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Abstract—Vascular events are the main cause of premature
death and disability in the developed countries, where there is
great interest in the development of computational tools for their
early detection. A very relevant variable for their study is the
heart rate, that can be analyzed through heart rate variability
(HRV). Furthermore, high blood pressure is an important risk
factor for most cardiovascular diseases. In fact, small reductions
in blood pressure are known to markedly reduce cardiovascular
morbidity and mortality. This study evaluates the predictive
value of short-term HRV (STHRV) by developing models based
on data mining algorithms to stratify the risk of vascular
events from hypertensive patients. For this specific framework,
the performance of various machine learning models (Random
Forest, Support Vector Machines, Gaussian Naive Bayes, K-
N Nearest Neighbours and Logistic regression), trained with
different time lengths of 5, 30 and 60 minutes of HRV features
during sleep stage was compared. The analyzed HRV parameters
were associated to time, frequency and nonlinear features. A
total of 139 Holter recordings from hypertensive patients of
whom 17 developed a vascular event were analyzed. Results
indicated that classification models developed using STHRV, with
only 5 minutes length, provided similar or even better results
than those developed with longer time series. Furthermore, the
STHRV models provided a higher sensitivity and a slightly higher
F1 score. The best one, based on Support Vector Machines,
yielded 88.2% sensitivity and 75% F1 score. Thus, this research
suggests the feasibility of STHRV analysis for risk stratification
of hypertensive patients to anticipate serious vascular events.

Keywords—Heart rate variability; HRV; blood pressure; hy-
pertension; machine learning; classification models; vascular
event.

I. INTRODUCTION

A report from the World Health Organization classifies car-
diovascular diseases (CVD) as the main causes of mortalities
in the last century, from the years 2000 to 2019, [1]. In this
report, ischemic heart diseases and strokes are revealed as the
two main factors of death around the world uninterruptedly
since 2000. In fact, ischemic heart diseases led to more than 9
million of deaths only in 2019 and the 16% of deceases in this
century. It is well known the impact of hypertension on the risk
of many CVDs [2] and there is a clear link hypertension and

the occurrence of serious cardiovascular events [3]. It has been
suggested that hypertension may result in a reduced adaptation
of the autonomic nervous system to haemodynamic changes.

Heart Rate Variability (HRV) analysis is used to investigate
in a non-invasive way the influence of autonomic nervous
system on the electric heart activity [4]. HRV has an incredible
potential to provide insights into physiological and patho-
logical conditions and to enhance risk stratification through
the use of 24-hour electrocardiographic (ECG) monitoring
technology. A low or depressed heart rate variability (HRV),
where the sympathetic system dominates, may reduce this
adaptation and anticipate a CVD [5], [6]. Therefore, HRV
analysis could help to identify patients at higher risk of a
potential vascular event and provide the possibility of acting
accordingly in a preventive sense. The aim of this study
is to validate the feasibility of using 5 minutes short-term
HRV (STHRV) analysis to stratify vascular events’ risk in
hypertensive patients. Different time-lengths of HRV analysis
will be compared to assess if performance of risk classification
decreases with smaller lengths of HRV time series.

II. MATERIALS

The database Smart Health for Assessing the Risk of Events
via ECG, collected at the Centre of Hypertension of the Uni-
versity Hospital Federico II was retrieved from Physionet [7].
It consisted of samples of 24-h ECG Holter recordings from
139 patients, plus other details such as vascular characteristics
evaluated by cardiac and carotid ultrasonography.

Patients aged over 55 years (49 female and 90 male) were
followed up for 12 months after the recordings and labelled
whether they suffered major cardiovascular or cerebrovascular
events. 17 patients suffered a major event (11 myocardial
infarctions, 3 strokes, 3 syncopal events). This database has
already being tested [8], but due to the low proportion of
patients who suffered an event and patients who did not (17
and 122), the authors altered the dataset with oversampling
techniques. In the present work, the dataset was neither altered
nor oversampled.



III. METHODS

A. Extraction and preprocessing of RR series

Samples were obtained during patient’s sleep at night,
which is assumed to be between 00:00 A.M. and 06:00 A.M..
HRV analysis during sleep stages is preferred and highly
valued, because HRV is relatively high, whereas the presence
of different cardiovascular diseases can make HRV lower
due to a loss in activation capacity of vagus nerves [9].
Furthermore, ECG contamination due to patient’s muscular
activity is reduced at night. Excerpts of 5 minutes, 30 minutes
and 1 hour in length were randomly extracted from the ECG
recordings of the each patient. The global process is illustrated
in Fig. 1. Since recordings were sampled at 128 Hz and
guidelines about HRV analysis suggest a minimum sampling
frequency of 250 Hz [4], all the signals were accordingly
upsampled to 256 Hz.

R peaks from the ECG were detected by the Pan-Tompkins
algorithm [10]. Then, RR time series were obtained calculating
the difference between adjacent R points. However, the series
must be corrected from outliers due to noise, missing values
or ectopic beats. This was mostly made by visual inspection.

Possible outliers were identified first by some physiological
decision rules such as longer than 2000 ms or shorter than
345 ms. Also, a simple detection algorithm was developed
based on targeting values out of ± 3 times the standard
division of the detrended series. Finally, a tool to detect
premature ventricular contractions was used [11]. It was based
on the application of a convolutional neural network to the
wavelet transform of the raw ECG channel. The final decision
to label a value as outlier was based on visual inspection.

B. HRV analysis features

Several types of HRV analysis were performed to study
the randomly chosen signal sections. HRV analysis could be
classified as linear analysis in time and frequency domains as
well as non linear analysis. In total, 32 HRV features [4] were
calculated to later develop machine learning models.

• Time domain features. Statistical methods were calculated
such as the mean (AVNN), standard division (SDNN),
the square root of the mean squared of differences of
successive NN intervals (RMSSD), number of successive
differences of NN intervals greater than 50 ms (NN50)
and the proportion of the total (pNN50). Also, geomet-
rical methods were included such as the HRV triangular
index (HRVTi) and the triangular interpolation of NN
interval histogram (TINN).

• Frequency domain features. Power spectral density (PSD)
was computed with Lomb-Scargle periodogram. Fre-
quency was divided in three components: very low
frequency (VLF: 0 − 0.04 Hz), low frequency (LF:
0.04−0.15 Hz) and high frequency (HF: 0.15−0.4 Hz).
Absolute power, relative power and peak frequency was
calculated for every frequency band. Also, spectral power
for LF and HF was normalized. Finally, LF/HF ratio was
included as well as the total PSD.
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Fig. 1. General flowchart applied illustrating the steps carried out.

• Non-linear features. SD1 and SD2 measures from
Poincaré Plot were included. Approximate Entropy and
Sample Entropy were calculated with an embedding
dimension of m = 2 and tolerance of r = 0.2 times
standard deviation of the data. Correlation Dimension
was calculated with the embedding dimension set at 10
and time delay at 5. Detrended Fluctuation Analysis was
also performed with α1 for short-term within range 4−16
beats and α2 for longer fluctuations within range 16−64
beats. Finally, several recurrence plots measures were
obtained such as recurrence rate, maximal length of lines,
mean of length, determinism, and Shannon Entropy.

C. Machine Learning for classification

A total of 5 types of machine learning models were tested
for this framework: Random Forest, Support Vector Machines,
Gaussian Naive Bayes, K-N Nearest Neighbours and Logistic
regression. Due to imbalance of the dataset and the tiny
number of samples for the target class, with only 17 patients,
we opted for using leave-one-out cross-validation. We did not
choose to oversample the dataset, as other previous studies [8],
due to the risk of overfitting with such a few samples. Instead,
classes were balanced with a severe undersampling, randomly
keeping 17 samples from the low-risk class to use a smaller
subset of 34 samples, composed of 17 samples from each
class.

Because the goal of this study is to validate if 5 minutes of
HRV analysis are able to provide similar results than larger
HRV time series, accurate classification models for 5, 30
minutes and 1 hour were developed. To do so, the models
were hyperparameter-tuned with a cross-validation of 17-fold
and later tested with the leave-one-out strategy. Classification
performance was computed using confusion matrix measures:
accuracy, sensitivity, specificity and F1-score.

D. Feature selection

Due to the small number of samples compared to the
number of measures and analysis, three feature selection
algorithms were applied to select the best six predictors
for training classification models in 5, 30 and 60 minutes
segments: χ2 statistics method [12], Minimum redundancy
maximum relevance (mRMR) method [13] and Predictor Im-
portance Estimates by permutation using Random Forest. By
using relevant features, classification algorithms can generally
improve their predictive accuracy, shorten the learning period
and avoid possible overfitting of models, thus increasing the
generalization of their predictions.



TABLE I
PERFORMANCE MEASUREMENTS ESTIMATED BY LEAVE-ONE-OUT FOR 5
MINUTES HRV ANALYSIS. FS: FEATURE SELECTION ALGORITHM, ACC:

ACCURACY, SEN: SENSITIVITY, SPE: SPECIFICITY, F1: F1-SCORE

Model FS ACC SEN SPE F1

RF RF-FS(6) 61.8% 70.6% 52.9% 64.9%
SVM X2-FS(6) 70.6% 88.2% 52.9% 75.0%
NB X2-FS(6) 70.6% 82.4% 58.8% 73.7%
KNN X2-FS(6) 52.9% 47.1% 58.8% 50.0%
LR RF-FS(6) 64.7% 70.6% 58.8% 66.7%

TABLE II
LEAVE-ONE-OUT RESULTS FOR 30 MINUTES HRV ANALYSIS.

Model FS ACC SEN SPE F1

RF X2-FS(6) 64.7% 47.1% 82.4% 57.1%
SVM X2-FS(6) 76.5% 58.8% 94.1% 71.4%
NB mRMR(6) 67.6% 52.9% 82.4% 62.1%
KNN RF-FS(6) 61.8% 52.9% 70.6% 58.1%
LR RF-FS(6) 70.6% 58.8% 82.4% 66.7%

TABLE III
LEAVE-ONE-OUT RESULTS FOR 60 MINUTES HRV ANALYSIS.

Model FS ACC SEN SPE F1

RF RF-FS(6) 67.6% 64.7% 70.6% 66.7%
SVM RF-FS(6) 70.6% 70.6% 70.6% 70.6%
NB X2-FS(6) 47.1% 52.9% 41.2% 50.0%
KNN X2-FS(6) 64.7% 70.6% 58.8% 66.7%
LR RF-FS(6) 64.7% 58.8% 70.6% 62.5%

IV. RESULTS

Tables I, II and III show results of the five classification
models applied. The best model in each case has been bolded.
Figure 2 shows an example of the outcomes of feature
selection methods for the 5 minutes HRV analysis.

In accordance with the general metrics, accuracy (ACC)
and F1-Score, results are similar for the three HRV lengths.
With the exception of KNN, classification models trained
with only 5 minutes of HRV analysis showed a F1 Score of
65% - 75%, with higher sensitivity values than specificity.
In this case, the target class “high-risk” was better classified
while the “low-risk” class tended to be misclassified more
often. Although linear SVM model showed the best sensitivity,
Gaussian NB was also provided as the best performance due
to a smaller imbalance between sensitivity and specificity. NB
classification model showed slightly good accuracy of 70.6%
and a good ability to detect high-risk of 82.4%. F1 score of
this model was 73.7% while SVM showed 88.2% sensitivity
and F1 score of 75%. Although SVM and NB models were
highly good in selecting the target class, specificity was worser
than models in Tables II and III.

For 30 minutes HRV series, F1 scores were slightly lower
than for 5 minutes, providing F1 values between 57% and
71%. The best model was a square polynomial SVM. Its
accuracy was 76.5%, with a specificity for low-risk samples

(a) χ2 feature selection

(b) Out-of-bag RF permutation

Fig. 2. Example of ranking of predictors by two feature selection algorithms
for 5-minutes HRV dataset. (a) χ2 feature selection. (b) Out-of-bag RF
permutation. In Blue are the top 6 ranked predictors, whereas in orange are
the discarded predictors.

of 94.1%. However, sensitivity for the target class was poor,
being only 58.8%. Surprisingly, classification models for this
time period performed much better when it came to dismissing
“low-risk” class, but their general ability to detect “high-risk”
samples was poor. The period of 1 hour provided F1 values
similar to models for 30 minutes, but with classification ability
more balanced. The best classification model was a square
polynomial SVM again, with sensitivity and specificity of
70.6%, therefore, accuracy and F1 score showed 70.6% as
well. In general, the average F1 score of all models was
similar to 30 minutes models, but with a more balanced
predictions, exchanging ability to dismiss “low-risk” samples
for improving detection of “high-risk”.



V. DISCUSSION

Although the goal of this research was to obtain high-
performance classification models able to anticipate serious
vascular events in hypertensive patients, the significant unbal-
ance of the dataset did not allow to do so. Hence, the purpose
of the study was to assess if using only 5 minutes of HRV
time series allowed to train a classification models with similar
performance as classification models trained with significantly
longer time periods. This topic had already been discussed in
the SHAREE project [8], but the authors applied an over-
sampling technique to an extremely small subset of samples
for the target class. Besides, the authors only compared the
HRV analysis with vascular echographic analysis and there
was never an attempt to evaluate longer HRV time series.

As a consequence, this research proposes a new approach
without any oversampling technique, making use of only
34 samples, but with a robust leave-one-out cross-validation
strategy. Obviously, the 34 samples dataset can be considered
as not enough to obtain accurate real performance, but could
be enough to compare the suitability of 5 minutes length HRV
time series with other time lengths. Because of the small num-
ber of samples, a feature selection of the best predictors was
mandatory to avoid overfitting of the classification models.

Although, the average performance was not incredibly high
due to the unbalanced dataset and its small number of samples,
sensitivity in classification models trained with 5 minutes
short-term HRV analysis have provided a high performance
to alert of a possibly important risk of developing serious
vascular events in the incoming year. This outcome is quite
adequate for this topic, where misclassifying sometimes a low-
risk patient is preferable rather than failing in the detection
of high-risk patients. Hence, our results suggest that machine
learning models could be very useful to monitor hypertensive
patients with STHRV excerpts aimed at alerting of potential
cardiac risks. In fact, similar works in the context of sudden
cardiac death have already been done analyzing STHRV time
series with promising results [14].

Finally, sleep stage has been introduced in several studies as
a good condition to perform HRV analysis, due to an absence
of sympathetic activity burst and a more stationary heart
rate [15]. Feature selection algorithms showed that the most
important ones to predict the risk of vascular events were fre-
quency domain features. Thus, the variation of spectral power
in frequency bands of the inter-beat intervals during sleep
could show the adaptation of the autonomous nervous system
and the competition between sympathetic and parasympathetic
branches, which is reduced in hypertensive patients. Next
steps in this research should be collecting a larger number of
samples of hypertensive patients with vascular events to make
sure of representing the real distribution of HRV metrics.

VI. CONCLUSIONS

The present study has demonstrated that five minutes short-
term Heart Rate Variability is a feasible tool to anticipate
serious vascular events in hypertensive patients. Classification
models showed similar performance for the different HRV

series lengths analyzed, but those trained with STHRV showed
a higher sensitivity for 5 minutes analysis and a slightly higher
F1 score metric. Support Vector Machines classifiers provided
the highest performance.
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