Supervised Autonomous Driving. The car is autono-
mously driving for 5 min.

& T5 Takeover. We simulate a situation where the car re-
quires human participation. Therefore, the car transfers
control to the user. When this task ends, the car is in the
manual driving mode.

& T2 Supervised Manual Driving. The participant manually
drives the car for 5 min.

& T3 Handover. The car prototype is in the manual driving
mode. The experimenter asks the driver to transfer control
to the car. When this task ends, the car is in the autono-
mous driving mode.

& T1 Supervised Autonomous Driving. The car is autono-
mously driving for 5 min.

& T6 Emergency Takeover. The car prototype is in the au-
tonomous driving mode and transfers control to the driver
because of an emergency situation. When this task ends,
the car is in the manual driving mode.

& T2 Supervised Manual Driving. The participant manually
drives the car for 5 min.

& T4 Emergency Handover. The car prototype is in the man-
ual driving mode. The experimenter asks the driver to
focus his/her attention on their smartphone so that the
system will take control. When this task ends, the car is
in the autonomous driving mode.

& T1 Supervised Autonomous Driving. The car is autono-
mously driving for 5 min.

Figure 18 shows a scenario of the execution of the
Takeover task. The figure shows the sequence of the
screenshots of the interactions that occur during a task execu-
tion that was performed during the experiment. The first in-
teraction is shown in the upper-left quadrant of the figure,
which matches with the Take the wheel preparatory action
(the task starts with the user not having his/her hands on the
wheel). According to the obtrusiveness level of this action
(high, system), the system shows a text on the head-up display
indicating to the user that he/she should take the wheel and the
speakers read out this warning. Then, the user takes the wheel
by clicking on the wheel element (see upper-right quadrant).
When the user takes the wheel, the system initiates the task
with the first core action, Notify takeover (see the center-left
quadrant of the figure), which is also performed by the system
at the high attention level. Therefore, the head-up display
shows the notification textually on the head-up display, and
the speakers read out the notification. Then, the Confirm
takeover action is activated, and the human confirms the take-
over (center-right quadrant), which is performed by the human
at the slight attention level. For this action, the user simulates
making pressure on the steering wheel. Once the human con-
firms the takeover, the head-up display shows an icon indicat-
ing that the control transfer has been successfully performed,
which is shown in the lower-left quadrant of the figure.
Finally, the system informs the user about the driving mode
by activating the feedback action Inform about driving mode
(see lower-right quadrant).

Note that the adaptations performed by the prototype for
each user only impact the interaction mechanisms selected for
carrying out an action, since the only aspect we focus on in
this work is the attention level of the actions. Thus, the adap-
tations performed by the prototype for the fifteen users were
wide ranging. For one user, the prototype changed only one
interaction mechanism in one task; for another user, the pro-
totype changed the interaction mechanisms of several actions
in all of the tasks.
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7.6 Analysis of results and discussion

In this section, we analyze the results of the measurements
performed in the experiment: human attention achievement
and user perception of obtrusiveness. Although both results
can be influenced by the expertise that the participants had
acquired during the sessions (internal threat to validity) and
the use of a subjective measure (conclusion threat to validity),
we minimized these threats by spacing the sessions over time
and using objective measures.

Human attention achievement. To analyze the amount of hu-
man attention that the tasks achieved, we used two measures:
(1) the number of times that the fallback plans were launched
and (2) the time period that the preparatory actions were
executing.

Figure 19 shows the results obtained for the number of
times that the fallback plans were launched during the first
session of the validation (initial HiL design) and during the
last session (adapted HiL design). The graph dots show the
number of launched fallback plans for each participant during

Fig. 18 Simulation scenario for the takeover task
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the first session (blue dots) and for the last session (orange
dots). Note that nine tasks were executed in one session. As
the figure shows, the number decreased for most of the par-
ticipants during the last session. Figure 20 shows a similar
graphic for the time period that the preparatory actions were
being executed during the first session and during the last
session. In this case, the period decreased less significantly
since the preparatory actions have a time constraint. The ob-
tained results suggest that the simulator captured the attention
of humans better during the last session than during the first
session.

User perception of obtrusiveness. Figure 21 present the results
obtained for the user perception of the obtrusiveness accord-
ing to the eleven questions of the users’ satisfaction question-
naire shown in Table 4. It can be observed that there is notable
user satisfaction in the last session with the adapted HiL
design.

Specifically, we observed the following:

& The majority of users (80%) rated the adapted HiL design
as generally more acceptable (Q1), and 53% of users con-
sidered its presentation to be more acceptable (Q2). In
both versions, they preferred a balanced presentation for

actions that was a little more intrusive in order to be aware
of them (33.4% for the initial version and 40% for the
adapted version, Q3). They stated that they were more
aware of actions in the last session.

& Most of the users (60%) considered the attention level of
actions to be more appropriate in the adapted HiL design
since it was adapted according to their obtrusiveness pref-
erences (Q4). However, 53.3% considered that some of
the actions in this design disturbed them a little bit more
than the actions of the initial HiL design (20%, Q5). This
is because, in the first session, most of the users (66.7%)
were not aware of some of the actions (Q6) and this caused
the HiL design to be adapted to be more intrusive (as users
stated in Q7). With this adaptation, the general obtrusive-
ness in the last session was more acceptable for users
(93.3%, Q8).

& The users considered the interaction mechanisms to be
appropriate for both HiL designs (86.6% for the initial
version and 93.3% for the adapted version, Q9), although
a little bit more appropriate for the adapted one. For both
HiL designs, they liked using the interaction mechanisms
(60% for the initial version and 66.7% for the adapted
version, Q10), and they considered the context-
dependent interactions in both versions to be useful
(86.6% in both versions, Q11).

The results obtained in the experiment revealed that the
autonomous car HiL design was significantly enhanced with
the “smart” prototyping technique proposed. Both human at-
tention achievement and obtrusiveness perception were im-
proved. Therefore, we conclude that the “smart” prototyping
technique helps achieve a HiL design that better adapts to
users’ preferences and needs. We interpret these results as an
initial validation of the path that we have opened in this paper,
where we use “smart” prototyping as a technique for achiev-
ing designs that are adapted to users’ preferences and needs.

8 Conclusions

AmI environments require human involvement in a manner
that conforms to the concept of ambience. Integrating humans
into these systems is a complex task that encompasses numer-
ous concerns. Therefore, the human participation in AmI sys-
tems must be addressed from the early development stages of
the software lifecycle. In this paper, we propose a method to
face the challenge of designing human involvement in AmI
systems. Our framework advocates the use of high-level spec-
ifications for the design of the human-system collaboration
and for user validation with prototypes enhanced with AI
techniques and reconfiguration capabilities in order to “smart-
ly” adapt these specifications to the users’ preferences and
needs at runtime. This way, designers have an engineering

Fig. 19 Results of the execution of the fallback plan

Fig. 20 Results of the execution of the preparatory actions
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approach that assists them in systematically building human-
in-the-loop AmI solutions. A key aspect of our approach is the
management of human attention as a first-class concept in the
specification of human-system collaboration. This leads to a
design that maximizes the likelihood of success of the collab-
oration between the human and the system.

The results of the evaluation of the “smart” prototyping
technique have allowed us to make an initial validation of this
work. The results show that our “smart” prototypingmethod is
more useful than traditional prototyping where designers ob-
serve the users interacting with a prototype and extract

knowledge manually to enhance the prototypes. With the AI
tool that we propose, the usage data can be used to infer new
knowledge and to adjust the specified human-system collab-
oration automatically. At first, we tried to use this knowledge
to automatically obtain a final system specification of human-
system collaboration. Nevertheless, this was not possible
since the technique extracts the needs and preferences of each
user (not the sum of all the users that test the prototype), and
the final specification should be a suitable combination of all
these preferences. Therefore, we used the knowledge extract-
ed by the AI tool to help designers build the final system

Fig. 21 Results of the users’ satisfaction questionnaire
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specifications. More advanced works on this issue could lead
to applying AI techniques of this kind to adapt the final system
specification. More complete datasets with additional infor-
mation could also lead to extracting fine-grained knowledge,
which could lead to other kinds of adaptations of human-
system collaboration specifications. This work has allowed
us to ratify a path for reducing the time to design and validate
HiL specifications. Similar approaches could have a major
impact on reducing the time to market and improving the
quality of software systems in general.

Further work will be dedicated to developing several case
studies in different domains and performing more thorough
validation with designers. This validation can help us to en-
hance the conceptual framework by including new concepts
that complete the specification of the collaborative work be-
tween humans and systems and also to improve the compo-
nents of the software infrastructure that we provide for
prototyping, such as the HiL simulator or the AI tool.
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