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Abstract—The measurement of blood pressure (BP) in an
uninterrupted and comfortable way for the subject is essential
for early diagnosis and monitoring of cardiovascular diseases
(CVD). In fact, hypertension is the main risk factor for CVD
because, being a hidden health problem with no symptoms
until late stages of the disease are reached. This work in-
vestigates whether deep neural network models are able to
discriminate between healthy and hypertensive subjects based
on photoplethysmographic (PPG) recordings, without the need
of electrocardiographic (ECG) recordings as well as avoiding
manual morphological feature extraction, as has been popularly
used in many previous studies. Recordings analyzed consisted of
635 simultaneous PPG and arterial blood pressure (ABP) signals
from 50 different patients. The classification was performed with
GoogLeNet, ResNet-18 and ResNet-50 pretrained convolutional
neural networks (CNN) using as input images the scalogram of
PPG segments obtained by continuous wavelet transformation
(CWT). Additionally, Adam and SGDM training solvers were
used to compare classification performance. After applying early
stopping to avoid overfitting, training was performed with more
than half of the epochs using Adam optimizer. ResNet-18 CNN
provided the highest classification performance with sensitivity of
95.68%, specificity of 93.65%, F1-score of 95.61% an Area under
the Roc area of 98.77%. Hence, the application of deep neural
network classification models using time frequency transforma-
tion of PPG recordings has been able to provide outstanding
results in blood pressure classification without requiring neither
morphological feature extraction nor ECG features.
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I. INTRODUCTION

High blood pressure (BP) is the predominant risk fac-
tor for many cardiovascular disease (CVD) as heart failure,
atrial fibrillation and stroke among others [1]. Successful BP
measurement and control are, consequently, essential for the
prevention and early diagnosis of CVD. Conventional cuff-
based devices for BP measurement are not designed to provide

continuous information throughout the day as need periodic
inflation and deflation of the cuff, being uncomfortable and
difficult to monitor BP continuously. New wearable blood
pressure monitors are expected to enable frequent and accurate
measurements with the least stress for the patient in order to
detect and manage hypertension in all kind of situations, not
only in the office [2].

The most frequently used cuff-less methods to detect and
discriminate hypertension combine machine learning tech-
niques with photoplethysmographic (PPG) and electrocar-
diographyc (ECG) recordings. Features extracted from these
signals, as pulse transit time (PTT) and pulse arrival time
(PAT), offer acceptable accuracy in Machine Learning based
methods [3], [4]. However, synchronized PPG and ECG are
required together with accurate feature extraction. Recently,
Deep Learning has become a powerful method in image classi-
fication problems since convolutional neural networks (CNNs)
extracts discriminative and robust features automatically with
self learned mechanisms [5]. With the development of neural
networks, many CNN such as GoogLeNet [6] and ResNet [7]
have emerged. These CNNs are pretrained with ImageNet
dataset [8] (more than a million images of 1000 classes)
and use transfer learning via feature extraction to reduce the
amount of data and computational cost compared to training
CNNs from scratch [9].

Recent studies have used image transformation of PPG
recordings by continuous wavelet transform (CWT) to gen-
erate scalograms and use them as input images to pretrained
CNN for BP classification [10], [11]. The aim of this study
is to compare the classification performance of GoogLeNet,
ResNet-18 and ResNet-50 CNNs to discriminate between the
scalogram of PPG waves from normotensive subjects and
prehypertensive or hypertensive patients.



Fig. 1. Block diagram illustrating the deep learning classification methodology employed in the present work.

II. MATERIALS

The dataset was obtained from MIMIC-III Waveform
Database [12], containing quasi-continuous recordings of
biomedical signals of a single patient throughout an ICU stay.
The two signals used were PPG and arterial blood pressure
(ABP), which were obtained using commercial devices, so
often contain artifacts caused by sensor movements or loss of
contact. For this reason, a manual check was carried out to
reject recordings with missing peaks, improbable BP values,
or signals without their characteristic morphology. Finally, 635
recordings from 50 different patients were selected with simul-
taneous and stable ABP and PPG signals with 120 s length
and 125 Hz sampling rates. In order to introduce this method
in the mobile health field, PPG signals are downsampled to 25
Hz, as any morphological feature must be extracted from the
signal and its waveform is preserved. Using lower sampling
rates reduces the power consumption of the cuff-less device
and the amount of data saved and transmitted [13].

III. METHODS

Figure 1 shows an overall block diagram of the whole
process applied in this research to PPG recordings, illustrating
basic signal processing applied, transformation to images, and
CNN classification steps that are going to be described next.

A. Signal Preprocessing

Systolic blood pressure (SBP) was extracted from the mean
values of each ABP wave peaks, and were used to target
each PPG segments in normotensive (NT) and hypertensive
(HT) subjects, with SBP values lower or higher than 120
mmHg, respectively, as defined by the US National Institutes
of Health [14]. As most patients have no symptoms in the
elevated BP stage, prehypertensive (PHT) subjects (120-140
mmHG) are labelled as HT in binary classification to alert
this group as diseased and thus facilitate the prevention and
early diagnosis of hypertension. Additionally, PPG signals

were processed with a 0.5-10 Hz Chebyshev II bandpass filter
of fourth order to remove noise [15]. After these steps, both
signals were cut in 5s length segments, being 15.240 the total
number of segments analyzed.

B. PPG Signal Transformation using CWT

Pretrained CNN used in this work accepts RGB images
as inputs, thus PPG segments were processed by CWT and
transformed to a scalogram, a representation of frequency
along the time with the amplitude of the frequency represented
by the variation of colours. In this study, it has been used the
analytic Morse (3,60) wavelet, setting the VoicesperOctave to
12 to create the CWT. The cone of influence has been included
in the scalogram as represents where occur edge effects in the
CWT and has obtained better classification results. Finally,
RGB images were resized to 224x224x3 to feed the training
models, as is a requirement for the classification.

C. Pretrained Convolutional Neural Networks

Three different deep convolutional neural networks were
evaluated for the hypertension risk classification problem,
GoogleNet [6], ResNet18 and ResNet50 [7] as are the state of
art for feature extraction from images and have been pretrained
to learn how to extract informative features. In this way, the
last learning layer and the final layer of classification are
replaced with new layers adjusted to the new training images.

Training options established a minimum Batch size of
128, the validation frequency is modified depending on the
number of training images, in this case 76, and the maximum
epochs was 25. In order to minimize the effect of overfitting,
early stopping technique stops training automatically when the
validation loss starts to increase.

D. Classification evaluation

CNN models GoogLeNet, ResNet18 and ResNet50 were
evaluated in the classification problem of discriminating be-
tween normotensive and hypertensive image representation of



TABLE I
TRAINING PERFORMANCE COMPARISON OF GOOGLENET, RESNET-18

AND RESNET-50 PROPOSED MODELS

Model Optimizer Epoch Train Loss Valid Loss Valid Acc (%)

GoogLeNet
SGDM 1 1.0579 0.8402 57.49

25 0.2534 0.3594 89.84

Adam 1 1.6798 2.8843 58.72
11 0.0850 0.2191 93.37

ResNet-18
SGDM 1 0.8830 0.8403 48.08

25 0.0331 0.2066 92.96

Adam 1 0.9322 0.7584 61.06
10 0.0146 0.2155 94.84

ResNet-50
SGDM 1 0.9429 0.8619 58.76

22 0.0147 0.2174 92.96

Adam 1 0.8279 1.0282 54.42
8 0.0398 0.2131 93.98

downsampled PPG signals. Data images were divided into
training and test set using a splitting ratio of 80% and 20%,
resulting in 12.192 training images from 508 recordings of 120
segments and 3048 test images from 127 recordings. Training
and test recordings were obtained from different patients. In
addition, the first group was randomly divided again in 80%
for training and 20% for validation, as the validation set was
used to prevent models’ overfitting.

Additionally, effectiveness of the classification from the
models was compared using two different training solvers,
Adam [16] and SGDM [17], with the aim to find the best
training hyperparameter. Finally, classification performance
results of each model with both training solvers were evaluated
with different metrics as Accuracy (Acc), F1-score, Sensitivity,
Specificity and Area Under the ROC Curve (AUC).

IV. RESULTS

A. Training-Validation Classification

Training performance in terms of training loss, validation
loss and validation accuracy obtained by the proposed net-
works at first and last trained epochs are listed in Table I.
Although it was specified in the training options that the
maximum number of epochs is 25, it can be seen that in all
the models in which the Adam optimizer has been used, the
total number of epochs has been between 8 and 11. With this
it can be seen that the early stopping technique has performed
adequately, thus minimizing overtraining.

Table II shows the classification efficiency when the dataset
is randomly divided in training and validation through sta-
tistical metrics. It can be seen that all models achieved
the highest performance represented with F1-score when the
chosen optimizer is Adam. From them, the best classification
results are obtained with ResNet-18 with a sensitivity of
95.68%, specificity of 93.65%, F1-score of 95.61% and AUC
of 98.77%. Nevertheless, superb results are obtained with all
models and optimizers, with F1-score over 91%.

TABLE II
CLASSIFICATION RESULTS COMPARISON OF GOOGLENET, RESNET-18

AND RESNET-50 PROPOSED MODELS

Model Optimizer Sen (%) Spe (%) F1-score (%) AUC (%)

GoogLeNet SGDM 89.38 90.17 91.25 95.88

Adam 94.42 91.87 94.36 97.51

ResNet-18 SGDM 94.70 90.48 94.04 97.72

Adam 95.68 93.65 95.61 98.77

ResNet-50 SGDM 94.56 90.67 94.04 97.71

Adam 94.56 93.15 94.86 98.40

TABLE III
TEST RESULTS COMPARISON OF GOOGLENET, RESNET-18 AND

RESNET-50 PROPOSED MODELS

Model Optimizer Sen (%) Spe (%) F1-score (%) AUC (%)

GoogLeNet SGDM 48.97 60.34 54.93 57.04

Adam 62.84 41.13 60.90 54.98

ResNet-18 SGDM 70.83 51.39 68.51 62.36

Adam 59.59 55.86 62.00 61.45

ResNet-50 SGDM 69.92 44.06 66.18 57.56

Adam 59.25 55.86 61.75 59.67

B. Test Classification

Table III shows test results when 20% of the records,
representing new patients, are used as input images in the
previously trained models. This will test whether the models
correctly classify PPG signal representations of patients that
were not employed in training and validation sets.

The test results show a significant reduction in the classifi-
cation performance using new patients, being ResNet-18 with
SGDM optimizer the combination that obtained the highest
F1- score with 68.51% in addition to sensitivity of 70.83%,
specificity of 51.39% and AUC of 62.36%.

V. DISCUSSION

The development of medical devices that provide continu-
ous BP information is of great interest, as current cuff-based
devices are not compatible with uninterrupted measurement
and monitoring. To this respect, early detection of hyperten-
sion would reduce many cardiovascular diseases, as it is its
main risk factor.

Liang. Y et al. [4] combined PAT and PPG morphological
features to discriminate between NT + PHT vs HT subjects,
achieving a F1 score of 88.49%, being lower than our pro-
posed method. Moreover, they were based on manual feature
extraction, being difficult to accurately identify feature points,
and both PPG and ECG synchronized signals were needed.
Our purposed method is simpler, using only PPG recordings
that are easily obtained with wearable optical sensors, BP
fluctuations are directly reflected in PPG morphology, and the
complex manual extraction of Machine Learning features is



not required as discriminant features are automatically and
robustly obtained from PPG representation images.

This study purpose was to analyze which of the three
most used pretrained CNNs, such as GoogLeNet, ResNet-18
and ResNet-50 with Adam or SGDM training solvers obtain
the best classification performance discriminating between
normotensive and hypertensive subjects using the CWT of
15.240 PPG segments as input. The classification performance
represented in Table II shows outstanding results indepen-
dently of the neural network and optimizer used, achieving
all of them F1-scores higher than 91.25%, although a slight
improvement is appreciated using Adam optimizer. On the
other hand, training performance comparison shows that the
use of Adam optimizer reduces the maximum number of
epochs by more than a half, thanks to the implementation
of early stopping, that will prevent models from overfitting.

Furthermore, test results are significantly lower than val-
idation results, with no classification model exceeding 70%
F1 score. The main reason for this may be due to the fact
that cardiovascular dynamics can be a unique feature for each
subject. Thus, the relationship between BP and PPG signal and
its waveform is not completely generalized for all individuals.
Therefore, it has been found that the classification of new
individuals that have not been used to train the classification
model can be performed with a not so high accuracy, and
requires information and signal segments from the same
individual in the training, validation and test datasets [18].

Results have shown that the three chosen models with both
optimizers are able to classify BP levels with guarantees, being
ResNet-18 CNN with the Adam optimizer the one that has
achieved the best results by combining the highest values of
sensitivity, specificity, F1-score and AUC with a reduction
of the number of epochs to 10, avoiding overfitting. Finally,
the main contributions of this study compared to related
works [10], [19] is the use of subsampled PPG signals which
have potential applications in wearable devices as it would
reduce the use of memory and computational complexity,
the inclusion of PHT subjets to diseased dataset to facilitate
early detection of hypertension and the analysis of Adam and
SGDM optimizers to asses BP level classification.

VI. CONCLUSIONS

The application of deep neural network classifiers com-
bining continuous wavelet transform of PPG recordings and
pretrained CNN models provide superb performance in blood
pressure classification. Furthermore, the main features from
scalograms are automatically extracted and synchronized ECG
recordings are not required for feature extraction. Hence,
their employment is encouraged in wearable devices with
subsampled PPG signals for blood pressure monitoring as
reduce memory and power consumption.
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