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Abstract 

In modeling an Internal Combustion Engine, the combustion sub-model plays a critical role in the overall simulation of 
the engine as it provides the Mass Fraction Burned (MFB). Analytically, the Heat Release Rate (HRR) can be obtained 
using the Wiebe function, which is nothing more than a mathematical formulation of the MFB. The aforementioned 
function depends on the following four parameters: efficiency parameter, shape factor, crankshaft angle, and duration 
of the combustion. In this way, the Wiebe function can be adjusted to experimentally measured values of the mass 
fraction burned at various operating points using a least-squares regression, and thus obtaining specific values for the 
unknown parameters. Nevertheless, the main drawback of this approach is the requirement of testing the engine at a 
given engine load/speed condition. Furthermore, the main objective of this study is to propose a predictive model of the 
Wiebe parameters for any operating point of the tested SI engine. For this purpose, an Artificial Neural Network (ANN) is 
developed from the experimental data. A criterion was defined to choose the best-trained network. Finally, the Wiebe 
parameters are estimated with the neural networks for different operating conditions. Moreover, the mass fractions 
burned generated from the Wiebe functions are compared with the respective experimental values from several 
operating points measured in the engine test bench. Small differences were found between the estimated and 
experimental mass fractions burned. Therefore, the effectiveness of the developed ANN model as a prediction tool for 
the engine MFB is verified. 

Introduction 

Every year the ICE community has to face more and more restriction policies related to the control of pollutant 
emissions and the global problem of greenhouse gases [1]. For this reason, engine manufacturers are obliged to develop 
new technologies to meet these requirements, while maintaining adequate performance at acceptable costs. 

It is well known that spark ignition (SI) engines are currently the most common powerplant in passenger cars. This fact is 
mainly due to the highly efficient three-way catalyst used to control the engine NOx emissions, which is also very cheap 
when compared to the aftertreatment systems required by Compression Ignition (CI) engines in order to maintain the 
stringent pollutant emissions standards [2]. Nonetheless, CI engines are able to provide higher levels of efficiency due to 
the higher range of compression ratios (15:1-22:1) when compared to equivalent SI engines (9:1-12:1) [3]. For this 
reason, researches to improve the performance of SI engines in terms of thermal efficiency while maintaining low levels 
of emissions are of great interest for the transportation industry. In order to affront these challenges, computational 
models play a crucial role. 

The use of engine simulations has become an important part of the design, calibration, and optimization process of SI 
engines. The combustion sub-model is a key piece in the global simulation of an engine since it provides the heat release 
rate (HRR) or mass fraction burned (MFB), that it is the accumulate of HRR, which represents how the combustion 
process is for a given engine geometry and specific operating conditions [4]. Currently, there are many combustion 
models integrated in commercial softwares that are able to accurately reproduce the physicochemical phenomena of 
turbulent premixed flames [5]. These models are well suited to describe the combustion process of SI engines taking into 
account detailed chemistry and turbulence-combustion interactions. However, this type of simulations (3D-CFD) are 
computationally expensive and require a significant amount of time [6]. Therefore, the development of simple 1D and 
0D models to estimate the burning rates of conventional SI engines arises as an interesting solution to overcome these 
limitations. The experimental MFB is determined by applying the first law of thermodynamics in the cylinder of the 
engine using the measured in-cylinder pressure as input [7]. It is common for the MFB to be parameterized, in SI 
engines, from Wiebe functions [8]. This function is composed of a series of parameters related to the combustion 



process, which are the duration of the combustion, the start of combustion, the degree of completeness of the process 
and a shape parameter. These parameters are usually identified using a least squares method (LSM). However, 
experimental data is required in order to obtain them. Moreover, defining empirical relationships between the Wiebe 
parameters and any given operating condition of the engine is a difficult task, as the former depend on multiple 
variables and do not have linear behaviors. To face this problem, Artificial Neural Networks (ANN) can be an effective 
solution and seem to be a suitable procedure for this specific task.  

Nowadays ANNs applications have become popular in various area of human needs [9–14]. The ANN is found to be a 
very innovative and useful model applied to problem-solving and machine learning. A good advantage of applying ANN is 
that it can make models easier to use and more accurate from complex natural systems with large inputs, such as 
internal combustion engines. Using artificial neural networks in the field of internal combustion engines is not a novelty. 
These have been used mainly as predictive models of performance and emissions both in SI engines and in compression 
ignition engines [15–19]. Studies similar to the present work have also been carried out, using neural networks to 
predict the parameters of a dual Wiebe function in Diesel engines using different biofuel blends [20]. However, a 
methodology has not been developed to build an ANN capable of faithfully estimating the Wiebe parameters in an SI 
engine. 

Furthermore, the objective of this research is to develop a novel methodology applying a modern ANN model for 
predicting the parameters of the Wiebe function, using the engine speed and torque as input variables. A robust 
criterion is also proposed in order to select the most accurate ANN. Finally, the ANN model is validated against 
experimental data. This model is of great importance due to its ability to accurately predict the MFB of the engine in a 
wide range of operating conditions with an associated low computational cost. Additionally, the model can be used in 
simulations with driving cycles without major problems, due to the simplicity of its inputs. 

Materials and Procedure  

In the present study, the engine used is a 1.0 L (999 cc) direct-injected, turbocharged, 3 cylinders in line, 4-stroke 
internal combustion gasoline engine. It produces 85.2 kW at 5250 rpm and 182.3 N⋅m at 2250 rpm. The engine features 
are summarized in Table 1. The main components installed in the test bench for correctly measuring pressure, 
temperature, and flows in both the gas and the hydraulic circuits are presented in Table 2. The engine was directly 
coupled to an electric dyno. A test system collects the main mean variables (acquired at a constant sample frequency of 
10 Hz) necessary for controlling the engine operating point and also for the combustion diagnosis. The in-cylinder 
pressure is measured in one of the cylinders using a piezoelectric transducer (AVL GH13P pressure sensor) and sampled 
with constant angular frequency (0.2 degrees of CAD). Additionally, to measure engine emissions, exhaust monitoring 
equipment (Horiba MEXA 7100 and AVL Smoke meter) were installed on the engine. 

Table 1. Engine features. 

Displaced volume 999 cc 

Stroke 72.2 mm  

Bore 81.3 mm  

Connecting Rod 132.51 mm  

Compression ratio 11:1 

Number of Valves 4 per cylinder 

Torque (max.) 182.3 N⋅m @ 2250 rpm 

Power (max.) 85.2 kW @ 5250 rpm 

The experimental campaign conducted for this study considered various steady-state operating conditions within the 
engine performance map. Seventy-one points of constant operation are performed (Fig. 1): sixty-one points from the 
low load (3 BMEP) to high load (around 22 BMEP), and speeds from 1000 rpm to 5250 rpm with a step of 500 rpm, thus 
covering a wide engine map range; the remaining ten points range from 1000 rpm to 5250 rpm at full load. Also, ten 
points going from 1000 rpm to 5250 rpm in motoring conditions were measured. They have used to obtain the main 
uncertainties of the engine: compression ratio, heat transfer coefficients, thermodynamic delay, and deformations 
coefficient. 



Table 2. Instrumentation of the test bench. 

Variable Instrument range 

Engine speed Dynamometer 0-7500 rpm 

Torque Dynamometer 0-400 Nm 

Air mass flow Flowmeter 0-1700 kg/h 

In-cylinder pressure AVL GH13P 0-200 bar 

Fluid temperature k-type thermocouple 70-1520 K 

Coolant flow OPTIFLUX 4000 4.5-90 L/min 

Oil pressure Piezoresistive transducer 0-10 bar 

Emissions Horiba MEXA 7100   

Emissions AVL Smoke meter  

 

 

Figure 1. Steady-state operating points measured 

Thermodynamic model 

In order to get the mass fraction burned, it is necessary to use a thermodynamic model. To do this, a home-developed 
combustion diagnostic tool called CALMEC [7] was used. The main input of the model is the filtered pressure signal. The 
first law of thermodynamics is applied between IVC and EVO. It uses the ideal gas equation of state to calculate the 
mean gas temperature in the chamber. Along with the two basic equations, several sub-models are used to calculate 
instantaneous mass, volume, and heat transfer. The main result is HRR and therefore also its accumulated (MFB). In Fig. 
2 a general scheme of the process is shown. A detailed description of this tool can be found in [7], being the main 
hypotheses the following: 

- Chamber pressure and temperature are supposed to be spatially uniform. 
- Three species (air, fuel vapour, and stoichiometric combustion products) are considered [21]. 
- Perfect gas behavior is assumed for the gas mixture.  
- The internal energy is calculated considering the mean gas temperature. 
- The specific heat of the gas depends on both temperature and composition [22].  
- The chamber volume deformation is calculated employing a simple deformation model [7]: 

∆𝑉𝑉 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑�∆𝑉𝑉𝑝𝑝 + ∆𝑉𝑉𝑖𝑖�                                                                       (1) 

where 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 is a deformation constant to be adjusted, and ∆𝑉𝑉𝑝𝑝 and ∆𝑉𝑉𝑖𝑖 are the volume variations due to pressure and 
inertia efforts, respectively. 

- Heat transfer to the chamber walls is calculated with a modified Woschni model [23], where the convective heat 
transfer coefficient is calculated using Eq. (2): 
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ℎ = 𝐶𝐶𝐶𝐶−0.2𝑝𝑝0.8𝑇𝑇−0.55𝑣𝑣𝑡𝑡0.8                                                                (2) 

where 𝐶𝐶 is a constant value, 𝐶𝐶 the cylinder diameter, 𝑝𝑝 is the instantaneous pressure, 𝑇𝑇 is the instantaneous gas 
temperature and 𝑣𝑣𝑡𝑡 is a tumble-generated gas velocity defined as follow: 

𝑣𝑣𝑡𝑡 = 𝐶𝐶𝑡𝑡1𝑐𝑐𝑚𝑚 + 𝐶𝐶𝑡𝑡2�̅�𝑣𝑚𝑚𝑓𝑓𝑤𝑤 + 𝐶𝐶2
𝑉𝑉𝑑𝑑𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼
𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼

(𝑝𝑝 − 𝑝𝑝0)                                 (3) 

being 𝐶𝐶𝑡𝑡1, 𝐶𝐶𝑡𝑡2 and 𝐶𝐶2 constant values, 𝑐𝑐𝑚𝑚 the mean piston speed, 𝑉𝑉𝑑𝑑 the displaced volume, 𝑇𝑇𝐼𝐼𝑉𝑉𝐼𝐼, 𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼, 𝑝𝑝𝐼𝐼𝑉𝑉𝐼𝐼  the 
temperature, volume and pressure at IVC respectively, 𝑝𝑝0 is the motoring pressure assuming polytropic evolution, �̅�𝑣𝑚𝑚 is 
the gas mean velocity during the intake process and 𝑓𝑓𝑤𝑤 is a tumble gas velocity dissipation function (see [23] for the 
details of the calculation). 𝐶𝐶𝑡𝑡1 and 𝐶𝐶𝑡𝑡2 are constants whose values are fitted (along with 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑) from motoring tests on a 
specific engine. Finally, the calculation of the heat flux to the wall requires the estimation of the wall temperatures. A 
wall temperature prediction model based on a thermal resistor network, which is integrated in the combustion diagnosis 
tool CALMEC, is used to calculate the mean temperature of the liner, piston and cylinder head as explained in detail in 
[24,25]. 

 

Figure 2. CALMEC general scheme 

Wiebe Combustion Modeling 

A combustion sub-model is helpful when performing a general engine simulation. One of the most used models for this 
purpose is the Wiebe function [4]. The Wiebe function is extensively used in ICE applications to describe the MFB in a 
combustion chamber during the combustion process. This function has an S-shaped characteristic curve, which raises 
from zero indicating the start of combustion and tends exponentially to one indicating the end of combustion. The 
Wiebe function is expressed as (Eq. 4): 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1 − 𝑒𝑒𝑒𝑒𝑝𝑝 �−𝑎𝑎 �𝜃𝜃−𝜃𝜃0
∆𝜃𝜃

�
𝑚𝑚+1

�                                                    (4) 

Where 𝑎𝑎 is an efficiency parameter; 𝜃𝜃 is the crank angle; 𝜃𝜃0 represents the start of combustion; ∆𝜃𝜃 is the combustion 
duration and 𝑚𝑚 is a shape factor.  

The objective of this research is to determine these parameters in order to know the heat release rate at any engine 
operating condition. The efficiency parameter 𝑎𝑎 is stated to be 6.9078 [26,27] for a combustion duration of 0-99.9% . 
Another parameter that is known is the start of combustion, since it is established that it coincides with the spark timing 
which is obtain experimentally, and it is considered to be a good approximation [28]. Therefore, only two parameters 
remain to be determined, which are the duration of combustion ∆𝜃𝜃 and the form factor 𝑚𝑚, which are established by 
adjusting the function with the least squares method to coincide with the MFB obtained experimentally from the 
thermodynamic model.  

Artificial Neural Network Model 

ANN architecture  

Artificial neural networks are a logic programming technique which try to emulate the functioning of the human brain, 
specifically, the nervous system. This computational model bases its structure on a set of nodes known as neurons that 
are interconnected. The network works like a “black box”; hence it does not require detailed information from the 
system. They have the ability to handle large and complex data arrays with many interrelated parameters and learn 
from these to create a transfer function. 



 

Figure 3. Configuration of artificial neural networks for predicting Wiebe parameters. 

As shown in Fig. 3, the input layers of the two proposed ANNs are composed of two input neurons: one for engine speed 
and one for torque. In both, only a hidden layer is made up of 10 neurons. Finally, the output layer for each network is 
formed by a neuron, being for one case the duration of combustion ∆𝜃𝜃 and for the other, the form factor 𝑚𝑚, these being 
the two Wiebe parameters to be estimated. The back-propagation learning algorithm has been used in feed forward. 
The input layer neurons take information from the outside environment and transfer them to the neurons of the hidden 
layer without performing any calculation. The hidden layer neurons then handle the incoming information and extract 
useful features to recreate the mapping from the input. The nearby layers are interconnected by weights. Finally, the 
output layer neurons give network prediction.  

ANN training and selection  

The ANN model has two distinct steps: training and testing. In training, the network is taught to estimate output values 
relative to input data. The testing step is to quantify how well the ANN can predict foreign values from the lesson it 
learned in the past. When the tested error achieves a previously established tolerance value, the training process is 
completed [11,12]. Exhaustive information about ANN and its working principles can be found in [10]. In this study, a 
computer program has been developed and performed under Matlab. In the construction of the ANN architecture, 71 
data sets from the experimental matrix, are used in the training and testing process. According to research works in the 
literature, it is found that different proportions for training and testing data could be used [17,18]. In this study, training 
and testing data ratios are taken as approximately 70%:30% respectively. Therefore, 50 training and 21 testing datasets 
are randomly selected from all the experimental data. The learning algorithm used in the study is Levenberg–Marquardt. 
Due to the size of the considered neural network and its predictive nature, the chosen algorithm is considered the 
fastest and the most accurate by numerous sources such as [18,20,29]. 

In order to achieve optimal training of neural networks, a process was developed in the same program, which consists of 
generating a large number of randomly trained networks and then evaluating the performance of their prediction 
according to statistical criteria such as the absolute mean error (MAE) and the determination coefficient (𝑅𝑅2), and thus 
be able to select the most convenient one. MAE and 𝑅𝑅2 are represented in the following equations: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑡𝑡𝑖𝑖−𝑜𝑜𝑖𝑖

𝑡𝑡𝑖𝑖
�𝑖𝑖                                                                    (5) 



𝑅𝑅2 = 1 − �∑ (𝑡𝑡𝑖𝑖−𝑜𝑜𝑖𝑖)2𝑖𝑖
∑ (𝑡𝑡𝑖𝑖)2𝑖𝑖

�                                                                      (6) 

Where 𝑡𝑡𝑖𝑖 is the target value, in this case, the experimental or value estimated by LSM, 𝑜𝑜𝑖𝑖 is the output of the ANN and 𝑛𝑛 
is the number of samples, that is, 71. 

In this study, 100 neural networks were generated for each output. After generating them, the mean absolute error 
(MAE) is calculated. This is an important criterion since the ANN with the smallest error should estimate more 
accurately. However, due to previous experiences using artificial neural networks, it was also decided to evaluate the 
performance of the ANN prediction according to a criterion of "sensitivity", defining this as how prone the ANN is to 
erroneously predict with slightly disturbed input data. The mathematical expression for this criterion is given by Eq (7). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝 = 1
𝑛𝑛
∑ �𝑜𝑜𝑖𝑖−𝑜𝑜𝑝𝑝,𝑖𝑖

𝑜𝑜𝑖𝑖
�𝑖𝑖                                                                        (7) 

where 𝑜𝑜𝑝𝑝,𝑖𝑖  is the ANN output with slightly disturbed input values. These input values were disturbed by subtracting 1% 
from their value. 

Results 

Comparison of Experimental and Adjusted Mass Fraction Burned 

As described above, the first step of this work was to obtain the mass fraction burned from the experimental tests with 
the combustion diagnostic tool. Once this was achieved, the least squares method was carried out, adjusting to the 
Wiebe function in each of the tests, and thus obtaining the Wiebe parameters. 

In figure 4, a comparison between the MFB obtained by the thermodynamic model and the fitted with LSM is 
represented. Only four representative tests are shown, trying to cover different points of the engine operation map. 
Nevertheless, the methodology was made for all 71 operating points. As can be seen, except for some differences at the 
beginning (0% -25% ∆𝜃𝜃) and end of the combustion (70% -100% ∆𝜃𝜃), the adjustment is quite reliable throughout the 
combustion process. The differences may be due to various sources in the thermodynamic model, the main suspect 
being cycle-cycle variation in-cylinder pressure, which is usually high in spark-ignition engines. If in the measurement 
there are pressure curves that are very atypical, these considerably influence the estimated mean pressure, and 
therefore the MFB, which depends to a great extent on this variable. Observing the four curves in Fig. 4, it can also be 
concluded that establishing the spark timing as the start of combustion do not represent great inconveniences, since in 
all curves the start of combustion is well approximated. 

However, despite these slight deviations, a faithful reproduction of the behavior of the MFB curve is made for different 
operating conditions. Due to these results, it is verified that the Wiebe parameters obtained by LSM are acceptable to 
reproduce the heat release at the measured operating points.  

Evaluation and Selection of Artificial Neural Networks 

Once all the Wiebe parameters were obtained for the measured operating conditions by the LSM, an artificial neural 
network model was developed in order to have a tool capable of estimating these parameters for any operating point. 
For this purpose, and following the aforementioned methodology, 100 ANN were generated for each output 
(combustion duration and shape factor). 

Fig. 5, shows a map of points for each output, where each point represents a generated ANN, the abscissa axis is the 
MAE, and the ordinate axis represents the sensitivity. The vertical and horizontal red lines represent the average of the 
MAE and MAEp respectively. In this step, an analysis of the impact that sensitivity has on the prediction performance of 
the networks is carried out. For this, two points were selected on each map: the one with the lowest MAE and another 
point that represents a compromise between error and sensitivity. To fulfill this criterion, the point chosen corresponds 
to an error and sensitivity that are both considerably below the average for the considered sample, which can easily be 
appreciated and selected from the aforementioned figure. Both points are marked in a red circle in Fig. 5. 



 

Figure 4. Comparisons of MFB obtained by LSM and experimental obtained by CALMEC. 

The comparison between the ANN prediction and the data obtained by the least-squares method, for each of the 
selected ANNs, is observed in Fig. 6. In both cases, it can be seen that the ANN with the lowest MAE has a greater 
number of points on the reference line, indicating that it performs a better prediction of the parameters. In Fig. 7, a 
comparison is shown between the values estimated by the ANN and the same, but with the input data slightly disturbed. 
Visually it is difficult to distinguish differences, however, as expected, the determination coefficient of the predictions 
with the less sensitive ANNs is higher, which is why they are more robust networks. On the other hand, the differences 
between determination coefficient for combustion duration and shape factor are very small (0.18% and 0.02% 
respectively), so it can be concluded that selecting the network with the lowest MAE is the most convenient for this type 
of application. 

 

Figure 5. ANN maps evaluating MAE and MAEp. 

-10 -5 0 5 10 15 20 25 30 35
CAD [º]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experimental
LSM

-10 -5 0 5 10 15 20 25 30
CAD [º]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experimental
LSM

-10 0 10 20 30 40 50 60
CAD [º]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experimental
LSM

-10 0 10 20 30 40 50
CAD [º]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experimental
LSM

(a) 1000 RPM  - 6  BM EP (b) 1500 RPM  - 9  BM EP

(c) 3000 RPM  - 21 BM EP (d) 4000 RPM  - Full Load

0.025 0.03 0.035 0.04 0.045 0.05 0.055
MAE

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
ANNs for output: m

100 ANNs trained

0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03
MAE

5

6

7

8

9

10

11 10-3

100 ANNs trained



 
Figure 6. Comparisons of ANN predicted values and LSM obtained values. 

 

Figure 7. Comparisons of ANN predicted values and ANN predicted values with perturbed input data. 
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Comparison of Experimental and Estimated Mass Fraction Burned 

Finally, with the neural networks trained and selected, a comparison was carried out between the mass fraction burned 
curves generated from the Wiebe function with the parameters estimated by the ANN and the experimental MFB, 
considering their cycle-to-cycle variation. This comparison is represented in Fig 8. As before, four representative 
operating points were selected to analyze results with different conditions. Like the comparison made of the MFB 
generated with the parameters obtained by LSM, the predicted curves generally approximated well to the experimental 
one. Mainly, differences are found in the initial and final stages of the combustion process. Rather than being due to 
inaccuracies in the neural network model, this is due to the errors carried in the thermodynamic model.  

Additionally, the Fig. 8 includes the MFB of each cycle, thus representing the cyclic dispersion. It is appreciated that the 
cycle-to-cycle dispersion of the engine is very high, for this reason, the estimate made by the ANN can also be validated, 
since, despite the differences already mentioned between the results obtained by the ANN and the MFB media obtained 
by the thermodynamic model, the estimate is always located between the limits established by the cyclic dispersion. 
These results are satisfactory since it is concluded that the network is capable of predicting Wiebe parameters, with 
which the heat release of the engine studied can be faithfully reproduced at any point of operation. 

Furthermore, the model has a great feature, and that is that its inputs (engine speed and torque) are very basic 
variables, and no sub-model or experiment is necessary to obtain them. This makes the model very versatile since it can 
be implemented to get the heat release rate of the engine in a transient state. Just by knowing the driving cycle, the 
model can estimate the Wiebe parameters at any time during this. 

 

 

Figure 8. Comparisons of ANN predicted MFB and experimental with cyclic dispersion included. 
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Summary/Conclusions 

A neural network model capable of predicting the parameters of a Wiebe function was developed to estimate the MFB 
at any operation point of a spark ignition engine, and it was compared with experimental MFBs obtained with a 
combustion diagnostic tool. It was verified that a single Wiebe function and only adjusting by the method of least 
squares of the parameters ∆𝜽𝜽 and 𝒎𝒎, is sufficient to obtain a good estimate of the heat release rate of the tested 
engine. Setting the spark timing as the start of combustion was a good approximation. 

For the training and selection of artificial neural networks, an innovative methodology was developed to achieve the 
most accurate and robust network possible. For each output, 100 random ANNs were generated. Subsequently, two of 
the ANNs were selected to analyze the importance of the MAE and sensitivity as indicators for selecting the best 
network. It was determined that the sensitivity was less critical than the mean absolute error for the studied cases. 
Therefore, the network with the lowest MAE was selected. 

The neural network model was validated by comparing the predicted MFB with the experimental one, obtaining a great 
similarity. Some differences in the curve, especially at the beginning and end of the combustion process, are due to 
errors attributed to the thermodynamic model, specifically to the variation between cycles in the cylinder pressure. 
Nonetheless, the robustness of the model has been verified, making it a very versatile tool for both predicting Wiebe 
parameters in any engine operating condition (speed/torque) and implementing it on real driving cycle simulations to 
assess the performance of the engine in a full vehicle model. In addition, due to its benefits, the methodology could be 
useful to support engine design from the early stage of development. 

Finally, this study was limited to a single architecture. For future work, it could be interesting to use the methodology 
proposed in other engine architectures, with the intention of verifying that the procedure works in different settings. In 
this way, for future improvements, the ANN could be tested by considering a greater number of input variables. It is 
possible that by doing this type of study, an input variable that has a great impact on some Wiebe parameter is found, 
and in this way to be able to perform a parametric analysis. 
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