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AbstratThis thesis presents a ase of study of the development and performane analysisof a surfae grading appliation with real-time ompliane. The appliation fouseson the erami tile industry and aims to automate the inspetion proess of surfaegrading and removing human inspetors from this subjetive and tedious task. First,an overview of surfae grading works is given. These works have been reported inreent years in many prodution areas suh as erami tile, marble, granite andwood industries.We then address the issue of spatial and temporal uniformity in the aquisitionsystem. In a surfae grading appliation it is ruial to ensure the uniform responseof the system through time and spae. Spatial and temporal uniformity is demon-strated and two illuminating systems (high frequeny uniform �uoresents and whiteLED arrays) are ompared from this point of view.All the results presented for surfae grading were obtained using real data fromthe erami tile industry. One of the aims of the thesis has been to build an ex-tensive image database of erami tile models representing the wide range of e-rami tile surfae lasses. The VxC TSG database is publi and an be aessed atmiron.disa.upv.es/vision/vxtsg/.Afterwards, we present a study of methodologies developed to obtain a fast andaurate approah to surfae grading. From this study is extrated a method basedon soft olour-texture desriptors omputed in pereptually uniform olour spaes.The method is parameterized and the involved fators are studied using two statis-tial proedures; experimental design and logisti regression. Although it is not anew theoretial ontribution, we have found and demonstrate that a simple set ofglobal olour and texture statistis, together with well-known lassi�ers, are pow-erful enough to meet stringent fatory requirements for real-time and performane.Two approahes from literature were also implemented, parameterized and statisti-ally studied for omparative purposes. These methods are Colour Histograms andCentile-LBP.Finally, we explore the method's apaity for on-line inspetion in a study ofreal-time ompliane and parallelization based on luster and MPI tehnologies.



ResumenEsta tesis presenta un aso de estudio para el desarrollo y análisis de una apli-aión de gradaión de super�ies on restriiones de tiempo real. La apliaión seentra en la industria erámia y su objetivo es automatizar el proeso de gradaiónde super�ies sustituyendo a los operadores humanos en esta tarea tediosa y subje-tiva. En primer término, se presenta una revisión de los trabajos de gradaión desuper�ies presentes en la literatura. Estos trabajos han sido realizados en los últi-mos años en varias áreas produtivas, omo son las industrias del azulejo, mármol,granito y madera.Los resultados presentados en la tesis relativos a la gradaión de super�ies hansido obtenidos utilizando datos reales proedentes de la industria azulejera. Uno delos objetivos de la tesis ha sido onstruir una extensa base de datos de imágenesde azulejos que represente el amplio rango de lases de super�ie presentes en laindustria azulejera. Esta base de datos se ha denomidado VxC TSG y es aesibleen miron.disa.upv.es/vision/vxtsg/. Previamente a la presentaión de la basede datos se proede al estudio de la uniformidad espaial y temporal del sistemade adquisiión. En las apliaiones de gradaión de super�ies esta uniformidades ruial. Se demuestra la uniformidad espaio-temporal al mismo tiempo que seomparan dos modernos sistemas de iluminaión; los �uoresentes de alta freueniay los LEDs blanos.Después se presenta un estudio de métodologías desarrolladas para obtener unaaproximaión rápida, �able y preisa para la gradaión de super�ies. Este estu-dio �naliza on la presentaión de un nuevo método basado en la omputaión dedesriptores suaves de olor y textura en espaios de olor pereptualmente uni-formes (soft olour-texture desriptors method). Este método es parametrizado ylos fatores involurados son estudiados utilizando dos proedimientos estadístios;el diseño de experimentos y la regresión logístia. Aunque el método presentadono es una nueva ontribuión teória, se demuestra que un onjunto senillo de es-tadístios globales de olor y textura, junto on lasi�adores bien onoidos, sonsu�ientes para superar los requisitos soliitados en fatoría relativos a la preisión,�abilidad y apaidad de inspeión en línea del sistema. Otros dos métodos proe-



ivdentes de la literatura son fatorizados y estudiados utilizando los prodedimientosestadístios anteriormente menionados. Este trabajo es llevado a abo on �nesomparativos.Finalmente, se estudia la apaidad del sistema para una inspeión en línea del100% de la produión. Este estudio inluye la paralelizaión del método utilizandouna tenología basada en MPI y lusters.



ResumEsta tesi presenta un as d'estudi per al desenvolupament i anàlisi d'una apliaióde gradaió de superfíies amb restriions de temps real. L'apliaió se entra enla indústria eràmia i el seu objetiu és automatitzar el proés de gradaió desuperfíies substituint als operadors humans en esta tasa tediosa i subjetiva. Enprimer terme, es presenta una revisió dels treballs de gradaió de superfíies presentsen la literatura. Estos treballs han sigut realitzats en els últims anys en diversesàrees produtives, om són les indústries del taulellet, marbre, granit i fusta.Els resultats presentats en la tesi relativa a la gradaió de superfíies han sigutobtinguts utilitzant dades reals proedents de la indústria del taulellet. Un delsobjetius de la tesi ha sigut onstruir una extensa base de dades d'imatges de taulel-lets que represente l'ampli rang de lasses de superfíie presents en la indústriadel taulellet. Esta base de dades s'ha denomidado VxC TSG i és aessible enmiron.disa.upv.es/vision/vxtsg/. Prèviament a la presentaió de la base de dadeses proedix a l'estudi de la uniformitat espaial i temporal del sistema d'adquisiió.En les apliaions de gradaió de superfíies esta uniformitat és ruial. Es de-mostra la uniformitat espai-temporal alhora que es omparen dos moderns sistemesd'il·luminaió; els �uoresents d'alta freqüènia i els LEDs blans.Després es presenta un estudi de metodologies desenvolupades per a obtindreuna aproximaió ràpida, �able i preisa per a la gradaió de superfíies. Este es-tudi porta a la presentaió d'un nou mètode basat en la omputaió de desriptorssuaus de olor i textura en espais de olor pereptualment uniformes (soft olour-texture desriptors method). Este mètode és parametrizado i els fators involuratssón estudiats utilitzant dos proediments estadístis; el disseny d'experiments i la re-gressió logístia. Enara que el mètode presentat no és una nova ontribuió teòria,es demostra que un onjunt senzill d'estadístis globals de olor i textura, junt amblassi�adors ben oneguts, són su�ients per a superar els requisits sol·liitats enfatoria relatius a la preisió, �abilitat i apaitat d'inspeió en línia del sistema.Altres dos métodes proedents de la literatura són fatorizats i estudiats en profun-ditat utilizant els mètodes estadístis meionats anteriorment. Este treball és dut aterme amb �ns omparatius.



viFinalment, s'estudia la apaitat del sistema per a una inspeió en línia del100% de la produió. Este estudi inlou la paralelizaión del mètode utilitzant latenologia basada en MPI i lusters.
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Chapter 1
Introdution
In reent years, automati inspetion systems have beome of paramount impor-tane for industries with serial produtive plans. These industries are ommonlyharaterized by the following items:

• Complex proesses formed by multiple stages at prodution lines.
• High prodution rates.
• High added value of every piee.
• Quality ontrol stage for the �nal produt.
• 100% inspetion at fatory rates.The erami tile industry is one lear example of this type of produtive systems.However, fatories ontinue to use human inspetors to grade tile quality. Theseoperators, loated at the end of the prodution lines, inspet the �nal produt andare often a�eted by problems suh as eye fatigue, sikness or boredom. Further-more, the di�erent riteria of eah operator regarding tile defets ould produe anon-uniform quality ontrol riterion.In this industry the great majority of tile faults are surfae defets, thus, surfaeinspetion is an important quality ontrol subjet to automate. But, this is a om-plex work whih is divided into several tasks due to the diversity of existing surfaefaults. Surfae grading is one of the most important issues of surfae inspetion.1



1.1. Motivation and goals of this work 21.1 Motivation and goals of this workThere are many industries manufaturing �at surfae materials that need to splittheir prodution into homogeneous series grouped by the global appearane of the�nal produt. These kinds of produts are used as wall and �oor overings. Someof them are natural produts suh as marble, granite or wooden boards, and othersare arti�ial, suh as erami tiles.In these industries the quality ontrol stage is ruial in remaining ompetitive.One of the most important quality problems is the non-uniformity of the visualaspet of the produt within the same lot of a spei� model. As the �nal produtis used to form areas whih are supposed to be uniform in appearane, the preseneof piees whih look slightly di�erent is onsidered a serious quality defet.Currently, industries rely on human operators to perform the task of surfae grad-ing. Human grading is subjetive and often inonsistent between di�erent graders.In the area of wood inspetion some observations showed low orrespondene be-tween graders. In a test of four grades, di�erent grading operators agreed in only60% of the samples [1℄. Thus, automati, reliable systems are needed. Also, real-time ompliane is an important issue as systems need to be able to inspet globalprodution at on-line rates.Surfae grading is related with the automati lassi�ation of �at piees present-ing random, pseudo-random or �xed surfae patterns. The aim of surfae grading isto split the prodution into di�erent lasses sorted by their global appearane whihdepends on olour and texture properties.In reent years many approahes to surfae grading have been developed (seeTable 1.1). Boukouvalas et al [2, 3℄ proposed olour histograms and dissimilaritymeasures of these distributions to grade erami tiles.Other works onsider spei� types of erami tiles; polished porelain tiles, whihimitate granite. These works inlude texture features. Baldrih et al [4,5℄ proposeda pereptual approximation based on the use of disriminant features de�ned by hu-man lassi�ers at fatory. These features mainly onerned grain distribution andsize. The method inluded grain segmentation and features measurement. Lumbr-eras et al [6,7℄ joined olour and texture through multiresolution deompositions on



1.1. Motivation and goals of this work 3several olour spaes. They tested ombinations of multiresolution deompositionshemes (Mallat's, àtrous and wavelet pakets), deomposition levels and olourspaes (Grey, RGB, Otha and Karhunen-Loève transform). Peñaranda et al [8, 9℄used the �rst and seond histogram moments of eah RGB spae hannel.Kauppinnen et al [1, 10, 11℄ developed a method for grading wood based on thePerentile (or entile) features of histograms alulated for RGB hannels. Kyllönenand Pietikäinen's approah [12℄ uses olour and texture features. They hose entilesfor olour, and LBP (Loal Binary Pattern) histograms for texture desription.Lebrun and Maaire [13℄ desribe the surfaes of the Portuguese "Rosa Aurora"marble using the mean olour of the bakground and mean olour, absolute densityand ontrast of marble veins. They ahieved good results but their approah is verydependent on the properties of this marble. Fernández et al [14℄ studied surfaegrading for granite bloks. They used the histograms of the RGB olour spae(one for eah hannel) and a simple measure of dissimilarity; the sum of absolutedi�erenes of eah bin-pairs of the histograms to be ompared. Finally, Kukkonenet al [15, 16℄ presented a system for grading erami tiles using spetral images.Spetral images have the drawbak of produing great amounts of data.Table 1.1: Summary of surfae grading literature.ground truth features real-time study aurayBoukouvalas erami tiles olour no -Baldrih polished tiles olour/texture no 99%Lumbreras polished tiles olour/texture no 92.7%Peñaranda polished tiles olour/texture yes -Kauppinen wood olour yes 72%Kyllönen wood olour/texture yes -Lebrun marble olour/texture no 98%Fernández granite olour no -Kukkonen erami tiles olour no 70%From the literature review (see Chapter 2 for more information) we deduedthat many of these approahes speialized in a spei� type of surfae, others didnot ahieve good enough auray or simply did not provide auray information,others did not arry out extensive studies of performane, and yet others did not



1.2. Previous works on erami tiles 4take into aount the time restritions of a real inspetion at fatory. As a result,we think surfae grading is still an open issue where more ontributions are possible.In this sense, the present thesis deals with some less explored aspets in terms ofreal-time ompliane and surfae grading performane.The main thesis goal has been to develop a generi, fast and aurate surfaegrading method suitable for use in a wide range of surfaes, also able to omplywith real-time requirements for on-line inspetion at fatory. This major aim isomplemented with other goals, suh as:
• In-depth study of the aquisition system in order to demonstrate spatial andtemporal uniformity. This also involved the omparison of two modern illumi-nation systems.
• Building of an extensive image database of erami tiles for surfae grading.The aim of this database is to ensure extensive performane study and methodsomparison.
• In-depth study of methods based on statistial tools in order to obtain obje-tive and valid onlusions.
• Comparison with similar literature approahes.
• In-depth study of real-time ompliane under real fatory onditions1.2 Previous works on erami tilesThe sope of the thesis is the surfae grading appliation, but this is not an isolatedwork. It stems from a more extensive work performed in reent years by the VxCgroup for the automation of erami tiles inspetion. VxC is a researh group loatedat Polytehni University of Valenia and speialized in omputer vision topis.Work on erami tiles began in the seond part of 90's when a ollaborationagreement was established between the erami tile ompany Keraben S.A. and theVxC group. The aim of this projet was to develop a prototype able to automatiallyinspet a spei� surfae fault on erami tiles; the integrity defets at tiles orners.



1.2. Previous works on erami tiles 5At that moment, losses of materials in orners were the most important surfaefault representing 90% of surfae defets. These looses were due to rashes in thetransportation of piees along the prodution lines. In [17�19℄ is summarized thework arried out for the development of this prototype. Finally, two prototypes weredeveloped. They were suessfully tested at fatory during six months (see Figure1.1). The system was patented as an utility model and a seond tehnologialompany was interested in its prodution and ommerialization. This ompanywent to bankrupt and �nally the ommerial system was not arried out. Later,interest on system was lost beause integrity defets at fatories were drastiallyredued by modernizing transportation systems based on onveyor belts.Figure 1.1: One fatory prototype for the automati inspetion of integrity defetsin erami tiles orners.

After this �rst work, a FEDER-CICYT projet (1FD97-0999) related to au-tomation of erami tiles inspetion was arried out during �rst years of 00's. Inthis projet we developed a methodology for the surfae inspetion of �xed patternedtiles [20�23℄. The method performs a omparison with ideal referenes free of faultsin order to extrat the surfae defets. Fast and aurate approah to registrationbetween referene and inspeted tiles was speially studied [20, 21℄. Atually, theprojet was more ambitious and in its initial planning also overed defets detetionon random and pseudo-random patterned surfaes. Although the work on these



1.3. Thesis outline 6items was started, a �nal method was not developed. The projet also overed theissue of surfae grading presented in this thesis and a very �rst approah was done us-ing image tessellation and olour desription of homogeneous and non-homogeneousregions [24℄.One the projet was �nished, work on surfae grading was ontinued as thesubjet of the present thesis. A medium-size image database was olleted in ol-laboration with Keraben S.A. and new approahes to fast surfae grading derivedfrom [24℄ were studied. At the end of 2003 a new FEDER-CICYT projet (DPI2003-09173-C02-01) was assigned to VxC group. In this projet, whih is still not �nished,surfae grading is one of the main subjets. The performed work relative to surfaegrading is olleted in [25�28℄ and the present thesis doument.1.3 Thesis outlineChapter 2 presents an overview of surfae grading works done in some industrialareas suh as erami tile, parquet slab, woods, granite, marble. They inludemajor works by several university groups and other isolated minor works.The aquisition system and the study of its uniform response through time andspae is desribed in Chapter 3. Spatial and time uniformity is of great importanein ensuring good surfae grading performane [1,2,4,8℄. Slight hanges in illumina-tion or aquisition onditions ould easily introdue surfae mislassi�ations. Anyalteration in the illumination onditions modify surfae olour property giving riseto a false hange in the surfae lass. We also present a study of di�erent illumi-nation systems from the point of view of spatial and time uniformity. The studiedsystems are; high frequeny uniform �uoresents and white LED arrays. The resultsshow that only �uoresent systems provide su�ient uniform response.Chapter 3 also presents the VxC TSG (VxC Tiles for Surfae Grading) whihis an image database of erami tiles oriented to surfae grading. Creating andompiling this database has been one important goal of the thesis (see Figure 1.2).The VxC TSG is intended to be a tool for the sienti� ommunity and future worksin the �eld of surfae grading. It is also the ground truth used in the thesis for testing



1.3. Thesis outline 7and omparing surfae grading approahes. VxC TSG is an extensive image database of erami tile models representing the wide range of surfae lasses in eramitiles. It is publi and an be aessed at miron.disa.upv.es/vision/vxtsg/.Figure 1.2: Samples from VxC TSG image database. From up to down; threesamples of petra and mar�l models, eah one orresponding to a di�erent surfaegrade.

Our searh for a fast and aurate method for the purpose of surfae grading isrevised in Chapter 4. Here, we ollet the previous works that �nally gave rise to thesoft olour-texture desriptors method. Work relative to this preliminary approaheshas been published in [25℄ and [26℄.In Chapter 5 we develop the in-detph statistial study performed to extrat the�nal approah to surfae grading based on soft olour-texture desriptors. Althoughthe method is not a new theoretial ontribution we have found and demonstrate thata simple set of global statistis softly desribing olour and texture [29℄ omputed inpereptually uniform olour spaes (CIE Lab or CIE Luv), together with well-knownlassi�ers [30℄, are enough to ful�l stringent fatory requirements. The two mainneeds of the industry are; on-line inspetion at fatory rates (real-time ompliane)and aurate performane in surfae grading. Prodution managers at fatories willonly aept an error rate lose to 5% before relying on these automati grading



1.3. Thesis outline 8systems. The method we present meets the �rst demand by using the simplestand fastest [to ompute℄ olour-texture features. The seond demand is met byahieving average auraies of more than 95% in many tests arried out using theVxC TSG database. We named this approah soft olour-texture desriptors beauseit uses the less omplex texture and olour desriptors known in the literature [29℄.The method was extrated from a statistial proedure whih is a ombination ofexperimental design [31℄ and logisti regression [32℄ analysis. This proedure is usedto determine the best ombination of quantitative/ategorial fators in terms of aset of experiments that maximize or minimize one response variable also involved inthe experiments. We used the auray rate of lassi�ations as response variable.The soft olour-texture desriptors method has been reently reported and aeptedin [28℄ .Two methods from the surfae grading literature are also implemented and testedin Chapter 6 for omparison purposes. These methods are olour histograms [2, 3℄and entile-LPB [1, 12℄. We seleted these methods from literature beause theyare similar to ours; they are generi solutions with low omputational osts. Anexperimental design and logisti regression analysis was also performed using theVxC TSG database in order to determine the best ombination of proposed fatorsproviding the best auray results. Results show that all methods are almost equalin auray performane but soft olour-texture desriptors method ahieved betterresults in timing osts.Chapter 7 presents a study of real-time ompliane inluding the parallelizationof the method proposed in Chapter 5. This study is an in-depth exploration of thereal-time ompliane of the approah. We use the parallel arhiteture provided bythe luster-MPI model. The method is easily translated to this arhiteture and theresults demonstrate that, in onjuntion with standard omputing tehnologies, theapproah is able to inspet and grade more surfae area per time unit than fatoriesan produe on a prodution line. Work relative to real-time ompliane has beenpublished in [27℄.Finally, the onlusions of all hapters and further work are summarized in Chap-ter 8.



Chapter 2
Overview of surfae grading works
This hapter is devoted to surfae grading literature. Although there are many worksin literature related to surfae grading, we have found they were not interonneted.These approahes were performed without establishing almost any referene amongthem and also does not exist a general term to desribe the automati inspetion ofsurfae materials in order to split their prodution into homogeneous series groupedby the global appearane. In this hapter we ompile and introdue these worksunifying them under the term of surfae grading works.We present an overview of surfae grading works found in literature and per-formed in several industrial areas suh as erami tile, parquet slab, wood, graniteand marble. This overview inlude major works by several university groups andother isolated minor works. Major works were done at the University of Surrey inUK, the Computer Vision Centre at the Autonomous University of Barelona inSpain and the Oulu University in Finland.All the presented approahes used olour properties or a ombination of olourand texture properties to haraterize surfae appearane. Therefore, previous toproper surfae grading overview we present literature approah to the olour andtexture properties.
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2.1. Surfae features 102.1 Surfae features2.1.1 ColourColour is a sensation reated in response to the exitation of our visual system bythe eletromagneti radiation known as light [33,34℄. More spei�ally, olour is thepereptual result of light from the visible region of the eletromagneti spetrumwhen this light meets the retina of the human eye. The visible region overs thewavelengths from 400nm to 700nm (see Figure 2.1).Figure 2.1: The visible light spetrum.

The human retina has two kinds of reeptors, rods and ones. The basi funtionof rods is to provide monohromati vision under low illumination levels. The rodshave a photosensitive pigment alled rhodopsin. This pigment absorbs light moststrongly in the blue-green region of the spetrum. This part of human vision isreferred to as sotopi vision. Although rods are important for vision, they play norole in image reprodution. The funtion of the ones is to provide olour vision atnormal levels of illumination. This is known as photopi vision. The human retinahas three types of ones and eah one is sensitive to a di�erent wavelength range ofthe visible spetrum.The area of siene onerned with the desription and spei�ation of olour isalled olorimetry [33℄. As we have three types of olour reeptor ells (ones), tradi-tionally, three numerial omponents have been used to desribe olours. Therefore,a olour an be spei�ed by a vetor with three omponents. The set of all oloursforms a vetor spae alled olour spae or olour model. The three omponents ofa olour an be de�ned in many di�erent ways providing various olour spaes [33℄.



2.1. Surfae features 11In 1931, the Commission Internationale de L'Elairage (CIE) adopted standardolour urves for a hypothetial standard observer. These olour urves speify howa spei� spetral power distribution (SPD) of an external stimulus (visible radiantlight inident on the eye) an be transformed into a set of three numbers that speifythe olour. The CIE olour spei�ation system is based on the desription of olouras the luminane omponent Y and two other omponents X and Z. The spetralweighting urves of X and Z have been standardized by the CIE based on statistisfrom experiments involving human observers [33℄. The orresponding olour spaeis alled the CIE XYZ olour spae. The XYZ model is a devie independentolour spae that is useful in appliations where onsistent olour representationaross devies with di�erent harateristis is important. But, the CIE XYZ spaeis pereptually highly non-uniform [34℄. Thus, it is not adequate for quantitativemanipulations involving olour pereption and is seldom used in image proessingappliations.Traditionally, olour images have been spei�ed by the red, green and blue tris-timulus values. This is the RGB olour spae. The red, green and blue omponentsare alled primary olours. In general, hardware devies suh as video ameras,olour image sanners and omputer monitors proess olour information based onthese primary olours. Other popular spaes in image proessing are the YIQ (NorthAmerian TV standard), the HSI (Hue, Saturation and Intensity), and the HSV(Hue, Saturation and Value) olour spaes used in omputer graphis.Although XYZ is used only indiretly, it has a signi�ant role in image proessingsine other olour spaes an be derived from it through mathematial transforms.For example, the linear RGB olour spae an be transformed to and from the CIEXYZ olour spae using a linear three-by-three matrix transform. Similarly, otherolour spaes, suh as non-linear RGB, YIQ and HSI an be transformed to andfrom the CIE XYZ spae, but might require omplex and non-linear omputations.The CIE has also derived and standardized two other olour spaes from theCIE XYZ. These are the CIE Luv and CIE Lab olour spaes and both of themare pereptually uniform [33℄. The term 'pereptual' refers to the way that humanspereive olours. The term 'uniform' means that if we move in the olour spae from



2.1. Surfae features 12one olour to another, from one oordinate to another, the pereptual di�erene willbe related to a measure of distane, ommonly the Eulidean distane, and the samedistane will approximately relate to the same pereptual di�erene throughout theolour spae. Thus, we an measure olour di�erenes lose to the human pereptionof olours. This makes these olour spaes useful for appliations where olourdi�erene measurement plays an important role. This is the ase of the surfaegrading appliation presented in this thesis.CIE Luv and CIE Lab are slightly di�erent beause of the di�erent approahes totheir formulation [33, 34℄. Nevertheless, both spaes are equally good in pereptualuniformity and provide good estimates of olour di�erene (distane) between twoolour vetors. CIE Luv is used for industries onsidering additive mixing suh asolour displays, TV and lighting [35℄, while CIE Lab is beginning to be used inappliations of olour image proessing [36℄.We used the CIE Lab and CIE Luv olour spaes in our approahes to surfaegrading, and also did experiments with the RGB olour spae in order to deter-mine the advantages of using these pereptually uniform spaes. The RGB spaewas hosen for omparative purposes beause it is often used in image proessingappliations [37℄.2.1.2 TextureTexture is related to some properties inherent to the surfae of objets. Textureplays an important role in human vision and its analysis is of great interest inthe area of omputer vision. However, a formal approah or preise de�nition oftexture does not exist. From the point of view of image proessing, one generalde�nition is: Texture is something onsisting of mutually related elements [38℄. Thisde�nition ontains the two main elements of textures. Firstly, texture is formedby simple omponents alled texture primitives. Seondly, texture is de�ned by thespatial relationships between these simple omponents. Some examples of texturesare shown in Figure 2.2.There are two main approahes to texture desription: statistial and strutural[39℄. Statistial desription use feature vetors of texture properties whih represent



2.1. Surfae features 13Figure 2.2: Some samples of textures.

points in a multidimensional feature spae. This is suitable for statistial patternreognition. In ontrast, the strutural approah is based on the analogy betweentexture spatial relations and the struture of a formal language. The desription ofa texture forms a language that an be represented by its grammar. A grammar isonstruted for eah texture lass. Then, the reognition proess beomes a syntatianalysis of the texture desription.Strutural approahes are based on the theory of formal languages and they areadequate for desribing strong textures [40, 41℄. A texture image is de�ned as astruture whih is made up of a large ensemble of elements whih have some kind oforder in their loations. This approah works well on deterministi textures (mainlyarti�ial textures), but most natural textures are not of this type.From a statistial point of view, textured images are ompliated pitorial pat-terns from whih sets of statistial measures are obtained to haraterize them. Thesimplest way to statistially haraterize textures is to ompile global statistis likemean, standard deviation and histogram moments [29℄. However, the most popularapproximation is the o-ourrene matries method [42, 43℄. In this method ma-tries are onstruted by ounting the number of ourrenes of pixel pairs of givengrey levels at a given displaement. Statistis suh as ontrast, energy, entropy and



2.1. Surfae features 14others are omputed from matries to obtain texture features. A similar approah ispresented in the sum and di�erene histograms method [44℄. Here, similar featuresare omputed from one-dimensional histograms ontaining the sum and di�ereneof pairs of pixels at a given displaement. Another approah in this ategory is thestatistial feature matries method [45℄, where three matries of ontrast, ovariane,and dissimilarity are diretly omputed from the texture images. Eah entry in amatrix ontains the orresponding feature omputed at di�erent displaements. Inthis ase, the feature vetor is diretly formed using all the entries of the matries.Stohasti models suh asMarkov random �elds or Gibbs random �elds have alsobeen used to extrat texture features [46�49℄. These approahes onsider texturesas di�erent realizations of random proesses. The features desribing eah textureare the parameters of the model whih is supposed to generate the given texture.There are some di�ulties with these methods suh as how to hose an appropriateorder for the model. Reent works have extended these methods to multiresolutionapproahes [50℄.The mathematial morphology approah looks for spatial repetitiveness of shapesin an image using struture primitives. These struturing elements usually onsistof some simple shape, suh as a square or a line. When a binary textured imageis eroded by a struturing element, texture properties are present in the erodedimage [51℄. Di�erent struturing elements are applied to the textured image and thenumber of pixels with unit value in the eroded image is ounted. These numbersare used to form a feature vetor that haraterizes the texture. Also, anothermorphologial texture desription was derived by using the size distribution of asequene of opening and losing granulometries [52℄. The mathematial approahto texture is often suessful in granulated materials, but its performane is reduedsigni�antly in other texture types.Another alternative for texture desription is to measure its fratal dimension[53℄. This approah was �rst introdued for modeling natural senes [54℄. It wasreported that the fratal dimension orrelates very well with a human assessmentof surfae roughness. Its main advantage lies in the fat that the fratal dimensionis invariant to sale an to linear transformation of data. Nevertheless, the fratal



2.1. Surfae features 15dimension on its own is not able to give omplete desription of natural textures.Another ategory of texture haraterization methods is based on features om-puted from the power spetrum of the image. A two-dimensional power spetrum ofa texture image often reveals texture periodiity and diretionality. A oarse texturetends to generate low frequeny omponents in its spetrum, while a �ne texturehave high frequeny omponents. Stripes in one diretion ause the power spetrumto onentrate near the line through the origin and perpendiular to this diretion.These methods [55, 56℄ usually perform well in textures showing strong periodiity,but performane deteriorates when periodiity weakens.In reent years, wavelet theory has beome an important framework for multi-sale and texture image analysis [57,58℄. In general, the wavelets transform an imageinto a low resolution image and a series of detail images. The low resolution imageis obtained by applying iteratively a low pass �lter to the image, while the detailimages are obtained applying a high pass �lter at eah step. The original image isblurred at eah iteration, and the information lost during eah operation remains inthe orresponding detail image. Features suh as the energy or mean deviation ofthe detail images are the most ommonly used for texture desription [59�62℄.Finally, another approah to texture haraterization is the multi-hannel spatial�ltering. Here, the methods try to imitate the behavior of the human vision system.There is evidene that texture disrimination in the human vision system is ahievedby means of a set of parallel hannels, eah tuned for some spei� feature. Eahhannel performs a spei� spatial �ltering operation. Therefore, the human visualsystem an be modeled as a set of spatial �lters. The most ommon families ofspatial �lters are the Gabor �lters [63,64℄ and the loal Disrete Cosine (DCT) andSine (DST) Transforms [65, 66℄. Gabor �lters are basially diretional �lters, andare therefore appropriate for strongly oriented textures. On the other hand, froma theoretial point of view, loal DCT and DST have better disriminatory powerthan Gabor �lters for randomly oriented textures. However, they are not tunableand they annot be used to apture some spei� texture properties.



2.1. Surfae features 162.1.3 Colour and TextureColour-texture representation is a urrent topi in omputer vision. Although both,olour and texture, are quite important properties of surfaes these two visual fea-tures have been usually studied separately. The study of olour-texture representa-tions has reeived inreasing attention in reent years.The objetive of many works have been to �nd o-join representations of spatialand hromati information whih apture the spatial dependene within and be-tween the spetral bands. One of the most frequent approahes is the onstrutionof a feature vetor mixing grey level texture features and olour features [67, 68℄.Another approah is to extend lassial texture models, suh as Markov random�elds and the autoorrelation funtion, to deal with multihannel images [69, 70℄.Other works onvert RGB values into a single ode from whih texture measure-ments are omputed as a grey sale image [71℄. Spatio-hromati representationsare omputed in [72,73℄ over the smoothed Laplaian of image. Also, the struturaltensor that is ommonly used to represent loal texture properties is extended toolour images in [74℄.Finally, there are some works that have been in�uened by known pereptualmehanisms of the human visual system. Here, the iteration of olour with spatialfrequeny of the oloured patterns is onsidered [75, 76℄. These works take intoaount important onlusions from psyhophysial experiments on olour textureinteration [36,77�80℄. They introdue a pereptual mehanism in order to simulatethe olour assimilation phenomenon of the human visual system. This phenomenononsists of a spatial blurring of the olour representation when looking at olourtextures with high spatial frequenies.Other works present a omplementary operator to simulate another phenomenonof the human visual system, the olour ontrast, whih appears when looking atolour textures with low spatial frequenies [4, 81, 82℄.In this thesis, the proposed method for the purpose of surfae grading uses sta-tistial desription representing olour and texture properties. Colour and textureare joined by reating feature vetors olleting global image statistis of both prop-erties; mean, standard deviation and histogram moments. These global statistis



2.2. Surrey works on surfae grading 17are omputed separately in eah hannel of pereptually uniform olour spaes (CIELab or CIE Luv). We name this approah soft olour-texture desriptors method be-ause it uses the less omplex texture and olour desriptors known in literature [29℄.This assertion is even more aeptable if we revise the lassial approahes to texturedesription mentioned above. In fat, surfae grading is not a omplex problem ofolour-texture reognition but di�erentiation. In Chapter 5 is demonstrated that softolour-texture desriptors are powerful enough to well disriminate surfae grades.2.2 Surrey works on surfae gradingSine 1995 a group of people, mainly from the Image Proessing Group at theEletrial Engineering Department of the University of Surrey (UK), have beenworking in the area of the automati inspetion of defets and surfae grading oferami tiles. Professor Maria Petrou has been the nexus and driving fore behindall these works [2, 3, 83�94℄.From the point of view of the surfae grading question, the interesting part ofthe work is mainly that done by Boukouvalas et al [2, 3, 83�85, 89℄. At a �rst stagethey proposed using the di�erenes between olour histograms to solve the prob-lem of shade grading (surfae grading) of multi-oloured textured surfaes (randompattern surfaes) [2, 3℄. However, olour histograms are very ine�ient in termsof memory requirements. A olour image aquired in RGB normally need 8 bitsper olour hannel at eah pixel, so therefore 16Mbytes (224memory positions) areneeded to store one olour histogram. However, in real images olour values tendto be lustered around just a few loations. For instane, the image of a eramitile may oupy only 80.000 di�erent loations (234Kb). Apart from being highlydemanding in memory, this approah is omputationally intensive beause in orderto ompare two histograms we have to parse all memory loations.To save memory spae and omputational osts, they used the binary tree stru-ture to store the olour histograms. A binary tree is de�ned as a �nite set of elements(nodes) whih either is empty or onsists of a root (node) with two disjoint binarytrees alled the left and the right subtrees of the root [95℄.



2.2. Surrey works on surfae grading 18Figure 2.3: Ordered binary tree.
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node 4, 3Binary trees are frequently used to represent a set of data whose elements areretrievable through a unique key (value). If a tree is organized in suh a way thatfor eah node all values in the left subtree are less than the value of the parent node,and those in the right subtree are greater than the value of the parent node, thenthis tree is alled ordered binary tree or searh tree (see Figure 2.3). A searh of avalue in a tree of n elements may be performed with only log n omparisons, if thetree is balaned.When a olour histogram is stored in a binary tree, the value of a node is apartiular RGB value. This is onverted to a 24 bit-integer by onatenating the R,G and B bytes. Eah node also ontains the number of pixels with the same RGBvalue (repetitions). Therefore, only RGB ombinations that exist in the image areinserted in the tree, and the searhing for existing nodes is very e�ient.They hose olour histograms beause they are invariant to translation and rota-tion about an axis perpendiular to the image plane, and hange only slightly withhanges of viewing angle of view. In addition they are invariant to the exat spatialdistribution of the oloured pixels. This property is desirable when dealing whihrandom pattern surfaes, as often happens when dealing with erami tiles.To perform the surfae grading they ompared the similarity (or dissimilarity) oferami tiles by omparing the similarity of their olour histograms. The histogramsan be viewed as distributions, and, in statistis there are several methods to om-pare two distributions [96℄. They used the hi-square test and the linear orrelationoe�ient.



2.2. Surrey works on surfae grading 19The hi-square statisti is de�ned as
χ2 =

∑

i

(Ni − ni)
2

niwhere Ni is the number of events observed in the ith bin, and ni is the numberexpeted aording to some known distribution and the sum is over all bins. A largevalue of χ2 indiates dissimilarity between the two distributions.When omparing two binned data sets, with the same number of data points,the equation adopts a di�erent form. Let Ri be the number of events in bin i forthe �rst data set, let Si be the number of events in the same bin for the seond dataset. Then the hi-square statisti is
χ2 =

∑

i

(Ri − Si)
2

Ri + SiThe linear orrelation oe�ient is another test whih measures the assoiationbetween random variables. For pairs of quantities (xi, yi), i = 1, ..., N, the linearorrelation oe�ient r is given by
r =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)
√
∑

i(yi − ȳ)
(2.1)where x̄ is the mean of the xi values and ȳ is the mean of the yi values.The value of r is always in the range [-1, 1℄. The orrelation is alled positiveor diret orrelation when y tends to inrease as x inreases. If y tends to dereaseas x inreases the orrelation is then alled negative or inverse orrelation. A valuenear to zero in equation 2.1 indiates poor linear orrelation between the variablesx and y.Some experiments were done to test this approah. The ground truth was formedby three di�erent models previously graded by human operators. For eah modelthere were three di�erent grades, and for eah grade there were approximately sevensamples or tiles, nearly sixty-three samples in total. Prior to olour grading, thedata was spatially and temporally orreted in order to ompensate the non-uniform



2.2. Surrey works on surfae grading 20response of the illuminating system [2, 83℄.Some graphis showing model lustering when using the hi-square and the linearorrelation oe�ient tests were provided. They dedued from these graphis thatthe performane of the method was onsistent with the olour grading of humanexperts, but they did not provide auray results. The linear orrelation oe�ientwas �nally hosen to measure similarity between histograms beause it keeps thehistogram di�erenes within a well de�ned range. This makes it possible to seletthresholds to de�ne new surfae grades.Pereptual orretion for olour grading using sensor transformations andmetameri dataIn a seond stage they improved the method by applying two pereptual orre-tions. The �rst pereptual orretion onsisted of approximating the olours per-eived from eletroni sensors to the human pereption using metameri data [2,84℄.They reasoning behind this was as follows. All the olours that an be pereived bya given observer an be omputed using
C1 = ρ1q11α1 + ρ2q12α2 + ..... + ρnq1nαn

C2 = ρ1q21α1 + ρ2q22α2 + ..... + ρnq2nαn

C3 = ρ1q31α1 + ρ2q32α2 + ..... + ρnq3nαn

(2.2)where (C1, C2, C3) are the tristimulus values forming the olour, ρi i = 1..nrepresents the spetral re�etane of a surfae, αi i = 1..n is the spetral powerdistribution of the illumination, and (q1i, q2i, q3i)i = 1..n are the spetral sensitivitiesof the observer's sensors. The spetral range (the visible spetrum) is sampled in nequidistant positions.From 2.2 it is dedued that, under a given illuminant, the observer will reord thesame tristimulus values for many di�erent materials (surfaes). This phenomenonis alled metamerism. Metameri olour stimuli are olour stimuli with the sametristimulus values but di�erent spetral radiant power distributions. That is to say,they have the same spetral distributions that yield the same olour for a given set



2.2. Surrey works on surfae grading 21of sensors (observer). Metameri olour stimuli are referred as metamers.Two metameri olour stimuli (ρ1, ρ2, ..., ρn) and (ρ
′

1, ρ
′

2, ..., ρ
′

n), must satisfy thefollowing equations:
ρ1q11α1 + ρ2q12α2 + ..... + ρnq1nαn = ρ

′

1q11α1 + ρ
′

2q12α2 + ..... + ρ
′

nq1nαn

ρ1q21α1 + ρ2q22α2 + ..... + ρnq2nαn = ρ
′

1q21α1 + ρ
′

2q22α2 + ..... + ρ
′

nq2nαn

ρ1q31α1 + ρ2q32α2 + ..... + ρnq3nαn = ρ
′

1q31α1 + ρ
′

2q32α2 + ..... + ρ
′

nq3nαnAs the human eye (human observer) has di�erent spetral responses from theeletroni sensors, di�erent materials will appear as having the same olour to thehuman eye and other di�erent materials will appear as having the same olour to theeletroni sensors (the amera). They tried to orret this e�et by introduing apereptual orretion in the system. The term 'pereptual' is referred to the attemptof making the system work as lose as possible to the human vision system.In equation 2.2, if the observer is hanged, we obtain the tristimulus values
(C

′

1, C
′

2, C
′

3) that the new observer would reord for the same surfae, under thesame illumination. And that is the aim, to ompute the olour not from the pointof view of the eletroni sensor but from the point of view of the human eye.
C

′

1 = ρ1q
′

11α1 + ρ2q
′

12α2 + ..... + ρnq
′

1nαn

C
′

2 = ρ1q
′

21α1 + ρ2q
′

22α2 + ..... + ρnq
′

2nαn

C
′

3 = ρ1q
′

31α1 + ρ2q
′

32α2 + ..... + ρnq
′

3nαn

(2.3)Ideally, by solving equations 2.2 (eletroni sensors) for (ρ1, ρ2, ..., ρn) and substi-tuting them into equations 2.3 it would be possible to �nd the stimuli this partiularoloured surfae would reate to the seond observer (human eye). However, system2.2 is an under-determined system as in general n is muh greater than 3 (typiallyn = 31). They solved this problem by assuming that they were interested only in asmall subspae of the olour spae whih is oherent with the olour grading applia-tion (low hanges in the olour appearane). They assumed that the transformationbetween the projetions of two di�erent sets of sensors was loally linear and ouldbe expressed by a unknown 3x3 matrix T. This matrix represents the relation be-



2.2. Surrey works on surfae grading 22tween the two observers. The way they used to ompute the T matrix was to usepairs of orresponding triplets (Cj
1 , C

j
2, C

j
3) and (Cj′

1 , Cj′

2 , Cj′

3 ) for j = 1, 2, ..., m andm ≫ 3. The elements of the transformation matrix were determined in the leastsquare error sense by solving the following system of equations using singular valuedeomposition:
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They known the tristimulus values (Cj
1, C

j
2, C

j
3) aquired by the eletroni sen-sor (amera's CCD), but the tristimulus values orresponding with the human vi-sion system where unknown, and ould not be omputed beause the re�etanefuntions (ρ1, ρ2, ..., ρn) were also unknown. Therefore, in order to determine thetransformation matrix, they had to �nd a way to generate metameri re�etanefuntions, and they made it by using the Monte Carlo Method for generating syn-theti metamers [1℄.They did experiments with several sets of erami tiles (tile models) previouslygraded by human operators. Eah model had three di�erent grades or surfae lasses.They �rst extrated the transformation matries for eah set and then moved theolour data to the CIE Lab olour spae. Then, for eah model, they plotted themean CIE Lab olour of eah tile in this 3D olour spae. The results showed betterinterlass distanes of the lusters (grades) after the sensor transformation.Pereptual orretion for olour grading of random texturesThe seond pereptual orretion was to simulate the spatial blurring whihours in humans when we look texturized surfaes [2, 85℄. To do so, they �rstremoved the spatial blurring introdued by the eletroni sensor, and then onvertedthe data to a pattern-olour separable spae (opponent-olours spae), where theyintrodued blurring emulating the way the human visual system pereives olour



2.2. Surrey works on surfae grading 23texture. The data was �nally onverted to a pereptually uniform olour spae(CIE Lab), where the olour grading was performed. They reasoned as follows:Every imaging system introdues some kind of degradation to the data it apturesand a ommon phenomenon when dealing with �ne textures is the spatial blurringthat the imaging system introdues in the data. This phenomenon an be quanti�edin terms of how spread a point soure appears to be when its image is aptured.This is expressed by the point spread funtion (PSF) of the system. In order toremove this spatial blurring there are various image restoration tehniques whihrely on a priori knowledge of the PSF.The degradation proess is modeled by a funtion h(x, y, x
′

, y
′

), whih togetherwith an additive noise v(x, y) operates on an input image f(x, y) to produe adegraded image g(x, y):
g(x, y) =

∫ ∫

h(x, y, x
′

, y
′

)f(x
′

, y
′

)dx
′

dy
′

+ v(x, y)Image restoration is the proess of obtaining an approximation to f(x, y) given
g(x, y) and some knowledge of the degradation proess in the form of the funtion
h(x, y, x

′

, y
′

). In the absene of noise the degraded image of a point soure desribedby f(x
′

, y
′

) = δ(x
′

−α, y
′

−β) would be given by h(x, y, α, β). Therefore h(x, y, α, β)is the PSF of the sensor, whih in general is dependent on the position of the point
(α, β) in the ideal piture.The PSF an be omputed from an image with sharp lines or step edges. Inorder to derive the PSF of the eletroni sensor, they used an speial hart withmany edges and various known orientations. After obtaining the PSF they restoredthe image by using Wiener �ltering [96, 97℄.The proess mentioned above is done to remove the spatial blurring introduedby the eletroni sensor. In order to introdue the pereptual orretion, the restoreddata should be spatially blurred in agreement with the blurring of the human visionsystem. In [98℄ experiments with human subjets indiate that the hange in olourappearane with spatial-frequeny an be explained by assuming that signals fromthree opponent-olour mehanisms are saled by a gain fator that depends on the



2.2. Surrey works on surfae grading 24loal spatial frequeny ontent of the image. In this respet, Zhang and Wandellproposed an extension of the CIE Lab spae, based on a pattern-olour separabletransformation, alled Spatial CIE Lab (S-CIELAB) [36℄.The image is then initially transformed from the CIE XYZ spae to the opponent-olours spae, where the three hannels represent luminane, red-green and yellow-blue. The transformation is de�ned by:
O1 = 0.279X + 0.72Y − 0.107Z

O2 = −0.449X + 0.29Y − 0.0077Z

O3 = 0.086X − 0.59Y + 0.501ZThen the data of eah hannel are �ltered by two-dimensional spatial kernels,de�ned as the sum of some Gaussian funtions:
1

π

m
∑

i

wi

σ2
i

e
−(x2 + y2)

σ2
iwhere m is 3 for the luminane hannel, and 2 for the hromati hannels and wiand σ2

i are some parameters. wi and σ2
i values were determined from psyhologialmeasurements of olour appearane on human subjets [36℄.Finally, the blurred data are transformed bak into CIE XYZ olour spae andfrom there to CIE Lab olour spae.Grading experiments were performed using the omparison between olour his-tograms after transforming image data by means of the pereptual orretion dis-ussed above. The tile sets used in previous experiments were then re-graded intro-duing the new pereptual orretion. The results showed better interlass distanesof lusters (grades) after the pereptual transformation. They used the minimuminterlass distane and the Bhattaharyya distane to ompile interlass data beforeand after the orretion.In all the works there is no study about the real-time ompliane in order to en-sure inspetion of all tiles at fatory rates. Also, there is no quantitative informationabout the auray of the approah.



2.3. CVC works on surfae grading 252.3 CVC works on surfae gradingThe CVC is the Computer Vision Centre of the Autonomous University of Barelona(Spain). Several works in relation to an spei� type of erami tile, the polishedporelani tile, were arried out between 1998 and 2002 [4�7, 99℄.Baldrih et alBaldrih et al [4, 5, 100℄ made a pereptual approximation based on the use ofdisriminant features de�ned by human lassi�ers at fatory. They mixed olour andtexture information by means of loal and global measures. They did not propose ageneral texture olour representation. They dealt only with textures formed by thenon-oriented oloured-blobs randomly distributed on the polished tiles. The featureswere mainly related to grain distribution and size, thus, the method inludes grain(blobs) segmentation and features measurement.First, some human-de�ned harateristis for the task of surfae grading, wereompiled at fatory:
• Fine-grained vs. oarse-grained: de�nes the size of the grains.
• Opened grain vs. losed grain: measure of the distane between grains of thesame size (density fator).
• Light vs. dark grain olour: olour properties of a spei� type of blob.
• Light vs. dark bakground: olour properties of the bakground.
• Light vs dark global olour: olour properties of the overall olour impression.That harateristis were translated to the following global and loal features:
• Global olour mean.
• Global olour standard deviation.
• Global mean olour of eah type of blob.
• Global area of eah type of blob.



2.3. CVC works on surfae grading 26
• Loal mean area of eah type of blob.
• Loal standard deviation of the area of eah type of blob.In order to ompute this features, the oloured blobs �rst had to be segmented andthis was performed using a supervised lustering approah. They used the K-meansalgorithm introduing an approximate rgb value for eah olour enter (eah type ofblob). The lustering was performed over the RGB spae onsidering the Eulideandistane between rgb positions.For the lassi�ation stage they used a disriminant analysis (Fisher disriminantfuntions) to selet the prototypes providing the maximum disrimination ratio froma set of learning samples. With Fisher's approah no a priori knowledge of data isneeded and it is able to selet the best representation maximizing the ratio betweenthe inter-lass ovariane and the intra-lass ovariane. A linear transform W is ap-plied over the feature vetor x of a partiular image obtaining a new representation;

y = W tx, in a new spae where disrimination apability has been maximized.The linear transformation W that optimizes the disrimination is obtained byomputing the most signi�ant eigen vetors of the matrix S−1
w Sb, assuring maxi-mization of the following ratio:

W tSbW

W tSwWwhere W tstands for the transpose of W , Sw is the within data sparse matrix andthe Sb matrix is the between lass sparse matrix. They are de�ned as:
Sw =

c
∑

i=1

∑

xk∈{Li}

(xk − µi)(xk − µi)
t

Sb =

c
∑

i=1

Ni(µi − µ)(µi − µ)twhere c is the number of possible lasses and {Li} is the set of vetors that areused as learning samples in the i lass. µi is the mean vetor of the samples of the
i lass, Niis the number of learning samples in the i lass and µ is the global mean



2.3. CVC works on surfae grading 27vetor.From an image of a given tile the feature vetor x is extrated and it is assignedto the j lass if
∣

∣W tx − W tµj

∣

∣ <
∣

∣W tx − W tµi

∣

∣ ∀i 6= jwhere µi are the prototypes of the lasses.In order to remove spatial and time variations on the image data whih ourunder non-onstant illumination, they introdued a diagonal transform. This wasa simple diagonal matrix model. It was omputed using a white pattern imageaquired periodially. The spatial distortions were modeled using a set of diagonaltransforms {Sx}, one 3x3 matrix for eah position x along the x axis where thespatial variation ours (they used a san-line amera). Light variations due to timewere orreted in a similar way. A set of diagonal transforms were alulated {T ti
x }.This set models the distortions at time ti referring to instant t0. The �nal set ofdiagonal transforms {Dti

x } were Dti
x = SxT

ti
x .They also introdued a pereptual orretion based on the indution phenomenon.This phenomenon is divided in two types: hromati assimilation and hromati on-trast. The �rst one implies a hange in the pereived hromatiity of a given stimulustowards the hromatiity of its surround, whereas in the seond the hange is in theopposite diretion. Chromati assimilation was measured using a psyhophysial ap-proah of olour appearane on human subjets [36℄. This approah has been usedalso, in Boukouvalas' works [2, 85℄ and other omputer vision frameworks [75, 76℄.Chromati ontrast is the omplementary mehanism of the assimilation thattakes hromatiities of regions with spatial low frequeny. They de�ned an operatorthat enhanes di�erenes in transitions between lower frequeny olour regions. The�nal goal of this operator was to produe a sharpened image for a better segmenta-tion of texture blobs. They used a standard sharpening �lter:

Sc(I, γ) = Ic − γ∇2(Ic)



2.3. CVC works on surfae grading 28where Ic is the -th hannel of a olour image I of dimensions NxM , ∇2(Ic)is the Laplaian of the image hannel c (∇2(I) = ∂2I/∂x2 + ∂2I/∂y2) and γ is aonstant that ontrols the amount of enhanement. This proess is done for eahhannel. Nonetheless, the Laplaian operator is very noise sensitive and in order toavoid this problem the Laplaian of a Gaussian (LoG) is used.
Sc(I, γ) = Ic − LoG(Ic)

LoG(Ic) = −
1

πσ4

[

1 −
x2 + y2

2σ2

]

e
x2

+y2

2σ2where the LoG(I) expression is entered on zero and with a Gaussian standarddeviation σ.What they �nally used was a modi�ation of this ommon sharpening operator.Instead of operating in the RGB spae they operated in the opponent spae [92℄whih provides more pereptual approah. Also they �t the operator output in theneighborhood range of the input pixel. The expression of the new operator T is asfollows:
T (I)−→γ ,w = RGB(S(Opp(I),−→γ )

max(I,w)
min(I,w) )where the superindex and subindex max(I, w) and min(I, w) are the maximumand minimum range for eah pixel inside the neighborhood w.They tested these algorithms with a set of six di�erent tile models and 47 lasses(surfae grades). The universe of samples was omposed by 514 tiles. Eah samplewas divided in three regions whih �nally resulted in 1542 images. One third ofthe images were randomly seleted for the training set and the remaining imageswere seleted for the test set. Average auray results were around 94% withoutapplying the pereptual sharpening orretion and 99% when this orretion wasapplied [4℄.Lumbreras et al



2.3. CVC works on surfae grading 29Lumbreras et al [6, 7, 99℄ developed an approah to surfae grading based onmultiresolution features. They ombined olour and texture information throughthe multiresolution deomposition of eah spae hannel in order to take as featurevetor the energies and ross-orrelations of the oe�ient images. However, thissimple approah ould be used in many di�erent ways depending on several deisions:the multiresolution deomposition sheme, the number of deomposition levels, thespae for olour representation, and �nally, the lassi�ation features to be omputedfrom the deomposition. For eah setion they hose several options.
• Colour spaes: olour to gray onversion, raw RGB diret from the amera andframe grabber, Ohta olour spae [102℄ (generi Karhunen-Loève transform),and Spei� Karhunen-Loève transform.
• Deomposition shemes and bases: multiresolution analysis with Mallat's al-gorithm [58℄, À trous algorithm [103℄, wavelets pakets [104℄. Mallat's anal-ysis and wavelet pakets were performed with Daubehies orthogonal bases,whereas à trous deomposition used B-spline bases.
• Features: only the energy terms, all orrelation signatures between deomposi-tion levels but only within the same hannel, and all the orrelation signaturesbetween hannels but only within the same level.For the lassi�ation stage they used the same approximation used by Baldrih etal. They did experiments to test the di�erent multiresolution approahes. Sam-ple universe omprised three models of polished porelani tiles. Eah model wasdivided into eight lasses or grades aording to the grading operators at fatory,eah lass ontained 15 tiles. Also, two 512x512 images were aptured for eahtile, orresponding to the middle part of the upper and lower half. Thus, in total720 samples. One third of these samples were seleted for the training set and theremaining onformed the test set.The results showed that no improvement in auray was ahieved by using Othaand spei� K-L olour spaes. The best results for the three models were ahievedusing the RGB olour spae and the orrelation signatures between hannels onlywithin the same level. In this ase, the auray in average was 92.7%.



2.4. Oulu works on surfae grading 30Baldrih and Lumbreras did not study the real-time requirements of the �nalsystem at fatory. Although real-time ompliane was not studied, both methodsseem to have signi�ant omputational osts.2.4 Oulu works on surfae gradingIn the area of wood inspetion, a set of works have been delivered (1999-2002) fromthe Mahine Vision Group of the University of Oulu (Finland) [1, 10�12, 105�109℄.In this ase, the grading of lumber boards and parquet slabs is not related with theoverall texture and olour appearane of the surfae. The grade of the wood pieeis assigned by deteting the wood defets (mainly knots) and then applying graderules related to the number and types of defets found in the inspetion proess [1℄.Therefore, from the omputer vision point of view, the problem beomes a questionof separating the surfae into sound and faulty wood, and then lassifying the defetsinto di�erent types.They foused on tehniques oriented to the detetion of faulty and non-faultyareas, hoosing a non-segmenting approah in the sense they were not interestedin a �ne segmentation of defets. In the approah, images are splitted into non-overlapped retangles whih afterwards are lassi�ed as faulty or non-faulty. Thisoarse approximation is su�ient for the purpose of the grading task whih is muhloser to a global study of the appearane than an aurate splitting of the regions[11℄.Kauppinen started the approah to the problem using only olour informationderived from the perentile features of the RGB histograms [1,11℄. The perentiles,also alled entiles, are alulated from a umulative histogram Ck(x), whih isde�ned as a sum of all the values that are smaller than x or equal to x in thenormalized histogram Pk(x), orresponding to the olour hannel k. Finding avalue for a perentile involves �nding the x when Ck(x) is known, thus, requiring aninverse funtion of Ck(x). If we denote the perentile feature with Fk(y) then
Fk(y) = C−1

k (y) = x



2.4. Oulu works on surfae grading 31where y is a value of the umulative histogram in the range [0%,100%℄.In the lassi�ation stage they used feature vetors omposed of seleted sets ofplain perentile features and di�erenes of two perentile features either from thesame olour hannel or from two di�erent olour hannels.First experiments for testing the method were arried out with 150 images ofbeeh wood slabs used for training and 360 images used for grading test. To evaluatedefet detetion and defet reognition (lassify the fault within defet lasses),retangular samples were olleted from the training areas. The number of samplesobtained from the training areas was 26855, 16027 of sound wood and the remainderinluding some kind of defet (15 lasses of defets).A set of 117 olour perentile features was alulated for the training samples.A feature seletion algorithm was used to redue the number of vetor omponentskeeping the best features for defet detetion and reognition. The well-known k-NNmethod was used for lassi�ation [30℄. Defet detetion ahieved a performane of96%, whereas performane dropped to 80% in defet reognition. Finally, a gradingexperiment was done using the non-segmenting method together with two di�erentsets of grading rules (UO and DTU rules). The grading performane was around72% in both ases. This results were bellow fatory requirements of a minimumgrading auray of 85%.After this �rst approah, Niskanen, Silvén and Kauppinen ontinued the workinluding texture properties [105, 106℄. They extended the method using the LoalBinary Pattern (LBP) texture operator, previously introdued by their olleaguesOjala and Pietikäinen [108, 109℄ (see Figure 2.4). The original 3x3 neighborhoodis thresholded by the value of the enter pixel. The values of the pixels in thethresholded neighborhood (Figure 2.4b) are multiplied by the weights given to theorresponding pixels (Figure 2.4). Finally, the values of the eight pixels are summedto obtain the number of this texture unit.In this ase, for the lassi�ation task they hose a neural network based on aSelf-Organizing Map (SOM) algorithm whih is used to visualize and interpret largehigh-dimensional data sets by projeting them to a low-dimensional spae that hastypially one or two dimensions [110, 111℄.



2.4. Oulu works on surfae grading 32Figure 2.4: Computation of loal binary pattern (LBP).
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LBP = 1+2+8+32+128 = 171For the experiments they used a test material onsisting of pine boards. The sizeof the detetion SOM was 22x18 nodes. The feature sets used in the test onsistedof olour entiles and LBP values. The region size was 40x40 pixels beause theyfound it gave low error rates for the test material. Defet detetion auray was95% whereas defet reognition was 91%.Kyllönen and Pietikäinen [12℄ also ombined entile and LBP features but theyused a di�erent approximation for lassi�ation. They ombined the entile andLBP features in one measure of distane and then used the k-NN lassi�er. For theentile features they used the Eulidean distane in the feature spae, and for LBPthey used a log-likelihood measure to ompute the dissimilarity (distane) betweensample and referene histograms1.
L(S, R) = −

N−1
∑

n=0

SnlnRnwhere N is the number of bins. Sn and Rn are the sample and referene proba-bilities of bin n.They joined these distanes by simply adding them. Prior to this both distaneswere normalized using:
d =

d − dmin

dmax

d =
d

davg1Using LBP there are 2
8 possible ombinations of texture numbers. Thus, texture desriptionof a region an be olleted omputing its LBP histogram.



2.5. Other minor works 33where dmin, dmax and davg are the min, max and average values of all the distanesfound in the training set.For the experiments they used the set of samples olleted by Kauppinen [1,11℄.The auray for defet detetion was 97% and 88.4% for defet reognition, whihis an improvement on the results �rst obtained by Kauppinen (96% and 80%).We an onlude that the inlusion of texture features, derived from the LBPoperator, signi�antly improved the results of defet reognition but not defet de-tetion. This is to be expeted if we take into aount that the suess ratio usingonly entiles was very high (96%) for defet detetion.Finally, Niskanen, Kauppinen and Silvén ompleted these works presenting astudy of the real-time aspets of the SOM-based inspetion [107℄. They fousedon the lassi�ation stage beause they deteted it was the bottlenek in real-timeinspetion. More spei�ally, they studied how to aelerate the nearest vetorsearh of the SOM ode. Some existing methods to aelerate the searh weretested; partial distane searh (PDS), annulus testing (AT), sum of omponents(SOC), dynamial hyperplanes shrinking searh (DHSS), tree struture SOM (TSSOM). And also they tested two own methods; mean tree (MT) and foused sparsesearh (FSS). It was onluded that the optimal method was the DHSS, whih limitsthe searh in the most disriminating diretion.2.5 Other minor worksPeñaranda et al [8, 9℄, like the CVC group, developed a surfae grading appliationfor a spei� type of erami tile, the polished porelani tile. A porelain tile ismade up from a mixture of several proportions of grains of di�erent olours andsizes, having the visual appearane of a random texture. Their approah onsistedof alulating the histogram of eah olour hannel in the RGB spae. Then, theyused the �rst and seond moments of eah histogram (average and variane) asolour and texture features respetively. This simple approah with an in-depthstudy of the inspetion system permitted them to ful�l the real-time requirementsof on-line inspetion. No auray results were provided, but, as far as we know,



2.5. Other minor works 34the system is installed and working at the fatory for whih it was developed.Lebrun and Maaire [13℄ dealed with the surfae grading of tiles extrated fromthe Portuguese marble Rosa Aurora. They used four attributes to di�erentiatebetween surfae lasses. The �rst was the predominant olour whih orrespondsto the bakground olour. The mean olour of eah hannel in the RGB spae wasused to measure this property. To ompute the mean they only used the half of theimage pixels loated around the largest olour histogram mode. Seond attributewas marble vein density. This was obtained by alulating the relative area of veins.To do so, the veins had to be segmented from the bakground. This was performedby using a simple, automati threshold operation in the luminane hannel, themaximum entropy threshold [112℄. The third attribute was vein olour whih wasrepresented by the mean olour the veins. The �nal harateristi involved veinontrast. The ontrast was measured alulating the mean gradient in an edgeimage of veins [113℄. They ahieved good results lassifying nine seleted samplesorretly. However, they used an approximation so related to the properties of theRosa Aurora marble that is di�ult to extrapolate the method to other surfaetypes.Kukkonen et al [15, 16℄ tested the use of aurate spetral olour representationto grade erami tiles. They used a spetral san-line amera [114℄ manufaturedby SPECIM (Spetral Imaging Ltd). The spatial sanning resolution was of 97 linesper tile, and the spetral resolution was of 237 hannels from the range of 451 nmto 700 nm (a bandwidth of 1.05 nm per hannel). A spatial resolution of 330 x 97pixels was used, having eah pixel a retangle size of 0.85 mm x 3.18 mm. Therefore,the olour representation of eah pixel was a vetor omposed by 237 equidistantsamples in the visible light spetrum. For the lassi�ation stage they used a neuralnetwork alled the Self-Organizing Map (SOM) [110℄. The spetra vetors of tileswere the input data for the neural network. They did experiments with �ve lasses orgrades of a brown tile model. In eah lass there were �ve tiles, 25 samples in total.Three tiles of eah lass were used to train the neural network and the remainingtiles for testing. An auray rate of 70% was ahieved with this method. Theyalso did experiments using only the RGB mean olour of eah tile and the k-NN



2.6. Conlusions 35lassi�er. In this ase, the perentage of suess rose to 90%. The spetral methoddid not ahieve good results. Furthermore, spetral images have the drawbak ofproduing great amounts of data for proessing whih is not suitable for real-timerequirements.Fernández et al [14℄ studied the surfae grading of granite tiles originating fromthe Rosa Porriño variety loated in Galiia. They only used olour information todisriminate between surfae lasses. The basis of the method were the histograms ofeah RGB hannel and a simple measure of histogram similarity; the sum of absolutedi�erenes of eah bin-pairs. They arried out some experiments with a small setof samples (only six tiles with three surfae lasses). No auray information wasprovided but in the paper they admit that texture information would be neessaryto improve the results.2.6 ConlusionsMany works on the issue of surfae grading have been reported in reent years, butmany of them were very speialized in a spei� type of surfae, others did notahieve good enough auray, and yet others did not take into aount the timerestritions of a real inspetion at fatory. As a result, we think surfae grading isstill an open issue where more ontributions are possible. In this sense, the presentthesis deals with some less explored aspets in terms of real-time ompliane andsurfae grading performane.From the literature review we an dedue that there are no extensive experimentsof grading performane in the area of erami tiles. Only for a spei� kind oferami tile, the polished porelani tile, have there been extensive studies of gradingperformane (CVC group and Peñaranda). There is only one work dealing withgeneri surfaes (Surrey group) but they used only surfae olour property, and noauray study was given.The Oulu group arried out a large work in the area of wood inspetion, but thiswork fouses more on separating good and faulty wood areas than on aomplishingthe grading task. Grading results are not su�iently good. Other minor works deal



2.6. Conlusions 36with very spei� types of surfaes suh as Rosa Aurora marble (Lebrun) and RosaPorriño granite (Fernández).We an also see that there is a lak in the literature of real-time ompliane inthe methods. Only two works pay attention to the time requirements of fatoryprodution lines (Peñaranda and Oulu group).In our work, we fous on the erami tile industry where there is a large demandfor automati grading. As far we know, we present the most extensive study ofsurfae grading performane in the area of erami tiles. We use the VxC TSGimage database whih is a wide representation of a typial fatory atalog withmany types of surfaes, suh as imitation marble, imitation granite, and stone.Both, texture and olour properties are used to suessfully disriminate surfaegrades. In addition, we present an in-depth study of real-time ompliane. Thereal-time approah is based on the use of features with low omputational ost andparallel proessing tehniques.



Chapter 3
VxC TSG image database
In this hapter we present the VxC TSG image database (VxC Tiles for SurfaeGrading). Building this database has been one important goal of the present thesis.The VxC TSG is based on samples taken from the erami tile industry and isomprised of 14 erami tile models, 42 surfae grades and 960 piees. It was builtin the VxC laboratory in ollaboration with Keraben S.A. and is an extensive imagedatabase of erami tiles representing the wide range of surfae lasses in the eramitile industry. VxC TSG is the ground truth used in the experiments of Chapters5 and 6, and is also intended to be a tool for the sienti� ommunity working onsurfae grading. It is publi and available at miron.disa.upv.es/vision/vxtsg/.Before desribing the image database itself, we desribe the aquisition systemused to apture the digital images of tiles. We also present a study of the uniformresponse of the system through time and spae. This study is a subgoal of thesiswork. Spatial and temporal uniformity are of great importane in order to ensuresurfae grading performane [2�5, 9, 83℄. Slight hanges in illumination or aquisi-tion onditions an easily produe di�erent grades for the same surfae and thenmislassi�ations. In order to overome this problem we hose high quality ompo-nents for the aquisition system; amera, illumination, and optis. In the literaturemany of the modern omponents were not available and system variability had tobe ompensated using data transformation algorithms. Our goal in this issue hasbeen to demonstrate that modern aquisition omponents are able to meet spatialand temporal requirements without needing any transformation of the original data.37



3.1. Aquisition system 38The study of spatial and temporal uniformity was arried out omparing two mod-ern illumination systems; uniform high frequeny �uoresents and arrays of whiteLEDs.3.1 Aquisition systemThe aquisition system (see Figure 3.1) ompromises the following high quality om-ponents:
• One Dalsa Trillium amera ( TR-31-02k25). This is a olour san line amerawith 3 CCDs (RGB). It provides 2048 pixels of horizontal resolution and amaximum aquisition rate of 11kHz. This aquisition rate is more than weneed in worst fatory onditions. As we use a resolution of 3.2 pixels permillimetre only 884 lines per seond are needed (see Chapter 7).
• One Nikkon optis (35mm, 1:2.0 mm).
• One Coreo-Imaging PC-DIG frame grabber with 4Mb of internal RAM and100MB/s of PCI transfer rate. We need only 111.3 milliseonds to transfer animage from the amera to the PC memory in the worst ase (2048x1900 RGBimages).
• High frequeny and uniform �uoresents (Merrom FXC2372-2). This illumi-nation system has two speial high frequeny �uoresent lamps (60kHz) withuniform illuminane throughout its length. To overoming variations withtime, the power supply is automatially regulated by a photoresistor loatednear the �uoresents. The high frequeny provides 135.8 luminane peaks foreah sanned line, thus, dark aquisitions are not possible.
• Alternatively, another illumination system formed by two arrays of white LEDs(DCM Sistemes PRL 350). A priori, LEDs are supposed to be uniform in timebeause they use onstant DC power, and also they are supposed to be spatiallyuniform as they are arranged in line equidistantly.



3.1. Aquisition system 39Figure 3.1: Aquisition system.
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In the VxC laboratory there is a prototype system whih is a replia of a setion ofa typial erami tile prodution line. The prototype ompromises a abin integratedin the prodution line as the aquisition unit (see Figure 3.2) and one PC with theframe grabber and the I/O ard as the proessing unit. This prototype with theabove mentioned omponents has been used to apture the digital images for theVxC database.3.1.1 San Line CameraWe hose a san line amera with advaned properties to provide high quality a-quisition and overome some ommon aquisition problems.It has a 3 CCD sensor with a preisely-aligned beam-splitting prism to separatered, green and blue inputs. Colour sensitivity is muh better than using 1 CCDamera beause in 1 CCD ameras the responses on red, green and blue hannelsare mixed in the same CCD.The amera is able to alibrate itself to improve olour balane and image �at-ness. It performs a video orretion that operates on a pixel-by-pixel basis andimplements a two point orretion for eah pixel . This orretion redues or elimi-nates image distortion aused by the following fators:



3.1. Aquisition system 40Figure 3.2: Prototype at VxC laboratory.

• Fixed Pattern Noise (FPN).
• Photo Response Non Uniformity (PRNU).
• Colour imbalane.
• Lens and light soure non-uniformity.The two point orretion is implemented for eah pixel on the CCD using:

Voutput = PRNU(pixel) ∗ Vinput + FPN(pixel)where Voutput is the output pixel value, Vinput is the input pixel value from theCDD, PRNU(pixel) is the PRNU orretion oe�ient for this pixel and FPN(pixel)is the FPN oe�ient for this pixel.The alibration algorithm is performed in two steps. The �xed o�set (FPN) isdetermined �rst by performing a alibration with no light (Dark Calibration). Thisalibration determines how muh o�set to subtrat per pixel in order to obtain �atoutput when the CDD is not exposed. The Dark Calibration is arried out overingthe lenses or/and losing the iris to the maximum.



3.1. Aquisition system 41White Light Calibration is performed next to determine the multipliation fatorsrequired to bring eah pixel to the required value (balane target, usually 95% ofsaturation) for �at white output. The white light alibration also sets the analoggains in the amera appropriately to balane all the hannels (olour balane). Whitelight alibration is more omplex than dark alibration beause the amera attemptsto reate a �at white image. This alibration orrets PRNU e�ets as well as non-uniform lighting and lens vignetting a�ets.White light alibration requires a lean, white referene. The quality of thereferene is important for proper alibration. White paper is often not su�ientbeause the grain in the white paper will distort the orretion. Usually a whiteplasti referene, whih is more uniform, ahieves better balaning.3.1.2 Optial lensesThe amera was equipped with a Nikkon optis (35mm, 1:2.0 mm). This is a ommonhigh quality lens, but as with most lenses, it an be a�eted by two major optialolour aberrations; vignetting and hromati aberration [115℄. At present, someompanies an supply aberration-free lenses but they are made on demand, do notompletely remove the aberrations and are very expensive.Vinegtting is an unintended darkening of the image orners and is inherent tothe lens design. Chromati aberration appears beause ommon lenses refrat lightdi�erentially as a funtion of wavelength. Short (blue appearing) wavelengths arerefrated more than long (red appearing) wavelengths. Thus, hromati aberrationsare introdued.Some tests at the laboratory, arried out to prepare and alibrate the aquisitionsystem, showed that the vignetting a�et growed as we used large openings of theiris. We ahieved images free of vignetting by using small openings in ombinationwith the amera alibration proess. With respet to hromati aberration, it isinherent to the lenses and is not time or amera dependent. Thus, the hromatiaberration introdued is onstant in all aquisitions and therefore is not relevantwhen we ompare olour di�erenes rather than absolute olour values, as it oursin surfae grading appliation.



3.2. Study of spatial and temporal uniformity. 423.2 Study of spatial and temporal uniformity.Spatial and temporal uniformity is ruial to ensuring surfae grading performane.Slight hanges in illumination or aquisition onditions an easily introdue di�erentgrades for the same surfae and then mislassi�ations. In the surfae gradingliterature this question has been addressed ompensating the system variability withdata transformation algorithms.In [2,3℄ Boukouvalas et al aptured a set of images of the same plain tile in all fourpossible orientations. From these images they determined the spatial variation of theillumination by averaging the four images and �tting the data with low-order two-dimensional polynomial. The oe�ients of this polynomial were omputed usingleast square error �tting. Temporal variability of the illumination was determinedby apturing a sequene of images of the same plain tile next to a referene surfaeover a period of time. From these images a set of points (IR, IT ) was olletedrepresenting the mean intensities of the referene surfae and the tile, respetively.The intensity hange of the tile and the referene surfae was loally desribed bya linear funtion, the slope of this funtion was omputed with least square error�tting again and used to overome temporal variability in the illumination.In [4, 5℄ Baldrih et al modeled the global variability of the aquisition systeminluding illumination and sensor a�ets. They developed a method based on olouronstany tehniques using a diagonal matrix model. This was omputed using awhite pattern image aquired periodially. Spatial distortions were modeled using aset of diagonal transforms {Sx}, one 3x3 matrix for eah position x along the x axiswhere the spatial variation ours (they used a san-line amera). Light variationsdue to time were orreted in a similar way. A set of diagonal transforms werealulated {T ti
x }. This set modeled the distortions at time ti referring to instant t0.The �nal set of diagonal transforms was {Dti

x } where Dti
x = SxT

ti
x .When these works were reported many of the modern aquisition omponentswere not available and system variability had to be ompensated using data trans-formation methods. Our approah to this question has been to demonstrate thatmodern aquisition omponents are su�iently stable to meet spatial and temporaluniformity requirements without transforming the original data.



3.2. Study of spatial and temporal uniformity. 43We arried out an experiment to determine the reliability of the aquisition sys-tem in relation to spatial and temporal uniformity. This experiment also omparedtwo di�erent modern illumination systems; uniform high frequeny �uoresents andarrays of white LEDs.For eah illumination system we aptured repeatedly the images of six tiles, eahone orresponding to a di�erent model. The tiles were hosen trying to over a widerange of surfae types and olours (see Figure 3.3). The omplete set of tiles wasaquired at random moments over 54 hours. We extended the experiment over 54hours (two days and six hours) beause this is the mean period at fatories whenthey produe a spei� model, and we wanted to study the spatial and temporaluniformity for a omplete surfae grading session. In total, the set of tiles wasaptured 23 times. Environmental onditions were holded onstant using an aironditioner system for temperature and a losed abin for illumination.Figure 3.3: Tiles used in the study of spatial and temporal uniformity. From left toright, up to down; venie, vega, blue venie, somport, mediterranea and granito.

In order to study the temporal response we measured the mean CIE Lab olourof eah piee. And also, in order to study spatial response we randomly oriented



3.2. Study of spatial and temporal uniformity. 44the piees in eah apture. The CIE Lab is a pereptually uniform olour spae andwe an measure the pereptual di�erene between two olours using the Eulideandistane in this spae [33℄. Thus, olour di�erenes an be measured in a very similarway to the human pereption of olours.In [116℄ Mahy and Oosterlink established that in CIE Lab a notieable di�ereneof olour [for humans℄ begin at 2.3 or greater Eulidean distanes. From this asser-tion we an onsider a system su�iently stable if there is no Eulidean distaneabove 2.3 when we alulate all the Eulidean distanes between the �rst sample andthe rest. Figure 3.4 shows the system response for eah tile over the 54 hours whenusing �uoresents and LEDs respetively. In the results of �uoresents there wasno distane above 2.3, and all of them remain signi�antly far away from this limit.Distanes using LEDs did not remain under the notieable di�erene showing a leardegradation of the system with time, the notieable di�erene was surpassed afterapproximately 33 hours. LEDs experiment was repeated using a better performanepower supply but again the notieable di�erene was exeeded after approximately33 hours.The goal of this study has been to determine whether or not the aquisitionsystem is stable enough for the surfae grading purpose. The onlusion of thestudy is that uniform high frequeny �uoresents omply with spatial a temporaluniformity, while the arrays of white LEDs are not appropriate when temporaluniformity is required. A great part of the suess of �uoresents is due to thepower supply iruit whih is auto-regulated taking in aount emitted light byusing a photoresistor loated near the �uoresents. Thus, the system an respondimmediately to illumination hanges and stabilize luminous power with time.



3.2. Study of spatial and temporal uniformity. 45Figure 3.4: System response over 54 hours using �uoresents and LEDs respetively.
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3.3. VxC TSG desription. 463.3 VxC TSG desription.Table 3.1: Models of the VxC TSG image database.lasses tiles/lass size (m) pattern aspetagata 13, 37, 38 16 33x33 �xed marbleantique 4, 5, 8 14 23x33 pseudo-random stoneberlin 2, 3, 11 24 20x20 random graniteampinya 8, 9, 25 30 20x20 pseudo-random stone�renze 9, 14, 16 20 20x25 random stonelima 1, 4, 17 24 20x20 random granitemar�l 27, 32, 33 14 23x33 pseudo-random marblemediterranea 1, 2, 7 30 20x20 random stoneoslo 2, 3, 7 24 20x20 random granitepetra 7, 9, 10 28 16x16 random stonesantiago 22, 24, 25 28 19x19 random stonesomport 34, 35, 38 28 19x19 random stonevega 30, 31, 37 20 20x25 �xed marblevenie 12, 17, 18 20 20x25 pseudo-random marbleThe image database has been built in ollaboration with Keraben S.A. whihis a large erami tile ompany (2nd in Spain by total turnover) loated at Nules,provine of Castellón. Together with the R+D sta� we studied their atalog andhose a set of models intended to be a good representation of the wide variety ofsurfae lasses that fatories an produe. A atalog of 700 models is ommon inthese ompanies. But, in spite of this great number of models, almost all of themimitate one of the following mineral textures; marble, granite or stone.Due to the way that tiles are produed there are three basi types of surfaepatterns; �xed, random and pseudo-random. Fixed pattern models are produed byimpressing the �x deorative motives on to the enameled tile surfaes. This is donethrough silk-sreen mahines. Printing rollers are used to made pseudo-randommodels. The patterns on the rollers are �xed but the part of eah roller that isimpressed over the tile is randomly hosen by the moment that tile begin to passunder the rollers. For random models several tehniques may be used depending onthe model to be produe. One of these tehniques onsists of spreading pigmentsover the tile using sponges. From the point of view of surfae grading purposes �xed



3.3. VxC TSG desription. 47and pseudo-random pattern models an be onsidered subsets of random patternmodels.The database is formed by the digital images of 960 tiles aquired from 14 dif-ferent models, eah one with three di�erent surfae lasses (see Table 3.1). Thelasses were given by speialized graders at the fatory. Every model has two loselasses and one lass distant to them. Surfae lasses (grades) are represented bynumbers and lose numbers mean lose lasses. Thus, the database inlude �di�ultto disriminate� ases in eah model. The tiles were olleted diretly from the endof the prodution line, just before the tiles are graded and paked, or from stokstored at the fatory.Figures 3.5, 3.6, 3.7 and 3.8 show VxC TSG samples itemized by aspet. Qualityof images was improved enhaning brightness and ontrast independently in everymodel.In the ase of granite models there were only six tiles per surfae grade. The sizeof these piees was large, 50x50m. To inrease the number of samples in these mod-els we deided to take four sub-samples of eah piee with a size of 20x20m. Thisould be done beause grains and tile olour were uniformily distributed through allthe surfae of tiles.



3.3. VxC TSG desription. 48Figure 3.5: VxC TSG marble samples. From up to down; three samples of agata,mar�l, venie and vega models, eah one orresponding to a di�erent surfae grade.



3.3. VxC TSG desription. 49Figure 3.6: VxC TSG granite samples. From up to down; three samples of berlin,oslo and lima models, eah one orresponding to a di�erent surfae grade.



3.3. VxC TSG desription. 50Figure 3.7: VxC TSG stone samples. From up to down; three samples of antique,ampinya, �renze and mediterranea models, eah one orresponding to a di�erentsurfae grade.



3.4. Conlusions 51Figure 3.8: VxC TSG stone samples. From up to down; three samples of petra,santiago and somport models, eah one orresponding to a di�erent surfae grade.

3.4 ConlusionsIn this hapter we have presented the VxC TSG database for surfae grading whihhas been one important goal of this thesis. The aquisition system, based on highquality omponents, has been desribed and also a study about the spatial andtemporal uniformity of the system is performed. This study has been a thesis subgoalplanned at the beginning of the thesis work. Uniform high frequeny �uoresentsand arrays of white LEDs are two modern illumination systems that have beenompared from the point of view of spatial and temporal uniformity. The onlusionof the study is that the aquisition system using uniform high frequeny �uoresents



3.4. Conlusions 52omply with spatial a temporal uniformity, while the arrays of white LEDs do notprovide temporal uniformity. LEDs learly degrade the system with time surpassingthe notieable di�erene limit after 33 hours of use.Finally, and extensive image database of erami tiles for the purpose of surfaegrading has been ompiled. This database has been built in ollaboration with theR+D sta� of Keraben S.A. intending to be representative of the wide range of surfaelasses present in erami tile industry. Furthermore, the database is available for thesienti� ommunity working on surfae grading atmiron.disa.upv.es/vision/vxtsg/.The VxC database has already been used partially in [130℄.



Chapter 4
On the searh for a fast and aurateapproah to surfae grading
This hapter presents the �rst approahes we developed to solve the question offast and reliable surfae grading of �at piees deorated with random patterns.In the �rst works, we used image tessellation and simple loal statistis of olourto desribe surfae appearane. The statistis were omputed in a pereptuallyuniform olour spae, the CIE Lab. These �rst works did not ahieve the minimumauray requested at fatory ( 95% of suess ratio). Finally, we proposed a methodbased on global olour and texture statistis, also omputed in CIE Lab. Thismethod ahieved auray ompliane. CIE Lab was used to provide auray andpereptual approah in olour di�erene omputation. Experiments with RGB werearried out to study CIE Lab reliability. These approahes were tested on a mediumsized image database of erami tiles. This database was the anteedent of theVxC TSG image database presented in the previous hapter. Global statistis inCIE Lab were also ompared with two other methods from the literature; olourhistograms [2, 3℄ and entile-LBP [1, 12℄.After experiments and omparison we onluded that a simple olletion of globalolour and texture statistis in the CIE Lab spae was powerful enough to welldisriminate surfae grades. The average suess rate was over 95% in most tests,improving on the methods in the literature and ahieving fatory ompliane. Theapproah based on global statistis in CIE Lab is the anteedent of the soft olour-53



4.1. Image tessellation and loal Lab statistis 54texture desriptors method developed in the next hapter. Both global statistis inCIE Lab and soft olour-texture desriptors are basially the same method but thelatter was extrated as a result of an extensive study based on statistial tools andVxC TSG image database. Work presented in this hapter was reported in [25,26℄.4.1 Image tessellation and loal Lab statistisThe methods orresponding to this setion split the image into squares of NxNpixels. For eah square two simple statistis, the mean and the standard deviation,are omputed in eah CIE Lab olour spae hannel. As we will see, this loal datais used in several ways to perform the surfae grading.CIE Lab was designed to be pereptually uniform. The term 'pereptual' isreferred to the way that humans pereive olours, and 'uniform' implies that per-eptual di�erene between two oordinates (two olours) will be related to a measureof distane, whih ommonly is the Eulidean distane. Thus, olour di�erenes anbe measured in a way lose to the human pereption of olours.The images of the ground truth (image data base) were aquired in RGB, andtherefore needed to be onverted to CIE Lab oordinates using standard RGB toCIE Lab transformation [33℄.The experiments in this setion we arried out using an image data base formedby the digital RGB images of 276 tiles aquired from �ve di�erent models, eahwith three di�erent surfae lasses or grades (see Table 4.1) given by speializedgraders at fatory. For eah model there were two lose lasses and one distant lass.The models were hosen to represent the great variety of models that fatories anprodue. Almost all fatory models imitate one of the following mineral textures;marble, granite or stone. In this initial image data base there were no modelsimitating granite. This type of tiles were added latter in the global Lab statistisexperiments.Digital images of tiles were aquired using an spatially and temporally uniformillumination system. Spatial and temporal uniformity is important in surfae grading[1,2,4,8℄ beause variations on illumination an produe di�erent shades for the same



4.1. Image tessellation and loal Lab statistis 55Table 4.1: Ground truth of erami tiles used in image tessellation and loal Labstatistis approahes.lasses tiles/lass size (m) pattern aspetagata 13, 37, 38 16 33x33 �xed marble�renze 9, 14, 16 20 20x25 random stonetosana 13, 18, 19 16 33x33 random stonevega 30, 31, 37 20 20x25 �xed marblevenie 12, 17, 18 20 20x25 pseudo-random marblesurfae and onsequently, mislassi�ation. The illumination system was formed bytwo speial high frequeny �uoresent lamps with uniform illumination along itslength. To overome variations through time, the power supply was automatiallyregulated by a photoresistor loated near the �uoresents.The �rst approah based on tessellation and loal statistis uses the standarddeviation to sort squares from low to high variability. Then, a simple algorithmseeks a slope exeeding a given threshold in the sorted vetor of standard deviations.The image is divided into two regions de�ned by squares variability; low and hightexturized regions (see Figure 4.1). Then, the mean olour vetor of both regionsare omputed and used to lassify the tiles. The hypothesis is that tile surfae anbe divided into two general regions, one with an homogeneous aspet, and anotherwith a texturized aspet. Eah region seems to have a di�erent general olour andthese two olours ould be enough to haraterize the tile tone or grade.The lassi�ation results are presented in Table 4.2. We used the well knownk-NN lassi�er [30℄ with k fator equal to 1 and 3. Samples were divided intotraining and test sets, 30% of samples were used for training and 70% for test.The results show better performane for CIE Lab spae. The method does notahieve auray ompliane and also it requires two non-automati parameters;the standard deviation threshold and the square size. Table 4.2 only shows theestimated values of standard deviation, but the NxN size also had to be estimated.This parameters were heuristially studied for eah tile model. This non-automatiproedure in parameter estimation is an important drawbak.A post-study of images and square sizes revealed that in several tile models more



4.1. Image tessellation and loal Lab statistis 56Figure 4.1: First approah to surfae grading based on tessellation and loal statis-tis. Sorted vetor of standard deviations and image splitting into two regions usingsquares variability.
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Table 4.2: Auray results for the �rst approah based on image tessellation andloal statistis. std deviation Lab RGBagata 0.5 97.0% 87.9%�renze 0.5 85.7% 78.6%tosana 1.0 75.8% 66.7%vega 0.6 90.2% 100%venie 1.0 88.1% 78.6%mean 87.4% 82.4%than two regions and mean olours ould be de�ned in relation to olour variabilityof squares. Thus, the method ould be extended dividing images into more regionsusing more standard deviation thresholds, but we though it would we omplex andnot interesting beause parameters (standard deviation thresholds and squares size)have to be determined non-automatially.In a seond approximation, we explored the disriminant properties of the or-dered standard deviation vetor. Figure 4.2 shows the averaged vetors of the or-dered standard deviation vetors belonging to eah lass (grade) of the tosanamodel using 15x15 squares. Eah mean vetor was omputed using the half of thesamples of eah lass. Classi�ation was performed using the square root of theleast-square-error (LSE) as a measure of distane between test tile vetor and the



4.1. Image tessellation and loal Lab statistis 57referene mean vetor of eah lass.Thus, the sorted standard deviation vetor isused as a signature of loal variability. The distanes between referenes and testsignatures are used to determine the surfae grade or lass.Figure 4.2: Seond approah to surfae grading based on tessellation and loalstatistis. Averaged vetors of ordered standard deviation vetors orresponding toeah tosana lasses with a square size of 15x15 pixels.
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This method is simpler than previous one beause no threshold parameter isneeded for the standard deviation, only the squares resolution had to be studied.This method improves the �rst approah but still does not reah auray ompli-ane. Tests using squares resolutions from 5x5 to 300x300 were performed. Table4.3 ollets the best auray results among the di�erent square resolutions for eahmodel. RGB obtains the worst results.An evolution of this seond approah is arried out using the mean olour ofsquares instead of the standard deviation to ompute the distane between signa-tures. The vetor is again sorted by the standard deviation but values orrespond tothe mean olour of squares. In this ase, we used pure olour information plus thevariability represented by the order imposed with the standard deviation sorting.



4.1. Image tessellation and loal Lab statistis 58Table 4.3: Auray results for the seond approah based on image tessellation andloal statistis. square size Lab RGBagata 80x80 95.8% 91.7%�renze 30x30 86.7% 76.7%tosana 30x30 83.3% 79.2%vega 70x70 100% 100%venie 25x25 83.3% 86.7%mean 89.8% 86.9%The results of this third approah are shown in Table 4.4. The method ahievesvery good performane for three models but it drops signi�antly in the remainingtwo models. After studying the visual properties of these groups of models, we on-luded that the fundamental di�erene was the variability level. Tiles are formedby homogeneous and texturized (non-homogeneous) regions. In the �rst group ofmodels, homogeneous regions over great areas of tiles while in the seond grouptexturized areas over almost all the tile surfae. In the seond group, the standarddeviation values did not orrelate with the mean olours of squares while they didin the �rst group. One again RGB spae performed worse than CIE Lab.Table 4.4: Auray results for the third approah based on image tessellation andloal statistis. Lab RGBagata 100% 100%�renze 100% 96.7%tosana 58.3% 54.2%vega 100% 40%venie 66.7% 76.7%mean 85.0% 73.5%Finally, we developed several multiresolution approahes. The idea was to usesome kind of multiresolution approah with the methods previously studied. Theimage sales we used were: 1.0, 0.5, 0.25, 0.12 and 0.06. The �rst multiresolutionapproximation is quite simple, it is a voting system. Eah sample is lassi�ed inevery sale, and the �nal lass is the most voted lass out of all the sales. This



4.1. Image tessellation and loal Lab statistis 59approah is arried out using seond and third previous approahes.The seond multiresolution approximation is an extension of the approah basedon the ordered standard deviation vetor. We used an absolute measure, the area ofthe ordered standard deviation vetor (see Figure 4.3). This measure was omputedin all sales, and therefore a feature vetor of 5 areas was obtained for eah sample.Classi�ation was performed using k-NN. Experiments were arried out using onlyCIE Lab.Figure 4.3: Seond multiresolution approah based on the omputation of areasbelonging to ordered standard deviation vetors in several image sales.
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Table 4.5: Lab auray results for the fourth approah based on image tessellationand loal statistis. Multiresolution approahes.standard mean std dev.deviation olour areasagata 100% 100% 100%�renze 90.0% 100% 90.0%tosana 83.3% 58.3% 95.8%vega 100% 100% 96.6%venie 86.7% 66.7% 93.3%mean 92.0% 85.0% 95.1%Table 4.5 shows multiresolution results. The �rst multiresolution approahahieves only a slight improvement using the ordered standard deviation vetor.However, the seond multiresolution approah based on the areas of the ordered stan-dard deviation vetors performs well exeeding in 0.1% fatory ompliane (95%).



4.2. Global Lab statistis 60In spite of the good result ahieved by the seond multiresolution approah, thedrawbak of these methods is they need at least one parameter to be estimated forevery tile model. In next setion we present a method whih is parameter indepen-dent and disriminates surfae grades very well.4.2 Global Lab statistisThis method is even simpler than the previous approahes. Here, a set of globalstatistial features desribing olour and soft texture properties are olleted. Thefeatures are omputed in a pereptually uniform olour spae, the CIE Lab. Thesestatistis form a feature vetor used in the lassi�ation stage where the well knownk-NN method [30℄ was hosen as lassi�er.We propose several statistial features for desribing surfae appearane. Foreah hannel we hose the mean, the standard deviation and the average deviation
ADev(z).

ADev(z) =
1

L

L
∑

i=1

|zi − m|wherez is the random variable, L size of the data set and m the mean value of zvalues.Also, by omputing the histogram of eah hannel we are able to alulate his-togram moments. Histogram moments are onsidered soft texture desriptors [29℄.We de�ned two bloks of histogram moments; one from 2nd to 5th and the otherfrom 6th to 10th. The nth moment of z about the mean is de�ned as
µn(z) =

L
∑

i=1

(zi − m)np(zi)where z is the random variable, p(zi), i = 1, 2, ... , L the histogram, L the num-ber of di�erent variable values and m the mean value of z.The experiments were arried out using and extended image data set whihinluded three new tile models for polished porelani tiles were added (see Table4.6).



4.2. Global Lab statistis 61Table 4.6: New models added to the image database of erami tiles.lasses tiles/lass size (m) pattern aspetberlin 2 ,3, 11 24 20x20 random granitelima 1, 7, 17 24 20x20 random graniteoslo 2, 3, 7 24 20x20 random graniteThe experiments were arried out for CIE Lab and RGB spaes. Classi�ationwas made using half of the samples as training set and the remaining half as testset. Values of 1, 3, 5 and 7 were used for the k fator of the k-NN lassi�er.The performane results of several statistis sets are shown in Table 4.7. Theauray rates were omputed as the average auray ratios ahieved over all mod-els. More ombinations of statistis were tested, but only the most prominent arepresented. The last two olumns orresponds to the averaged auray rate and the95% on�dene intervals [122℄ respetively. The table is divided into two bloks, the�rst one orresponds with CIE Lab experiments. Here, the majority of sets haveon�dene intervals under the minimum auray rate of 95% whih is the fatoryperformane requirement. The best hoie was to use the mean olour plus thestandard deviation. Histogram moments did not introdue any improvement. Theseond blok ollets the results of RGB whih presents signi�ant less disriminativepower than CIE Lab.



4.3. Literature methods 62Table 4.7: Best auray results of global Lab statistis method. From left to right;mean, standard deviation, average deviation, histogram moments from 2nd to 5th,histrogram moments from 6th to 10th, CIE Lab, RGB, auray and 95% on�deneintervals. Auray and on�dene intervals are given in %.mean std dev ave dev 2-5 ms 6-10 ms Lab RGB a. .i. 95%x x 86.8 [83.6, 89.7℄x x x 98.9 [97.7, 99.6℄x x x 97.0 [95.3, 98.4℄x x x x 96.8 [95.1, 98.3℄x x x x x 96.7 [94.8, 98.1℄x x 86.6 [83.4, 89.6℄x x x 92.1 [89.4, 94.3℄x x x 92.7 [90.1, 94.9℄x x x x 94.1 [91.7, 96.0℄x x x x x 93.3 [90.8, 95.4℄
4.3 Literature methodsWe seleted two methods from the literature for omparison purposes: olour his-tograms [2, 3℄ and entile-LBP [1, 12℄. We hose these methods beause they aresimilar to ours, both are generi solutions with low omputational osts. For in-depth information about these approahes review Chapters 2 and 6.We should point out that the entile-LBP method is not used in literature di-retly for wood grading but for surfae segmentation into sound wood and knoks.However, we use the method as a global surfae grader ahieving good results.Colour histograms are 3D histograms whih are ompared using dissimilaritymeasures. In [2,3℄ they used the hi square test and the linear orrelation oe�ientto measure histograms dissimilarities.Centiles [1, 12℄ are olour features alulated from the umulative histograms ofolour hannels orresponding to a given olour spae. A total number of 171 entilesare ompiled to desribe the olour property of surfaes. The Loal Binary Pattern(LBP) is a loal texture operator related to eah image pixel's neighbourhood. Thisoperator provides a number for eah pixel (texture unit) in the range [0, 255℄, thena histogram ollets the LBP texture desription of an image.



4.3. Literature methods 63In [12℄ entile and LBP features were ombined in one measure of distane andthen the k-NN lassi�er was used. For Centile features they used the Eulideandistane in the feature spae. For LBP they used a log-likelihood measure. Bothdistanes were normalized using the min and max values of all the distanes foundin the training set and then joined by simply adding them together.Experiments for olour histograms and entile-LBP were arried out. One again,lassi�ation was made using the half of the samples for training and the remain-ing half for testing. In entile-LBP experiments the original log-likelihood formula,the hi square test and the linear orrelation oe�ient were used for measuringhistograms di�erenes.Table 4.8: Auray results of olour histograms and entile-LBP. From left to right;Chi square, linear orrelation and log-likehood distanes, auray, 95% on�deneintervals. Auray and on�dene intervals are given in %.Chi Corr. Log Lab RGB a. .i. 95%Colour Histo. x x 90.3 [87.4, 92.8℄Colour Histo. x x 88.5 [85.4, 91.2℄Colour Histo. x x 88.9 [85.8, 91.5℄Colour Histo. x x 87.6 [84.5, 90.5℄Centile-LBP x x 94.4 [92.2, 96.4℄Centile-LBP x x 94.9 [92.6, 96.7℄Centile-LBP x x 91.3 [88.5, 93.6℄Centile-LBP x x 94.7 [92.4, 96.5℄Centile-LBP x x 95.4 [93.4, 97.2℄Centile-LBP x x 93.3 [90.8, 95.4℄The results of Table 4.8 show that entile-LBP ahieves the best auray rateswhen using RGB, but neither method ahieves fatory ompliane beause noneof their on�dene intervals are over the min auray rate (95%) requested atfatory. Compared with Table 4.7 Lab Statistis presents signi�ant improvementin performane an also is the only method with on�dene intervals ompletelysurpassing the min fatory auray limit.



4.4. Conlusions 644.4 ConlusionsIn this hapter we have presented several approahes to surfae grading. First meth-ods were based on image splitting into equally sized squares and simple loal statis-tis omputed for eah square. Only one of these methods ahieved the aurayompliane requested at fatory. An important drawbak of all these methods isthat they needed to non-automatially estimate at least one parameter for everytile model. Next, a method based on global statistis with no parameter estima-tion was presented. Many ombinations of the proposed statistis on olour andtexture ahieved auray ompliane learly exeeding the minimum requested atfatory (95%). All the proposed methods use a pereptually uniform olour spae,the CIE Lab. Experiments using RGB were performed and this spae showed lessdisriminative power. Thus, pereptual approah based on CIE Lab appears as agood hoie.For omparison purposes we seleted two methods from the literature (olourhistograms and entile-LBP) and performed experiments using the same imagedatabase. The results ahieved by both approahes were worst than global Labstatistis and also did not reah fatory ompliane.Global statistis omputed in CIE Lab is the anteedent of soft olour-texturedesriptors method whih is in-depth developed in next hapter. Both, global statis-tis in CIE Lab and soft olour-texture desriptors are basially the same method.One we found a fast method able to omply with fatory requests, we deided tostudy the approah in-depth, adding new fators suh as new olour spaes (CIELuv and Grey sale), lassi�ers (leaving-one-out) and testing all the possible ombi-nations of soft olour-texture desriptors (mean, standard deviation, and histogrammoments from 2nd to 5th). To do so, we used statistial tools to manage the largeamount of resulting experiments and ahieve objetive and valid onlusions. Wealso used an extensive image database, the VxC TSG.



Chapter 5
Extration of soft olour-texturedesriptors method
In previous hapter we found a suessful new approah to surfae grading basedon global statistis of olour and texture omputed in a pereptually uniform olourspae, the CIE Lab. This approah ahieved fatory ompliane in auray perfor-mane and also improved literature methods (olour histograms and entile-LBP).Basing on this method in this hapter we present an extensive study in order toextrat a de�nitive method. The study inludes more fators suh as new olourspaes (CIE Luv and Grey sale) and lassi�ers (leaving-one-out) and also all thepossible ombinations of soft olour-texture desriptors (mean, standard deviation,and histogram moments from 2nd to 5th) are tested in onjuntion with the otherfators.The resulting method from this in-depth study is named soft olour-texture de-sriptors method. The method is extrated and validated using a statistial proe-dure based on two statistial tools; experimental design [31℄ and logisti regressionanalysis [32℄. These tools in onjuntion provide a way to determine the best om-bination of quantitative/ategorial fators related with a set of experiments. Thebest ombination is ahieved by seeking to maximize or minimize one response vari-able also involved in the experiments. In our ase this output variable was thelassi�ation auray rate.Although the method is not a new theoretial ontribution, we demonstrate that65



5.1. CIE Lab and CIE Luv 66a simple set of global statistis of olour and texture, together with well-knownlassi�ers, are powerful enough to omply hard fatory requirements for real-timeand performane. The two main requests of the industry are on-line inspetion atfatory rates (real-time ompliane) and a high performane surfae grading system.Prodution managers at fatories will only aept an error rate lose to 5% beforerelying on these automati grading systems. The method meets the �rst demand byusing the simplest and fastest [to ompute℄ olour-texture features [29℄. The seonddemand is met by ahieving average auraies over 95% in many of the tests arriedout using the VxC TSG database desribed in Chapter 3.5.1 CIE Lab and CIE LuvThe CIE (Commission Internationale de L'Elairage) derived and standardized twopereptually uniform olour spaes from the CIE XYZ; the CIE Luv and the CIELab. The term 'pereptual' refers to the way that humans pereive olours. Theterm 'uniform' means that if we move in the olour spae from one olour to an-other (from one oordinate to another) the pereptual di�erene will be related toa measure of distane, ommonly the Eulidean distane, and the same distanewill be approximately related to the same pereptual di�erene in all the olourspae. Thus, we an measure olour di�erenes lose to the human pereption ofolours whih makes these spaes useful for appliations where olour di�erene mea-surement plays an important role, as is the ase of the surfae grading appliationpresented in this thesis.In fat, both spaes are only approximately uniform. However, them and theirolour-di�erene formulae are the best approximation to pereptually uniform spaesand pereptual olour di�erene omputation available at the moment [33, 116℄.They are by far muh more uniform than the XYZ and RGB olour spaes.CIE Luv and CIE Lab are slightly di�erent beause of the di�erent approahes totheir formulation [33, 34℄. Nevertheless, both spaes are equally good in pereptualuniformity and provide good estimates of olour di�erene (distane) between twoolour vetors. Both spaes are used in olorimetry. The CIE Luv is mainly used for



5.1. CIE Lab and CIE Luv 67industries onsidering additive mixing suh as olour displays, TV and lighting [35℄,while the CIE Lab and the CMC di�erene formula have found wider aeptane inolour ontrol industries. They are ommonly used in image proessing appliationsinvolving olour [117℄.In CIE Lab and CIE Luv the L omponent is the same and represents lightness.It extends form 0 (blak) to 100 (white). Also, both spaes have the same oppo-nent olour axes approximately representing red-green versus yellow-blue, whih arerespetively a and b in the CIE Lab and u and v in the CIE Luv.The database images were aquired originally in RGB, so onversion to Lab/Luvoordinates is needed. This onversion is done through the CIE XY Z olour spae[33℄.Linear onversion from RGB to XY Z:
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Nonlinear onversion from XY Z to CIE Lab:
L =







116(Y/Yn)
1/3 − 16 if Y/Yn > 0.008856

903.3(Y/Yn) otherwise

a = 500(f(X/Xn) − f(Y/Yn))

b = 200(f(Y/Yn) − f(Z/Zn))where
f(t) =







t1/3 if Y/Yn > 0.008856

7.787t + 16/116 otherwiseNonlinear onversion from XY Z to CIE Luv:
L =







116(Y/Yn)
1/3 − 16 if Y/Yn > 0.008856

903.3(Y/Yn) otherwise

u = 13L(u, − u,
n)



5.2. Soft olour-texture desriptors 68
v = 13L(v, − v,

n)where
u, = 4X/X + 15Y + 3Z

u,
n = 4Xn/Xn + 15Yn + 3Zn

v, = 9X/X + 15Y + 3Z

v,
n = 9Xn/Xn + 15Yn + 3Zn

Xn, Yn, and Zn are the values of X, Y and Z for the illuminant (referene whitepoint). We followed the ITU-R Reommendation BT.709 [132, 133℄, and used theilluminant D65, where [Xn Yn Zn] = [0.95045 1 1.088754].In both spaes olour di�erene is alulated using the Eulidean distane:
△ELab =

√

(△L)2 + (△a)2 + (△b)2

△ELuv =
√

(△L)2 + (△u)2 + (△v)2More sophistiated olour-di�erene formulae has been proposed [118℄; CMC(l:),BFD(l:), CIE94 and CIEDE2000. Some of these formulae were tested in previoustests against the Eulidean distane and no improvement was ahieved in surfaegrading performane. Therefore, we used the Eulidean distane whih is less ex-pensive in omputing osts.5.2 Soft olour-texture desriptorsThe mean olour vetor was hosen as the olour feature of surfaes while texturedesription was done using simple statistial features. In addition, the standarddeviation gives a measure of how the olour omponents vary along the image.
σ(z) =

√

∑L
i=1(zi − m)2

L − 1wherez is the random variable, L size of the data set and m the mean value of z



5.2. Soft olour-texture desriptors 69values.By omputing the image histogram for eah omponent of the olour spae wean alulate the histogram moments. Seond, third, fourth and �fth moments arethe simplest and fastest [to ompute℄ approah for desribing texture properties [29℄.The nth moment of z about the mean is de�ned as:
µn(z) =

L
∑

i=1

(zi − m)np(zi)where z is the random variable, p(zi), i = 1, 2, ... , L the histogram, L the num-ber of distint variable values and m the mean value of z.
m =

L
∑

i=1

zip(zi)We all these set of features soft olour-texture desriptors beause they 'softly'ompile olour and texture properties from the whole image without using 'hard'approahes to olour or texture desription. Colour histograms an easily ollet80,000 bins (di�erent olours) whih are all used to ompute histogram dissimilar-ities. Centile-LBP approah uses 171 entile measures to ompile olour property,and LBP histograms of 256 omponents to ollet texture property (see Chapter6). We an onsider that these approahes use 'hard' olour and texture desrip-tors in omparison to our method whih only uses the mean, standard deviationand histogram moments from 2nd to 5th to ompile olour and texture properties(a maximum feature vetor of 18 omponents). By omparison we named the pro-posed method soft olour-texture desriptors. This assertion is even more aeptableif we revise lassial approahes to texture desription in the literature (see texturesubjet in Chapter 2). In the surfae grading appliation we do not stritly omparetextures but global appearane di�erenes, thus, the omplex methods whih om-pile preise texture desription are not needed as results obtained in present hapteron�rm.



5.3. Classi�ers 705.3 Classi�ersWe used statistial pattern reognition for lassi�ation. Here, the samples areformed by d -dimensional vetors whih omponents x1, x2, ..., xd are observed fea-tures. Eah sample belongs to one lass w1, w2, ..., wc where c is the total number oflasses. The samples belonging to a lass will be distributed in the d dimensionalspae following an spei� onditional probability funtion of density for this lass;
p(x|wi).From this point of view, if we want to assign one lass to a new sample, minimiz-ing the error rate, we should know the onditional probability P (wi|x), also knownas a posteriori probability, for eah lass. With this information, we an minimizethe error risk assigning to x the lass w with the greatest a posteriori probability.

w = max
wi=w1,...,wc

{P (wi|x)}This riterion is known as the Bayes Rule for the Minimum Error Rate, and isthe basis of most statistial lassi�ation methods. There are di�erent statistiallassi�ers aording to the approah used to estimate the a posteriori probabilities.In fat, some methods estimate the onditional funtion density of a lass; p(x|wi).Then, in order to ahieve the funtion of a posteriori probability the Bayes formulais required:
P (wi|x) =

p(x|wi)Pi

p(x)where p(x) is the probability of x happening, and Pi is the probability of obtain-ing a sample of lass wi (also alled a priori probability). As the denominator doesnot depend on the lass, the Bayes Rule an be rewritten as:
w = max

wi=w1,...,wc

{p(wi|x)Pi}It is possible to alulate the mean error probability (also alled the error rate)over a data set X if we use the Bayes Rule for the Minimum Error Rate. The error



5.3. Classi�ers 71rate would be:
E =

∫
[

1 − max
wi=w1,...,wc

{P (wi|x)

]

p(x)d(x) (5.1)where x ∈ X and {wi : i = 1, .., c} are the c lasses ontained in X.This expression is very useful beause it provides a way to ompute the bettererror rate that we an ahieve from a data set without depending on the type oflassi�er used. However, the expression 5.1 is not easy to alulate beause we needto know the a posteriori probabilities of the lasses.In the ase of the k nearest neighbours (k-NN) [30℄, is possible to ahieve the aposteriori probability with the following formula.
P̂ (wi|x) =

ki

kwhere k is the total number of x neighbours used by the lassi�er, and ki is thenumber of them belonging to lass wi. The error estimation from the expression 5.3using P̂ (wi|x) provides a pessimisti estimation, although it is very appropriate whenthe k-NN lassi�er meets onvergene onditions [30℄. These onditions impose:1. k → ∞2. k/n → 0 when n → ∞where n is the number of elements in the data set used to design the k-NN lassi�er.In pratie, the number of samples are not usually large enough to meet onvergeneonditions. Thus, the error rate has to be estimated by another method.When estimating the P (wi|x) it is possible to use:
P̂ (wi|x) =

∑

u∈θki

1
d(u,x)

∑

v∈θk

1
d(v,x)

(5.2)where θk is set of neighbours of x, θki
is set of x neighbours with lass wi,and d(., .)is the distane between two samples [120℄. Equation 5.2 uses the distane betweenneighbours, this information is useful when the design of the k-NN lassi�er do notomply with onvergene onditions, as ours is most ases.



5.3. Classi�ers 72In pratie, when estimating the error rate (accuracy rate = 1− error rate) themost frequently used method is the ount of errors. This method needs two datasets; the training set and the test set. Both are build from the olleted set of sampleswhih is ommonly alled the sample universe. The idea is to design a lassi�er fromthe training set and then estimate the error rate from the aumulated errors whenlassifying the samples of the test set. Ideally, the training and test sets should be aslarge as possible and independent of eah other. Nevertheless, normally the size ofthe universe of samples is not enough to omply with these ideal onditions. Thus,the design of the training and test sets is partiularly important.There are several approahes to design the training and test sets in order toestimate the error rate; resubstitution, hold out, leaving-one-out, N-fold ross val-idation [30℄ and bootstrapping [121℄. For the methods of resubstitution, hold out,leaving-one-out and N-fold ross validation the estimated error rate (Ê) would fol-low a binomial distribution.
P (k) =





n

k



Ek(1 − E)n−k (5.3)where n is the number of samples of the test set, k is the number of errors madeby the lassi�er and E the real error rate, whih is unknown.Is it possible to alulate on�dene intervals for the estimated error rate (Ê =

k/n) using the expression 5.3 [122℄. Figure 5.1 shows the on�dene intervals at 95%for di�erent sized test data sets. Estimation variane an be omputed by means ofthe following expression [123℄:
var(Ê) =

E(1 − E)

nAs expeted, as larger the test set, the better estimation of the error rate.Now, we revise brie�y the harateristis of eah method for estimating the errorrate:
• Resubstitution, the training and the test sets are the same set; the original uni-verse of samples. The error rate estimation is optimisti beause the samples



5.3. Classi�ers 73Figure 5.1: 95% on�dene intervals obtained from the estimated error rate for testsets with sizes; 10 (outside urves), 25, 50 , 100, 250, 2500 and 5000 (inside urves).
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Estimated error rateused for the design of the lassi�er are also used to test it.
• Hold-out, the universe of samples is splitted into two separated sets. Thedesirable proportion between them varies from one author to other. Somedefend the use of more samples in the training set [124℄, while others proposemore samples in the test set [123℄. In any ase, the error rate estimation willbe pessimisti beause all the information is not used neither for training ortesting. For this reason [30℄ proposes redesigning the lassi�er, one the errorrate has been obtained, using samples from both sets and verifying the errorrate using resubstitution.
• Leaving-one-out, this is a attempt to use the data as e�iently as possible. Onesample is extrated from the universe of samples, the resulting set is now usedas the training set and the extrated sample as the test set. This is done for allsamples present in the original data set. The �nal error rate estimation will bethe perentage of failed lassi�ations. This method ahieves an unbiased error



5.4. Experiments and results 74rate and it is reommended for small data sets where the previous approahesahieve poor estimations [125℄.
• N-fold ross validation, the universe of samples is split into N subsets of ap-proximately the same size. In the ase of strati�ed K-fold ross validation [123℄,the proportion among lasses should be held in eah subset. Ê is ahieved byomputing the mean of the error rates olleted for eah subset when using alassi�er designed without taking into aount this subset. With this methodthe estimation variane is less than with leaving-one-out. Also, the estimationis less pessimisti than using hold-out when the size of the subsets is not verysmall [123℄. If N is equal to the number of samples in the universe of samplesthen the appropriate method is leaving-one-out.
• Bootstrap, in this method b subsets are built with the same size from theuniverse of samples. Eah data set is generated by random extration withreplaement, in other words, without eliminating the hosen samples from theuniverse of samples. The error rate estimation will be the mean of the b errorrates. The variane of this estimation an be ahieved from the subsets errorvarianes [123℄. This approah needs a large number of subsets to be e�etive(around 100 subsets or more).In our experiments we used the k-NN lassi�er with hold-out and leaving-one-outerror estimation beause the universe of samples for eah erami tile model was notvery large. The size varies from 42 to 90 samples (a mean of 68 samples per model).The N-fold ross validation and the Bootstrap methods need larger universes ofsamples, and were therefore not appropriate for our appliation.5.4 Experiments and resultsIn order to study the feasibility of the soft olour-texture desriptors we arried outa statistial design of experiments. Our aim was to test several fators to determinethe ombination of them providing the best auray results. These fators were



5.4. Experiments and results 75Table 5.1: Fators involved in the design of experiments of soft olour-texture de-sriptors. Fators ValuesColour spae CIE LabCIE LuvRGBGrey SaleClassi�er k-NN with k=1,3,5,7k-loo with k=1,3,5,7Soft olour-texture meandesriptors standard deviation2nd to 5th momentsrelated with olour spaes, lassi�ers, and sets of soft olour-texture desriptors asit is shown in Table 5.1.The hosen fators and their possible values de�ned 4096 di�erent lassi�ationexperiments for eah tile model. The ground truth (the VxC TSG image database)was formed by 14 tile models, thus, a total number of 57.344 experiments had to bearried out. We deided to use a statistial tool, the experimental design [31, 119℄,in order to manage the large amount of experiments and results. This tool, inombination with the logisti-regression [32℄, provides a methodology for �nding thebest ombination of fators involved in a set of experiments to maximize or minimizeone response variable. In our ase, we sought to maximize lassi�ation aurayrates. This methodology follows the plan presented in the blok diagram in Figure5.2.We added the RGB and Grey spaes to the olour spae fator in order to testthe goodness of using the pereptually uniform olour spaes in omparison to aommon non pereptually uniform spae (RGB) and when no olour information isprovided (Grey sale).



5.4. Experiments and results 76Figure 5.2: Blok diagram for the seletion of the best ombination of fators.
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Best combination5.4.1 Experimental designWhen we want to perform a omplex experiment or set of experiments e�iently weneed a sienti� approah to experiment planning. Statistial design of experimentsrefers to the proess of planning the experiment so that appropriate data an beolleted for analysis with statistial methods and thus lead to objetive and validonlusions. The statistial approah to planning experiments is alled design ofexperiments or experimental design.An experiment is a test or series of tests in whih hanges are made to the inputvariables of a proess in order to observe and identify the reasons for the hangesthat may be observed in the output response. The general approah to planningand onduting an experiment is alled experimentation strategy. There are several



5.4. Experiments and results 77strategies for planning an experiment:
• Best-guess approah. From a set of fators and their possible values, oneombination is tested. Depending on the results, another test is done varyingone or two fators while maintaining the values of the remaining fators. Thisapproah an be ontinued almost inde�nitely.
• One-fator-at-a-time. This method onsists of seleting a starting ombinationof fators values and then suessively varying eah fator over its range withthe other fators held onstant at the starting onditions. After all the testsare performed, a series of graphs are onstruted showing how the responsevariable is a�eted by varying eah fator with all other fators held onstant.The optimal ombination of fators is determined using these graphs. Here,the iteration between fators is exluded.
• Fatorial. In this ase the fators are varied together instead of one at a time toollet the a�ets of iteration between fators. This enables the experimenterto investigate the individual e�ets of eah fator (or the main e�ets) anddetermine whether the fators interat with eah other. This is an importantand useful feature in fatorial experiment beause it makes the most e�ientuse of the experimental data providing useful information on both the fatorsand their iterations.In our design of experiments we hose the fatorial approah, whih is the mostappropriate when dealing with several fators [31℄. More spei�ally, we used aomplete fatorial design. In this ase, the experimenter selets a �xed number of'levels' or 'versions' for eah fator and then arries out experiments with all thepossible ombinations. If there are l1 levels for the �rst fator, l2 for the seond,..... and lk for the kth fator, then this gives a l1 × l2 × ... × lk fatorial design. Forexample, a fatorial design 2× 3× 5 is formed by 2× 3× 5 = 30 single experiments.All the fators in our design of experiments were ategorial fators (non quanti-tative). The olour spae ould adopt the lab, luv, rgb or grey values. The lassi�erould be 1-nn, 3-nn, 5-nn, 7-nn, 1-loo, 3-loo, 5-loo or 7-loo (lassi�ers derived from



5.4. Experiments and results 78the k-NN approah [30℄). And, the soft olour-texture desriptors were binary fa-tors; '1' present, '0' not present. Eah single experiment was the lassi�ation of aset of test samples belonging to an spei� tile model. The sequene of experimentsfor eah tile model was as shown in Table 5.2. The fators were varied in a nestedway using the algorithm 1. By doing this, we de�ned an experimental design withorthogonal fators e�ets ahieving independene between fators, iterations andexperiments. Independent experiments lead to reliable results and onlusions whenusing statistis methods.Algorithm 1 Nested variation of fators for an orthogonal sequene of experiments.
for colour_space in [ lab luv rgb grey ]

do

   for classifier in [ 1-nn 3-nn 5-nn 7-nn 1-loo 3-loo 5-loo 7-loo ]

   do

      for mean in [ 0 1 ]

      do

         for standard_deviation in [ 0 1 ]

         do

            for 2nd moment in [ 0 1 ]

            do

               for 3rd moment in [ 0 1 ]

               do

                  for 4th moment in [ 0 1 ]

                  do

                     for 5th moment in [ 0 1 ]

                     do

                        EXPERIMENT

                     done

                  done

               done

            done

         done

      done

   done

done

5.4.2 Logisti regressionThe experimental design is used as the preliminary stage for modeling the behaviorof a proess whih is haraterized with k input fators and one output variable,also alled the response variable. Commonly, one the experiments has been arriedout aording to the experimental design, a linear regression method is used tode�ne a preditive model of the proess. For two fators the linear regression model
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Table5.2:Orthogonalsequeneofexperimentsforthesoftolour-texturedesriptors
method.Colour spae Classi�er Mean Std dev 2nd Mnt 3rd Mnt 4th Mnt 5th Mnt auray %lab 1-nn 0 0 0 0 0 1 xlab 1-nn 0 0 0 0 1 0 xlab 1-nn 0 0 0 0 1 1 x- - - - - - - - -lab 1-nn 1 1 1 1 1 1 xlab 3-nn 0 0 0 0 0 1 xlab 3-nn 0 0 0 0 1 0 xlab 3-nn 0 0 0 0 1 1 x- - - - - - - - -lab 3-nn 1 1 1 1 1 1 x- - - - - - - - -lab 7-loo 0 0 0 0 0 1 xlab 7-loo 0 0 0 0 1 0 xlab 7-loo 0 0 0 0 1 1 x- - - - - - - - -lab 7-loo 1 1 1 1 1 1 x- - - - - - - - -- - - - - - - - -luv 1-nn 0 0 0 0 0 1 xluv 1-nn 0 0 0 0 1 0 xluv 1-nn 0 0 0 0 1 1 x- - - - - - - - -luv 1-nn 1 1 1 1 1 1 x- - - - - - - - -- - - - - - - - -- - - - - - - - -grey 7-loo 1 1 1 1 1 1 x



5.4. Experiments and results 80orresponds to:
y = β0 + β1x1 + β2x2 + β12x1x2where y is the response variable, the β ′s are parameters whose values are tobe determined, x1 is the variable that represents fator 1, x2 is the variable thatrepresents fator 2 and x1x2 represents the iteration between fators x1 and x2. Theestimation of the β ′s parameters is done using the least square error �tting.The linear regression model for two fators an be generalized to k fators asfollows:

y = β0 +
I
∑

i=1

βixi +
I
∑

i=1

J
∑

j=1,

βijxixj + ... +
I
∑

i=1

J
∑

j=1,

...
K
∑

k=1,

βij...nxixj ...xkThis expression is simpli�ed if we onsider the iterations between fators as newfators.
y = β0 +

∑

βiXi (5.4)However, in our experiments the response variable y is an auray perentageor probability. In these ases, the linear regression model does not orrespond to anormal distribution for the response variable, whih is desirable, but to an uniformdistribution (see Figure 5.3), and also, it ould give estimated values out of therange [0,1℄. In order to solve these problems a logisti regression model is ommonlyused. This model approximates the probability response to a normal distribution(the logisti S-shaped distribution is similar to the standard normal distribution)and also fores the estimated probabilities to lie between 0 and 1. Furthermore, thelogisti model is easier to work with in most appliations.With the logisti regression model the response variable p is onverted into
log( p

1−p
) and the expression 5.4 is transformed to:



5.4. Experiments and results 81Figure 5.3: Logisti regression model vs linear regression model.
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∑

βiXiNow, the expeted probability or perentage an be de�ned as:
p =

eβ0+
P

βiXi

1 + eβ0+
P

βiXi
(5.5)The β parameters of the logisti regression approah an be estimated using theMaximum Likelihood Estimation (MLE) or theWeighted Least Squares (WLS). MLEis used as an alternative to non-linear least squares (WLS) for nonlinear equations.In addition to the parameter estimation method, there are several approahes foromputing the logisti model depending on the number of fators taken into aount.The simplest way to determine the logisti model is to onsider all the fators andtheir iterations. Then, we are fored to alulate all the β parameters for all fators(or iteration of fators) even if they are not signi�ant in relation to the responsevariable. There are two other approahes whih do not onsider all the fators anditerations, these are the stepwise methods:
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• Forward seletion, the proess of forward seletion begins with an initial model.Then, new terms with greater signi�ane are added to the model while theglobal level of signi�ane remains below a given level of [�rst lass℄ risk (usu-ally 5-10%). The proess ontinues until there is no fator or iteration whihwhen added to the model keeps it under the risk level.
• Bakward elimination, now the starting point is the omplete logisti modelwith all the fators and iterations. Fators or iterations are eliminated one byone using a lower signi�ane order. The signi�ane of eah fator is studied(p-value omputed) and the less signi�ant (greater p-value) is eliminated.This proess ontinues until the global signi�ane of the model reahes avalue below a previously determined level of risk.Many software implementing statistis methods inlude options for omputing themost ommon regression methods. In our ase, we used the statistial pakageStatgraphis v5.1 for omputing the logisti regression models. This models wereomputed using MLE estimation and Forward seletion.5.4.3 Seletion of best ombinationsThe proedure for seleting the best ombination of fators is the following:1. For eah input in the design of experiments (see Table 5.2) we ompute theoutput variable y using the ahieved regression model y = β0 +

∑

βiXi. Thenwe ompute the predited auray rate p = ey

1+ey .2. The best ombination of fators will be the one whih the greatest preditedauray rate.5.4.4 ResultsWe should point out that we used the experimental design in ombination with thelogisti regression model not to model the response of a proess, but to �nd the bestombination of fators to ahieve the maximum auray rates in a surfae gradingappliation. This is another usage of these methods [31, 32, 119℄.



5.4. Experiments and results 83Diagram in Figure 5.2 shows the steps to be taken to make an experimentaldesign and selet the best ombination of fators for eah tile model. However, theexperimental designs of all models an be grouped into a single one if we re-de�nethe output response y as the ahieved mean auray omputed over all models.We arried out the 4096 experimental design of eah model, 57.344 experiments intotal, and grouped the results in a new 4096 experimental design where the outputresponse y was the mean auray of all models.We used the Statgraphis v5.1 software and omputed the logisti regressionmodel (see Figure 5.5). The high adjusted perentage of deviane explained bymodel (81%) indiated the model was very good. After this and following thediagram (Figure 5.2), we arried out the seletion of best ombinations as it isexplained in setion 5.4.3 and obtained a table similar to 5.2 with the preditedauray rates for eah experiment or ombination of fators. We sorted the resultsusing the predited auray rate (equation 5.5). The 30 best ombinations areshown in Table 5.3. From the omplete sorted table of results we extrated thefollowing summary of results.1. Best ombination orresponds to CIE Lab, 1-loo and all soft olour-texturedesriptors. This ombination ahieved an auray rate of 97.4% .2. A number of 237 ombinations (5,8% of total ombinations) ahieved an a-uray rate over 95%.3. All the ombinations over 95% used CIE Lab or CIE Luv spaes.4. Best ombination using RGB spae ahieved 93.6% of auray, although itspresene in best ombinations was very low (Figure 5.4).5. Best ombination using Grey spae ahieved 90.8% of auray, although itspresene in best ombinations was almost null (Figure 5.4).6. Best ombinations make wide use of CIE Lab and CIE Luv spaes (Figure5.4).7. The lassi�ers from best to worst are 1-loo, 3-loo, 5-loo, 7-loo, 1-nn, 3-nn, 5-nnand 7-nn (Figure 5.4).



5.4. Experiments and results 848. The very best ombinations use all or almost all soft olour-texture desriptors(Table 5.3).From this summary of results we an onlude:1. The method we extrat from the design of experiments and logisti regressionmethods uses CIE Lab olour spae, 1-loo lassi�er and all soft olour-texturedesriptors.2. The pereptually uniform olour spaes CIE Lab and CIE Luv ahieve by farthe best performane.3. RGB olour spae provides less performane, and although it reahes someauray rates around 93%, the perentage using RGB in sets of best ombi-nations is almost null.4. Grey spae provides the worst performane as expeted.5. Best lassi�ers are the derived from the leaving-one-out method. Therefore,we should use 1-NN method using as more training samples as possible.6. Using all soft olour-texture desriptors gives the best disriminant power.



5.4. Experiments and results 85Figure 5.4: Presene in perentage of olour spaes and lassi�ers in best ombina-tions sets.
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5.4. Experiments and results 86Figure 5.5: Computed logisti regression model for soft olour-texture desriptorsmethod.
Dependent variable: accuracy/100

Sample sizes: n_tests

Factors: Spa, Clas, Mean, Stdv, M2, M3, M4, M5

Estimated Regression Model (Maximum Likelihood)

------------------------------------------------------------

                                       Standard    Estimated

Parameter               Estimate         Error    Odds Ratio

------------------------------------------------------------

CONSTANT                2.01982       0.0111142             

Spa=grey               -0.13145       0.0142337    0.876823

Spa=lab                 0.706523      0.0162755    2.02693

Spa=luv                 0.759474      0.0165152    2.13715

Clas=1loo               0.66783       0.0129068    1.95

Clas=1nn                0.392598      0.0145836    1.48082

Clas=3loo               0.644807      0.0128619    1.90562

Clas=3nn                0.337767      0.0144461    1.40181

Clas=5loo               0.601846      0.0127805    1.82549

Clas=5nn                0.238795      0.014215     1.26972

Clas=7loo               0.463897      0.0125395    1.59026

Mean=0                 -0.667277      0.00357258   0.513104

Stdv=0                 -0.0650154     0.00647503   0.937053

M2=0                   -0.094827      0.00347998   0.90953

M3=0                   -0.260792      0.00349194   0.770441

M4=0                   -0.212335      0.00348728   0.808694

M5=0                   -0.239989      0.00348982   0.786636

Spa=grey*Clas=1lo      -0.269689      0.0176259    0.763617

Spa=grey*Clas=1nn      -0.184656      0.0199877    0.831391

Spa=grey*Clas=3lo      -0.298305      0.0175457    0.742075

Spa=grey*Clas=3nn      -0.160635      0.0198475    0.851603

Spa=grey*Clas=5lo      -0.255156      0.0174863    0.774796

Spa=grey*Clas=5nn      -0.105141      0.019625     0.900198

Spa=grey*Clas=7lo      -0.193629      0.0172447    0.823963

Spa=lab*Clas=1loo       0.213016      0.0212053    1.2374

Spa=lab*Clas=1nn       -0.0656253     0.0230624    0.936482

Spa=lab*Clas=3loo       0.152144      0.0209448    1.16433

Spa=lab*Clas=3nn       -0.114159      0.0226799    0.892116

Spa=lab*Clas=5loo      -0.00596527    0.0203991    0.994052

Spa=lab*Clas=5nn       -0.136091      0.0222191    0.872763

Spa=lab*Clas=7loo      -0.0445569     0.0198791    0.956421

Spa=luv*Clas=1loo       0.125391      0.0213999    1.13359

Spa=luv*Clas=1nn       -0.109549      0.0233727    0.896238

Spa=luv*Clas=3loo      -0.0273054     0.0209092    0.973064

Spa=luv*Clas=3nn       -0.144568      0.0230209    0.865396

Spa=luv*Clas=5loo      -0.0892126     0.0206141    0.914651

Spa=luv*Clas=5nn       -0.222829      0.0224077    0.800252

Spa=luv*Clas=7loo      -0.168171      0.0200229    0.845209

Spa=grey*Stdv=0         0.000901265   0.00872695   1.0009

Spa=lab*Stdv=0         -0.110032      0.0104852    0.895805

Spa=luv*Stdv=0         -0.0489122     0.0104693    0.952265

------------------------------------------------------------

Percentage of deviance explained by model = 80.9518

Adjusted percentage = 80.8989
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Table5.3:Thirtybestombinationsoffators.Preditedauray(p*100)and
on�deneintervalsaregivenin%.

No Exp. Spae Classi�er Mean Std dev 2nd Mnt 3rd Mnt 4th Mnt 5th Mnt p*100 .i. 95%620 lab 1loo 1 1 1 0 1 1 96.60 [95.26, 97.68℄636 lab 1loo 1 1 1 0 1 1 96.60 [95.26, 97.68℄720 lab 3loo 1 0 1 1 1 1 96.60 [95.26, 97.68℄736 lab 3loo 1 0 1 1 1 1 96.60 [95.26, 97.68℄1646 luv 1loo 1 1 1 1 0 1 96.64 [95.38, 97.76℄1662 luv 1loo 1 1 1 1 0 1 96.64 [95.38, 97.76℄1608 luv 1loo 1 0 0 1 1 1 96.66 [95.38, 97.76℄1624 luv 1loo 1 0 0 1 1 1 96.66 [95.38, 97.76℄623 lab 1loo 1 1 1 1 1 0 96.67 [95.38, 97.76℄639 lab 1loo 1 1 1 1 1 0 96.67 [95.38, 97.76℄622 lab 1loo 1 1 1 1 0 1 96.75 [95.50, 97.85℄638 lab 1loo 1 1 1 1 0 1 96.75 [95.50, 97.85℄1776 luv 3loo 1 1 1 1 1 1 96.76 [95.50, 97.85℄1792 luv 3loo 1 1 1 1 1 1 96.76 [95.50, 97.85℄744 lab 3loo 1 1 0 1 1 1 96.86 [95.63, 97.94℄760 lab 3loo 1 1 0 1 1 1 96.86 [95.63, 97.94℄592 lab 1loo 1 0 1 1 1 1 96.87 [95.63, 97.94℄608 lab 1loo 1 0 1 1 1 1 96.87 [95.63, 97.94℄1616 luv 1loo 1 0 1 1 1 1 96.95 [95.75, 98.02℄1632 luv 1loo 1 0 1 1 1 1 96.95 [95.75, 98.02℄1640 luv 1loo 1 1 0 1 1 1 97.00 [95.75, 98.02℄1656 luv 1loo 1 1 0 1 1 1 97.00 [95.75, 98.02℄616 lab 1loo 1 1 0 1 1 1 97.10 [95.87, 98.11℄632 lab 1loo 1 1 0 1 1 1 97.10 [95.87, 98.11℄752 lab 3loo 1 1 1 1 1 1 97.13 [95.87, 98.11℄768 lab 3loo 1 1 1 1 1 1 97.13 [95.87, 98.11℄1648 luv 1loo 1 1 1 1 1 1 97.27 [96.12, 98.28℄1664 luv 1loo 1 1 1 1 1 1 97.27 [96.12, 98.28℄624 lab 1loo 1 1 1 1 1 1 97.36 [96.25, 98.36℄640 lab 1loo 1 1 1 1 1 1 97.36 [96.25, 98.36℄



5.5. Conlusions 885.5 ConlusionsIn this hapter we have extrated a �nal approah to surfae grading. This ap-proah is based on the use of soft olour-texture desriptors in onjuntion with thepereptually uniform olour spae CIE Lab and the well known lassi�er 1-leaving-one-out (1-NN method using as more training samples as possible). The method hasbeen extrated from two statistial tools; the design of experiments and the logistiregression. These tools provided us a method with whih to study and determinethe best ombination of fators to maximize the auray rate. The studied fatorshave been several olour spaes, lassi�ers, and sets of soft olour-texture desrip-tors. A total of 57.344 independent experiments were arried out exploring all theombinations of fators over all the models of the VxC TSG database.The extrated method ahieves 97.4% predited mean auray and 97.6% mea-sured mean auray of all models. The omputed on�dene interval is [96.25%,98.36%℄ whih learly surpasses the fatory requirement for performane. In addi-tion, many tests using the pereptually uniform spaes CIE Lab or CIE Luv, theleaving-one-out lassi�ers and several ombinations of soft olour-texture desriptorssurpassed the fatory minimum auray of 95%.The results show that RGB, a ommon olour spae but non pereptually uni-form, provide less disriminative power. Pereptually uniform olour spaes areloser to the human pereption of olours, therefore, it an be onsidered logial ifthey provide better performane when arrying out visual tasks done by humans. Asexpeted, the worst results ome from the Grey spae whih only makes use of lightintensity omitting olour information. From the in-depth statistial study it is alsoonluded that all the soft olour-texture desriptors ontribute to ahieve aurayperformane and also the lasi�ers devired from the leaving one out method performbetter, thus we should selet the 1-NN method using as more training samples aspossible.Finally, we report that soft olour-texture desriptors method is a good hoiewhen a deep olour-texture desription is not needed. This is the ase of the sur-fae grading appliation where the piees are graded taking into aount the globalappearane of olour and texture. Loal desription is not needed, hard desription



5.5. Conlusions 89of olour and texture is not neessary. Furthermore, soft olour-texture desriptorsmethod is a good hoie for real-time ompliane beause it uses the less expensivefeatures of texture and olour from the point of view of omputational osts.



Chapter 6
Literature methods
This hapter deals with the implementation and in-depth study of two methods fromthe literature of surfae grading. These methods are the olour histograms [2,3℄ andentile-LBP [1, 12℄. We performed this study for omparison purposes with themethod presented in previous hapter based on soft olour-texture desriptors. Wehose them beause they are similar to ours, both are generi solutions with lowomputational osts. Also, a review of the literature presented in Chapter 2 showsthat no more methods are available for omparison beause the rest of them dealwith spei� surfae types or use hard olour-texture desription with expensiveomputational osts.Again we use the statistial tools of experimental design and logisti regression toin-depth study the methods using several fators. Experiments inluded the fatorsof olour spae, lassi�er and inter-histograms distane. In order to perform a properomparison we also used the VxC TSG image database, the ground truth used inprevious hapter.6.1 Colour histogramsBasially olour histograms are 3D histograms where eah axis represents one olourspae hannel. Colour histograms are ompared using dissimilarity measures be-tween histograms. This approah to surfae grading was developed by Boukouvalaset al [2,3℄. They proposed to use the di�erenes between olour histograms to solve90



6.1. Colour histograms 91the problem of shade grading (surfae grading) of multi-oloured textured surfaes(random pattern surfaes). However, olour histograms are ine�ient in terms ofmemory requirements. A olour image aquired in RGB normally need 8 bits perolour hannel at eah pixel, so 16Mbytes (224memory positions) are needed to storeone olour histogram. Nevertheless, in real images olour values tend to be lusteredaround a few loations. For instane, the image of a erami tile may oupy only80.000 di�erent loations (234Kb). Apart from being highly demanding in mem-ory, this approah is omputationally intensive beause in order to ompare twohistograms all memory loations have to be parsed.To save memory and omputational osts binary trees are used to store theolour histograms. Binary trees are frequently used to represent a set of data whoseelements are retrievable through a unique key (value). If a tree is organized in suha way that for eah node all values in the left subtree are less than the value of theparent node, and those in the right subtree are greater than the value of the parentnode, then this tree is alled ordered binary tree or searh tree. A searh of a valuein a tree of n elements may be performed with only log n omparisons, if the tree isbalaned.When a olour histogram is stored in a binary tree, the value of a node is apartiular RGB value. This is onverted to a 24 bit-integer by onatenating the R,G and B bytes. Eah node also ontains the number of pixels with the same RGBvalue (repetitions). Therefore, only RGB ombinations that exist in the image areinserted in the tree, and the searhing of existing nodes is very e�ient.Colour histograms are invariant to translation and rotation about an axis perpen-diular to the image plane, and hange only slightly under hanges of angle of view.And also they are invariant to exat spatial distribution of the oloured pixels. Thisproperty is desirable when dealing whih random pattern surfaes, as often ourswhen we deal with erami tile models. The method based on soft olour-texturedesriptors is also invariant to translation, rotation and exat spatial distributionof oloured pixels.To perform the surfae grading, the similarity (or dissimilarity) of erami tiles isompared using the similarity of their olour histograms. As the histograms an be



6.1. Colour histograms 92viewed as distributions we an use statistial methods to ompare two distributions[96℄. Boukouvalas et al used the hi-square test and the linear orrelation oe�ient.The hi-square statisti is de�ned as:
χ2 =

∑

i

(Ni − ni)
2

niwhere Ni is the number of events observed in the ith bin, and ni is the numberexpeted aording to some known distribution and the sum is over all bins. A largevalue of χ2 indiates dissimilarity between the two distributions.When omparing two binned data sets, with the same number of data points,the equation adopts a di�erent form. Let Ri be the number of events in bin i forthe �rst data set, let Si be the number of events in the same bin for the seond dataset. Then the hi-square statisti is:
χ2 =

∑

i

(Ri − Si)
2

Ri + SiThe linear orrelation oe�ient is another test whih measures the assoiationbetween random variables. For pairs of quantities (xi, yi), i = 1, ..., N, the linearorrelation oe�ient r is given by:
r =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)
√
∑

i(yi − ȳ)where x̄ is the mean of the xi values and ȳ is the mean of the yi values.The value of r is always in the range [-1, 1℄. The orrelation is alled positiveor diret orrelation when y tends to inrease as x inreases. If y tends to dereaseas x inreases the orrelation is then alled negative or inverse orrelation. A valuenear to zero in the previous equation indiates poor linear orrelation between thevariables r and y.See Chapter 2 for more information about olour histograms.



6.2. Centile-LPB 936.2 Centile-LPBThis method proeeds from the area of wood inspetion. In this ase, the gradingof lumber boards and parquet slabs is not related to the overall texture and olourappearane of the surfae. The grade of the wood piee is assigned by deteting thewood defets (mainly knots) and then applying grade rules related to the numberand lasses of defets found in the inspetion proess [1℄. Thus, from the pointof view of the omputer vision, the problem beomes a question of separating thesurfae into sound and faulty wood, and lassifying the defets into their di�erenttypes. However, we should point out that we use this method not in the literaturesense but to ompile global desription of olour and texture and diretly gradesurfaes.Kauppinen started the approah to the problem using only olour informationwhih was derived from the perentile features of the RGB histograms [1, 11℄. Theperentiles, also alled entiles, are alulated from a umulative histogram Ck(x),whih is de�ned as a sum of all the values that are smaller than x or equal to x inthe normalized histogram Pk(x), orresponding to the olour hannel k. Finding avalue for a perentile involves �nding the x when Ck(x) is known, thus, requiring aninverse funtion of Ck(x). If we denote the perentile feature with Fk(y) then
Fk(y) = C−1

k (y) = xwhere y is a value of the umulative histogram in the range [0%,100%℄.In the lassi�ation stage feature vetors omposed of seleted sets of plain en-tile features are used, and also di�erenes of two entile features either from thesame olour hannel or from two di�erent olour hannels are used. Spei�ally, inimplementing the method we used the entiles from 5 to 95 step 5 of eah hannel,di�erenes inside hannels between orrelative positions separated 5 steps, and also,inter-hannel di�erenes between the same positions every 5 steps. A total numberof 171 features were omputed for a three dimensional hannel. Finally, Kauppinenused the well-known k-NN method to perform the lassi�ation.After this �rst approah, Niskanen, Silvén and Kauppinen ontinued the work



6.2. Centile-LPB 94inluding texture properties [105, 106℄. They extended the method using the LoalBinary Pattern (LBP) texture operator, previously introdued by their olleaguesOjala and Pietikäinen [108,109℄. The original 3x3 neighborhood is thresholded by thevalue of the enter pixel. The values of the pixels in the thresholded neighborhoodare multiplied by the weights given to the orresponding pixels. Finally, the valuesof the eight pixels are summed to obtain the number of this texture unit. Niskanenet al used Self Organizing Maps (SOM) ombining Centile and LBP properties inorder to arry out the lassi�ation task.Kyllönen and Pietikäinen [12℄ also ombined entile and LBP features but theyused a di�erent approximation for lassi�ation. They ombined the entile andLBP features in one measure of distane and then used the k-NN lassi�er. Forthe entile features they used the Eulidean distane in the feature spae, and forLBP they used a log-likelihood measure to ompute the dissimilarity (distane)between sample and referene histograms. When using LBP there are 28 possibleombinations of texture numbers. Thus, the texture desription of a region an beolleted omputing its LBP histogram.The log-likelihood measure to ompute the dissimilarity was:
L(S, R) = −

N−1
∑

n=0

SnlnRnwhere N is the number of bins. Sn and Rn are the sample and referene proba-bilities of bin n.They joined these distanes by simply adding them. Prior to this, both distaneswere normalized using:
d =

d − dmin

dmax

d =
d

davgwhere dmin, dmax and davg are the min, max and average values of all the distanesfound in the training set.



6.3. Experimental design and results 95We hose this last approximation of entile-LBP to ompare with our method be-ause SOMs are relatively omplex systems for lassi�ation whih also need sophis-tiated training proedures. See Chapter 2 for more details about the entile-LBPmethod.6.3 Experimental design and resultsWe used the fators of olour spae and lassi�er in the same way as they wereused for the soft olour-texture desriptors, and added a new fator related to themeasurement of dissimilarity between histograms, the distane measure fator (seeTable 6.1). In both methods the histogram representation of data is used and soa measure of dissimilarity is needed. We hose the distanes used in the methodsin the literature; the hi-square statisti, the linear orrelation oe�ient and thelog-likelihood measure.For eah tile model 96 independent experiments are de�ned and applying thedesign of experiments to the ground truth formed by the 14 models of the VxC TSGdatabase, a total number of 1344 experiments had to be performed.Table 6.1: Fators involved in the design of experiments of olour histograms andentile-LBP. Fators ValuesColour spae CIE LabCIE LuvRGBGrey SaleClassi�er k-NN with k=1,3,5,7k-loo with k=1,3,5,7Distane measure Chi-square statistiLinear orrelation oe�ientLog-likelihood measureOne again, all the fators in our design of experiments were ategorial fators(non quantitative). The olour spae ould adopt the lab, luv, rgb or grey values.



6.3. Experimental design and results 96The lassi�er ould be 1-nn, 3-nn, 5-nn, 7-nn, 1-loo, 3-loo, 5-loo or 7-loo. In ad-dition, the measure of distane among histograms ould be the hi-square test, thelinear orrelation oe�ient or the log-likehood measure proposed for the entile-LBP method. In eah single experiment a set of test samples belonging to an spei�tile model was lassi�ed using referene sets of samples. The sequene of experi-ments for eah tile model was arried out as shown in Table 6.2. The fators werevaried in a nested way using an algorithm similar to the algorithm 1, shown in theprevious hapter. Again, an experimental design with orthogonal fators e�ets wasde�ned ahieving independene between fators, iterations and experiments.As in the previous experimental design of soft olour-texture desriptors, theexperiments of all models were grouped in a single one rede�ning the output responseas the ahieved mean auray omputed over all models. The 96 tests of theexperimental design were arried out for eah model, 1.344 experiments in total, andthe results grouped into a new 96 experimental design where the output response wasthe mean auray of all models. Then, we omputed the logisti regression models(see Figures 6.1 and 6.2). Both models ahieved a very high adjusted perentageof deviane explained by model (96% and 97.4%), whih indiates good regressionmodels.Then, we arried out the seletion of best ombinations and obtained a tablesimilar to 6.2 with the predited auray rates for eah experiment. The resultswere sorted using the predited auray rate. The 30 best ombinations of eahapproah are shown in Tables 6.3 and 6.4.From the results and �gures we extrat the following onlusions.Colour histograms1. Best auray result (97.8%) is ahieved using RGB olour spae, Chi-squaredistane and one leaving-one-out lassi�er. This result from the experimentaldesign meets the proposed method in literature.2. The overall best performane of olour spaes is for RGB followed by CIE Lab.3. Chi-square statisti is learly the best distane, followed by linear orrelation.



6.3. Experimental design and results 97The log-likehood measure does not work properly for olour histograms.4. Best lassi�ers stem from the leaving-one-out approah. Therefore, we shouldselet the 1-NN method using as more training samples as possible.Centile-LBP1. Best auray result (98.3%) is ahieved using CIE Lab olour spae, linearorrelation distane for LBP histograms and one leaving-one-out lassi�er. Inthis ase, the method extrated from the experimental design does not oinidewith the proposed in literature (RGB olour spae, log-likehood distane andk-NN lassi�er).2. CIE Lab followed by RGB are the olour spaes giving best results.3. All the distanes show good behavior, but the linear orrelation gives the bestperformane.4. Best lassi�ers are the derived from the leaving-one-out approah. Again, weshould selet the 1-NN method using as more training samples as possible.



6.3. Experimental design and results 98Table 6.2: Orthogonal sequene of experiments for the olour histograms and entile-LBP methods.Colour spae Classi�er Distane auray %lab 1-nn hi-square xlab 1-nn orrelation xlab 1-nn log-likehood xlab 3-nn hi-square xlab 3-nn orrelation xlab 3-nn log-likehood x- - - -lab 7-loo hi-square xlab 7-loo orrelation xlab 7-loo log-likehood x- - - -- - - -luv 1-nn hi-square xluv 1-nn orrelation xluv 1-nn log-likehood x- - - -luv 7-loo hi-square xluv 7-loo orrelation xluv 7-loo log-likehood x- - - -- - - -- - - -grey 1-nn hi-square xgrey 1-nn orrelation xgrey 1-nn log-likehood x- - - -grey 7-loo hi-square xgrey 7-loo orrelation xgrey 7-loo log-likehood x



6.3. Experimental design and results 99Figure 6.1: Computed logisti regression model for olour histograms.
Logistic Regression

Dependent variable: accuracy/100

Sample sizes: n_tests

Factors: Spa, Dis, Clas

Estimated Regression Model (Maximum Likelihood)

------------------------------------------------------------

                                       Standard    Estimated

Parameter               Estimate         Error    Odds Ratio

------------------------------------------------------------

CONSTANT                0.588225      0.0827639             

Spa=grey                0.875956      0.109761     2.40117

Spa=lab                 1.17319       0.120174     3.23228

Spa=luv                 1.24737       0.117719     3.48117

Dis=chi                 2.0869        0.115529     8.05992

Dis=corr                1.82857       0.107692     6.22498

Clas=1loo               0.227155      0.104175     1.25502

Clas=1nn               -0.150119      0.113644     0.860606

Clas=3loo               0.325216      0.104668     1.38433

Clas=3nn                0.125589      0.11613      1.13382

Clas=5loo               0.400251      0.10472      1.4922

Clas=5nn                0.0639772     0.115304     1.06607

Clas=7loo               0.343234      0.103363     1.4095

Spa=grey*Dis=chi       -2.24924       0.0960474    0.105479

Spa=grey*Dis=corr      -2.08892       0.0880021    0.12382

Spa=lab*Dis=chi        -1.51507       0.106083     0.219793

Spa=lab*Dis=corr       -1.47667       0.095813     0.228398

Spa=luv*Dis=chi        -2.01041       0.103336     0.133934

Spa=luv*Dis=corr       -1.96702       0.093971     0.139873

Spa=grey*Clas=1loo      0.407846      0.142735     1.50358

Spa=grey*Clas=1nn       0.290179      0.146772     1.33667

Spa=grey*Clas=3loo      0.422044      0.143303     1.52508

Spa=grey*Clas=3nn       0.114563      0.149548     1.12138

Spa=grey*Clas=5loo      0.411459      0.14192      1.50902

Spa=grey*Clas=5nn       0.0141489     0.147173     1.01425

Spa=grey*Clas=7loo      0.313169      0.136576     1.36775

Spa=lab*Clas=1loo       0.248035      0.157121     1.2815

Spa=lab*Clas=1nn       -0.0438777     0.158413     0.957071

Spa=lab*Clas=3loo       0.255287      0.158025     1.29083

Spa=lab*Clas=3nn       -0.231686      0.160787     0.793195

Spa=lab*Clas=5loo       0.171913      0.155418     1.18757

Spa=lab*Clas=5nn       -0.125283      0.16093      0.882248

Spa=lab*Clas=7loo       0.20717       0.151614     1.23019

Spa=luv*Clas=1loo       0.551315      0.158477     1.73553

Spa=luv*Clas=1nn        0.0748652     0.154739     1.07774

Spa=luv*Clas=3loo       0.371197      0.155113     1.44947

Spa=luv*Clas=3nn       -0.00367895    0.158814     0.996328

Spa=luv*Clas=5loo       0.27189       0.151869     1.31244

Spa=luv*Clas=5nn       -0.0908977     0.156081     0.913111

Spa=luv*Clas=7loo       0.284234      0.147342     1.32874

Dis=chi*Clas=1loo       0.900621      0.142402     2.46113

Dis=chi*Clas=1nn        0.0995474     0.132334     1.10467

Dis=chi*Clas=3loo       0.702057      0.139227     2.0179

Dis=chi*Clas=3nn        0.0583487     0.135531     1.06008

Dis=chi*Clas=5loo       0.508544      0.13549      1.66287

Dis=chi*Clas=5nn        0.0595543     0.133344     1.06136

Dis=chi*Clas=7loo       0.318586      0.129355     1.37518

Dis=corr*Clas=1loo      0.74998       0.131465     2.11696

Dis=corr*Clas=1nn       0.19488       0.128234     1.21517

Dis=corr*Clas=3loo      0.621296      0.130495     1.86134

Dis=corr*Clas=3nn       0.00917647    0.129328     1.00922

Dis=corr*Clas=5loo      0.364569      0.126336     1.43989

Dis=corr*Clas=5nn       0.0317999     0.127666     1.03231

Dis=corr*Clas=7loo      0.134646      0.120905     1.14413

------------------------------------------------------------

Percentage of deviance explained by model = 98.7064

Adjusted percentage = 96.0086



6.3. Experimental design and results 100Figure 6.2: Computed logisti regression model for entile-LBP.
Logistic Regression

Dependent variable: accuracy/100

Sample sizes: n_tests

Factors: Spa, Dis, Clas

Estimated Regression Model (Maximum Likelihood)

------------------------------------------------------------

                                       Standard    Estimated

Parameter               Estimate         Error    Odds Ratio

------------------------------------------------------------

CONSTANT                2.12407       0.0905594             

Spa=grey               -0.50628       0.114461     0.602733

Spa=lab                 0.188014      0.129802     1.20685

Spa=luv                -0.306623      0.117977     0.735928

Dis=chi                 0.105861      0.0370227    1.11167

Dis=corr                0.147246      0.0373627    1.15864

Clas=1loo               1.45345       0.148945     4.27785

Clas=1nn                0.79341       0.152151     2.21092

Clas=3loo               1.26328       0.140771     3.537

Clas=3nn                0.514671      0.140611     1.67309

Clas=5loo               1.14671       0.136281     3.14783

Clas=5nn                0.340032      0.134495     1.40499

Clas=7loo               0.661778      0.121283     1.93824

Spa=grey*Clas=1loo     -0.239453      0.186357     0.787058

Spa=grey*Clas=1nn      -0.311246      0.190007     0.732534

Spa=grey*Clas=3loo     -0.38216       0.174727     0.682386

Spa=grey*Clas=3nn      -0.148233      0.179055     0.86223

Spa=grey*Clas=5loo     -0.466824      0.16865      0.62699

Spa=grey*Clas=5nn      -0.124236      0.172121     0.883171

Spa=grey*Clas=7loo     -0.120554      0.155215     0.886429

Spa=lab*Clas=1loo       0.120522      0.224951     1.12809

Spa=lab*Clas=1nn       -0.334304      0.213777     0.715836

Spa=lab*Clas=3loo       0.198711      0.215086     1.21983

Spa=lab*Clas=3nn       -0.166218      0.202645     0.846862

Spa=lab*Clas=5loo      -0.00792229    0.201052     0.992109

Spa=lab*Clas=5nn       -0.15237       0.194394     0.858671

Spa=lab*Clas=7loo       0.19113       0.183204     1.21062

Spa=luv*Clas=1loo      -0.868065      0.182459     0.419763

Spa=luv*Clas=1nn       -0.502609      0.192278     0.60495

Spa=luv*Clas=3loo      -0.652074      0.176162     0.520964

Spa=luv*Clas=3nn       -0.328953      0.181608     0.719677

Spa=luv*Clas=5loo      -0.674476      0.170968     0.509423

Spa=luv*Clas=5nn       -0.192762      0.176328     0.824679

Spa=luv*Clas=7loo      -0.324074      0.157786     0.723197

------------------------------------------------------------

Percentage of deviance explained by model = 98.5128

Adjusted percentage = 93.2502



6.3. Experimental design and results 101Table 6.3: Thirty best ombinations of fators using olour histograms. Preditedauray (p*100) and on�dene intervals are given in %.No Exp. Spae Distane Classi�er p*100 .i. 95%79 grey hi 5loo 93.23 [91.44, 94.75℄49 rgb hi 1nn 93.24 [90.72, 95.96℄52 rgb hi 7nn 93.55 [91.20, 95.74℄39 luv orr 5loo 93.90 [92.26, 95.41℄78 grey hi 3loo 94.00 [92.38, 95.50℄16 lab orr 7loo 94.26 [96.62, 95.68℄51 rgb hi 5nn 94.26 [91.92, 96.26℄77 grey hi 1loo 94.47 [92.85, 95.87℄32 luv hi 7loo 94.57 [92.97, 95.96℄50 rgb hi 3nn 94.58 [92.16, 96.43℄64 rgb orr 7loo 94.76 [93.21, 96.14℄38 luv orr 3loo 95.32 [93.81, 96.60℄15 lab orr 5loo 95.48 [94.05, 96.78℄31 luv hi 5loo 95.66 [94.17, 96.87℄63 rgb orr 5loo 96.01 [94.65, 97.23℄8 lab hi 7loo 96.09 [94.77, 97.32℄37 luv orr 1loo 96.18 [94.77, 97.32℄30 luv hi 3loo 96.48 [95.14, 97.59℄14 lab orr 3loo 96.49 [95.14, 97.59℄56 rgb hi 7loo 96.57 [95.26, 97.68℄13 lab orr 1loo 96.57 [95.26, 97.68℄62 rgb orr 3loo 96.65 [95.38, 97.76℄61 rgb orr 1loo 96.75 [95.50, 97.85℄7 lab hi 5loo 96.81 [95.50, 97.85℄55 rgb hi 5loo 97.30 [96.12, 98.28℄29 luv hi 1loo 97.32 [96.12, 98.28℄6 lab hi 3loo 97.38 [96.25, 98.37℄54 rgb hi 3loo 97.59 [96.50, 98.54℄5 lab hi 1loo 97.61 [96.50, 98.54℄53 rgb hi 1loo 97.82 [96.50, 98.54℄



6.3. Experimental design and results 102Table 6.4: Thirty best ombinations of fators using entile-LBP. Predited auray(p*100) and on�dene intervals are given in %.No Exp. Spae Distane Classi�er p*100 .i. 95%1 lab hi 1-nn 94.67 [92.41, 96.60℄56 rgb hi 7-loo 94.74 [93.21, 96.14℄65 rgb log 1-nn 94.87 [92.65, 96.77℄9 lab orr 1-nn 94.88 [92.65, 96.77℄64 rgb orr 7-loo 94.95 [93.45, 96.33℄77 grey hi 1-loo 94.97 [93.45, 96.33℄85 grey orr 1-loo 95.16 [93.69, 96.51℄49 rgb hi 1-nn 95.36 [93.14, 97.11℄57 rgb orr 1-nn 95.54 [93.39, 97.27℄24 lab log 7-loo 95.95 [94.53, 97.14℄71 rgb log 5-loo 96.34 [95.01, 97.50℄8 lab hi 7-loo 96.34 [95.01, 97.50℄16 lab orr 7-loo 96.48 [95.14, 97.59℄55 rgb hi 5-loo 96.70 [95.38, 97.76℄70 rgb log 3-loo 96.73 [95.50, 97.85℄63 rgb orr 5-loo 96.83 [95.63, 97.94℄23 lab log 5-loo 96.93 [95.63, 97.94℄54 rgb hi 3-loo 97.05 [95.88, 98.12℄62 rgb orr 3-loo 97.17 [96.00, 98.20℄7 lab hi 5-loo 97.23 [96.00, 98.20℄69 rgb log 1-loo 97.28 [96.12, 98.28℄15 lab orr 5-loo 97.34 [96.12, 98.28℄53 rgb hi 1-loo 97.55 [96.37, 98.45℄61 rgb orr 1-loo 97.64 [96.50, 98.54℄22 lab log 3-loo 97.76 [96.63, 98.62℄6 lab hi 3-loo 97.98 [96.88, 98.77℄21 lab log 1-loo 97.99 [96.88, 98.77℄14 lab orr 3-loo 98.06 [97.01, 98.87℄5 lab hi 1-loo 98.19 [97.14, 98.95℄13 lab orr 1-loo 98.26 [97.27, 99.03℄



6.3. Experimental design and results 103Figure 6.3: Presene in perentage of olour spaes in best ombinations of olourhistograms and entile-LBP.
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6.3. Experimental design and results 104Figure 6.4: Presene in perentage of distanes in best ombinations of olour his-tograms and entile-LBP.
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6.3. Experimental design and results 105Figure 6.5: Presene in perentage of lassi�ers in best ombinations of olour his-tograms and entile-LBP.
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6.4. Comparison with soft olour-texture desriptors method 106Table 6.5: Best results of surfae grading approahes.fators predited .i. 95% measuredauray auraySoft olour-texture CIE Lab, 1-loo, 97.36% [96.25%, 98.38%℄ 96.70%desriptors all desriptorsColour histograms RGB, 1-loo, 97.82% [96.50%, 98.54%℄ 98.67%Chi squareCentile-LBP CIE Lab, 1-loo, 98.26% [97.27%, 99.03%℄ 98.25%linear orrelation6.4 Comparison with soft olour-texture desrip-tors methodIn all methods the ahieved performane is very good and quite similar, preditedauray varies in less than 1%. Also, for all of them on�dene intervals andpredited auray exeed fatory demands of 95% (see Table 6.5).Pereptually uniform olour spaes, CIE Lab and CIE Luv, work �ne with softolour-texture desriptors while RGB and CIE Lab provide good behavior in olourhistograms and entile-LBP approahes respetively.It is in timing osts where the di�erenes arise among methods. In Figure 6.6they are ompared by timing osts (measured in a ommon PC) for ten of thefourteen tile models. The soft olour-texture desriptors method provides the bestperformane in timing osts, losely followed by entile-LBP. The olour histogramsapproah ompile by far the worst timing despite this method does not need totranslate the image data, originally in RGB, into CIE Lab spae. Also, this methodpresents irregular timing for the same data size. The berlin, lima and oslo modelsshare the data size (tile and image size) but the method ahieves signi�ant timingdi�erenes among them. This e�et is due to the use of binary trees to store theolour histograms of images. Those images with larger number of di�erent olourswill need larger trees and more time to ompute the di�erenes between histograms.This timing dependene related to data values does not appear in the other two



6.4. Comparison with soft olour-texture desriptors method 107methods whose omputational osts only depend on the image size and algorithm;
Θ(n) + C where n is the image size and C is a onstant related with the algorithmused for implementing the approah.Figure 6.6: Timing omparison of surfae grading approahes using the best ombi-nation of fators.
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Chapter 7
Study of real-time ompliane
This hapter onerns the study of the real time ompliane of the inspetion systemworking with the proposed method1 based on soft olour-texture desriptors. In theprevious hapter we onluded this approah is faster than the other two methodsin the literature. Also, the method ahieves very good surfae grading performane(97.4%) di�ering from the entile-LBP result by only 0.9 (entile-LBP is the best inauray among the ompared approahes).First, we studied the sequential timing for the worst possible ase at fatory. Thisstudy was done using a modern PC (Pentium IV at 3,2GHz) and it was onludedthat parallelization ould be neessary in some ases. The parallelization proedurewas arry out using a luster-MPI sheme.Before parallelization, a preliminary study on the in�uene of data saling onauray results was performed to determine the real image resolution needed forsurfae grading. The original images were aquired with a 3.2 pixels per millimetreresolution beause the system was also designed to detet small surfae defets.Nevertheless, we suspeted this resolution might be exessive for the surfae gradingpurpose. The experiments using lower image resolutions demonstrate we were rightand a resolution of 0.8 pixels per millimetre is su�ient to surpass the minimumauray limit (95%) requested at fatory.1CIE Lab olour spae, 1-loo lassi�er and all soft olour-texture desriptors.108



7.1. Sequential inspetion proess 1097.1 Sequential inspetion proessFirst, we arried out a study for determining the real-time ompliane using onlyone omputer and then the need for parallelization. We used a modern PC2 to studythe timing osts of the inspetion proess, whih is divided into four subproesses:1. Image aquisition: the tile image was aptured using a Dalsa Trillium sanline amera onneted to a Coreo-Imaging PC-DIG grabber (see Chapter 3for more details). Image aquisition inludes the time needed to transfer imagedata from grabber to the omputer memory, 111 milliseonds in the worst aseorresponding to 50x50m piees (2048x1900 RGB images).2. Tile extration: this orresponds to segmentation of the tile surfae from thebakground and also tile repositioning and reorientation to failitate ompu-tation of its features (see next setion 7.2 and Appendix A).3. Computation of features: the omputation of all soft olour-texture desriptorsof the global image.4. Surfae grade lassi�ation.The worst ase at fatory orresponds with the inspetion of 50x50m piees (thelarger manufatured tiles) whih an be produed at 20 piees per minute. Thus,there are three seonds to perform all the inspetion proesses for eah tile.As the image aquisition is done using a san line amera, the image is only om-pleted after all the piee has passed under the amera. The piees are 20 entimetersapart. As the prodution ratio is 20 piees per minute, 140 meters pass under theinspetion system every 60 seonds, then, the spatial separation of 0.20 meters be-tween tiles orresponds with 857 milliseonds. If we subtrat the time needed totransfer the image from the grabber to the omputer memory (111 milliseonds), wehave 746 milliseonds to perform the other three inspetion proesses.Table 7.1 shows the measured timing osts of the inspetion proesses. The totaltime needed to inspet a piee for surfae grading learly exeeds the 3 seond time2Pentium IV at 3,2 GHz. 1GB of memory at 400 MHz.



7.1. Sequential inspetion proess 110Table 7.1: Timing osts of sequential inspetion proesses.Proesses milliseondsAquisition 2254Tile extration 1093Computation of features 2520Classi�ation 0Total 5867limit imposed by the worst ase. Therefore, in this ases, parallelization is neededto provide 100% inspetion at on-line rates.Parallelization an be applied using two shemes:1. By dividing the image data into n sub-images (as many as there are ompu-tation nodes involved in the parallel arhiteture). Eah node performs thetile extration and omputation of features to its orresponding sub-image andthen returns the omputed features.2. By transferring omplete images to eah node. In this ase, eah node extratsthe tile surfae and omputes the features of omplete images. When a node�nalizes, it returns the omputed features to the Master node and lassi�ationis then performed. The Master node is also assigned the task of aquiring tileimages (see Figure 7.4). When the Master has a new image to inspet it usesa simple algorithm to determine whih node is free in the luster.Parallelization annot be applied to aquisition task neither lassi�ation. Thesetwo tasks will be performed only by one node. Also, if we study the approah usedfor tile extration (see next setion and Appendix A), it is easy to realize that in the�rst sheme for parallelization tile extration is a nonsense operation when usingsub-images. Tile extration annot be performed with partial images. Thus, in the�rst ase, the parallelization is only possible for the omputation of features. But,although parallelization would redue the time for the omputation of soft olour-texture desriptors, it is not enough to ahieve real-time ompliane beause the



7.2. Tile extration 111Figure 7.1: Aquired tile presenting a slightly inlination.

time for aquisition and tile extration exeeds the 3 seond limit. Therefore wehose the seond approah to parallelization beause in this ase omplete imagesare used and thus tile extration an be inluded in parallelization.7.2 Tile extrationOne the image has been aquired, the tile must be extrated from the bakgroundand �tted to a non-inlined square so the features an be properly omputed. Whentiles pass under the aquisition system, a perfet alignment of the piee with thesan line amera is not assured. Usually the images present an aspet similar tothat shown in Figure 7.1, where the tile is slightly rotated or inlined.We used an image registration methodology in order to perform tile extrationand its adjustment to a non-inlined retangle. This methodology was taken froma development that we performed in previous works for the detetion of defets in�xed pattern erami tiles [20�23℄. The registration method is explained in detailin Appendix A of present doument.The aim of the tile extration proess is to obtain images of tiles free of bak-ground and inlination (see Figure 7.2). After this, the image is ready for the



7.3. Data saling vs real-time ompliane 112Figure 7.2: Tile extrated from bakground, positioned at origin (left-upper orner)and registered with a non-inlined retangle.

omputation of the soft olour-texture desriptors whih are only onerned withtile surfae.7.3 Data saling vs real-time omplianeOne we extrated the best surfae grading method based on soft olour-texturedesriptors, we planned a study on the in�uene of the image resolution on aurayas a �rst approximation to the issue of real-time ompliane.For the experiments in Chapters 5 and 6 we used the original resolution ofthe VxC TSG images, 3.2 pixels per millimetre. This high resolution was seletedbeause the system was also designed to detet small surfae defets. However,we thought this resolution might be exessive for the purpose of surfae grading.For surfae grading we need measures of global appearane rather than �ne loalinformation.As the data size is a primary fator in the omputational osts, we studied theevolution of auray using smaller image resolutions. We repeated lassi�ation ofthe VxC TSG models using the method extrated in Chapter 5 and di�erent imageresolutions or sales. We used the sales 1.0, 0.50, 0.25, 0.12, 0.06 and measured theauray over all models omputing the ahieved mean auray.



7.3. Data saling vs real-time ompliane 113Figure 7.3: Auray versus sale using the extrated soft olour-texture desriptorsmethod.
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The in�uene of the sale on auray is shown in Figure 7.3. Sales 1.0 and 0.25are only separated by a loose of 2% in auray. The 0.25 sale exeeds the fatorylimit using an amount of data 16 times smaller (more than one order of magnitude).Thus, the resolution ould be redued from 3.2 to 0.8 pixels per millimetre with-out a signi�ant loose of disriminant power (95.5%) omplying with the fatoryrequirement for grading performane. Also interesting is the result obtained usingthe 0.5 sale. Here, with an amount of data four times smaller, the auray almostremains equal (only droops 0.2%, from 97.6% to 97.4%). A resolution of 1.6 pixelsper millimetre an be also a good hoie to ahieve real-time ompliane.The previous timing table (Table 7.1) is up-dated to take into aount the newimage resolutions as shown in Table 7.2.With the improvement introdued using the new resolutions the parallelizationapproah is not needed if a resolution of 0.8 pixels per millimetre is hosen. Never-theless, if we prefer to give priority to the grading performane or add more surfaeinspetion tasks, a parallelization study would be useful.



7.4. MPI-Cluster arhiteture 114Table 7.2: Timing osts of sequential inspetion proesses using new image resolu-tions. Proesses 3.2 1.6 0.8(pixels/mm) (pixels/mm) (pixels/mm)Aquisition 2254 2254 2254Tile extration 1093 250 47Computation of features 2520 630 150Classi�ation 0 0 0Total time 5867 3134 2451(in milliseonds)7.4 MPI-Cluster arhitetureFor parallelization we hose the arhiteture based on the union of the luster hard-ware and the MPI (Message Passing Interfae) software. From the point of viewof parallel arhitetures, a luster is a olletion of omplete omputers with dedi-ated interonnets. Typially, all the mahines in the luster are set up to funtionidentially, they have the same instrution set and operating system. Cluster build-ing tehnology is usually standard; miroproessors, and interonnetion networks.Clusters are more heaper than speialized parallel systems and they provide easyand a�ordable aess to parallel proessing.Clusters were �rst used to serve multiprogramming workloads. In multiprogram-ming lusters, a single front-end mahine usually ats as an intermediary betweena olletion of ompute servers an a large number of users at terminals on remotemahines. However, lusters are inreasingly being used as parallel mahines, of-ten alled networks of workstations (NOWs) [126℄. A major in�uene on lustershas been the inrease in popular domain software, suh as PVM (Parallel VirtualMahine) [127℄ and MPI (Message Passing Interfae) [128℄. This allows users tofarm jobs over a olletion of mahines or to run a parallel program on a number ofmahines onneted by a loal area network.Both, PVM and MPI are software libraries for parallelization using lusters andC (also Fortran) standard programs. We deided to use the MPI software beause it



7.5. Parallelization experiments and results 115is oriented to ahieving higher ommuniation performane when the same kind ofhosts are onneted [129℄ (homogeneous networks). This is our ase, and also muhof the parallelization sheme is based on network transfer performane.Inluding a luster to inrease surfae inspetion apabilities means that theprevious inspetion system arhiteture has to be re-designed (see Chapter 3) asshown in Figure 7.4.The mahine onneted with the amera and sensors through the frame grabberand I/O ard is the Master node and, one the image of one tile is aquired, itmanages the distribution of work among the nodes of the luster and also olletsthe results. When the soft olour-texture desriptors are available the Master nodeperforms the lassi�ation and �nally grade the erami tile.When the Master node has a new tile image it uses a simple algorithm to de-termine whih node is free in the luster. Then, the image is sent to this nodewhih arries out the tile extration and omputation of features. Finally, the nodereturns the omputed features to the Master whih performs the �nal lassi�ationor surfae grading.7.5 Parallelization experiments and resultsFor the �rst experiment we used the 'Merurio' luster loated at the GAP Lab-oratory (Parallel Arhitetures Group) in the Polytehni University of Valenia.This mahine is formed by 21 nodes, one of whih is the Master node. Eah nodeis equipped with a Pentium III bi-proessor at 1GHz and 1GByte of RAM mem-ory. All nodes are interonneted using a high performane Ethernet network witha 1Gb bandwidth. The software for parallelization installed in the luster was theMPI version 1.2.The experiment onsisted in measuring omputing times when using a growingnumber of nodes. The parallel algorithm orresponds with the seond sheme ofparallelization (see setion 7.1), based on the distribution of whole images to thefree nodes in the luster. The nodes extrat the tile and ompute of features. Thesoft olour-texture desriptors are sent to the Master node whih �nally performs



7.5.Parallelizationexperimentsandresults
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Figure7.4:Theinspetionsystemwithalusterproessingunitforparallelization.
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7.5. Parallelization experiments and results 117Table 7.3: Timing of parallelization in Merurio luster using di�erent image reso-lutions (time in milliseonds).Number of Nodes 3.2 1.6 0.8(pixels/mm) (pixels/mm) (pixels/mm)1 11321 2825 7042 5727 1431 3573 3867 964 2404 2935 732 1835 2379 596 1486 1989 496 1247 1725 434 1088 1541 385 969 1386 346 8610 1261 315 7811 1207 301 7512 1152 288 7213 1113 278 6914 1048 262 6515 1018 254 6316 995 248 6217 974 243 6018 963 240 6019 946 236 5920 907 226 56the surfae grade lassi�ation. Table 7.3 and Figure 7.5 show the results for imageresolutions of 3.2, 1.6 and 0.8 pixels per millimetre.Figure 7.5 shows that parallelization reahes saturation when we use more than10 nodes. We ahieve suess in parallelization when the required time is under 746milliseonds whih is the time remaining after the image aquisition at the Masternode. From this point of view, the 3.2 resolution does not sueed beause the timeneeded using 20 nodes is 907 milliseonds. Using more nodes ould lead to ahievetimes under the limit of 746 milliseonds, but a luster of 20 nodes (or more) is fartoo expensive, both eonomially and spatially. The prototype at fatory shouldbe equipped with a reasonable number of nodes to take into aount eonomi andspatial osts. The best relation between auray and number of nodes is ahievedusing four nodes and a resolution of 1.6 pixels per millimetre. This on�guration is



7.5. Parallelization experiments and results 118Figure 7.5: Timing evolution in Merurio luster using several image resolutions.
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under the time limit (746 milliseonds) and uses a redued number of nodes. Morenodes, or a resolution of 0.8 pixels/mm, an be hosen if we plan to introdue moreinspetion tasks in addition to surfae grading. The omputational osts of thesenew tasks should be studied in onjuntion with the surfae grading appliation.In a seond experiment we tested the surfae grading appliation using a highperformane luster; the 1350 IBM luster. This mahine is alled 'Hyades' and isloated at the Computing Centre of the Polytehni University of Valenia. Thisluster, used for superomputing tasks, has 60 nodes equipped with Intel Xeon bi-proessors at 2,4 GHz and 1GB of RAM memory. The nodes are interonnetedusing a Myrinet whih provides a bandwidth of 2Gb per seond. This luster is anIBM mahine made for superomputing appliations and is muh more expensivethan Merurio. With this experiment we tried to determine if it is worthwhile to usehigh performane lusters for the appliation of surfae grading. Only 14 nodes wereavailable when we arried out our experiments, but that was enough for omparisonpurposes (see Table 7.4).From the timing omparison of Figure 7.6 we an onlude that Hyades performssigni�atively better when using a redued number of nodes, however, the timing



7.5. Parallelization experiments and results 119Table 7.4: Timing of parallelization in Hyades mahine using several image resolu-tions (time in milliseonds).Number of Nodes 3.2 1.6 0.8(pixels/mm) (pixels/mm) (pixels/mm)1 5739 1373 3412 3037 765 1933 3130 770 1664 2362 563 1475 1862 461 1016 1542 399 917 1376 345 848 1266 321 859 1201 302 7410 1151 285 7111 1118 276 6812 1084 269 6613 1030 256 6414 1003 251 62
Figure 7.6: Timing omparison between Merurio and Hyades lusters using severalimage resolutions.
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7.5. Parallelization experiments and results 120osts of both mahines quikly beome similar from the third node on. Individuallya Xeon bi-proessor learly performs better than a Pentium III bi-proessor in per-formane, but this individual advantage does not transfer to the luster sheme ofparallelization.Merurio and Hyades mahines were ompared also using the Speedup and Ef-�ieny whih are two lassial measures for haraterizing parallelization results(see Figure 7.7). Speedup is the relation between the time needed to arry out thetask in only one node and the time needed for the same task using n nodes. TheE�ieny is the relation between the real and the ideal Speedup. The ideal Speedupusing 2 nodes is 2, two nodes should double system speed, three nodes should trebleand so on.Figure 7.7 shows lear advantage of Merurio luster whih ahieves better per-formane in Speedup and E�ieny. We onlude that high performane equipmentHyades does not provide enough bene�ts to justify the investment osts.



7.6. Conlusions 121Figure 7.7: Speedup and E�ieny in Merurio and Hyades.
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7.6 ConlusionsIn this hapter we have studied the real-time ompliane of the surfae gradingmethod proposed in this thesis, whih is also the fastest among the ompared meth-ods. The method was extrated in Chapter 5 and is based on soft olour-texturedesriptors using the CIE Lab olour spae, the 1-leaving-one-out lassi�er and all



7.6. Conlusions 122the desriptors.We arried out all the studies with referene to the worst ase at fatory; 50x50mtiles at a ratio of 20 tiles per minute. This gives 3 seonds to inspet and grade eahtile. Firstly, we studied the method's timing requirements with a standard modernomputer. The result was unsuessful beause the omputing time required foronly one tile was of 5.867 seonds whih exeeds the limit.Seondly, we studied the in�uene of the image resolution on auray. Theoriginal resolution was high, 3.2 pixels per millimetre, beause the system was de-signed not only for surfae grading but also for deteting small defets. We testedlower resolutions and ahieved an auray over 95% for resolutions of 1.6 and 0.8pixels per millimetre. The orresponding omputing times were of 3134 and 2451milliseonds respetively. Thus, 0.8 resolution omplies with real-time requirements.Although parallelization is not stritly needed we deided to perform this studybeause it ould be of interest if we want to prioritize auray performane or planto add more inspetion tasks to the system. We hose the luster-MPI sheme be-ause it provides easy, a�ordable aess to parallel proessing. We �rst arried outthe experiments with a medium-level performane luster alled Merurio. Meruriois omposed of Pentium III bi-proessors at 1GHz using a standard 1Gb Ethernet forinteronnetion. The timing results showed that the best relation between numberof nodes and auray was ahieved using four nodes and a resolution of 1.6 pixelsper millimetre. Four is a reasonable number of nodes for the luster if we think interms of eonomi and spatial osts. The spae ouppied by the inspetion systemat fatory is an important issue beause more spae makes the system less opera-tive. Finally we repeated the surfae grading experiments in a high performanemahine alled Hyades whih was omposed of Xeon bi-proessors at 2.4 GHz andone Myrinet network at 2Gb per seond. In timing, Hyades only ahieved lear bet-ter performane using less than 3 nodes. Merurio surpassed Hyades in two lassialmeasures of parallelization performane; Speedup and E�ieny. The di�erene inost between both systems and the ahieved results led us to onlude that it is notworthwhile investing in a high performane luster.



Chapter 8
Conlusions, disussion and furtherwork
In this thesis we have presented a ase of study of the development and performaneanalysis of a surfae grading appliation with real-time ompliane. The appliationfouses on the erami tile industry and aims to automate the inspetion proessof surfae grading and removing human inspetors from this subjetive and tedioustask. From the overview of surfae grading works we onluded that many of themwere very speialized in a spei� type of surfae, others did not ahieve good enoughauray, and yet others did not take into aount the real-time restritions of afatory inspetion. Therefore, we though surfae grading was still an open issuewhere more ontributions were possible. In this sense, this thesis dealed with lessexplored aspets related to real-time ompliane and surfae grading performane.In Chapter 3 we addressed the question of spatial and temporal uniformity in theaquisition system. We performed a study of spatial and temporal uniformity om-paring two modern illumination systems; �uoresents and white LED arrays. Theresults showed that only �uoresent systems were able to provide su�ient uniformresponse for the appliation of surfae grading. In this hapter was also presentedthe VxC TSG (VxC Tiles for Surfae Grading) whih is an image database of e-rami tiles oriented to surfae grading. Creating and ompiling this database wasone of the thesis goals. It has been the ground truth used for testing and omparingsurfae grading approahes presented in Chapters 5 and 6. VxC TSG is an extensive123



Chapter 8. Conlusions, disussion and further work 124image data base of erami tile models representing the wide range of surfae lassesin erami tiles, and also, it is intended to be a tool for the sienti� ommunity andfuture works in the �eld of surfae grading (miron.disa.upv.es/vision/vxtsg/).In Chapter 4, �rst works seeking for a fast and aurate method of surfae grad-ing were revised. Here, we presented the preliminary works that �nally gave rise tothe soft olour-texture desriptors method. First, we studied methods based on im-age tessellation and loal statistis of olour. These methods did not ahieved goodenough auray and only one of them, using multiresolution tehniques, ahievedfatory ompliane exeeding 95% of minimum auray. However, all these meth-ods have an important drawbak, they need to non-automatially estimate at leastone parameter for every tile model. Then, we proposed a generi method with no pa-rameter estimation needed. This method used global statistis of olour and textureomputed in a pereptually uniform olour spae, the CIE Lab. Global statistisin CIE Lab ahieved fatory ompliane in auray improving also two literaturemethods; olour histograms and entile-LBP. In these works we used a medium-sizedimage database of erami tiles, the anteedent of VxC TSG.Global statistis omputed in CIE Lab is the anteedent of soft olour-texturedesriptors method whih was in-depth studied in hapter 5. Both, global statistisin CIE Lab and soft olour-texture desriptors are basially the same method. Onewe found a fast method able to omply with fatory requests, we deided to in-depthstudy the approah using several fators suh as olour spaes (CIE Lab, CIE Luv,RGB and Grey sale), lassi�ers (k-NN and leaving-one-out) and testing all thepossible ombinations of soft olour-texture desriptors (mean, standard deviation,and histogram moments from 2nd to 5th). To do so, statistial tools were used inorder to manage the large amount of experiments and ahieve objetive onlusions.These statistial tools were the design of experiments and the logisti regression.They provided a proedure with whih to study and determine the best ombinationof fators to maximize the auray rate. The extrated method ahieved 97.4% ofpredited mean auray and 97.6% of measured mean auray over all models.The omputed on�dene interval was [96.25%, 98.36%℄ whih learly surpassesthe fatory requirement for performane. From the in-depth statistial study it



Chapter 8. Conlusions, disussion and further work 125was also onluded that RGB, a ommon olour spae non-pereptually uniform,provides less disriminative power, all the soft olour-texture desriptors ontributeto ahieve auray performane, and also the lassi�ers derived from the leavingone out method perform better.In Chapter 6, two methods from the surfae grading literature were implementedand tested for omparison purposes. These methods were olour histograms andentile-LPB. We hose these methods from literature beause they were similar toours; they are generi solutions with low omputational osts. With these methodswas also performed a statistial analysis using again experimental design and logistiregression. The results showed that all approahes are almost equal in aurayperformane if we ompare with soft olour-texture desriptors method. However,soft olour-texture desriptors method ahieved better results in timing osts. Colourhistograms ahieved 97.8% in mean predited auray and 98.3% the entile-LBPmethod. Predited auraies and on�dene intervals of both approahes exeededfatory demands of 95%.The entile-LBP method from literature did not used the overall texture andolour appearane of surfaes to grade wood boards. The grade of wood piees wasassigned by deteting the wood defets and then applying grade rules related to thenumber and lasses of defets found. Therefore, the problem beame a questionof separating the surfae into sound and faulty wood, and lassifying the defetsinto their di�erent types. However, we should point out that we used this methodnot in the literature sense but to ompile global desription of olour and textureand then diretly grade surfaes. Thus, the fat that entile-LBP ahieved the bestperformane in auray and also losely followed soft olour-texture desriptorsmethod in timing osts is an interesting result.Finally, in Chapter 7 we presented a study of real-time ompliane inludingthe parallelization of the method extrated in Chapter 5. The study was performedhaving as referene the worst ase at fatory; 50x50m tiles at a ratio of 20 tilesper minute. Thus, we had 3 seonds to inspet and grade eah tile. Firstly, westudied the timing requirements of the method using a standard modern omputer.The result was unsuessful beause the omputing time required for only one tile



Chapter 8. Conlusions, disussion and further work 126was of 5.867 seonds surpassing the 3 seonds limit. Then, we performed a studyabout the in�uene of the image resolution on auray. The original resolutionwas high, 3.2 pixels per millimetre, beause the system was designed not only forsurfae grading but also for deteting small defets. We tested lower resolutionsand ahieved an auray over the limit of 95% for the resolutions of 1.6 and 0.8pixels per millimetre. The orresponding omputing times were of 3124 and 2451milliseonds respetively. Therefore, 0.8 resolution omplied real time requirements.Although parallelization was not stritly needed we deided to perform this studybeause it ould be of interest if we want to prioritize auray performane or plan toadd more inspetion tasks to the system. We hose the luster-MPI sheme beauseit provides easy, a�ordable aess to parallel proessing. We �rst arried out the ex-periments with a medium-level performane luster alled Merurio. Timing resultsshowed that the best relation between number of nodes and auray was ahievedusing four nodes and a resolution of 1.6 pixels per millimetre. We repeated the sur-fae grading experiments in a high performane mahine alled Hyades. In timing,Hyades only ahieved learly better performane using less than 3 nodes. Meruriosurpassed Hyades in two lassial measures of parallelization performane; Speedupand E�ieny. The di�erene in ost between both systems and the ahieved resultsled us to onlude that it was not worthwhile to invest in a high performane luster.In previous paragraphs we have summarized thesis onlusions. Now, we proeedto disuss some issues:
• At the beginning of the thesis, in Chapter 1, is established that the di�erentriteria of eah operator (human grader) regarding tile defets ould produe anon-uniform quality ontrol riterion. This assertion seems to be orroboratedwith a study in the area of wood grading where in a test of four grades di�erenthuman graders agreed only in 60% of the samples [1℄. However, we ahievedvery high auray performane in experiments using an image database of tilespreviously graded by human operators at fatory. Thus, the idea of a non-uniform quality ontrol riterion of human operators annot be established asa general rule, at least in the surfae grading of erami tiles.
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• In Chapter 4 the method based on global statistis in CIE Lab improvedliterature methods in auray. Also, literature approahes (olour histogramsand entile-LBP) did not ahieve fatory ompliane beause their on�deneintervals performed under the minimum fatory demand on auray (95%).However, when we arried out the in-depth statistial studies using the largeVxC TSG image database, all the methods were very good and quite similarin performane ahieving fatory ompliane. We think this was due to thefollowing fators: a larger image database was used, the aquisition systemwas better alibrated for the aquisition of VxC TSG and also the imageswere improved for eah tile model using brightness and ontrast ontrol.
• We used pereptually uniform olour spaes (CIE Lab and CIE Luv) beausewe though they will perform better than non-uniform spaes (RGB) as theyare loser to human pereption of olours. However, from the experiments,although pereptually uniform spaes showed good behaviour, they do notalways perform better (p.e. olour histograms perform better using RGB).
• In this thesis we have presented and tested general methods for the purposeof surfae grading. Nevertheless, the ground truth has been omprised only ofsamples proeeding from the erami tile area and it ould be interesting totest the approahes using other surfae types.
• The studied approahes are able to di�erentiate surfae grades in 'a poste-riori' study one the erami tiles have been graded. However, at fatory ismore interesting a method able to automatially determine when a 'new grade'appears at prodution line. This would involve the use of thresholds with asurfae grade measure (i.e. distane in a spae of features desribing olourand texture).Further work would inlude the following items:
• Extend the image database adding more types of surfae, i.e. natural surfaessuh as marble, granite or wood and also other arti�ial stu� suh as textilefabris.
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• Test the studied methods with the new surfae types.
• Study and develop methods able to detet hanges of surfae grades at pro-dution lines.
• Develop a prototype to test the system and methods under real onditions atfatory.



Appendix A
Image registration method forerami tiles
A.1 IntrodutionThis appendix presents an image registration method arried out for the purpose oferami tiles inspetion. Tile registration is the �rst step in deteting surfae faultswhen a 'ompare with a referene' tehnique is used. The presented method isbased on edge detetion tehniques, used to extrat the bounding retangle de�nedby tiles. This method only uses a redued set of border tile points, obtained withthe minimum ross entropy thresholding algorithm, and �ts them to straight linesusing the least-squares method. An outlier detetion test is inluded to eliminatethe in�uene of bakground noisy points or tile border defets. The bounding tileretangle is then registered with respet to a referene tile using simple geometrialmapping. Several experiments were made to show the feasibility of the method fromthe point of view of registration quality.In the appliation of surfae grading the registration method is applied to performthe tile extration from bakground and �t the tile boundary into a non-inlinedretangle. This is neessary for proper omputation of olour-texture features. Asa referene we used a retangle with the dimensions of the original tile, with theupper-left orner positioned at origin and without any inlination.129



A.2. Registration method 130A.2 Registration methodIn [20, 21℄ we studied several approahes for tile edge detetion and boundary ret-angle extration. The proposed approah used tile border pixels to adjust the fourstraight lines that ompose the tile retangle. These border points are obtained byseparating the tile from the image bakground using an optimal threshold level. Todo so, the minimum ross entropy thresholding algorithm [131℄ was seleted due tothe auray of the obtained results.For any image this algorithm selets the histogram threshold that minimizes theross entropy between the thresholded image and the original image, in other words,the threshold whih minimizes the 'error' between both images.For every threshold t
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PLEFT , PRIGHT ). For eah set of lateral points, a straight line is �tted using theleast-squares method.Let PUP = {p0(x0, y0), ..., pN−1(xN−1, yN−1)} be the set of NP edge points of theupper side. A line y = aUP + bUP x an be �tted using the standard formulation:
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y = aUP + bUP x = E(y) − E(x)
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· xProeeding in a similar way, the remaining lateral lines an be omputed (aDOWN ,
bDOWN), (aLEFT , bLEFT ), (aRIGHT , bRIGHT ). During this stage, an outlier detetiontest is applied to eliminate the outlying points that sometimes appear due to thebakground noise or border tile defets. This proess works as follows:Repeat1. From the point set PUP omputes the line parameters aUP , bUP .2. For eah point pi(xi, yi) omputes its distane to the line:

Di = |yi − aUP + bUP xi|.If Di ≤ kσ2
y then do nothing, else extrat pi(xi, yi) from PUP .Until (no point is extrated)Those points lying further than one and a half standard deviations (k=1.5) fromthe omputed line are onsidered outliers, and disharged the line parameters beingomputed again. The �tting proess is repeated, usually two or three iterations,until all the remaining points ful�ll the ondition.Figure A.1 shows the progressive approximation of the �tted line to the orretedge points, for the left side. After three steps, the furthest edge points are dis-harged and the orret line �tting is produed using the remaining points. FigureA.2 shows the results obtained after applying this proedure on several tile images.Some points lying outside the tile area an be seen.One the bounding retangle is obtained, the four orner o-ordinates are om-puted and the inverse geometri mapping is applied as follows:
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Figure A.1: Line �tting proess.

Figure A.2: Tile retangles obtained on several test images.



A.2. Registration method 133Figure A.3: Transformation mapping from test tile to referene tile.

and dy are the displaements between the top left points in the two tiles, α is therotation angle, and S is the sale fator. (O, X, Y ) is the image referene oordinatesystem (see Figure A.3).Then, it is possible to determine the parameters of the transformation mappingby minimizing the sum of the squared errors:
E =

4
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i − S (xisinα − yicosα) − dy]2Replaing (S · cosα)by 'a' and (S · sinα) by 'b':
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i − S (b · xi − a · yi) − dy]2Deriving E with respet to a, b, dx, and dy and equaling to zero, the followinglinear system of equations appears:



A.3. Experiments and results 134
















∑

i(x
2
i + y2

i ) 0
∑

i x
2
i

∑

i y
2
i

0
∑

i(x
2
i + y2

i ) −
∑

i y
2
i

∑

i x
2
i

∑

i x
2
i −

∑

i y
2
i n 0

∑

i y
2
i

∑

i x
2
i 0 n

































a

b

dx

dy

















=

















∑

i(x
r
i xi + yr

i yi)
∑

i(x
r
i xi − yr

i yi)
∑

i x
r
i

∑

i y
r
i















from whih the optimal parameters of the geometrial transformation an beobtained.This approah saves a great deal of omputing time as it diretly alulates theexat inverse transformation needed to registrate test tiles onto referene tiles.A.3 Experiments and resultsTwo image data sets were used to validate the method. The �rst data set wasonstruted in ontrolled onditions. Five olour images of di�erent tile modelswere aquired in the laboratory and were used as the 'fault free' referene dataset. For eah referene image, a set of geometrial transformations were arti�iallyperformed, with x and y displaement ranging from -10 to +10 pixels (step 0.5) androtations ranging from -2.0o to +2.0o (step 0.25o). As result, a set of N = 28577test images was produed for eah tile model.After applying the registration method, the displaements and rotation param-eters (dx, dy, α) were obtained for eah test image i, and the mean square errorswith respet to the original ones (d,x, d,y, α,) were omputed as follows:
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(α,(i) − α(i))2/Nwhere Ex and Ey are measured in pixels, and Eα in degrees.



A.3. Experiments and results 135Table A.1: Experiments with arti�ially introdued transformations.Tile model Ex(pixels) Ey(pixels) Eα(degrees)�renze 0.191 0.268 0.014bisuit 0.229 0.166 0.011tosana 0.230 0.357 0.030venie 0.214 0.195 0.013austin 0.291 0.360 0.024Mean 0.231 0.269 0.018The ahieved results (Table A.1) showed the good behaviour of this method,with a mean in the displaement errors lower than 0.3 pixels and a mean in therotation errors lower than 0.02o. We used a redued set of NP= 20 edge points. Thesale fator error ES was negligible (S = 1).A similarity measure was also introdued to ompare the resulting registeredtest image with respet to the referene. The similarity measure EP used in theseexperiments was the sum of the absolute di�erenes of both images, that is themean grey level error per pixel. For omparison purposes, a relative measure εP ,normalized with the image dynami range, was also omputed as follows:
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/Nwhere fi(x, y) is the test image i and f:ref(x, y) is the referene image, (m, n) isthe image size, and △fi is the dynami range of the image i. Beause all tiles usedin this experiment were fault-free, the omputed errors were only due to registrationerrors.Table A.2 shows the ahieved results. These results show that lower relativepixel errors are obtained in the ase of bright tiles. Dark tile models produe highermean errors on the registration parameters and, onsequently, greater relative pixel



A.3. Experiments and results 136Table A.2: Absolute and relative mean pixel errors.Tile model △fi EP εP (%)�renze 256 3.790 1.49bisuit 222 3.789 1.67tosana 184 3.278 1.78venie 170 3.306 1.92austin 119 3.498 2.94Table A.3: Absolute and relative mean pixel errors obtained with real images.Tile model △fi EP εP (%)�renze 255 2.337 0.917bisuit 222 2.211 0.996tosana 184 2.363 1.284venie 170 2.343 1.378austin 119 1.792 1.506errors. However, the absolute mean pixel error is nearly onstant in all ases. Thisis beause higher registration error involves more points that are di�erent in bothimages. This is, however, ompensated by lower grey level di�erenes in the ase ofdark tiles.The seond image data set was obtained under real onditions on the laboratoryline prototype. Eleven tile samples of �ve fault-free tile models were used. Foreah model the �rst tile passing under the amera was onsidered as the referenetile, and the ten remaining tiles were used as test tiles. As there was no previousknowledge about the translation or rotation parameter of the test tiles with respetto the referene tile, the above similarity measurements were used to ompare them.The ahieved results are shown in Table A.3.These results an not be extrapolated due to the use of a redued set of samples.The method has an stable behaviour with di�erent tile models under real onditions.Figure A.4 shows the results obtained applying the registration method to faultytiles (spots, stiks). To visualise the quality of the registration, Figure A.4.d showsthe error map, that is the di�erene between the referene tile (A.4.a) and theregistered test tiles (A.4.b-), with a threshold of 50. It an be seen how the defets



A.3. Experiments and results 137Figure A.4: Tile registration examples.

appear learly in the error map. Continuous lateral errors also appear, in someases, probably due to small di�erenes in size between refrene and test tiles.
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