This is an electronic version of an article published as $Algebra\ Colloquium\ 12(2):263–267\ (2005)$

 $DOI:\,10.1142/S1005386705000258.$

Copyright World Scientific Publishing Company

http://www.worldscientific.com/doi/abs/10.1142/S1005386705000258

On a class of p-soluble groups*

A. Ballester-Bolinches

Departament d'Àlgebra, Universitat de València Doctor Moliner 50, 46100 Burjassot (València), Spain e-mail: Adolfo.Ballester@uv.es

R. Esteban-Romero and M. C. Pedraza-Aguilera

Departament de Matemàtica Aplicada, Universitat Politècnica de València Camí de Vera, s/n, 46022 València (Spain)

e-mails: resteban@mat.upv.es and mpedraza@mat.upv.es

Abstract

Let p be a prime. The class of all p-soluble groups G such that every p-chief factor of G is cyclic and all p-chief factors of G are G-isomorphic is studied in this paper. Some results on T-, PT-, and PST-groups are also obtained.

Keywords: finite groups, permutability, subnormality. 1991 Mathematics Subject Classification: 20D20, 20D35.

1 Introduction

All groups considered in the paper will be finite.

Let p be a prime number. Denote by \mathcal{U}_p^* the class composed of all p-soluble groups G such that every p-chief factor of G is cyclic (G is p-supersoluble) and all p-chief factors of G are G-isomorphic.

For a p-soluble group G, the following statements are pairwise equivalent:

- 1. G belongs to \mathcal{U}_p^* .
- 2. Every p'-perfect subnormal subgroup of G permutes with every Hall p'-subgroup of G ([2, Theorem 6]).

^{*}Supported by Grant BFM2001-1667-C03-03, MCyT (Spain) and FEDER (European Union)

- 3. If $H \leq K$ are p-subgroups of G, then H permutes with all Sylow subgroups of $N_G(K)$ ([5, Theorem 9]).
- 4. G is either p-nilpotent, or G has an abelian Sylow p-subgroup P and every subgroup of P is normal in $N_G(P)$ ([5, Theorem 5]).
- 5. Either G is p-nilpotent or $G(p)/O_{p'}(G(p))$ is an abelian normal Sylow p-subgroup of $G/O_{p'}(G(p))$ such that the elements of $G/O_{p'}(G(p))$ induce power automorphisms in $G(p)/O_{p'}(G(p))$, where G(p) denotes the p-nilpotent residual of G, that is, the smallest normal subgroup of G such that G/G(p) is p-nilpotent ([4, Theorem A]).

These characterisations let the class \mathcal{U}_p^* play a major role in the study of three interesting classes of groups: T-groups (or groups in which normality is transitive), PT-groups (or groups in which permutability is transitive), and PST-groups (or groups in which permutability with Sylow subgroups is transitive). These classes have been widely studied (see [1, 2, 4, 5, 7, 8, 9, 10, 13]).

The main goal of this paper is to study the behaviour of \mathcal{U}_p^* as a class of groups and apply the results to get information about the classes of T-, PT-, and PST-groups.

It is clear that \mathcal{U}_p^* is a subgroup-closed homomorph. However, the direct product of a symmetric group of degree 3 with a cyclic group of order 3 shows that it is not closed under taking direct products. In particular, \mathcal{U}_p^* is not a formation. More precisely, we have:

Theorem A. The class of all p-nilpotent groups is the largest formation contained in \mathcal{U}_p^* .

Since a soluble PST-group is a \mathcal{U}_p^* -group for all primes p ([2, Theorems 6 and 8]), we have:

Corollary 1. The class of all nilpotent groups is the largest formation contained in the class of all soluble PST-groups.

The class \mathcal{U}_p^* is not saturated in general (see [3] or [12]). However we have:

Theorem B. Let G be a group. The following statements are equivalent:

- 1. for every subgroup H of G, $H/\Phi(H)$ is a \mathcal{U}_{n}^{*} -group, and
- 2. G is a \mathcal{U}_p^* -group.

This theorem is a consequence of the following result, which is proved in [6]:

Theorem C. Let G be a p-supersoluble group. The following statements are equivalent:

- 1. G belongs to \mathcal{U}_p^* .
- 2. G does not have any subgroup of the form X = [P]Q, where p and q are primes such that $q^f \mid p-1$, with $f \geq 1$, i is a primitive root of unity modulo $p, j = 1 + kq^{f-1}$, with 0 < k < q, $P = \langle a, b \rangle$ is an elementary abelian group of order p^2 , $Q = \langle z \rangle$ is a cyclic q-group of order q^r with $r \geq f$ such that $a^z = a^i$, $b^z = b^{i^j}$.

Following Van der Waall and Fransman [12], we say that a group G is a T_0 -group (respectively, a PT_0 -group, a PST_0 -group) if $G/\Phi(G)$ is a T-group (respectively, a PT-group, a PST-group).

As a consequence of Theorem B, [2, Theorems 6 and 8] and the fact that the class of soluble PST-groups is subgroup-closed, we have the following result.

Corollary 2. Let G be a group. The following statements are equivalent:

- 1. Every subgroup of G is a PST_0 -group.
- 2. Every subgroup of G is a PST-group.
- 3. G is a soluble PST-group.

Assume now that every subgroup of G is T_0 -group. By Corollary 2, G is a soluble PST-group. Applying Agrawal's theorem [1], G has an abelian normal Hall subgroup D of odd order complemented by a nilpotent subgroup B such that every subgroup of D is normal in G. Consequently, B' centralises every subgroup of D.

In fact we have:

Theorem D. Let G be a group. The following statements are pairwise equivalent:

- 1. G is a soluble PST-group,
- 2. G is supersoluble and has a normal abelian subgroup D of odd order and a nilpotent subgroup B such that G = DB, with gcd(|D|, |B|) = 1, $B' \subseteq G$ and G/B' is a T-group, and

- 3. Every subgroup of G is a T_0 -group.
- 4. Every subgroup of G is a PT_0 -group.

Note that Van der Waall and Fransman's theorem [12, Theorem 3.10] is the equivalence between 2 and 3.

Applying these results, we are able to give an alternative proof of the main result of [3]. We will also use the following result, which is a particular case of a theorem proved in [6].

Theorem E. Let G be a p-soluble group such that all proper subgroups of G belong to \mathcal{U}_p^* , but G itself does not belong to \mathcal{U}_p^* . Then G has a normal Sylow p-subgroup P which is complemented by a non-normal cyclic subgroup whose order is a power of a prime $q \neq p$.

Theorem F. Assume that every proper subgroup of a group G is a T_0 -group, but G itself is not a T_0 -group. Then:

- 1. G = PQ, where P is a Sylow p-subgroup of G and Q is a Sylow q-subgroup of G for some distinct primes p and q;
- 2. $P \triangleleft G$ and Q is a non-normal cyclic subgroup of G;
- 3. $G/\Phi(G)$ is a minimal non-T-group.

2 Proofs

Proof of Theorem A. Let \mathfrak{F} be a formation contained in the class \mathcal{U}_p^* . Assume that G is a group such that $G \in \mathfrak{F}$, but G is not p-nilpotent. Given a group X, let us denote by X(p) the p-nilpotent residual of X. Since \mathfrak{F} is a formation, we have that $H = G/O_{p'}(G(p))$ belongs to \mathfrak{F} . By [4, Theorem A], H(p) is an abelian normal Sylow p-subgroup of H such that the elements of H induce power automorphisms in H(p). Since H is not p-nilpotent, there exists a p'-element $x \in H$ such that x does not centralise H(p). On the other hand, since \mathfrak{F} is a formation, we have that $H \times H \in \mathfrak{F}$. Moreover $H \times H$ does not belong to \mathcal{U}_p^* , because (x,1) centralises the p-chief factors of the second factor of the direct product, but does not centralise the p-chief factors of the first factor, a contradiction.

Proof of Theorem B. It is clear that if G is a \mathcal{U}_p^* -group, then for every $H \leq G$, H is a \mathcal{U}_p^* -group and hence $H/\Phi(H)$ is a \mathcal{U}_p^* -group.

Assume that the converse is false. Let G be a group of minimal order such that for every subgroup H of G, $H/\Phi(H)$ is a \mathcal{U}_p^* -group, but G itself is

not a \mathcal{U}_p^* -group. By minimality of G, we have that all proper subgroups H of G belong to \mathcal{U}_p^* , but G itself does not. By Theorem C, it follows that G has the form G = [P]Q, where p and q are primes such that $q^f \mid p-1$, with $f \geq 1$, i is a primitive root of unity modulo p, $j = 1 + kq^{f-1}$, with 0 < k < q, $P = \langle a, b \rangle$ is an elementary abelian group of order p^2 , $Q = \langle z \rangle$ is a cyclic q-group of order q^r with $r \geq f$ such that $a^z = a^i$, $b^z = b^{i^j}$. Since $\langle a \rangle$ and $\langle b \rangle$ are normal subgroups of G, it follows that $\langle a \rangle Q$ and $\langle b \rangle Q$ are maximal subgroups of G. Hence $\Phi(G) \leq \langle a \rangle Q \cap \langle b \rangle Q = Q$. Therefore $G/\Phi(G)$ can be expressed as a semidirect product of an elementary abelian normal subgroup $\langle \bar{a}, \bar{b} \rangle$ of order p^2 by a cyclic subgroup $\langle \bar{z} \rangle$ such that $\bar{a}^{\bar{z}} = \bar{a}^i$ and $\bar{b}^{\bar{z}} = \bar{a}^{i^j}$. Since $G/\Phi(G)$ satisfies \mathcal{U}_p^* , it follows that $\langle ab \rangle$ is normalised by z. Hence $a^i b^{i^j}$ belongs to $\langle ab \rangle$, which implies that $i^j \equiv i \pmod{q^f}$. Thus $j \equiv 1 \pmod{q^f}$, but $j = 1 + kq^{f-1}$ with 0 < k < q, a contradiction. Hence G belongs to \mathcal{U}_p^* .

Proof of Theorem D. (1) implies (2) Assume that G is a soluble PST-group. By Agrawal's theorem [1], there exists an abelian Hall subgroup D of odd order complemented by a nilpotent subgroup B such that every subgroup of D is normal in G.

Let $d \in D$. Since $\langle d \rangle$ is a normal subgroup of G, it follows that $G/C_G(\langle d \rangle)$ is abelian. Hence $B' \leq C_G(\langle d \rangle)$. It follows that $B' \leq C_G(D)$. Consequently, B' is a normal subgroup of G. Since G is a soluble PST-group, we have that G/B' is a PST-group. Moreover, all Sylow subgroups of G/B' are abelian, because they are Sylow subgroups of the abelian group D or isomorphic to Sylow subgroups of the abelian group B/B'. Therefore, G/B' is a T-group by [5, Theorem 2].

(2) implies (3) Assume that G is a supersoluble group with an abelian normal Hall subgroup D of odd order complemented by a nilpotent subgroup B such that B' is normal in G and G/B' is a T-group. Since B is nilpotent, we have that $B' \leq \Phi(B)$. Hence $B' \leq \Phi(G)$, because B' is a normal subgroup of B. In particular, $G/\Phi(G)$ is a soluble T-group.

Let H be a subgroup of G. Since G is a soluble PST-group, we have that H is a soluble PST-group. Hence the nilpotent residual $H^{\mathfrak{N}}$ of H is a normal Hall subgroup of H of odd order complemented by a subgroup H_B which can be assumed to be contained in B. Since $(H_B)' \leq B'$ and $(H_B)' \leq \Phi(H_B)$, because H_B is nilpotent, and $(H_B)'$ is a normal subgroup of H, we obtain that $(H_B)' \leq \Phi(H)$. Hence $H/\Phi(H)$ is again a soluble T-group. Hence G is a T_0 -group.

It is clear that (3) implies (4). Assume now that every subgroup of G is a PT_0 -group. Then every subgroup of G is a PST_0 -group. By Corollary 2, it follows that G is a soluble PST-group. Therefore (4) implies (1) and the

circle of implications is complete.

Proof of Theorem F. Assume that G is a minimal non- T_0 -group. Then all proper subgroups of G are T_0 -groups. From Theorem D, we have that all proper subgroups of G are soluble PST-groups. In particular, all proper subgroups of G are supersoluble, which implies that G itself is soluble (see [11]).

If G were a PST-group, then G would be a T_0 -group by Theorem E, a contradiction. Therefore G is not a PST-group. Hence there exists a prime p such that G is a minimal non- \mathcal{U}_p^* -group. By Theorem E, G can be expressed as G = PQ satisfying conditions 1 and 2.

Since $\Phi(P) \leq \Phi(G)$ because P is a normal subgroup of G, it follows that $G/\Phi(G)$ has a normal abelian Sylow p-subgroup $P\Phi(G)/\Phi(G)$. Consequently, $G/\Phi(G)$ has abelian Sylow subgroups. Since every subgroup of G is a soluble PST-group, it follows that every proper subgroup of $G/\Phi(G)$ is a soluble PST-group, and since Sylow subgroups of $G/\Phi(G)$ are abelian, all proper subgroups of $G/\Phi(G)$ are T-groups by [5, Theorem 2]. Hence $G/\Phi(G)$ is a minimal non-T-group, as desired.

References

- [1] R. K. Agrawal. Finite groups whose subnormal subgroups permute with all Sylow subgroups. *Proc. Amer. Math. Soc.*, 47(1):77–83, 1975.
- [2] M. J. Alejandre, A. Ballester-Bolinches, and M. C. Pedraza-Aguilera. Finite soluble groups with permutable subnormal subgroups. *J. Algebra*, 240(2):705–721, 2001.
- [3] M. Asaad and A. A. Heliel. Finite groups in which normality is a transitive relation. *Arch. Math.* (Basel), 76:321–325, 2001.
- [4] A. Ballester-Bolinches and R. Esteban-Romero. Sylow permutable subnormal subgroups of finite groups II. *Bull. Austral. Math. Soc.*, 64(3):479–486, 2001.
- [5] A. Ballester-Bolinches and R. Esteban-Romero. Sylow permutable subnormal subgroups of finite groups. J. Algebra, 251(2):727–738, 2002.
- [6] A. Ballester-Bolinches, R. Esteban-Romero, and D. J. S. Robinson. On critical finite groups. Preprint.

- [7] J. C. Beidleman, B. Brewster, and D. J. S. Robinson. Criteria for permutability to be transitive in finite groups. *J. Algebra*, 222(2):400–412, 1999.
- [8] J. C. Beidleman and H. Heineken. Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups. Preprint.
- [9] R. A. Bryce and J. Cossey. The Wielandt subgroup of a finite soluble group. J. London Math. Soc., 40(2):244–256, 1989.
- [10] W. Gaschütz. Gruppen, in dennen das Normalteilersein transitiv ist. *J. reine angew. Math.*, 198:87–92, 1957.
- [11] D. J. S. Robinson. Minimality and Sylow-permutability in locally finite groups. *Ukr. Math. J.*, 54(6):1038–1049, 2002.
- [12] R. W. Van der Waall and A. Fransman. On products of groups for which normality is a transitive relation on their Frattini factor groups. *Quaestiones Math.*, 19:59–82, 1996.
- [13] G. Zacher. I gruppi risolubli in cui i sottogruppi di composizione coincidono con i sottogrupi quasi-normali. Atti Accad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur. (8), 37:150–154, 1964.