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Abstract

The Maude-NPA crypto tool is a specialized model checker for cryptographic
security protocols that take into account the algebraic properties of the cryp-
tosystem. In the literature, additional crypto properties have uncovered weak-
nesses of security protocols and, in other cases, they are part of the protocol
security assumptions in order to function properly. Maude-NPA has a theoret-
ical basis on rewriting logic, equational unification, and narrowing to perform
a backwards search from an insecure state pattern to determine whether or
not it is reachable. Maude-NPA can be used to reason about a wide range
of cryptographic properties, including cancellation of encryption and decryp-
tion, Diffie-Hellman exponentiation, exclusive-or, and some approximations of
homomorphic encryption.

In this thesis, we consider new cryptographic properties, either as part of
security protocols or to discover new attacks. We have also modeled different
families of security protocols, including Distance Bounding Protocols or Multi-
party key agreement protocols. And we have developed new protocol modeling
techniques to reduce the time and space analysis effort. This thesis contributes
in several ways to the area of cryptographic protocol analysis and many of the
contributions of this thesis can be useful for other crypto analysis tools.
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Resumen

La herramienta criptográfica Maude-NPA es un verificador de modelos es-
pecializado para protocolos de seguridad criptográficos que tienen en cuenta
las propiedades algebraicas de un sistema criptográfico. En la literatura, las
propiedades criptográficas adicionales han descubierto debilidades de los pro-
tocolos de seguridad y, en otros casos, son parte de los supuestos de seguridad
del protocolo para funcionar correctamente. Maude-NPA tiene una base teóri-
ca en la rewriting logic, la unificación ecuacional y el narrowing para realizar
una búsqueda hacia atrás desde un patrón de estado inseguro para determinar
si es alcanzable o no. Maude-NPA se puede utilizar para razonar sobre una
amplia gama de propiedades criptográficas, incluida la cancelación del cifrado
y descifrado, la exponenciación de Diffie-Hellman, el exclusive-or y algunas
aproximaciones del cifrado homomórfico.

En esta tesis consideramos nuevas propiedades criptográficas, ya sea como
parte de protocolos de seguridad o para descubrir nuevos ataques. También
hemos modelado diferentes familias de protocolos de seguridad, incluidos los
Distance Bounding Protocols or Multi-party key agreement protocolos. Y he-
mos desarrollado nuevas técnicas de modelado para reducir el coste del análisis
en protocolos con tiempo y espacio. Esta tesis contribuye de varias maneras al
área de análisis de protocolos criptográficos y muchas de las contribuciones de
esta tesis pueden ser útiles para otras herramientas de análisis criptográfico.
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Resum

L’eina criptogràfica Maude-NPA és un verificador de models especialitzats
per a protocols de seguretat criptogràfics que tenen en compte les propietats
algebraiques d’un sistema criptogràfic. A la literatura, les propietats cripto-
gràfiques addicionals han descobert debilitats dels protocols de seguretat i, en
altres casos, formen part dels supòsits de seguretat del protocol per funcionar
correctament. Maude-NPA té una base teòrica a la rewriting logic, la unifica-
ció equacional i narrowing per realitzar una cerca cap enrere des d’un patró
d’estat insegur per determinar si és accessible o no. Maude-NPA es pot utilit-
zar per raonar sobre una àmplia gamma de propietats criptogràfiques, inclosa
la cancel·lació del xifratge i desxifrat, l’exponenciació de Diffie-Hellman, el
exclusive-or i algunes aproximacions del xifratge homomòrfic.

En aquesta tesi, considerem noves propietats criptogràfiques, ja sigui com
a part de protocols de seguretat o per descobrir nous atacs. També hem mode-
lat diferents famílies de protocols de seguretat, inclosos els Distance Bounding
Protocols o Multi-party key agreement protocols. I hem desenvolupat noves
tècniques de modelització de protocols per reduir el cost de l’anàlisi en proto-
cols amb temps i espai. Aquesta tesi contribueix de diverses maneres a làrea
de l’anàlisi de protocols criptogràfics i moltes de les contribucions daquesta
tesi poden ser útils per a altres eines danàlisi criptogràfic.
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CHAPTER 1

Introduction

The Maude-NPA is a cryptographic tool for analyzing security protocols that
takes into account the algebraic properties and a wide range of cryptographic
properties like cancellation of encryption and decryption, Diffie-Hellman ex-
ponentiation, exclusive-or, and some approximations of homomorphic encryp-
tion. In this thesis, we have focused on improving the capabilities of the
Maude-NPA tool by implementing new cryptographic properties and study-
ing the results. The Maude-NPA tool has a theoretical basis on rewriting logic,
narrowing, and equational unification to perform a backwards search from an
attack state pattern to determine whether or not it is reachable.

We give an overview of the methods used in this thesis for analyzing cryp-
tographic protocols. First, in Section 1.1, we recall some relevant algebraic
properties of cryptographic operators, used in protocols in this thesis. Sec-
ond, in Section 1.2, we describe the different characteristics of some families
of communication cryptographic protocols. Third, in Section 1.3, we consider
several improvements to the modeling process for protocols.

1.1 Cryptographic properties

The equational unification of two terms is of special relevance to many areas
in computer science, including logic programming. It consists of finding a sub-
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stitution that, when applied to both terms, makes them equal modulo some
equational properties. Several algorithms have been developed in the litera-
ture for specific equational theories, such as associative-commutative symbols,
exclusive-or, Diffie-Hellman, or Abelian Groups (see [15]).

Maude 3.2.1 offers quite sophisticated symbolic capabilities (see [90] and
references therein). Among these symbolic features, equational unification [35]
is a twofold achievement. On the one hand, Maude provides an order-sorted
equational unification command for any combination of symbols having any
combination of associativity, commutativity, and identity [46]. This is re-
markable since there is no other system with such an advanced unification
algorithm. On the other hand, a narrowing-based equational unification algo-
rithm relying on the concept of the variants [38] of a term is also available.
A variant of a term t is a pair consisting of a substitution σ and the canoni-
cal form of tσ . Narrowing was proved to be complete for unification in [68],
but variant-based unification is decidable when the equational theory satisfies
the finite variant property [38, 60]. The finite variant property has become
an essential property in some research areas, such as cryptographic protocol
analysis, where Maude-NPA [55], Tamarin [45] and AKiSS [17] rely on the
different unification and variant features of Maude.
In the following subsections, we focus on some algebraic properties relevant to
the cryptographic protocols of this thesis

1.1.1 Lists-Associativity

A list or sequence of elements is defined in computer science as a data type
that represents a finite number of values of (usually) the same type, where a
value may occur more than once. In many programming paradigms, a list is
defined by specific syntax and semantics for list operations such as:

• a symbol for denoting an empty list;

• a symbol for knowing whether or not a list is empty;

• a symbol for prepending an element to a list;

• a symbol for appending an element to a list;

• a symbol for obtaining the first element of a list;

• a symbol for removing the first element of a list and
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• a symbol for obtaining the element at a given index in the list.
For different programming languages, a list can often be constructed by ei-
ther writing the items in sequence, separated by commas, colons, semicolons,
and/or spaces, within a pair of delimiters such as parentheses “( )”, square
brackets “[ ]”, curly brackets “{ }”, or angle brackets “< >”.

There are algorithms where the use of lists (or ordered elements) are rele-
vant to their proper functioning such as encryption algorithms. A block cipher
is a deterministic algorithm in cryptography that operates on a sequence of
blocks. It takes a block of plaintext bits from the sequence of blocks and
generates a block of ciphertext bits, generally of the same size. The size of
each block in the sequence is fixed by the algorithm. The choice of block size
does not directly affect the strength of the encryption scheme. The strength
of the block cipher depends on the key length. The most used block cipher
is Advanced Encryption Standard (AES). It uses mathematic operations, e.g.
bitwise rotation, to transform a block of plaintext into a ciphertext block. The
AES uses a symmetric-key algorithm, that is the same key is used for both
encrypting and decrypting of the payload.

A list can be expressed by binary operators that may satisfy the associative
property (a ∗ b) ∗ c = a ∗ (b ∗ c). It reorders or shifts the parentheses in an
expression without modifying the meaning. In the area of computer science,
an operator with the associativity property can group elements arbitrarily. A
binary operator for lists may also satisfy the identity property x∗ identity = x
where identity is the empty list.

In Maude, the associativity and identity properties are used as follows. We
define a list with identity as the empty list and ++ as an infix concatenation
symbol. The symbol is associative with the identity symbol identity. We
define three auxiliary constants a, b, and c of sort Elem. We represent the
properties of associativity and identity with the labels [assoc id] in the
corresponding _++_ symbol.
fmod ASSOC-ID is

sort Elem List .
subsort Elem < List .
ops a b c : -> Elem .
op identity : -> List .
op _++_ : List List -> List [assoc id: identity] .

endfm

Lists are used in this thesis as follows. In Chapter 2, where authenticated
USB devices are analyzed, the associativity and identity properties are used in
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the Yubikey & YubiHSM APIs for event lists. Every time a new event occurs,
it is inserted as a new element at the end of a new data structure for the event
list. The leftmost elements are the oldest ones, whereas the rightmost elements
are the newest. When we want to check whether event e1 has occurred before
event e2, we can express this with the event list L1 ++ e1 ++ L2 ++ e2 ++ L3,
where any of the Li could be an empty list.

1.1.2 Exclusive-OR

In cryptography, a method for message encryption is based on the simple
exclusive-or cipher, which is a type of additive cipher. The exclusive disjunc-
tion (XOR) operation, sometimes called modulus 2 addition, is denoted by
the ⊕ symbol and satisfies the following four properties:

A⊕ (B⊕C) = (A⊕B)⊕C (associativity)
A⊕B = B⊕A (commutativity)
A⊕ /0 = A (identity element is /0)
A⊕A = /0 (self-cancellation)

1. Associativity. Where reordering or shifting the parentheses does not
modify the meaning.

2. Commutativity. Where swapping elements does not change the meaning.

3. Identity. There exists an element z that does not disrupt the meaning
of any other element x.

4. Self-cancellation. Each elementx cancels with itself.

A payload can be encrypted by applying the bitwise XOR operator to every
piece using a given key. To decrypt it, just reapplying the XOR function with
the same given key will remove the cipher.

The main reason why XOR is so common in cryptography is because of
its perfectly-balanced property: Given a truly random key, the ciphertext
is equally likely to be either 0 or 1. The first vulnerability is that when
the key is not truly random the ciphertext is very similar to the original
plaintext. The second vulnerability, called known-plaintext attack, allows an
attacker to obtain a cipher key if it knows the original plaintext and the
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ciphertext and is based on the property plaintext⊕ ciphertext = key where
ciphertext = plaintext⊕ key. The third vulnerability, called the malleability
property, is the idea of flipping arbitrary bits in the decrypted plaintext by
manipulating the ciphertext, making it possible for an intruder to produce a
different decrypted plaintext.

In Maude, the exclusive-or cipher is used as follows. We define three aux-
iliary constants a, b, and c of sort Elem. We represent the properties of asso-
ciativity and commutativity of exclusive-or with the labels [assoc comm] in
the corresponding _*_ symbol. The second equation is necessary for coherence
modulo AC (see [2]).

fmod EXCLUSIVE-OR is
sorts Elem Xor .
subsort Elem < Xor .
ops a b c : -> Elem .
op identity : -> Xor .
op _*_ : Xor Xor -> Xor [assoc comm] .
vars X Y Z U V : [Xor] .
eq X * X = mt [variant] .
eq X * X * Z = Z [variant] .
eq X * identity = X [variant] .

endfm

The attribute variant specifies that these equations will be used for variant-
based unification. Since this theory has the finite variant property (see [38,60]),
given the term X * Y .

The exclusive-or cipher is used in this thesis in the following chapters.
In Chapter 2, where the formal specification of YubiKey and YubiHSM are
explained, the authenticated encryption with associated data (AEAD) is mod-
eled using exclusive-or cipher. It is necessary to verify the property: If the
intruder has access to the server running YubiKey, where the YubiHSM AES
keys are generated, then it is able to obtain plaintext in the clear.

In Chapter 4, where several distance-bounding-protocols are explained, the
exclusive-or cipher is used in the Brands-Chaum, MAD (Mutual Authentica-
tion with Distance-Bounding), Meadows’s Protocols and Swiss-knife protocols.
In Chapter 5, where several protocols using physical properties are explained,
the exclusive-or cipher is used in the Brands-Chaum protocol. In Chapter 6,
focused on the computation of most general equational unifiers, the exclusive-
or cipher is used in the experiments.
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1.1.3 Diffie-Hellman

The Diffie-Hellman key exchange protocol is a famous algorithm for securely
exchanging cryptographic keys over an insecure channel. Ralph Merkle first
created it as one of the public-key protocols. The work published in 1976 by
Whitfield Diffie and Martin Hellman is the earliest practical example of public
key exchange implemented within the field of cryptography. The U.S. Patent
4,200,770 from 1977, now expired, presents the well-known algorithm, credited
to Hellman, Diffie, and Merkle as inventors.

Before Diffie-Hellman, when two parties required secure encrypted commu-
nication, the exchange used keys had to be provided by some secure physical
means. The Diffie–Hellman key exchange algorithm allows two parties that
have no prior knowledge of each other to jointly establish a shared secret key
over an insecure channel. This key can then be used to encrypt subsequent
communications using a symmetric-key cipher.

The Diffie–Hellman algorithm provides a general mechanism for a vari-
ety of authenticated protocols and is used to provide forward secrecy in the
ephemeral modes of the Transport Layer Security (TLS) protocol, referred to
as EDH or DHE depending on the cipher suite.

A general description of the protocol is as follows. Alice and Bob agree on
a finite cyclic group G of order n and a generating element g in G. Note that
elements in the group G are written multiplicatively, e.g. n1 ·n2.

1. Alice chooses a random number na with 1 < na < n, then sends gna of G
to Bob.

2. Bob chooses a random number nb with 1 < nb < n, then sends gnb of G
to Alice.

3. Alice calculates (gnb)na = gnb·na of G.

4. Bob computes the element (gna)nb = gna·nb of G.

After these messages, Alice and Bob have in their knowledge the shared secret
key of the group gna·nb = gnb·na . At this moment, with the secret key shared in
group G, it is possible to have secure communication between honest partici-
pants.

One of the disadvantages of Diffie-Hellman is that it does not support au-
thentication for honest participants in communication. It is highly vulnerable
to a Man-In-The-Middle attack (MITM), giving an attacker the possibility to
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modify the communications between two honest and making them believe they
are talking directly to each other, when in fact the messages are manipulated
by the attacker.

The modular exponentiation property typical of Diffie-Hellman protocols
is represented in Maude as follows. We define three auxiliary constants a, b,
and c of sort Elem. The exponentiation operator is represented by the symbol
exp and the multiplicative operator · is represented by the symbol *, which is
an associative-commutative symbol so that (zx)y = (zy)x = zx·y.

fmod Diffie-Hellman is
sorts Exp Elem NeElemSet Gen .
subsort Elem < NeElemSet .
subsort Gen < Exp .
ops a b c : -> Elem .
op exp : Exp NeElemSet -> Exp .
op _*_ : NeElemSet NeElemSet -> NeElemSet [assoc comm] .
var X : Exp . vars Y Z : NeElemSet .
eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm

The attribute variant specifies that these equations will be used for variant-
based unification. Since this theory has the finite variant property (see [38,60]),
given the term exp(x,y) it is easy to verify that there are two most general
variants.

The exponentiation operator is used in this thesis as follows. In Chapter
3, where the formal specification of key agreement group protocols such as
Diffie-Hellman, Skinny Tree (STR), Joux, and Tripartite Authenticated Key
agreement (TAK) is explained, the exponentiation property is used in increas-
ingly complex cryptographic theories.

1.1.4 Bilinear Pairing

In 1984, Adi Shamir proposed ID-based encryption, or identity-based en-
cryption (IBE). It is an important primitive of ID-based cryptography where
public-key encryption uses a public key of an honest participant based on some
unique information about the identity of the honest participant. It is partic-
ularly useful because there is no need to know an identity’s public key prior
to encryption. Shamir was unable to come up with a concrete solution, and
identity-based encryption remained an open problem for many years. Bilinear
pairings are currently a solution.
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One of the goals to use pairing-based cryptography is to obtain a smaller
finite field from an elliptic curve, and with that, we can analyze specific prob-
lems or attacks. It makes use of a pairing function ê : G1×G2 → GT of two
cryptographic groups G1 and G2 into a third group GT . Typically, G1 = G2
and it will be a subgroup of the group of points on an elliptic curve over a
finite field, and GT will be a subgroup of the multiplicative group of a related
finite field, and the map ê will be derived from either the Weil or Tate pair-
ing on the elliptic curve. When G = G1 = G2, the pairing is called symmetric
and the pairing function ê is commutative, i.e., if the participants agree on a
generator g ∈ G, for any P,Q in G there exist integers i, j s.t. P = gi, Q = g j,
ê(P,Q) = ê(gi,g j) = ê(g,g)i∗ j = ê(g j,gi) = ê(Q,P).

We follow the syntax of [70] and use the letter P as the agreed generator.
We write aP instead of Pa for P added to itself a times, also called scalar
multiplication of P by a. Note that we write [a]P in the equational theory
below for clarification.

Some protocols that use the bilinear pairing cryptographic properties also
require a hash function h and the following additive property (and its sym-
metric version, since ê is commutative)

ê(Q,W +Z) = ê(Q,W ) · ê(Q,Z) (1.1)

where + is the additive symbol for the group G and · is the additive symbol
for the group GT given ê : G×G→ GT .

The bilinear pairing theory is represented in Maude as follows. We de-
fine three auxiliary constants a, b, and c of sort Elem. These properties are
specified as follows. 1

fmod Bilinear-Pairing is
sorts Elem NeElemSet Gen GenP Exp ExpP ExpT .
subsort Elem < NeElemSet .
subsort Exp < ExpT .
ops a b c : -> Elem .
op exp : Gen NeElemSet -> Exp [ctor] .
op exp : Exp NeElemSet -> Exp .
op _*_ : NeElemSet NeElemSet -> NeElemSet [ctor assoc comm] .
op p : -> GenP [ctor] .
op em : GenP GenP -> Gen [ctor comm] .
op em : ExpP ExpP -> Exp [comm] .

1This theory labels some symbols as constructors, which will be useful for Section 1.3.1
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op [_]_ : NeElemSet GenP -> ExpP [ctor] .
op [_]_ : NeElemSet ExpP -> ExpP .
op _+_ : NeElemSet NeElemSet -> NeElemSet [ctor assoc comm] .
op _+_ : ExpP ExpP -> ExpP .
op _·_ : ExpT ExpT -> ExpT [ctor assoc comm] .
var X : Gen .
vars Y Z : NeElemSet .
vars P Q : GenP .
eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .
eq [Z]([Y]P) = [Z * Y]P [variant] .
eq em([Y]P, [Z]Q) = exp(em(P,Q),Y * Z) [variant] .
eq ([Y]P) + ([Z]P) = [Y + Z]P [variant] .

endfm

Note that the additive property 1.1 does not appear explicitly in the equational
theory above and it is transformed as follows. The addition symbol + is split
into two versions, one of them being an associative-commutative symbol. A
new equation relating to these two versions of + is added. This equation
denotes a homomorphic addition and it is easily handled by variant-based
unification because it is defined on disconnected sorts ExpP and NeNonceSet.
Also, symbol · is simply represented as an associative-commutative symbol.

Bilinear-pairing is used in this thesis as follows. In Chapter 3, where the
formal specification of key agreement group protocols such as Diffie-Hellman,
Skinny Tree (STR), Joux, and Tripartite Authenticated Key agreement (TAK)
are explained, the bilinear-pairing property is used in TAK protocols.

1.1.5 Abelian-Group

In mathematics, an abelian group is a set G and an operation + that combines
any two elements A and B of G to form another element of G, written as A+B.
They are also called commutative groups because the result of applying the
operation + to two elements does not depend on the order in which they are
combined. An Abelian Group must satisfy four properties:

A+(B+C) = (A+B)+C (associativity)
A+B = B+A (commutativity)
A+ /0 = A (identity element is /0)

A+−A = /0 (−A is the inverse of A)
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1. Associativity. Where reordering or shifting the parentheses does not
modify the meaning

2. Commutativity. Where reordering the element in G does not change the
meaning

3. Identity. There exists an element z in G, applied to the element x in G
that does not disrupt the meaning of x.

4. Inverse. For each x in G there exists an element y in G, where they cancel
each other.

For the addition operation +, the Integers, and the Real numbers are
abelian groups, with 0 as the identity element and −x as the inverse of x where
x+(−y) is denoted as x− y. For the multiplication operation ∗, the integers
and the Real numbers are abelian groups, with 1 as the identity element and
1/x as the inverse of x where x∗ (1/y) is denoted as x/y 2. Every cyclic group
G is abelian, because if x,y are in G, then x∗y = gm ∗gn = gm+n = gn ∗gm = y∗x.

Let us consider a protocol requiring an abelian group for its cryptographic
properties, a generic three-pass key agreement protocol is proposed that is
based on a generic trapdoor one-way function. When the generic protocol is
specialized to the RSA setting, it is named KAS2 protocol, which was stan-
dardized by the National Institute of Standards and Technology (NIST). When
the KAS2 protocol is specialized to the discrete logarithm, it is named DH2.
This protocol is similar to the KEA+ protocol. It allows that parties can use
different groups of elliptic curves assuming each party can operate on the other
party’s group. Party A selects a cyclic group G1 with generator g1. Party A
selects a private key a and a public key is (g1)

a. Party B selects a cyclic group
G2 with generator g2. Party B selects a private key b and a public key is (g2)

b.
Party A selects an ephemeral private key (g2)

x and an ephemeral public key
((g2)

b)x for a random x and sends the public key to party B. Upon reception,
party B raises the ephemeral public key to his inverse 1/b of private key b to
obtain the ephemeral private key of A, i.e., (((g2)

b)x)1/b = (g2)
x.

The Abelian group theory is represented in Maude as follows. We de-
fine three auxiliary constants a, b, and c of sort Elem. These properties are
specified as follows.

2Note that an expression such as 0/0 is problematic in different ways, since it is represented as
0*(1/0).
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fmod Abelian-Group is
sorts Elem AG .
subsort Elem < AG .
ops a b c : -> Elem .
op _+_ : AG AG -> AG [assoc comm] .
op -_ : AG -> AG .
op 0 : -> AG .
vars X Y Z : AG .
eq X + 0 = X [variant] .
eq X + - X = 0 [variant] .
eq X + - X + Y = Y [variant] .
eq - - X = X [variant] .
eq - 0 = 0 [variant] .
eq - X + - Y = -(X + Y) [variant] .
eq -(X + Y) + Y = - X [variant] .
eq -(- X + Y) = X + - Y [variant] .
eq - X + - Y + Z = -(X + Y) + Z [variant] .
eq -(X + Y) + Y + Z = - X + Z [variant] .

endfm

The Abelian Group is used in this thesis as follows. In Chapter 6, where
we have defined a new unification algorithm that could be used to improve
several cryptographic protocol analysis tools, such as Maude-NPA, we have to
use the abelian group theory for the experiments. Unfortunately, the abelian
group theory has a high computational cost and we have not specified and
analyzed any protocol with an abelian group in this thesis.

1.1.6 Constraints

In computer science, the satisfaction of a set of constraints with variables of
a given domain is the process of finding a solution, i.e. a set of values for
the variables that satisfies all constraints. A user may be interested in finding
just one solution, finding all solutions, or proving the unsatisfiability of the set
of constraints. The techniques are different depending on the domain of the
constraint. For constraints on a finite domain, satisfaction is usually solved via
search, in particular a form of backtracking or local search. For constraints
on the Real or Rational numbers, satisfaction is usually done via variable
elimination or the Simplex Algorithm for Linear Programming (a special case
of mathematical optimization).

In the 1970s, constraint satisfaction started to become used in the field
of artificial intelligence. During the 1980s and 1990s, constraint satisfaction
started to be embedded into a programming language. One of the first lan-
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guages with specific support for constraint programming was Prolog. Since
then, libraries for constraint programming have become available in other pro-
gramming languages, such as Java or C++.

In the area of constraint programming, we are interested in some spe-
cific domains. Some popular domains are: booleans (SAT problem), integers,
rationals, intervals, linear domains (linear real arithmetic, where only linear
functions are used), non-linear domains, finite domains, and hybrid domains
(involving more than one).

Satisfiability modulo theories (SMT) generalize the Boolean satisfiability
problem (SAT) to more complex formulas involving Real numbers, integers,
and/or various data structures such as lists, arrays, bit vectors, and strings.
There are several SMT solvers such as Z3 from Microsoft, and the open-source
CVC5. They have been used in a wide range of applications including auto-
mated theorem proving, program analysis, program verification, and software
testing.

Constraints are used in this thesis as follows. In Chapter 2, where the
formal specification of YubiKey and YubiHSM are explained, constraints as-
sociated with Lamport clocks are used. Lamport clocks are used to provide a
partial ordering of events with minimal overhead. In Chapter 4, where several
distance-bounding protocols are specified and analyzed, and linear arithmetic
constraints on the Real numbers are used to represent traveled distances. In
Chapter 5, where protocols with physical properties are specified and ana-
lyzed, and non-linear arithmetic constraints on the Real numbers are used to
represent the participant’s location.

1.2 Cryptographic protocol families

Cryptographic protocols are successfully analyzed using formal methods. How-
ever, formal approaches usually consider the encryption schemes as black boxes
and insufficiently assume that an adversary cannot learn anything from an
encrypted message unless he knows the key. The previous section on crypto-
graphic properties tries to solve these problems. In the following, we present
some advanced protocols analyzed in this thesis

1.2.1 APIs and Global Mutable Memory

Standards for cryptographic protocols have long been attractive candidates for
formal verification. Cryptographic protocols are tricky to design and subject
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to non-intuitive attacks even when the underlying cryptosystems are secure.
Furthermore, when protocols that are known to be secure are implemented as
standards, the modifications that are made during the standardization process
may introduce new security flaws. Thus a considerable amount of work has
been done in the application of formal methods to cryptographic protocol
standards and the standards are treated symbolically, with the cryptosystems
treated as black-box function symbols.

A cryptographic API is a set of instructions by which a developer of an
application may allow it to take advantage of the cryptographic functionality
of a secure module. These APIs allow an application to perform such func-
tions as creating keys, using keys to encrypt and decrypt data, and exporting
and importing keys to and from other devices. Cryptographic APIs should
also enforce security policies. In particular, no application should be able to
retrieve a key in the clear.

The IBM 4758 PCI Cryptographic Coprocessor is a secure cryptoprocessor
implemented on a high-security, tamper-resistant, programmable PCI board.
This highly secure subsystem includes specialized cryptographic electronics, a
microprocessor, a memory, and a random number generator. As of June 2005,
the 4758 was discontinued and was replaced by an improved, faster model
called the IBM 4764. IBM supplies two cryptographic APIs for custom ap-
plication development: the IBM Common Cryptographic Architecture (CCA)
and the Public-Key Cryptography Standards version 11 (PKCS#11). These
are standards that provide both a set of commands that could be used by a
cryptographic API and mechanisms for setting and enforcing security policies.
These security policies are specified in terms of attributes on keys and other
data that declare which operations using these terms are legal or illegal.

In [64], the IBM 4758 CCA, an XOR-based API, was specified and analyzed
for the first time using a general-purpose unbounded session cryptographic
protocol verification tool, Maude-NPA, that provides direct support for AC
theories. That paper analyzes not only the original protocol, but the different
fixes provided by IBM, and the different XOR-linear versions that appeared
in the literature. In particular, the paper reproduces Bond’s attack on the
different versions. In [65], the PKCS#11 was specified and analyzed using the
Maude-NPA tool. Firstly, verifying the security of PKCS#11 was harder than
verifying the security of an API such as IBM’s CCA because the former was
intended to be applied to a wide variety of platforms whereas the latter was
only intended to be used for applications running on certain IBM systems.
Secondly, the set of attributes forms a mutable global state which must be
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accounted for. This issue was avoided in that paper by taking advantage of
previous work in the literature to simplify the types of policies that need to be
analyzed: a construct called an attribute policy is shown for a large class of
“reasonable” attribute policies called complete policies, it is enough to prove
security in the case of static policies, in which the attributes of a key are never
changed after it is created. Thirdly, any formal verification system must be
capable of verifying not just one or two policies specified by the developers of
the API, as was the case of CCA, but any of a large class of policies that could
be specified by a user.

In Chapter 2, the YubiKey, a small USB designed by Yubico to authenti-
cate a user against network-based services, and the YubiHSM, Yubico’s hard-
ware security module (HSM), were specified and analyzed in Maude-NPA.
The YubiKey allows for the secure authentication of a user against network-
based services by considering different methods: one-time password (OTP),
public-key encryption, public key authentication, and the Universal 2nd Fac-
tor (U2F) protocol [9]. YubiHSM is intended to operate in conjunction with
a host application.

In the literature, two kinds of attacks on the first released version of Yu-
biHSM API were shown. There has not been any completely automated anal-
ysis of these two attacks before this thesis. Furthermore, a mutable (non-
monotonic) memory for storing previously seen keys or nonces is used in Yu-
bikey and YubiHSM. The YubiHSM stores a very limited number of AES keys
so that the server can use them to perform cryptographic operations with-
out the key values ever appearing in the server’s memory. The YubiHSM is
designed to protect the YubiKey AES keys when an authentication server is
compromised by encrypting the AES keys using a master key stored inside
the YubiHSM. For the YubiKey and YubiHSM APIs, if each command is rep-
resented by an event, then a sequence of commands can be represented by
the concatenation of the events associated with the sequence. However, the
YubiKey and YubiHSM APIs also require different information to be stored
from one API command to the next. Some command information is read-only,
but other information is updated. The old data will appear in the precondi-
tion part of an API event, and the unmodified data, the new data, and the
updated data will appear in the postcondition part of that event, which will
then become the precondition part of the next API event.
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1.2.2 Multi-party key agreement protocols

The Diffie-Hellman key exchange protocol of Section 1.1.3 is the earliest prac-
tical example of a public key agreement protocol implemented within the field
of cryptography. The Diffie–Hellman key exchange algorithm allows two par-
ties that have no prior knowledge of each other to jointly establish a shared
secret key over an insecure channel. The protocol is described in Alice & Bob
notation as follows where we remark the shared key between participants:

A−→ B : ga

B−→ A : gb

KeyAB : (gb)a = (ga)b = ga·b

A multi-party key establishment can be seen as a generalization of a two-
party key establishment. They are different versions of Diffie–Hellman key
agreement that can negotiate a key shared by two or more participants. In the
case of three honest participants in an insecure channel, a malicious participant
can only see ga,gb,gc,ga·b,ga·c,gb·c and cannot create ga·b·c.

A−→ B,C : ga

B−→ A,C : (ga)b,gb

C −→ A,B : (ga)c,(gb)c,gc

KeyABC : ((gb)c)a) = ((ga)c)b) = ((ga)b)c) = ga·b·c

These honest participants have different options for choosing the order in
which they contribute to the key. In the case of four honest participants, the
protocol is as follows:

A−→ B,C,D : ga

B−→ A,C,D : (ga)b,gb

C −→ A,B,D : (ga)b)c,(ga)c,(gb)c,gc

D−→ A,B,C : ((ga)b)d ,((ga)c)d ,((gb)c)d ,gd

KeyABCD : ga·b·c·d

In Chapter 3, we specify several three-party key agreement protocols where
each protocol creates a shared secret key different from the three-party Diffie-
Hellman. The STR protocol uses nested exponentiations. The Joux protocol
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uses exponentiation and bilinear pairing. The TAK protocols use signatures,
hash, exponentiation, and bilinear pairing.

1.2.3 Distance bounding protocols

Distance bounding protocols are security protocols that rely on the traveled
distance between two participants. Usually, there are two honest participants,
but only one establishes an upper bound on the traveled distance between
both. One of the participants is called the verifier V and the other is called the
prover P because it has to prove it is within the allowed distance. Verifiers can
be eavesdropped on, for example by manipulating the delay time, collaborating
with dishonest participants, or by exploiting the presence of an honest prover.
A common method of prevention is by using cryptography.

Since electromagnetic communications cannot travel faster than the speed
of light, the verifier V approximates the traveled distance from the difference
time between exchanged messages. The approximated distance is calculated
as the delay time between a challenge sent by the verifier V and the response
associated with this challenge. This round-trip delay time is divided by double
the speed of light to calculate the traveled distance. The family of distance
bounding protocols already has different applications. An application is credit
card payment using EMV standard. EMV stands for "Europay, Mastercard,
and Visa", the three companies that created the standard. These cards had to
be inserted into a point-of-sale terminal. Nowadays, they have been replaced
by contactless payment methods, and the card (prover) can be read by a
point-of-sale terminal (verifier) within a short distance to guarantee correct
communication. Another extensively used application is RFID tags. RFID
tags are used in identification tasks for access control, payment, retail storage,
and shipments. These tags must be held within a specific distance of the
reader (verifier) to identify the tag (prover).

It is hard to model the physical properties of security protocols such as
time and location. In general, there are two ways of handling those prop-
erties: an explicit model with physical information, or by using an abstract
model (without physical information) and showing it is sound and complete
with respect to a theoretical model. The former is more intuitive for the user,
but the latter is often chosen because not many tools support reasoning about
physical properties. By adding support for these physical properties, the for-
mer can handle many more protocols. Physical information is not represented
by specific values but by unknown variables, in which the physical properties
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are represented as constraints on those unknown physical variables.
This family of distance bounding protocols is vulnerable to different situa-

tions. Mafia fraud, where an honest prover is outside the neighborhood of the
verifier but an intruder is inside pretending to be the honest prover, taking
advantage of his position to relay the honest prover’s messages. Terrorist fraud
is an extension of Mafia fraud where an adversary tries to obtain the challenge
from the verifier, either by extracting the key from a captured message or by
tampering the verifier. Distance hijacking attacks, where an intruder located
outside the neighborhood of the verifier succeeds in convincing the verifier that
he is inside the neighborhood by exploiting the presence of an honest prover
in the neighborhood to achieve his goal.

In Chapter 4, we specify several distance bounding protocols using only
traveled distance, where the Mafia fraud and the Hijacking attack have been
analyzed, and in Chapter 5 we extend this work to consider also the location
of participants.

1.3 Modeling improvement

Several techniques for the optimization of cryptographic tools have been de-
fined but little interest has been given to improving the modeling process. In
this section, we consider two approaches studied in this thesis.

1.3.1 Constructors

Constructor symbols are extensively used in computer science: for representing
data instead of functions, for manipulating programs as data, or for reason-
ing in complex semantic structures. Constructors can be characterized in the
no junk, no confusion style of Goguen and Burstall, providing the mathe-
matical semantics as the initial term algebra of a functional program, which
corresponds to the least Herbrand model in logic programming.

Both the logic notion of a functor and the functional notion of a constructor
refers to a symbol not appearing in the root position of the left-hand side of any
predicate or equation. This notion of constructor allows to split a signature
Σ as a disjoint union Σ = D ]C where D are called defined symbols and
C are called constructor symbols. In a functional program, the normalized
(simplified) terms are typically made of constructor terms.

Since 2002, the Proverif crypto tool incorporated the distinction between
what they called destructor (defined) and constructor symbols. This has never
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been incorporated into other crypto tools such as AKiSS [17], Maude-NPA [55],
OFMC [22], Scyther [40], Scyther-proof [3], and Tamarin [45] .

The notion of constructor sub-theory in Maude differs from the “logic” and
“functional” notions. An equational theory (Σ,B,E) protects a constructor
sub-theory (C ,BC ,EC ) if the set of constructor symbols C is a subset of Σ, the
set of constructor axioms BC is a subset of B, the set of constructor equations
EC is a subset of E, and two constructor terms are equal w.r.t. axioms BC

and equations EC iff they are equal w.r.t. axioms B and equations E.
In the following equational theory, the modular exponentiation property

typical of Diffie-Hellman protocols is defined using two versions of the expo-
nentiation operator where, in the lefthand side of the equation, the outer-
most exponentiation operator is the defined symbol whereas the innermost
exponentiation operator is the constructor symbol. Note that an auxiliary
associative-commutative constructor symbol ∗ is used for exponents.

fmod DH-CFVP is
sorts Exp Elem ElemSet Gen .
subsort Elem < ElemSet .
ops a b c : -> Elem [ctor] .
op exp : Gen ElemSet -> Exp [ctor] .
op exp : Exp ElemSet -> Exp .
op _*_ : ElemSet ElemSet -> ElemSet [assoc comm ctor] .
var X : Gen .
vars Y Z : ElemSet .
eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm

The constructor subtheory is as follows:

fmod DH-SubCFVP is
sorts Exp Elem ElemSet Gen .
subsort Elem < ElemSet .
ops a b c : -> Elem [ctor] .
op exp : Gen ElemSet -> Exp [ctor] .
op _*_ : ElemSet ElemSet -> ElemSet [assoc comm ctor] .

endfm

Note that it may not always be possible to provide a constructor sub-theory,
for example, the cancellation property of the exclusive-or theory forbids a
constructor symbol.

Note also that we have used constructor symbols in the bilinear pairing
theory of Section 1.1.4.
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In Chapter 3, the cryptography theories of all the analyzed protocols in-
clude constructor symbols. In Chapter 6, we integrate the notion of construc-
tor symbol into the variant-based unification algorithm with an impressive
speed-up.

1.3.2 Protocol transformation

Program transformations are defined as any action that takes a computer
program and generates another computer program. Usually, the transformed
program is semantically equivalent to the original program. In other cases,
the transformed program is not semantically equivalent to the original pro-
gram but it works better in practice. Some transformations can be performed
manually but it is more common to use an automated program transforma-
tion. Program transformations should be able to effectively process programs
written in programming syntax. The problem of building and integrating ad-
equate program transformations for conventional languages such as Java or
C++ is as difficult as building the program transformation itself because of
the complexity of such languages.

Küsters and Truderung created a protocol transformation that, given a
Proverif protocol specification for some crypto properties and simple authen-
tication properties, produces a Proverif protocol specification without any
crypto properties. They have applied this transformation to the exclusive-
or theory and the Diffie-Hellman exponentiation theory. These works do not
really provide a protocol transformation, since they provide just classes of
protocols where the analysis using Proverif is sound. Guttman also studied
protocol transformations but his goal was not to optimize the verification but
to ensure that a transformed protocol satisfies some security goals, when the
source protocol did, focusing on incremental protocol construction.

Some cryptographic properties and protocols either cannot be expressed
using equational unification or their state space is unmanageable. We have
studied a protocol transformation that relies on rewriting theories. It relies
on constructor term variants, which is an extension of term variants. Several
crypto analysis tools rely on the variant-based equational unification capabil-
ities of Maude such as Maude-NPA, Tamarin, and AKISS in such a way that
these tools may benefit from the protocol transformation.

In the following, the Diffie-Hellman protocol using modular exponentiation
is recalled.
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A−→ B : ga = Y

B−→ A : gb = X

KeyAB : (X)a = (Y )b = ga·b

This protocol assumes the equational theory DH-CFVP above and its construc-
tor sub-theory DH-SubCFVP. The expression Xa computed by Alice is trans-
formed into ga·N using X 7→ gN . The transformed version of the protocol is as
follows:

A−→ B : ga = gNy

B−→ A : gb = gNx

KeyAB : (gNx)a = (gNy)b = ga·b

where variables X and Y before were of sort Exp and here variables Ny and
Nx are of sort ElemSet. In Chapter 3, the cryptography theories of all the
analyzed protocols include constructor symbols, all the protocols have been
transformed and the variant equations are no longer necessary.

1.4 Objectives and Contributions

The main contribution of this thesis is to explore new techniques to adapt and
specify complex cryptographic properties that are used in advanced security
protocols and these properties must be verified to ensure safety and security.
The objective of this thesis is to use formal methods as a basis for the for-
mal specification and formal analysis of the security properties of the security
protocols. The whole contribution of this thesis is focused on these categories:

• Complex cryptographic properties. For example, the complex crypto-
graphic operations of bilinear pairing are used in identity-based proto-
cols.

• Cryptographic protocol families. For example, the specification of Dis-
tance Bounding protocols that require time and distance information to
function correctly.

• Protocol modeling improvements. For example, the use of constructor
symbols to reduce the space and time analysis process.
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1.5 Structure of this Thesis

This thesis is written as a collection of articles. The Compendium of publica-
tion thesis is more suited for Ph.D. theses where contributions have already
been published in international conferences, which we believe may facilitate
the reading and understanding of this thesis. Therefore, this thesis is organized
as follows. Part II comprises a suite of conference papers that support this
thesis. As shown each chapter is an adjusted version of an already-published
paper at a scientific conference. All modifications have been edited from the
author’s version and followed as established by the regulations from the Doc-
toral School. Next, Part III shows up general conclusions of results obtained
in this thesis. These conclusions are separated into article categories.

1.6 Publications

During the research of his Ph.D. studies, the student has published several
scientific articles which are listed in this section. We list papers published
in high-impact international conferences. A bolded title of the paper has
been included in Part II. These publications follow a rating impact on their
community CORE3 and GGS4

The publications derived from this thesis are:

• Antonio González-Burgueño, Damián Aparicio-Sánchez, Santiago Esco-
bar, Catherine A. Meadows and José Meseguer. Formal verification of
the YubiKey and YubiHSM APIs in Maude-NPA. (LPAR-22) 22nd In-
ternational Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, Awassa, Ethiopia, 16-21 November 2018.

GGS Rating: B | CORE A
DOI: https: // doi. org/ 10. 48550/ arXiv. 1806. 07209

• Damián Aparicio-Sánchez, Santiago Escobar, Raúl Gutiérrez and Julia
Sapiña. An Optimizing Protocol Transformation for Constructor Finite
Variant Theories in Maude-NPA. Computer Security (ESORICS) 25th

3The Computing Research and Education Association of Australasia
4GII (Group of Italian Professors of Computer Engineering), GRIN (Group of Italian Professors of

Computer Science), and SCIE (Spanish Computer-Science Society)
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European Symposium on Research in Computer Security, Guildford, UK,
14-18 September 2020.

GGS Rating: A+ | CORE A
DOI: https: // doi. org/ 10. 1007/ 978-3-030-59013-0_ 12

• Damián Aparicio-Sánchez, Santiago Escobar and Julia Sapiña. Variant-
based Equational Unification under Constructor Symbols. Technical
Communications (ICLP) 36th International Conference on Logic Pro-
gramming UNICAL, Rende (CS), Italy, 18-24 September 2020.

GGS Rating: Not Rated | CORE A
DOI: https: // arxiv. org/ abs/ 2009. 11070

• Damián Aparicio-Sánchez, Santiago Escobar, Catherine A. Meadows,
José Meseguer and Julia Sapiña. Protocol Analysis with Time. Progress
in Cryptology (INDOCRYPT) 21st International Conference on Cryp-
tology in India, Bangalore, India, 13-16 December 2020.

GGS Rating B | CORE: Not Rated
DOI: https: // doi. org/ 10. 48550/ arXiv. 2010. 13707

• Damián Aparicio-Sánchez, Santiago Escobar, Catherine A. Meadows,
José Meseguer and Julia Sapiña. Protocol Analysis with Time and
Space. Protocols, Strands, and Logic - Essays Dedicated to Joshua
Guttman on the Occasion of his 66th Birthday, pages 22-49, LNCS vol-
ume 13066, 19th November 2021

Chapter in Festschrift in honor of Joshua Guttman
DOI: https: // doi. org/ 10. 1007/ 978-3-030-91631-2_ 2

1.7 Research Projects

This thesis would not have been possible without the funding of a set of
research projects. The main contributions and derivative works of this thesis
have been made in the context of the following projects:
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• Ministry of Economy and Business | Spain : Project LoBaSS Effec-
tive Solutions Based on Logic, Scientific Research under award num-
ber TIN2015-69175-C4-1-R, this project was focused on using powerful
logic-based technologies to analyze safety-critical systems. Period of 1st
January 2016 to 31st December 2017. PI of the project was Santiago
Escobar.

• Air Force Office of Scientific Research | United States of America :
Project Advanced symbolic methods for the cryptographic protocol ana-
lyzer Maude-NPA Scientific Research under award number FA9550-17-
1-0286, period of 1st January 2018 to 30th June 2020. This project was
focused on incorporating in the Maude-NPA tool a hybrid equational
unification framework. PI of the project was Santiago Escobar.

• State Investigation Agency | Spain : Project FREETech: Formal Rea-
soning for Enabling and Emerging Technologies Scientific I+D-i Re-
search under award number RTI2018-094403-B-C32, this project was
focused on the use of logic-based tools to analyze and verify vulnerabili-
ties existing in emerging applications as well as communication protocols.
Period of 1st January 2019 to 31st August 2019. PI of the project was
Santiago Escobar.

1.8 Research Stays

The objectives of the research stay in international institutions are essential
for the development of skills and improving competencies, observing others
types of research methodologies in foreign work teams. I had the opportunity
during my period as a Ph.D. student to collaborate and stay with:

• Università degli Studi di Udine | Udine, Italy : The research stay was
carried out from 1st September 2021 to 1st December 2021 (3 months)
and supervised by Marco Comini, an international expert in the field of
abstract interpretation. During this period I was focused on analyzing
the possible use of abstract interpretation for the analysis of communi-
cation protocols.
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CHAPTER 2

Formal verification of the YubiKey and YubiHSM APIs
in Maude-NPA

Antonio González-Burgueño1, Damián Aparicio2, Santiago Escobar2,
Catherine Meadows3, José Meseguer2

1 University of Oslo, Norway 2 VRAIN, Universitat Politècnica de València, Spain
antonigo@ifi.uio.no {daapsnc, sescobar}@dsic.upv.es

3 Naval Research Laboratory, Washington DC, USA 4 University of Illinois at Urbana-Champaign, USA
meadows@itd.nrl.navy.mil meseguer@illinois.edu

Abstract We perform an automated analysis of two devices developed by Yubico:
YubiKey, designed to authenticate a user to network-based services, and
YubiHSM, Yubico’s hardware security module. Both are analyzed using
the Maude-NPA cryptographic protocol analyzer. Although previous
work has been done applying formal tools to these devices devices, there
has not been any completely automated analysis. This is not surpris-
ing, because both YubiKey and YubiHSM, which make use of crypto-
graphic APIs, involve a number of complex features: (i) discrete time
in the form of Lamport clocks, (ii) a mutable memory for storing pre-
viously seen keys or nonces, (iii) event-based properties that require an
analysis of sequences of actions, and (iv) reasoning modulo exclusive-or.

Partially supported by the EU (FEDER) and the Spanish MINECO under grant TIN 2015-69175-C4-1-R, by
the Generalitat Valenciana under grant PROMETEOII/2015/013, by the US Air Force Oce of Scientific Research
under award number FA9550-17-1-0286, and by NRL under contract number N00173-17-1-G002
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Maude-NPA has provided support for exclusive-or for years but has not
provided support for the other three features, which we show can also
be supported by using constraints on natural numbers, protocol compo-
sition and reasoning modulo associativity. In this work, we have been
able to automatically prove security properties of YubiKey and find the
known attacks on the YubiHSM, in both cases beyond the capabilities
of previous work using the Tamarin Prover due to the need of auxiliary
user-defined lemmas and limited support for exclusive-or. Tamarin has
recently been endowed with exclusive-orand we have rewritten the orig-
inal specification of YubiHSM in Tamarin to use exclusive-or confirming
that both attacks on YubiHSM can be carried out by this recent version
of Tamarin.

2.1 Introduction

Nowadays there exist several security tokens having the form of a smartcard
or an USB device, which are designed for protecting cryptographic values from
an intruder, e.g, hosting service, email, e-commerce, online banks, etc. They
are also used to ease authentication for the authorized users of a service, e.g.,
if you are using a service that verifies your Personal Identification Number
(PIN), the same service should not be used for checking your flights, reading
your emails, etc. By using an Application Programming Interface (API) to
separate the service from the authentication system, such problems can be
prevented.

Yubico is a leading company on open authentication standards and has
developed two core inventions: the YubiKey, a small USB designed to authen-
ticate a user against network-based services, and the YubiHSM, Yubico’s hard-
ware security module (HSM). The YubiKey allows for the secure authentica-
tion of a user against network-based services by considering different methods:
one-time password (OTP), public key encryption, public key authentication,
and the Universal 2nd Factor (U2F) protocol [9]. YubiKey works by using a
secret value (i.e., a running counter) and some random values, all encrypted
using a 128 bit Advanced Encryption Standard (AES). An important feature of
YubiKey is that it is independent of the operating system and does not require
any installation, because it works with the USB system drivers. YubiHSM is
intended to operate in conjunction with a host application. It supports sev-
eral modes of operation, but the key concept is a symmetric scheme where
one device at one location can generate a secure data element in a secure
environment. Although the main application area is for securing YubiKey’s
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OTP authentication/validation operations, the use of several generic crypto-
graphic primitives allows a wider range of applications. The increasing success
of YubiKey and YubiHSM has led to its use by governments, universities and
companies like Google, Facebook, Dropbox, CERN, Bank of America etc.,
including more than 30,000 customers [7].

Cryptographic Application Programmer Interfaces (Crypto APIs) are com-
monly used to secure interaction between applications and hardware security
module (HSMs), and are both used in YubiKey and YubiHSM. However, many
crypto APIs have been subjected to intruder manipulation to disclose relevant
information, as is the case for YubiHSM. In [74, 75], Künnemann and Steel
show two kinds of attacks on the first released version YubiHSM API: (i) if
the intruder had access to the server running YubiKey, where AES keys are
generated, then it was able to obtain plaintext in the clear; (ii) even if the
intruder had no access to the server running YubiKey, it could use previous
nonces to obtain AES keys. However, there has not been any completely
automated analysis of these two attacks to date. This is not surprising, be-
cause both YubiKey and YubiHSM, which make use of cryptographic APIs,
involve a number of complex features: (1) discrete time in the form of Lam-
port clocks, (2) a mutable memory for storing previously seen keys or nonces,
(3) event-based properties that require an analysis of sequences of actions,
and (4) reasoning modulo exclusive-or. Maude-NPA has provided support for
exclusive-or for years but has not provided support for the other three fea-
tures, which we show can also be supported by using protocol composition
and reasoning modulo associativity.

This paper is the third in a series using Maude-NPA to analyze crypto-
graphic APIs; earlier work appeared in [64,65]. We find this problem area one
of particular interest for two reasons. First, these APIs often use exclusive-or
and this gives us the opportunity to explore how well Maude-NPA can be
applied to protocols that use exclusive-or. Secondly, cryptographic APIs of-
fer a number of other challenging features and this allows us to explore how
Maude-NPA can handle them.

In this work we use Maude-NPA [2] for analyzing both YubiKey and Yu-
biHSM. Our analysis was carried out on generation 2 of YubiKey and version
0.9.8 beta of the YubiHSM, as was the analysis of [74]. In order to facilitate
comparison with earlier work, our formal specifications of YubiKey and Yu-
biHSM follow those of [74] as closely as possible.
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Contributions

1. We automatically prove the secrecy and authentication properties of
YubiKey and find both attacks on YubiHSM, beyond the capabilities of
Tamarin [21] in the earlier analysis in [74, 75], which was only able to
find one attack due to limited support for exclusive-or. Tamarin has
recently been endowed with exclusive-or in [45]. In Section 2.6.1 we
have rewritten the original specification of YubiHSM in Tamarin to use
exclusive-or and checked that both attacks on YubiHSM can now be
carried out by Tamarin.

2. Our analysis was completely automatic and either found an attack or
terminated with a finite search graph, showing that no attack of that
kind exists. That is, Maude-NPA did not need any human guiding or
auxiliary lemmas. However, both the earlier analysis in [74, 75] and our
own analysis using the latest version of Tamarin in Section 2.6.1 in-
volved some additional user-defined lemmas in order to prove properties
of YubiKey and YubiHSM.

3. We show in Section 2.4 how we implemented Lamport clocks, muta-
ble memory, and event-based properties in Maude-NPA, even though
the tool does not support these natively, by using constraints on natu-
ral numbers, protocol composition and reasoning modulo associativity.
These techniques should be applicable to protocols with similar proper-
ties.

Plan of the paper. In Sections 2.2 and 2.3 we give an overview of the YubiKey
and YubiHSM, respectively. In Section 2.4 we give a high-level summary
of Maude-NPA. In Section 2.5 we describe how we specified YubiKey and
YubiHSM in Maude-NPA. In Section 2.6 we describe our experiments. Finally,
in Section 2.7 we discuss related work, and we conclude in Section 2.8.

2.2 The YubiKey Device

The YubiKey USB device [116] is an authentication device capable of gener-
ating One Time Passwords (OTPs). The YubiKey connects to a USB port
and identifies itself as a standard USB keyboard, which allows it to be used
in most computing environments using the system’s native drivers.
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We will focus on the YubiKey OTP mode, a mode that uses a button
physically located on the YubiKey. When this button is pressed, it emits a
string that can be verified only once against a server in order to receive the
permission to access a service. Furthermore, a request for a new authentication
token is triggered also by touching the YubiKey button. As a result of this
request, some counters that are stored on the device are incremented and some
random values are generated in order to create a fresh 16-byte plaintext. An
OTP has the following concatenated fields [112]:

Each OTP is sent encrypted using an AES key and, thus, the YubiKey
authentication server accepts an OTP only if it decrypts under the apropriate
AES key and the token counter stored in the OTP is larger than the token
counter stored in the last OTP received by the server. The token counter is
used as a Lamport clock [78], i.e., it is used to determine the order of events in
a distributed concurrent system by using a counter that both has a minimum
value (e.g. 0) and has a minimum tick (increment of the counter) between
every two possible events.

The authentication protocol of YubiKey involves three roles: (i) the user,
(ii) the service, and (iii) the verification server. The user can have access to the
service if it provides its own valid OTP generated by the YubiKey; its validity
is verified by the verification server as explained before. The following example
shows the user (Browser), the service (YubiCloud), and the verification server
running the YubiKey API.

Since both the YubiKey and the server need to store information, e.g.
the last received token counter, different predicates are defined in [74]: (i)
SharedKey(pid,k) to represent the key k that is shared with the Yubikey

49



public ID pid, (ii) Y(pid,sid) that stores the corresponding secret ID sid as-
sociated to the Yubikey public ID pid, (iii) Server(pid,sid,token counter)
that links the Yubikey public ID pid with the secret ID sid and the value of
the last received counter token counter, and (iv) YubiCounter(pid,token
counter) that represents that the current counter value token counter is
stored on the Yubikey.

The YubiKey OTP generation scheme can be described by the following
interaction.

1. The initialization of the YubiKey device takes place. A fresh public ID
(pid), secret ID (sid) and YubiKey key (k) are generated. Any interac-
tion between the YubiKey and the server will involve all three elements
pid, sid and k. There are also two token counters, one stored on the
Server and another stored on the YubiKey.

2. The YubiKey is plugged in. Every time the YubiKey is plugged in, the
YubiKey token counter must be increased. However, we consider the
compromised scenario of [74] in which the attacker has temporary access
to the authentication server and it can produce all counter values, thus
adding a new token counter as an input to the command and checking
that it must be bigger than the old stored token counter. Figure 2.1
shows a graphical representation of the plugin event, including the input,
output, and saved information.

Figure 2.1: YubiKey Plugin API Command

3. The user pushes the YubiKey OTP generation button and generates a
byte string formed by the sid, the YubiKey token counter, and a ran-
dom number. The byte string is encrypted using a symmetric encryp-
tion operator and the saved key k. The YubiKey token counter is also
increased. According to the compromised scenario, the YubiKey token
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counter must be provided as input. Figure 2.2 shows a graphical repre-
sentation of the button-pressing event, including the input, output, and
saved information.

Figure 2.2: YubiKey Press Button Command

4. Upon reception of the generated OTP string, the basic verification steps
are:

4.1 The byte string is decrypted, and if it is not valid the OTP is re-
jected.

4.2 The token counter stored in the OTP is compared with the server to-
ken counter. If smaller than or equal to the server token counter, the
received OTP is rejected as a replay. According to the compromised
scenario, the server token counter must be provided as input.

4.3 A successful login must have been preceded by a button press for
the same counter value, and there is not a second distinct login for
this counter value. In this paper we omit this check and show that
this property is always guaranteed, assuming that the checks on the
byte string and token counter succeed.

4.4 If all the checks succeed, the token counter stored in the OTP is
stored as the server token counter and the OTP is accepted as valid.

Figure 2.3 shows a graphical representation of the login event, including
the input, output, and saved information.

In [74,75], Künnemann and Steel were able to prove several properties:

(a) Absence of replay attacks, i.e., there are no two distinct logins that accept
the same counter.
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Figure 2.3: YubiKey Login Command

(b) Correspondence between pressing the button on a YubiKey and a success-
ful login. In other words, a successful login must have been preceded by
a button pressed for the same counter value. Furthermore, there is no
second distinct login for this counter value.

(c) Counter values are different over time, i.e., the counter values associated
to logins are monotonically increasing in time. Therefore, if one login has
a smaller counter than the other, then it must have occurred earlier.

Note that the verification of properties (b) and (c) in [75] using Tamarin in-
volved additional user-defined lemmas (see Section 2.6.1).

2.3 The YubiHSM Device

Yubico also distributes a USB device that works as an application-specific
Hardware Security Module (HSM) to protect the YubiKey AES keys. The
YubiHSM [117] stores a very limited number of AES keys so that the server
can use them to perform cryptographic operations without the key values ever
appearing in the server’s memory. The YubiHSM is designed to protect the
YubiKey AES keys when an authentication server is compromised by encrypt-
ing the AES keys using a master key stored inside the YubiHSM.

In addition, the YubiHSM can decrypt an indefinite number of YubiKey’s
OTP’s with secure storage of the AES keys on the host computer. The AES
keys are only readable to the YubiHSM through the use of Authenticated
Encryption with Associated Data (AEAD). The AEAD uses a cryptographic
method that provides both confidentiality and authenticity. An AEAD con-
sists of two parts: (i) the encryption of a message using the counter mode cryp-
tographic mode of operation, and (ii) a message authentication code (MAC)
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taken over the encrypted message. In order to construct, decrypt or verify an
AEAD, a symmetrical cryptographic key and a piece of associated data are
required. This associated data, called a nonce in the rest of the paper, can
either be a uniquely generated handle or something that is uniquely related
to the AEAD.

To encrypt a message using counter mode, one first divides it into blocks of
equal length, each suitable for input to the block cipher AES, e.g. data1, . . . ,datan.
The sequence counter1, . . . ,countern is then computed, where counteri = nonce⊕ i
modulo 2η and η is the length of a block in bits. The encrypted mes-
sage is then senc(counter1,k)⊕ data1; . . . ;senc(countern,k)⊕ datan, where senc
is the encryption function and k the symmetrical cryptographic key, and
senc(counter1,k); . . . ;senc(countern,k) is called the keystream. Finally, the MAC
is computed over the encrypted message and appended to obtain
(senc(counter1,k)⊕ data1; . . . ;senc(countern,k)⊕ datan);MAC. The MAC is of
fixed length, so it is possible to predict where it starts in an AEAD. How-
ever, since the two attacks considered below do not involve most of the details
about block cipher AES, we follow the generalization of [74] and consider just
messages of the form senc(cmode(nonce),k)⊕data;mac(data,k).

In [74,75], Künnemann and Steel reported two kinds of attacks on version
0.9.8 beta of YubiHSM API: (a) if the intruder has access to the server running
YubiKey, where AES keys are generated, then it is able to obtain plaintext in
the clear; (b) even if the intruder has no access to the server running YubiKey,
it can use previous nonces to obtain AES keys. However, they were only able
to find the first attack in Tamarin due to the limited support for exclusive-or
in Tamarin at that time (see Section 2.6.1).

The first attack involves the YubiHSM API command depicted in Figure
2.4, which takes a handle to an AES key and the nonce and applies the raw
block cipher.

In order to perform this attack the intruder compromises the server to
learn a AEAD and the key-handle used to produce it. Then, using the Block
Encrypt command shown in Figure 2.4, an intruder is able to decrypt an
AEAD by recreating the blocks of the key-stream: inputting counteri (the
nonce) to the YubiHSM Block Encrypt API command. The intruder exclusive-
ors the result with the AEAD truncated by the length of the MAC and obtains
the plaintext. Note that the verification of this attack in [75] using Tamarin
involved additional user-defined lemmas (see Section 2.6.1).

The second attack involves the YubiHSM command depicted in Figure 2.5
that takes a nonce, a handle to an AES key and some data and outputs an
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Figure 2.4: YubiHSM Block Encrypt API Command

AEAD. An intruder can produce an AEAD for the same handle kh and a value
nonce that was previously used to generated another AEAD. An intruder can
recover the keystream directly by using the AEAD-Generate command to
encrypt a string of zeros and discarding the MAC. The result will be the
exclusive-or of the keystream with a string of zeros, which is equal to the
keystream itself. This attack is worse than the first one, because this command
cannot be avoided or restricted (see [74]).

Figure 2.5: YubiHSM AEAD Generate API Command

2.4 Maude-NPA

In Maude-NPA, as in most formal analysis tools for cryptographic protocols,
a protocol is modeled as a set of rules that describe the actions of honest
principals communication across a network controlled by an intruder. Given
a protocol P, states in Maude-NPA are modeled as elements of an initial
algebra TΣP/EP

, where ΣP = ΣSS∪ΣC is the signature defining the sorts and
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function symbols (ΣC for the cryptographic functions and ΣSS for all the state
constructor symbols), EP =EC ∪ESS is a set of equations where EC specifies the
algebraic properties of the cryptographic functions and ESS denotes properties
of state constructors. The set of equations EC may vary depending on different
protocols, but the set of equations ESS is always the same for all protocols.
Therefore, a state is an EP -equivalence class [t]EP ∈ TΣP/EP

with t a ground
ΣP -term, i.e. a term without variables.

In Maude-NPA a state pattern for a protocol P is a term t of sort State
which has the form {S1 & · · ·&Sn &{IK}}, where & is an infix associative-
commutative union operator with identity symbol /0. Each element in the set
is either a strand Si or the intruder knowledge {IK} at that state.

The intruder knowledge {IK} belongs to the state and is represented as a
set of facts using comma as an infix associative-commutative union operator
with identity element empty. There are two kinds of intruder facts: positive
knowledge facts (the intruder knows m, i.e., m∈I ), and negative knowledge
facts (the intruder does not yet know m but will know it in a future state, i.e.,
m /∈I ), where m is a message expression.

A strand [61] specifies the sequence of messages sent and received by a
principal executing the protocol and is represented as a sequence

[msg±1 ,msg±2 ,msg±3 , . . . ,msg±k−1,msg±k ] with msg±i either msg−i (also written
−msgi) representing an input message, or msg+i (also written +msgi) repre-
senting an output message. Note that each msgi is a term of a special sort Msg.
Variables of a special sort Fresh are used to represent pseudo-random values
(nonces). Maude-NPA ensures that two distinct fresh variables will never be
merged. Strands are extended with all the fresh variables f1, . . . , fk created by
that strand, i.e., :: f1, . . . , fk :: [msg±1 ,msg±2 , . . . ,msg±k ] .

Strands are used to represent both the actions of honest principals (with a
strand specified for each protocol role) and the actions of an intruder (with a
strand for each action an intruder is able to perform on messages). In Maude-
NPA strands evolve over time; the symbol | is used to divide past and future.
That is, given a strand [ msg±1 , . . . , msg±i | msg±i+1, . . . , msg±k ], messages
msg±1 , . . . ,msg±i are the past messages, and messages msg±i+1, . . . ,msg±k are the
future messages (msg±i+1 is the immediate future message). A strand [msg±1 ,
. . . ,msg±k ] is shorthand for [nil | msg±1 , . . . ,msg±k ,nil]. An initial state is a state
where the bar is at the beginning for all strands in the state, and the intruder
knowledge has no fact of the form m∈I . A final state is a state where the
bar is at the end for all strands in the state and there is no intruder fact of
the form m /∈I .
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Since the number of states in TΣP/EP
is in general infinite, rather than ex-

ploring concrete protocol states [t]EP ∈ TΣP/EP
, Maude-NPA explores symbolic

state patterns [t(x1, . . . ,xn)]EP ∈ TΣP/EP
(X ) on the free (ΣP ,EP)-algebra over

a set of variables X . In this way, a state pattern [t(x1, . . . ,xn)]EP represents
not a single concrete state (i.e., an EP -equivalence class) but a possibly in-
finite set of states (i.e., an infinite set of EP -equivalence classes), namely all
the instances of the pattern [t(x1, . . . ,xn)]EP where the variables x1, . . . ,xn have
been instantiated by concrete ground terms.

The semantics of Maude-NPA is expressed in terms of rewrite rules that
describe how a protocol transitions from one state to another via the intruder’s
interaction with it. One uses Maude-NPA to find an attack by specifying an
insecure state pattern called an attack pattern. Maude-NPA attempts to find a
path from an initial state to the attack pattern via backwards narrowing (nar-
rowing using the rewrite rules with the orientation reversed). That is, a nar-
rowing sequence from an initial state to an attack state is searched in reverse
as a backwards path from the attack state to the initial state. Maude-NPA
attempts to find paths until it can no longer form any backwards narrowing
step, at which point it terminates. If at that point it has not found an initial
state, the attack pattern is shown to be unreachable modulo the equations
EP . Note that Maude-NPA places no bounds on the number of sessions, so
reachability is undecidable in general. Note also that Maude-NPA does not
perform any data abstraction such as a bounded number of nonces. However,
the tool makes use of various sound and complete state space reduction tech-
niques that help to identify unreachable and redundant states, and thus make
termination more likely.

2.4.1 Modeling Mutable Memory by means of Maude-NPA Strand Com-
position

Strands can be extended with synchronization messages [105] of the form
{Role1→ Role2 ; ; mode ; ; w} where Role1,Role2 are constants of sort Role pro-
vided by the user, mode can be either 1-1 or 1-* representing a one-to-one
or one-to-many synchronization (whether an output message can synchronize
with one or many input messages), and w is a term representing the informa-
tion passed along in the synchronization messages. Synchronization messages
are limited to the beginning and/or end of a strand. Although originally in-
tended for a different use, they are very useful for representing a strand of
unspecified length as a concatenation of different fixed-length strands. For ex-
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ample, consider a module that receives i pieces of data, and then exclusive-ors
them, i.e., [−(M1), . . . ,−(Mi),+(M1⊕·· ·⊕Mi)] for i≥ 1. This can be specified
using three strands using synchronization messages:

1. [ −(M1),{role⊕→ role⊕ ; ; 1-1 ; ; M1} ]

2. [{role⊕→ role⊕ ; ; 1-1 ; ; M},−(M2),{role⊕→ role⊕ ; ; 1-1 ; ; (M⊕M2)} ]

3. [{role⊕→ role⊕ ; ; 1-1 ; ; M},+(M) ]

Composition is then performed by unifying output synchronization messages
with input synchronization messages of instances of strands.

For the YubiKey and YubiHSM APIs, if each event is represented by a
strand, then an execution (e.g., Plugin followed by Press followed by Login) can
be represented by the concatenation of the strands associated to the execution.
However, the YubiKey and YubiHSM APIs also require different information
to be stored from one API command to the next. Some information is read-
only, but other information is updated, such as the YubiCounter(pid,counter).
Maude-NPA, unlike Tamarin, does not natively support mutable memory; but
it can be modeled using synchronization messages. That is, the old data will
appear in the input synchronization message of an API strand, and the new
information will appear in the output synchronization message of that strand,
which will then become the input synchronization message of the next API
strand.

We model the mutable memory used by YubiKey as a multiset of pred-
icates, where we define a new multiset union symbol @, which is an infix
associative-commutative symbol with an identity symbol empty. Thus, for
the strand describing the YubiKey button press, the input synchronization
message is as follows:

{yubikey -> yubikey ;; 1-1 ;; Y(pid,sid) @ YubiCounter(pid,c1) @
Server(pid,sid,c2) @ SharedKey(pid,k)}

Updating the counter of the YubiKey after a button press is represented by
updating the second argument of the YubiCounter(pid,c1) predicate in the
multiset. This updated multiset becomes the output synchronization of the
strand.
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2.4.2 Modeling Event Lists by means of Mutable Memory

The YubiKey and YubiHSM APIs also keep a rigid control of the ordering
of events, where an event is a state transition in the system, and a proper
analysis of actions is mandatory. Maude-NPA, unlike Tamarin, does not na-
tively support the representation and analysis of event sequences; but we have
implemented it by storing event sequences in the synchronization messages.
This is helped by the fact that Maude-NPA, via the Maude language, has
recently been endowed with built-in lists (using any associative symbol). We
have defined a new infix associative symbol ++ with an identity symbol nil
to represent an event list and also a new auxiliary infix symbol |> where the
left-hand side contains the mutable memory and the right-hand side contains
the event list. The input synchronization message for the button press strand
has now the form:

{yubikey -> yubikey ;; 1-1 ;; Y(pid,sid) @ YubiCounter(pid,c1) @
Server(pid,sid,c2) @ SharedKey(pid,k) |> Plugin(pid,c3) ++ Press(pid,c4)}

Every time a new event occurs, it is inserted as a new element at the end of the
event list. The leftmost elements are the oldest ones, whereas the rightmost
elements are the newest. Thus, if we want to say that event e1 must occur be-
fore event e2, we can express this with the event list L1 ++ e1 ++ L2 ++ e2 ++ L3,
where any of the Li could be empty.

2.4.3 Modeling Lamport Clocks in Maude-NPA Using Constraints

Lamport clocks require the testing of constraints: that is, whether one counter
is smaller than another. This is simple to do when the counters have concrete
values. However, since Maude-NPA does not consider concrete protocol states
but symbolic state patterns (terms with logical variables), the equality and
disequality constraints handled by Maude-NPA are predicates defined over
variables, whose domain, in the case of Lamport clocks, is the natural numbers.

In Maude-NPA strands can be extended with equality and disequality con-
straints [57] of the form Term1 eq Term2 and Term1 neq Term2. Whenever
an equality constraint is found during the execution of a strand, the two terms
in the equality constraint are unified modulo the set EP of equations of the
protocol and a new state is created for each possible unifier. Whenever a dise-
quality constraint is found during the execution of a strand, it is simply stored
in an internal repository of disequality constraints associated to each protocol
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state; but every time a new state is going to be generated during the state
space exploration, all the disequality constraints in the internal repository are
tested for satisfiability [57]. That is, for each state, if there is a disequality
constraint of the form Term1 neq Term2 such that Term1 and Term2 are
equal modulo EP then the state is discarded.

We deal with Lamport clocks symbolically by representing the relations
between clocks as constraints in Presburger Arithmetic. Although various
Satisfiability modulo theories (SMT) [96] solvers such as CVC41, Yices2, and
Microsoft Z33 could be used for this purpose, we decided to avoid the com-
plexities of invoking an external tool while executing Maude-NPA. Instead,
we have used the variant-based decision procedure for Presburger Arithmetic
already available in Maude [91]; but considered only positive numbers without
zero.

Adding two natural numbers i and j is written as i + j. Checking whether
a natural number i is smaller than another natural number j is represented in
Maude-NPA by a constraint of the form j eq i + k, where k is a new variable.

2.5 Formal Specifications in Maude-NPA

2.5.1 Formal Specifications of YubiKey in Maude-NPA

In our specification, each command of the YubiKey API (Figures 2.1, 2.2, and
2.3) plus the initialization is specified in Maude-NPA as a strand.

The initialization strand is defined as follows. Three new Fresh values are
defined: a YubiKey public ID (rpid), a secret ID (rsid), and a key ‘rk’ shared
with the server. Variables of sort Fresh are wrapped by symbol Fr as in [74].

:: rk,rpid,rsid ::
[ +(init),

{yubikey -> yubikey ;; 1-1 ;;
YubiCounter(Fr(rpid), 1) @ Server(Fr(rpid),Fr(rsid),1) @
Y(Fr(rpid),Fr(rsid)) @ SharedKey(Fr(rpid),Fr(rk))
|> Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk))}]

The API command represented in Figure 2.1 shows what happens when
a YubiKey is being plugged in. This command checks that the new re-

1Available at http://cvc4.cs.stanford.edu/web/.
2Available at http://yices.csl.sri.com.
3Available at https://github.com/Z3Prover/z3.
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ceived counter is smaller than the previous one and updates the predicate
YubiCounter.

:: nil ::
[{yubikey -> yubikey ;; 1-1 ;; YubiCounter(pid,otc) @ mem |> EL },

-(tc), (tc eq (otc + extra)),
{yubikey -> yubikey ;; 1-1 ;; YubiCounter(pid,tc) @ mem |> EL ++ Plugin(pid,tc)}]

Note that the parameter mem denotes the rest of the mutable memory and
the parameter EL denotes the previous event list. The variable extra is an
auxiliary variable used just for testing the numerical constraint.

The command shown in Figure 2.2 represents what happens when the
YubiKey button is pressed and the OTP is sent. The OTP is represented by
message senc(sid ; tc ; Fr(rnpr),k) where senc denotes symmetric encryp-
tion using key k and symbol ; denotes message concatenation4.

:: rnpr,rnonce ::
[{yubikey -> yubikey ;; 1-1 ;;

YubiCounter(pid,tc) @ Y(pid,sid) @ SharedKey(pid,k) @ mem |> EL },
-(tc),
+(pid ; Fr(rnonce) ; senc(sid ; tc ; Fr(rnpr),k)),

{yubikey -> yubikey ;; 1-1 ;; YubiCounter(pid,tc + 1) @ Y(pid,sid)
@ SharedKey(pid,k) @ mem |> EL ++ YubiPress(pid,tc)}]

Finally, the command shown in Figure 2.3 represents what happens when the
server receives a login request. This request is accepted if the counter inside
the encryption is larger than the last counter stored on the server.

:: nil ::
[{yubikey -> yubikey ;; 1-1 ;; Server(pid,sid,otc) @ SharedKey(pid,k) @ mem |> EL},

-(pid ; nonce ; senc(sid ; tc ; pr, k)),
-(otc), (tc eq (otc + extra)),

{yubikey -> yubikey ;; 1-1 ;; Server(pid,sid,tc) @ SharedKey(pid,k) @ mem
|> EL ++ Login(pid,sid,tc,senc(sid ; tc ; pr, k)) ++ LoginCounter(pid,otc,tc)}]

2.5.2 Formal Specification of YubiHSM in Maude-NPA

We consider only the two commands shown in Figures 2.4 and 2.5. Each
command is specified in Maude-NPA as a strand. YubiHSM makes extensive

4Note that ; is not an associative symbol and it is used as “message cons" symbol using Maude label
“gather (e E)" that concatenates a single element to the left of a list.
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use of exclusive-or, denoted by the symbol ∗, which satisfies the following
equations:

x∗ (y∗ z) = (x∗ y)∗ z (associativity)
x∗ y = y∗ x (commutativity)

x∗null = x (identity element)
x∗ x = null (self-cancellation)

The YubiHSM command of Figure 2.4 is defined as follows.

:: nil ::
[ {YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem |> EL },

-(kh), -(nonce),
+(senc(cmode(nonce),k)),

{YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem |> EL ++ SEnc(kh,nonce) } ]

We use two alternative definitions of the YubiHSM command of Figure 2.5,
one to represent what happens when the command processes plaintext from
the intruder, and another to represent what happens when the command pro-
cesses plaintext from a legitimate principal. This is possible because, unlike
in the traditional Dolev-Yao model, honest principals communicate with the
YubiHSM devices directly, not through the intruder. This means that we can
represent an honest principal’s input data as internal to the system. Moreover,
in this instance such a representation is necessary, since we are asking whether
the intruder can learn the input data. We maximize the intruder’s advantage,
however, by giving it control over the other input data.

The following strand represents the intruder learning an honest principal’s
input plaintext data. We assume that the plaintext data is a Fresh value. In
this way, we can later ask whether the intruder is able to learn that Fresh
value. We use the following macro: aead(n,k,d) = (senc(cmode(n),k) *
d) ; mac(d,k).

:: data ::
[ {YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem |> EL },

-(kh), -(nonce),
+(aead(nonce,k,Fr(data))),
{YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem

|> EL ++ GenerateAEAD(Fr(data),aead(nonce,k,Fr(data)))}]

In the second strand we represent the Fresh value (data) associated to the
plaintext data by an input from the intruder.
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:: nil ::
[ {YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem |> EL },

-(data), -(kh), -(nonce),
+(aead(nonce,k,data)),
{YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem

|> EL ++ GenerateAEAD(data,aead(nonce,k,data)) }]

2.6 Experiments

We have been able to automatically prove secrecy and authentication prop-
erties (a,b,c) below of YubiKey and to find both attacks (d,e) below on Yu-
biHSM:

(a) Absence of replay attacks in YubiKey, i.e., there are no two distinct logins
that accept the same counter.

(b) Correspondence between pressing the button on a YubiKey and a success-
ful login. In other words, a successful login must have been preceded by
a button pressed for the same counter.

(c) Counter values of YubiKey are different over time, where a successful login
invalidates previous OTPs.

(d) If the intruder has access to the server running YubiKey, where the Yu-
biHSM AES keys are generated, then it is able to obtain plaintext in the
clear.

(e) If the intruder has no access to the server running YubiKey, it can use
previous YubiHSM nonces to obtain AES keys.

Table 2.1 summarizes the result of the analyses of the YubiKey and Yu-
biHSM APIs specified in Maude-NPA showing the number of generated nodes
in each step. The notation “(1)” represents that the tool found 1 solution
to the question asked by the attack pattern. When the number of generated
nodes is 0, the attack pattern is unreachable.

The complete paper with the appendix provides the specific attack pat-
terns are available at https://arxiv.org/abs/1806.07209. All the details
on how the attack patterns are specified and which was the output returned by
Maude-NPA are available at http://personales.upv.es/sanesro/Maude-
NPA-YubiKey-YubiHSM/. The analyses were completely automatic and we
obtained finite search graphs for all the attack patterns. This was achieved
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Attack Pattern
Depth

1 2 3 4 5 6 7 8 9

YubiKey (a) 4 4 9 21 88 160 0
YubiKey (b) 4 7 16 14 2 2 5 0
YubiKey (c) 4 4 6 18 55 80 0
YubiKey Login 1 1 2 1 1 1 1 1 1(1)

YubiHSM (d) 1 2 3 4 7 13 24 40 76(1)
YubiHSM (e) 4 6 11 26(1)

Table 2.1: Output YubiKey and YubiHSM Experiments

thanks to Maude’s associative unification (i.e., event list expressions are in-
cluded within the attack patterns) and the variant-based SMT solving for
Lamport clocks (i.e., specific counter constraints are included). Note that
Maude-NPA uses a full specification of exclusive-or, an unbounded session
model, and an active Dolev-Yao intruder model. Moreover, it does not per-
form any data abstraction such as a bounded number of nonces, so there are
no false positives or negatives.

2.6.1 Experiments using Tamarin

In [74, 75], the authors needed some user-defined lemmas to prove properties
(b) and (c) of YubiKey and property (d) of YubiHSM, and they could not
find the attack of property (e) due to the limited support for exclusive-or in
Tamarin at that time. However, Tamarin has recently been endowed with
exclusive-or in [45]. In this section, we report on some experiments that we
have performed with it. The Tamarin core team has kindly provided this last
version to us. In summary, nothing has changed for properties (b) and (c), and
property (e) can now be carried out by Tamarin using a lemma. However, our
automated analysis [63] was done before [45] appeared.

The latest version of Tamarin with exclusive-or (version 1.4.0) is now avail-
able at https://github.com/tamarin-prover/tamarin-prover.
Both YubiKey and YubiHSM specifications are also available at path
“examples/related_work/YubiSecure_KS_STM12”.
Property (b) of YubiKey is specified as follows:

lemma one_count_foreach_login[reuse,use_induction]:
"∀ pid sid x otp #t2 . Login(pid,sid,x,otp)@#t2 →

( ∃ #t1 . YubiPress(pid,x)@#t1 ∧ #t1<#t2 )"

whereas property (c) of YubiKey is specified as follows:
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lemma Login_invalidates_smaller_counters:
"∀ pid otc1 tc1 otc2 tc2 #t1 #t2 #t3 .

LoginCounter(pid,otc1,tc1)@#t1 ∧ LoginCounter(pid,otc2,tc2)@#t2
∧ Smaller(tc1,tc2)@#t3 → #t1<#t2 "

Both properties (b) and (c) use a constraint Smaller(tc1,tc2) where tc1
and tc2 are token counters; for property (b) the constraint is not written
explicitly but it is also necessary. In order for Tamarin to prove these two
properties the following user-defined lemmas are necessary (called axioms in
Tamarin).

axiom smaller:
"∀ #i a b. Smaller(a,b)@#i → Ex z. a+z=b"

axiom transitivity:
"∀ #t1 #t2 a b c. IsSmaller(a,b)@#t1 ∧ IsSmaller(b,c)@#t2
→ ∃ #t3 . IsSmaller(a,c)@#t3 "

axiom smaller_implies_unequal:
" ¬ (∃ a #t . IsSmaller(a,a)@#t)"

Since these properties do not require exclusive-or, nothing changes from the
earlier version of Tamarin to the latest one and, when proving properties
(b) and (c) without these axioms either Tamarin is not able to terminate or
terminates but without finding a proof.

For properties (d) and (e) of YubiHSM, we have rewritten the original
specification to use exclusive-or following the examples published in [45]. The
following axioms were necessary to find the attack of property (d) in [75], and
they are still necessary when using the new specification of YubiHSM and the
latest version of Tamarin.
axiom theory_before_protocol:

"∀ #i #j. Theory() @ i & Protocol() @ j ==> i < j"
axiom onetime:

"∀ #t3 #t4 . OneTime()@#t3 & OneTime()@t4 ==> #t3=#t4"

We encoded property (e) as follows:
lemma auth_intruder_obtain_AES[use_induction]: exists-trace

"∃ data ks k mac #t1 #t2 .
GenerateAEAD(data,<senc(ks,k),mac>)@#t1 ∧ K(senc(ks,k))@#t2 ∧ #t1<#t2"

We checked that the latest version of Tamarin was able to find the corre-
sponding attack of the new specification of propery (e), though our automated
analysis in Maude-NPA was done [63] before [45] appeared.
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2.7 Related Work

There is a vast amount of research on the formal analysis of APIs, so in this
related work section we will concentrate on the work that is closest to ours,
namely, the formal analysis of the YubiKey and YubiKey-like systems. Further
related work on APIs and exclusive-or can be found in [64,65].

Besides the work on formalizing and verifying YubiKey that we have al-
ready discussed, there has been further work focused on building tools for
analyzing policies for YubiKey and YubiKey-like systems.

In [6], Yubico presents some security arguments on their website. An inde-
pendent analysis was given by blogger Fredrik Björck in 2009 [23, 24], raising
issues that Yubico responded to in a subsequent post. Oswald, Richter, et
al. [99] analyze the YubiKey, generation 2, for side-channel attacks. They
show that non-invasive measurements of the power consumption of the device
allow retrieving the AES-key within approximately one hour of access. The
authors mentioned a more recent version of the YubiKey, the YubiKey Neo
which employs a certified smart-card controller that was designed with re-
gard to implementation attacks and is supposed to be more resilient to power
consumption analysis.

Künnemann et al. [74] performed a deep analysis of the different properties
of YubiKey, but unlike our analysis using the Maude-NPA tool, they needed to
use different lemmas to check some properties that cannot be done automat-
ically by the Tamarin prover, whereas these properties can be checked out in
an automatic way by the Maude-NPA tool. Some properties were not proved
due to limited support for exclusive-or.

Mutable global state memory can be used in protocols that provide end-to-
end encryption for instant messaging [37] as well as at the Trusted Platform
Module (TPM) [43] that is a hardware chip designed to enable commodity
computers to achieve greater levels of security than is possible by software
alone.

2.8 Conclusions

The main contributions of this paper are to both prove properties of YubiKey
generation 2 and find the known attacks on version 0.9.8 of YubiHSM in a
completely automated way beyond the capabilities of previous work in the
literature. This allowed us to perform the analysis of these APIs in a fully-
unbounded session model making no abstraction or approximation of fresh
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values, and with no extra assumptions. These APIs involve several challenges:
(1) handling of Lamport clocks, (2) modeling of mutable memory, (3) handling
of constraints on the ordering of events, and (4) support for symbolic reasoning
modulo exclusive or.

The main goal of this work has been to investigate whether Maude-NPA
could complement and extend the formal modeling and analysis results about
YubiKey and YubiHSM obtained in [74]. This is a non-obvious question: on
the one hand, Maude-NPA has provided support for exclusive-or for years, so
it is well-suited for meeting Challenge (4). But, on the other hand, previous
applications of Maude-NPA have not addressed Challenges (1)-(3). The main
upshot of the results we present can be summarized as follows: Challenge (2)
can by met by expressing mutable memory in terms of synchronization mes-
sages, a notion used in Maude-NPA to specify protocol compositions [105],
Challenge (3) can by met by the recently added unification modulo associa-
tivity, allowing an easy treatment of lists, and Challenge (1) can be met by a
slight extension of Maude-NPA’s current support for equality and disequality
constraints [57], namely, by adding also support for constraints in Presburger
Arithmetic. In this way, we show how challenges (1)-(4) can all be met by
Maude-NPA, and how these results in automated formal analyses of YubiKey
and YubiHSM that substantially extend previous analyses. Very few tools are
well equipped to simultaneously handle all of the challenges.

What remains to be seen is how generally applicable these tools are to
YubiKey and similar APIs. We note that previous work on analyzing API
protocols in Maude-NPA did not achieve termination of the search space: the
IBM CCA API in [64] and the PKCS#11 in [65]. In this work we have been
able to achieve termination of many properties thanks to the use of Lamport
clocks, mutable memory, and event lists. But more secure API case studies
are needed to further test and advance the techniques presented here.
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CHAPTER 3

An Optimizing Protocol Transformation for Constructor
Finite Variant Theories in Maude-NPA
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Abstract Maude-NPA is an analysis tool for cryptographic security protocols that
takes into account the algebraic properties of the cryptosystem. Maude-
NPA can reason about a wide range of cryptographic properties. How-
ever, some algebraic properties, and protocols using them, have been
beyond Maude-NPA capabilities, either because the cryptographic prop-
erties cannot be expressed using its equational unification features or
because the state space is unmanageable. In this paper, we provide a
protocol transformation that can safely get rid of cryptographic prop-
erties under some conditions. The time and space difference between
verifying the protocol with all the crypto properties and verifying the
protocol with a minimal set of the crypto properties is remarkable. We
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also provide, for the first time, an encoding of the theory of bilinear pair-
ing into Maude-NPA that goes beyond the encoding of bilinear pairing
available in the Tamarin tool.

3.1 Introduction

Maude-NPA [55] is an analysis tool for cryptographic security protocols that
takes into account the algebraic properties of the cryptosystem. Sometimes
algebraic properties can uncover weaknesses of cryptosystems and, in other
cases, they are part of the protocol security assumptions. Maude-NPA uses
an approach similar to its predecessor, the NRL Protocol Analyzer (NPA) [82],
i.e., it is based on unification and performs backward search from an attack
state pattern to determine whether or not it is reachable. However, unlike
the original NPA, it has a theoretical basis on rewriting logic [53] and narrow-
ing [35], and while NPA could only be used to reason about equational theo-
ries involving a fixed set of rewrite rules, Maude-NPA can be used to reason
about a wide range of cryptographic properties [2, 55], including cancellation
of encryption and decryption, Diffie-Hellman exponentiation [54], exclusive-
or [106], and some approximations of homomorphic encryption [52,113].

However, some algebraic properties and protocols using them have been
beyond Maude-NPA capabilities, either because the cryptographic properties
cannot be expressed using its equational unification features or because the
state space is unmanageable. We provide a protocol transformation that can
substantially reduce the search space, i.e., given some cryptographic proper-
ties, expressed using the equational unification features of Maude-NPA, and
a protocol, we are able to transform the protocol in such a way that some
cryptographic properties are no longer necessary, and thus can be safely re-
moved. The time and space difference between verifying the protocol with
all the crypto properties and verifying the protocol with a minimal set of the
crypto properties is remarkable. We also provide, for the first time, an encod-
ing of the theory of bilinear pairing into Maude-NPA that goes beyond the
encoding of bilinear pairing available in Tamarin [108], the only crypto tool
with such an equational theory.

Our protocol transformation relies on a program transformation from [92]
for rewrite theories in Maude that we have improved by relaxing some of its ap-
plicability conditions. Such program transformation relies on constructor term
variants [91], which is an extension of term variants [38,60]. Nowadays, several
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crypto analysis tools rely on the variant-based equational unification capabil-
ities of Maude, such as Maude-NPA but also Tamarin [44] and AKISS [17].
These tools may be benefited from our protocol transformation and, further-
more, from our encoding of the theory of bilinear pairing. Our contributions
may even be useful for other tools with more limited crypto properties such
as ProVerif [25], Scyther [39] or Scyther-proof [84].

The main contributions of this work are: (i) we provide a non-trivial proto-
col transformation based on [92]; (ii) since the protocols of Section 3.5 do not
satisfy the conditions of [92], we provide a more powerful protocol transforma-
tion that we implemented, made available online, and pays off in practice; (iii)
we provide an encoding of bilinear pairing that can handle all the protocols of
Section 3.5 that Tamarin cannot handle; (iv) we implemented the algorithm
of [110] for the computation of constructor variants [91] from scratch; and (v)
there was no implementation of the program transformation of [92] and we
implemented it.

After some preliminaries on Section 3.2, we present how Maude-NPA works
in Section 3.3. We introduce our protocol transformation in Section 3.4. Sec-
tion 3.5 presents several increasingly complex case studies: Diffie-Hellman
protocol in Section 3.5.1, STR protocol in Section 3.5.2, Joux protocol in Sec-
tion 3.5.3, and TAK protocols in Section 3.5.4. Our experiments are presented
in Section 3.6 and we conclude in Section 3.7.

3.2 Preliminaries

We follow the classical notation and terminology for term rewriting [18], and
for rewriting logic and order-sorted notions [86]. We assume an order-sorted
signature Σ with a poset of sorts (S,≤). We also assume an S-sorted family
X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite. T

Σ
(X )s

is the set of terms of sort s, and T
Σ,s is the set of ground terms of sort s. We

write T
Σ
(X ) and T

Σ
for the corresponding order-sorted term algebras. For a

term t, V ar(t) denotes the set of variables in t. Throughout this paper, Σ is
assumed to be preregular, so each term t has a least sort, denoted ls(t).

A substitution σ ∈S ubst(Σ,X ) is a sorted mapping from a finite subset of
X to T

Σ
(X ). Substitutions are written as σ = {X1 7→ t1, . . . ,Xn 7→ tn}, where

the domain of σ is Dom(σ) = {X1, . . . ,Xn} and the set of variables introduced
by terms t1, . . . , tn is written Ran(σ). The identity substitution is denoted id.
Substitutions are homomorphically extended to T

Σ
(X ). The application of a
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substitution σ to a term t is denoted by tσ or σ(t). The restriction of σ to a
set of variables V is σ |V . Composition of two substitutions σ and σ ′ is written
σ ◦σ ′.

A Σ-equation is an unoriented pair t = t ′, where t, t ′ ∈T
Σ
(X )s for some sort

s∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic induces
a congruence relation =E on terms t, t ′ ∈ T

Σ
(X ). The E-equivalence class of

a term t is denoted by [t]E and T
Σ/E(X ) and T

Σ/E denote the corresponding
order-sorted term algebras modulo E. Throughout this paper we assume that
T

Σ,s 6= /0 for every sort s, because this affords a simpler deduction system. An
equational theory (Σ,E) is a pair with Σ an order-sorted signature and E a set
of Σ-equations.

An E-unifier for a Σ-equation t = t ′ is a substitution σ such that tσ =E t ′σ .
A set of substitutions CSUE(t = t ′) is said to be a complete set of unifiers for the
equality t = t ′ modulo E iff: (i) each σ ∈ CSUE(t = t ′) is an E-unifier of t = t ′;
(ii) for any E-unifier ρ of t = t ′ there is σ ∈ CSUE(t = t ′) and τ s.t. στ =E ρ;
(iii) for all σ ∈ CSUE(t = t ′), Dom(σ) ⊆ (V ar(t)∪V ar(t ′)). An E-unification
algorithm is complete if for any equation t = t ′ it generates a complete set of
E-unifiers. A unification algorithm is said to be finitary and complete if it
always terminates after generating a finite and complete set of solutions.

A rewrite rule is an oriented pair l → r, where l 6∈X and l,r ∈ T
Σ
(X )s

for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules. The relation→R,E on T

Σ
(X ) is defined as: t→p,R,E t ′ (or just

t→R,E t ′) iff there exist p∈ PosΣ(t), a rule l→ r in R, and a substitution σ such
that t|p =E lσ and t ′ = t[rσ ]p. The transitive (resp. transitive and reflexive)
closure of→R,E is denoted by→+

R,E (resp. →∗R,E). A term t is (R,E)-irreducible
if there is no t ′ s.t. t→R,E t ′. The R,E-narrowing relation on T

Σ
(X ) is defined

as t ;p,σ ,R,E t ′ ( ;σ if R,E are understood, and ; if σ is also understood) if
there is a non-variable position p∈ PosΣ(t), a rule l→ r ∈ R standardized apart
(i.e., contains no variable previously met during any previous computation)
and a unifier σ ∈ CSUE(t|p = l), such that t ′ = (t[r]p)σ . The transitive (resp.
transitive and reflexive) closure of ; is denoted by ;+ (resp. ;∗).

3.3 The Maude-NPA

Given a protocol P to be specified, protocol states are modeled as elements of
an initial algebra TΣP/EP

, i.e., each state is an equivalence class [t]EP ∈ TΣP/EP
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where ΣP is the set of symbols defining the protocol P, and EP specifies the
algebraic properties of the cryptographic functions ΣP . The cryptographic
properties EP may vary depending on different protocols.

The signature ΣP incorporates some predefined symbols for protocol in-
frastructure. A state is a term of the form {S1 & · · ·&Sn &{IK}} where & is
an associative-commutative union operator with identity symbol /0.

The intruder knowledge IK of a state {S1 & · · ·&Sn &{IK}} is defined as
a set of facts using the comma as an associative-commutative union opera-
tor with identity element /0. There are two kinds of intruder facts: positive
knowledge facts (the intruder knows m, i.e., m∈I ), and negative knowledge
facts (the intruder does not yet know m but will know it in a future state, i.e.,
m /∈I ), where m is a message expression.

Each Si of a state {S1 & · · ·&Sn &{IK}} is called a strand and specifies the
sequence of messages sent and received by a principal executing the protocol.
Strands [61] are represented as a sequence of messages [msg±1 ,msg±2 ,msg±3 , . . . ,
msg±k−1,msg±k ] with msg±i either msg−i (also written −msgi) representing an
input message, or msg+i (also written +msgi) representing an output message.
Note that each msgi is a term of a special sort Msg; this sort is extended by the
user to allow any user-definable protocol syntax. Variables of a special sort
Fresh are used to represent pseudo-random values (nonces) and Maude-NPA
ensures that two distinct fresh variables will never be merged. Strands are
extended with all the fresh variables created by that strand, i.e., :: f1, . . . , fk ::
[msg±1 ,msg±2 , . . . ,msg±k ]. Section 3.5 includes several examples of honest and
Dolev-Yao strands.

Strands are used to represent both the actions of honest principals (with a
strand specified for each protocol role) and the actions of an intruder (with a
strand for each action an intruder is able to perform on messages). In Maude-
NPA strands evolve over time; the symbol | is used to divide past and future.
That is, given a strand [ msg±1 , . . . , msg±i | msg±i+1, . . . , msg±k ], messages
msg±1 , . . . ,msg±i are the past messages, and messages msg±i+1, . . . ,msg±k are the
future messages (msg±i+1 is the immediate future message). A strand [msg±1 ,
. . . ,msg±k ] is shorthand for [nil | msg±1 , . . . ,msg±k ,nil]. An initial state is a state
where the bar is at the beginning for all strands in the state, and the intruder
knowledge has no fact of the form m∈I . A final state is a state where the
bar is at the end for all strands in the state and there is no intruder fact of
the form m /∈I .

Since the number of states TΣP/EP
is in general infinite, rather than explor-

ing concrete protocol states [t]EP ∈ TΣP/EP
Maude-NPA explores state patterns
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[t(x1, . . . ,xn)]EP ∈ TΣP/EP
(X ) on the free (ΣP ,EP)-algebra over a set of vari-

ables X . In this way, a state pattern [t(x1, . . . ,xn)]EP represents not a single
concrete state but a possibly infinite set of such states, namely all the in-
stances of the pattern [t(x1, . . . ,xn)]EP where the variables x1, . . . ,xn have been
instantiated by concrete ground terms.

The semantics of Maude-NPA is expressed in terms of a Maude rewrite
theory, including rewrite rules that describe how a protocol moves from one
state to another via the intruder’s interaction with it [55]. One uses Maude-
NPA to find an attack by specifying an insecure state pattern called an attack
pattern. Maude-NPA attempts to find a path from an initial state to the
attack pattern via backwards narrowing (using the narrowing capabilities of
Maude [35] but with the reversed orientation of the rewrite rules). That is,
a sequence from an initial state to an attack state is searched in reverse as a
backwards path from an attack state pattern to an initial state. Maude-NPA
attempts to find paths until it can no longer form any backwards narrowing
steps, at which point it terminates. If at that point it has not found an initial
state, the attack pattern is judged unreachable; providing a proof of security
rather than finding attacks. However, note that Maude-NPA places no bound
on the number of sessions, so reachability is undecidable in general. Maude-
NPA does not achieve termination by any data abstraction, e.g. a bounded
number of nonces. Instead, the tool makes use of a number of sound and
complete state space reduction techniques that help to identify unreachable
and redundant states [56], and thus make termination more likely.

3.4 Protocol Transformation

Maude-NPA relies on equational unification to perform each backwards nar-
rowing step. Some cryptographic properties often involve the development
of dedicated algorithms (see [15]). Maude-NPA provides built-in support for
theories involving symbols with any combination of associativity (A), commu-
tativity (C), and identity (U) axioms. Furthermore, by relying on the variant-
based equational unification [35,60], Maude-NPA allows users to augment the
basic set of equational axioms supported with rewrite rules such as cancellation
of encryption and decryption, Diffie-Hellman exponentiation [54], exclusive-
or [106], and some approximations of homomorphic encryption [52,113].
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3.4.1 Finite Variant Theories

An equational theory (Σ,E ) is often decomposed into a disjoint union E =
E ]B, where B is a set of algebraic axioms (which are implicitly expressed in
Maude as operator attributes assoc, comm, and id: keywords) and E consists
of variant equations that are implicitly oriented from left to right as a set ~E
of rewrite rules (and operationally used as simplification rules modulo B).

Definition 1 (Decomposition [60]). Let (Σ,E ) be an order-sorted equational theory.
We call (Σ,B,~E) a decomposition of (Σ,E ) if E = E ]B and (Σ,B,~E) is an order-
sorted rewrite theory satisfying the following properties:

1. B is regular, i.e., for each t = t ′ in B, we have V ar(t) = V ar(t ′), and linear,
i.e., for each t = t ′ in B, each variable occurs only once in t and in t ′.

2. B is sort-preserving, i.e., for each t = t ′ in B and substitution σ , we have tσ ∈
T

Σ
(X )s iff t ′σ ∈ T

Σ
(X )s. Furthermore, for each equation t = t ′ in B, all

variables in V ar(t) and V ar(t ′) have a common top sort.

3. B has a finitary and complete unification algorithm.

4. The rewrite rules in ~E are convergent, i.e., confluent, terminating, and coherent
modulo B, and sort-decreasing.

In a decomposition, for each term t ∈ T
Σ
(X ), there is a unique (up to B-

equivalence) (~E,B)-irreducible term that can be obtained by rewriting t to its
normal form, which is denoted by t↓~E,B. We often abuse notation and say that
(Σ,B,~E) is a decomposition of an order-sorted equational theory (Σ,E ) even if
E 6= E ]B but E is instead the explicitly extended B-coherent completion of a
set E ′ such that E = E ′]B (see [60]).

Example 1. The property associated to Diffie-Hellman exponentiation is described
using the following equational theory in Maude, including an auxiliary associative-
commutative symbol ∗ for exponents so that (zx)y = (zy)x = zx∗y.

fmod DH-FVP is
sorts Exp Nonce NeNonceSet Gen .
subsort Nonce < NeNonceSet . subsort Gen < Exp .
op exp : Exp NeNonceSet -> Exp .
op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm] .
var X : Exp . vars Y Z : NeNonceSet .
eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm
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Note that X admits any exponentiation and Y and Z are restricted to non-empty mul-
tisets of nonces. For an arbitrary term g of sort Gen and three arbitrary terms
nA,nB,nC of sort Nonce, t = exp(exp(exp(g,nA),nB),nC) is simplified into t↓~E,B=
exp(g,nA ∗nB ∗nC).

In order to provide a finitary and complete unification algorithm for a
decomposition (Σ,B,~E), the folding variant narrowing strategy is defined in
[60]. Intuitively, an (~E,B)-variant of a term t is the (~E,B)-irreducible form of
an instance tσ of t. That is, the variants of t are all of the possible (~E,B)-
irreducible terms to which instances of t evaluate.

Definition 2 (Term Variant [38, 60]). Given a term t and a decomposition (Σ,B,~E),
we say that (t ′,θ) is a variant of t if t ′ =B (tθ)↓~E,B, where Dom(θ) ⊆ V ar(t) and
Ran(θ)∩V ar(t) = /0.

Example 2. Following Example 1, the set of variants for the term exp(X ,Y ) is infi-
nite, since we have (exp(X ′,Y ∗Y ′),{X 7→ exp(X ′,Y ′)}), (exp(X ′′,Y ∗Y ′ ∗Y ′′),{X 7→
exp(exp(X ′′,Y ′′),Y ′)}), . . ..

It is possible to compute a complete and finite set of variants for some
equational theories.

Definition 3 (Complete set of Variants [60]). Given a decomposition (Σ,B,~E) and
a term t, we write [[t]]~E,B for a complete set of variants of t, i.e., for any vari-
ant (t2,θ2) of t, there is a variant (t1,θ1) ∈ [[t]]~E,B such that (t1,θ1)≤~E,B (t2,θ2),
where (t1,θ1)≤~E,B (t2,θ2) iff there is a substitution ρ such that |(θ1ρ)V ar(t) =B

|(θ2↓~E,B)V ar(t) and t1ρ =B t2. An equational theory has the finite variant property
(FVP) (also called finite variant theory) iff for all t ∈T

Σ
(X ), [[t]]~E,B is a finite set.

Example 3. Following Example 2, there exists a complete and finite set of vari-
ants for the term exp(X ,Y ): the variant (exp(X ,Y ), id) and the variant (exp(X ′,
Y ∗Y ′),{X 7→ exp(X ′,Y ′)}). Any other variant includes a substitution not in irre-
ducible form.

ariant-based unification is defined as follows (see [35,60] for details).

Definition 4 (Variant-based Unification [60]). Let (Σ,B,~E) be a decomposition of
an equational theory. Let t1, t2 be two Σ-terms. Then, ρ is an unifier of t1 and t2 iff
∃(t ′,ρ) ∈ [[t1]]~E,B∩ [[t2]]~E,B.
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3.4.2 Constructor Finite Variant Theories

Quite often, the signature Σ of a decomposition (Σ,B,~E), on which T
Σ/B is

defined, has a natural subsignature of constructor symbols Ω. The elements of
the canonical algebra C

Σ/~E,B = {[t↓~E,B]B | t ∈T
Σ
}, i.e., the B-equivalence classes

computed by ~E,B-simplification, are Ω-terms, whereas the other symbols are
viewed as functions which are simplified into constructor symbols.

Proverif [25] already incorporated this distinction between what they called
destructor and constructor symbols time ago in contrast to other crypto tools
such as AKISS [17], Maude-NPA [2], OFMC [93], Scyther [39], Scyther-proof [84],
and Tamarin [21]. In the rest of the paper, we exploit this distinction in
Maude-NPA without altering the tool.

A decomposition (Σ,B,~E) protects a constructor decomposition (Ω,BΩ,~EΩ)
iff Ω ⊆ Σ, BΩ ⊆ B, and ~EΩ ⊆ ~E, and for all t, t ′ ∈ T

Ω
(X ) we have: (i) t =BΩ

t ′ ⇐⇒ t =B t ′, (ii) t = t↓~EΩ,BΩ
⇐⇒ t = t↓~E,B, and (iii) C

Ω/~EΩ,BΩ
= C

Σ/~E,B|Ω. A
constructor decomposition (Ω,BΩ, /0) is called free. A decomposition (Σ,B,~E)
is called sufficiently complete with respect to a free constructor decomposition
(Ω,BΩ, /0) iff for each t ∈ T

Σ
we have: (i) t↓~E,B∈ T

Ω
, and (ii) if u ∈ T

Ω
and

u =B v, then v ∈T
Ω
. This ensures that if any element in an equivalent class is

a constructor term, all the other elements are also constructor.

Example 4. We can extend the equational theory of Example 1 to protect a con-
structor subsignature1 by overloading symbol exp to use the former2 sorts Exp and
Gen.

fmod DH-CFVP is
sorts Exp Nonce NeNonceSet Gen .
subsort Nonce < NeNonceSet .
op exp : Gen NeNonceSet -> Exp [ctor] .
op exp : Exp NeNonceSet -> Exp .
op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm ctor] .
var X : Gen . vars Y Z : NeNonceSet .
eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm

For an arbitrary term g of sort Gen and three arbitrary terms nA,nB,nC of sort

1Operator declarations labeled ctor, their associated sorts, and no equation.
2This equational theory, as well as all the ones in Section 3.5, should be parametric on sorts Gen,

GenP and Nonce but we omit such more general-purpose definitions for simplicity (see [35] for details
on parametric equational theories).
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Nonce, t = exp(exp(exp(g,nA),nB),nC) is simplified into the constructor term t↓~E,B=
exp(g,nA ∗nB ∗nC).

The notion of a constructor variant, rather than a variant, is defined in [91].

Definition 5 (Constructor Variant [91]). Given a decomposition (Σ,B,~E) protecting
a constructor decomposition (Ω,BΩ,~EΩ) and a Σ-term t, we say that a variant (t ′,θ)
of t is a constructor variant if t ′ ∈T

Ω
(X ).

Example 5. Following Example 4, the set of constructor variants for the term exp(X ,Y )
is infinite, as in Example 2, since we have (exp(X ′,Y ∗Y ′),{X 7→ exp(X ′,Y ′)}),
(exp(X ′′,Y ∗Y ′ ∗Y ′′),{X 7→ exp(exp(X ′′,Y ′′),Y ′)}), . . ..

Definition 6 (Complete set of Constructor Variants [91]). Given a decomposition
(Σ,B,~E) protecting a constructor decomposition (Ω,BΩ,~EΩ) and a Σ-term t, we
write [[t]]Ω~E,B for a complete set of constructor variants of t, i.e., for any construc-

tor variant (t2,θ2) of t, there is a constructor variant (t1,θ1) ∈ [[t]]Ω~E,B such that

(t1,θ1)≤~E,B (t2,θ2). A decomposition (Σ,B,~E) has the constructor finite variant
property (CFVP) (or it is called a constructor finite variant theory) iff for all t ∈
T

Σ
(X ), [[t]]Ω~E,B is a finite set.

Example 6. Following Example 5, there exists a finite and complete set of constructor
variants for the term exp(X ,Y ) where X is of sort Exp, since we have (exp(XG,Y ∗
Y ′),{X 7→ exp(XG,Y ′)}) where XG is a new variable of sort Gen instead of sort Exp.

An algorithm for computing [[t]]Ω~E,B is provided in [110] for equational theo-
ries that are FVP. This algorithm assumes an extra condition called preregular
below, i.e., a term cannot have a constructor typing above a non-constructor
typing.

Definition 7 (Preregular below [91]). Given a decomposition (Σ,B,~E) protecting
a constructor decomposition (Ω,BΩ,~EΩ), the (preregular) order-sorted signature
(Σ,<) is called preregular below iff ∀t ∈T

Σ
(X ), lsΩ(t) = lsΣ(t).

Example 7. Consider the following equational theory

fmod DH-NoPreregularBelow is
sorts Nonce NeNonceSet GenSub Gen ExpSub Exp .
subsort GenSub < Gen . subsort ExpSub < Exp .
subsort Nonce < NeNonceSet .
op gSub : -> GenSub [ctor] .
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op g : -> Gen [ctor] .
op exp : GenSub NeNonceSet -> ExpSub .
op exp : Gen NeNonceSet -> Exp [ctor] .
op exp : Exp NeNonceSet -> Exp .

endfm

The signature is not preregular below since, given an arbitrary term nA of sort Nonce,
the least sort of the term exp(gSub,nA) is ExpSub in the original signature but Exp
in the constructor subsignature.

The set of constructor variants of the form [[〈l,r〉]]Ω~E,B, where l and r are,
respectively, the lefthand and righthand sides of a rewrite rule in a rewrite
theory, play a crucial role in the following theory transformation R 7→ RΩ

l,r
from [92].

Definition 8 (R 7→RΩ
l,r [92]). Given a rewrite theory (Σ,B]E,R) such that (Σ,B,~E)

is CFVP and preregular below, the rewrite theory (Σ,B]E,RΩ
l,r) is defined as RΩ

l,r =

{l′→ r′ | l→ r ∈ R∧ (〈l′,r′〉,σ) ∈ [[〈l,r〉]]Ω~E,B}.

Section 3.5 shows how several protocols are transformed using a protocol
transformation that relies on this program transformation.

Example 8. Any expression of the form exp(X ,Y ), where X is of sort Exp and Y is of
sort NeNonceSet, occurring in any lefthand or righthand side of a rule in a rewrite
theory will be replaced by the constructor variant shown in Example 6.

Theorem 1 ( [92, Theo. 7]). Given a rewrite theory (Σ,B]E,R) such that (Σ,B,~E) is
a decomposition protecting a free constructor decomposition (Ω,BΩ, /0), it is CFVP,
it is sufficiently complete with respect to (Ω,BΩ, /0), and Σ is preregular below, then
the rewrite theory (Σ,BΩ,RΩ

l,r) is ground semantically equivalent to (Σ,B]E,R).

The equational theory for Diffie-Hellman of Example 4 is sufficiently com-
plete w.r.t. its constructor subsignature, since any ground term rooted by
symbol exp is either already using the constructor typing or can be simplified
into the constructor typing of exp. However, some other theories of interest
are not.

Example 9. Consider the cancellation of encryption and decryption.

fmod DE is
sorts Msg Key .
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op enc : Key Msg -> Msg [ctor] .
op dec : Key Msg -> Msg .
var K : Key . vars X : Msg .
eq dec(K,enc(K,X)) = X [variant] .

endfm

Given arbitrary keys k1,k2 and an arbitrary term a, the term dec(k1,enc(k2,a)) can-
not be reduced.

Terms that cannot be simplified into a constructor term are understood
as an erroneous expression and discarded. This is the behaviour of destructor
symbols in Proverif [25], i.e., functions that may fail. In the rest of the paper,
we relax the condition on sufficiently completeness of Theorem 1 and follow
the spirit of Proverif’s approach3: a NF rewrite theory below ensures that
erroneous expressions cannot occur in the righthand sides of rewrite rules or
in equations, preventing any function to capture that any of its arguments
fails. Typical security protocols do however not satisfy the conditions of [92],
and in particular all protocols studied in Section 3.5 did not.

Definition 9 (NF Rewrite Theory). Given a rewrite theory (Σ,B]E,R) such that
(Σ,B,~E) is a decomposition protecting a free constructor decomposition (Ω,BΩ, /0),
erroneous terms are defined as E rr⊥ = {t ∈ T

Σ
(X ) | @σ : (tσ)↓~E,B∈ T

Ω
(X )}

whereas possibly erroneous terms are defined as E rr>= {t ∈T
Σ
(X ) | ∃σ : (tσ)↓~E,B 6∈

T
Ω
(X )}. We say the rewrite theory is NF if, for each l = r ∈ E, l,r /∈ E rr⊥ and, for

each l→ r ∈ R, r|p ∈ E rr> =⇒ ∃q : l|q =B r|p.

Theorem 2. Given a NF rewrite theory (Σ,B]E,R) such that (Σ,B,~E) is a decom-
position protecting a free constructor decomposition (Ω,BΩ, /0) and it is CFVP, then
any term reachable from a constructor term is also constructor.

Proof 1. By induction on the length of the narrowing sequence t0 ;n tn. If n= 0, then
tn = t0 and t0 is constructor. If n > 0, then t0 ;σ t1 ;n−1 tn s.t. σ ∈CSUE]B(t0|p = l)
and t1 = (t0[r]p)σ . Since t0 is a constructor term, there is no equation applicable to
t0, i.e., (t0|p)σ =B (lσ)↓~E,B. Since t0 is a constructor term, the bindings in |σV ar(t0)
contain only constructor terms. Since erroneous expressions do not appear in the
equations E, |σV ar(l) contains also constructor terms. Since r does not contain any
extra possible erroneous expression, t1 is constructor. The conclusion follows by the
induction hypothesis.

3A detailed comparison is outside the scope of this paper.
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Corollary 1. Given a NF rewrite theory (Σ,B]E,R) such that (Σ,B,~E) is a de-
composition protecting a free constructor decomposition (Ω,BΩ, /0), it is CFVP, and
Σ is preregular below, then the rewrite theory (Σ,BΩ,RΩ

l,r) is ground semantically
equivalent to (Σ,B]E,R).

We have implemented both the algorithm for computing [[t]]Ω~E,B provided
in [110] for equational theories that are FVP and the rewrite theory transfor-
mation R 7→RΩ

l,r from [92]. As far as we know, there was no implementation
available of the rewrite theory transformation R 7→RΩ

l,r of [92]. We have used
[[t]]Ω~E,B and R 7→ RΩ

l,r to create a protocol transformation available online at
http://safe-tools.dsic.upv.es/cvtool. This web page accepts a proto-
col specification, using the Maude-NPA syntax, and returns the transformed
version, including strands and attack patterns. The proof of soundness and
completeness of the protocol transformation is omitted but relies on Theo-
rem 1 and Corollary 1. Informally speaking, Maude-NPA internally trans-
forms a protocol specification into a rewrite theory (see Section 3.3). This
transformed rewrite theory is then transformed using the program transfor-
mation R 7→RΩ

l,r. And, finally, this resulting rewrite theory is mapped back
into a protocol specification. Note that the web page assumes that the con-
ditions of Corollary 1 are satisfied without enforcing them. All the protocols
presented in the next section need the relaxed conditions of application of
Corollary 1 to safely apply the protocol transformation. These relaxed con-
ditions allow us to deal with more complex protocol specifications efficiently.

3.5 Case studies

This section presents several increasingly complex case studies: Diffie-Hellman
protocol in Section 3.5.1, STR protocol in Section 3.5.2, Joux protocol in Sec-
tion 3.5.3, and TAK protocols in Section 3.5.4. The Joux and TAK protocols
use bilinear pairing but TAK4 requires properties beyond the encoding of bilin-
ear pairings available in Tamarin, the only crypto tool with such an equational
theory.

3.5.1 The Diffie-Hellman Protocol

In this section, we describe the analysis performed on the Diffie-Hellman (DH)
protocol. This protocol was already analysed using Maude-NPA in [54]. DH
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uses exponentiation to share a secret between two parties. The description of
the protocol using an Alice & Bob notation is given in Figure 3.1.

Alice and Bob agree on a common generator g. Alice sends the generator
g raised to the power of a new nonce generated by her. Bob sends the gener-
ator g raised to the power of a new nonce generated by him. Both Alice and
Bob take the received nonce and raised it to the power of their own respec-
tive nonce. The cryptographic property here allows (gNA)NB = (gNB)NA = gNA∗NB .
This cryptographic property is represented using the equational theory of Ex-
ample 4.

The informal description of Figure 3.1 is specified using strands as fol-
lows. We represent an exponentiation xy as exp(x,y). We represent a nonce
NA as n(A, f ) where f is a Fresh variable. We have added the identifiers of
the participants in the message exchange for clarity. And we have appended
a final encryption of some random secret using the generated key to make
explicit the different keys used by the honest participants before and after the
transformation.

(Alice) :: fa, f ::[+(A;B;exp(g,n(A, fa))),−(B;A;X),

+(enc(exp(X ,n(A, fa)),sec(A, f )))]

(Bob) :: fb ::[−(A;B;Y ),+(B;A;exp(g,n(B, fb))),

− (enc(exp(Y,n(B, fb)),Sr))]

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+(A;B;exp(g,n(A, fa))),−(B;A;exp(G,N)),

+(enc(exp(G,n(A, fa)∗N),sec(A, f )))]

(Bob) :: fb ::[−(A;B;exp(G,N)),+(B;A;exp(g,n(B, fb))),

− (enc(exp(G,N ∗n(B, fb)),Sr))]

As explained in Example 6, the expression exp(X :Exp,n(A, fa)) has only one
constructor variant using substitution X :Exp 7→ exp(G:Gen,N:NeNonceSet). Sim-
ilarly for exp(Y :Exp,n(B, fb)). The duplication of symbols in one defined and
one constructor, the coincidence that each defined symbol has only one equa-
tion, and the use of associativity and commutativity, makes each strand of the
protocols of this paper is replaced by just one strand. This may not always
be the case and a strand may be replaced by several new strands (see [92, Ex-
ample 7]). The Dolev-Yao capabilities for exponentiation are as follows.
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(DY_exp_ctor)[−(G:Gen),−(N:NeNonceSet),+(exp(G:Gen,N:NeNonceSet)]
(DY_exp_func)[−(E:Exp),−(N:NeNonceSet),+(exp(E:Exp,N:NeNonceSet)]

The second one is transformed as follows

(DY_exp_cvar)[−(exp(G:Gen,X :NeNonceSet)),−(N:NeNonceSet),
+(exp(G:Gen,X :NeNonceSet∗N:NeNonceSet))]

3.5.2 The STR protocol

One extension of the Diffie-Hellman protocol is to consider that every time
a new member is joined the exchange key is repeated, allowing for an un-
bounded number of participants a priori. We consider the three-party group
key agreement protocol STR from [73], where STR is a short name for Skinny
TRee. The description of the protocol using an informal Alice & Bob notation
is given in Figure 3.2. The only difference between the cryptographic proper-
ties of STR and DH is that we can have an exponentiation as an exponent,
where DH could not. Therefore, the only difference to the equational theory
of Example 4 is “subsort Nonce Exp < NeNonceSet”. The equational the-
ory still satisfies all the conditions of Corollary 1. The informal description
of Figure 3.2 is specified using strands as follows, we remove the identifiers of
the participants for simplicity.

(Alice) :: fa, f ::[+(exp(g,n(A, fa))),−(XB),−(XC),
+(enc(exp(XC,exp(XB,n(A, fa))),sec(A, f )))]

(Bob) :: fb ::[−(XA),+(exp(g,n(B, fb))),+(exp(g,exp(XA,n(B, fb)))),

− (XC),−(enc(exp(XC,exp(XA,n(B, fb))),Sr))]

(Carol) :: fc ::[−(XAB),+(exp(g,n(C, fc))),−(enc(exp(XAB,n(C, fc)),Sr))]

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+(exp(g,n(A, fa))),−(exp(G1,NB)),−(exp(G2,NC)),
+(enc(exp(G2,exp(G1,n(A, fa)∗NB)∗NC),sec(A, f )))]

(Bob) :: fb ::[−(exp(G,NA)),+(exp(g,n(B, fb))),

+(exp(g,exp(G,n(B, fb)∗NA))),−(exp(G,NC)),
− (enc(exp(G,exp(G,n(B, fb)∗NA)∗NC),Sr))]

(Carol) :: fc ::[−(exp(G,NAB)),+(exp(g,n(C, fc))),

− (enc(exp(G,NAB∗n(C, fc)),Sr))]
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3.5.3 The Joux Protocol

When you want to keep the spirit of the Diffie-Hellman protocol, where no
extra sharing is necessary apart of the initial broadcast information, an inter-
esting alternative for three participants is the Joux protocol [70], which relies
on bilinear pairing. The description of the protocol using an informal Alice &
Bob notation is given in Figure 3.3.

Pairing-based cryptography makes use of a pairing function ê : G1×G2→
GT of two cryptographic groups G1 and G2 into a third group GT . Typically,
G1 = G2 and it will be a subgroup of the group of points on an elliptic curve
over a finite field, and GT will be a subgroup of the multiplicative group of
a related finite field and the map ê will be derived from either the Weil or
Tate pairing on the elliptic curve. When G = G1 = G2, the pairing is called
symmetric and the pairing function ê is commutative, i.e., if the participants
agree on a generator g∈G, for any P,Q in G there exist integers i, j s.t. P = gi,
Q = g j, ê(P,Q) = ê(gi,g j) = ê(g,g)i∗ j = ê(g j,gi) = ê(Q,P). In Figure 3.3, we
follow the syntax of [70] and use letter P as the agreed generator. We write aP
instead of Pa for P added to itself a times, also called scalar multiplication of P
by a. Note that we write [a]P in the equational theory below for clarification.
The bilinear pairing is specified as follows.

fmod BP-CFVP is
sorts Nonce NeNonceSet Gen GenP Exp ExpP .
subsort Nonce < NeNonceSet .
op exp : Gen NeNonceSet -> Exp [ctor] .
op exp : Exp NeNonceSet -> Exp .
op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm ctor] .
op p : -> GenP [ctor] .
op em : GenP GenP -> Gen [ctor comm] .
op em : ExpP ExpP -> Exp [comm] .
op [_]_ : NeNonceSet GenP -> ExpP [ctor] .
op [_]_ : NeNonceSet ExpP -> ExpP .
var X : Gen . vars Y Z : NeNonceSet . vars P Q : GenP .
eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .
eq [Z]([Y]P) = [Z * Y]P [variant] .
eq em([Y]P, [Z]Q) = exp(em(P,Q),Y * Z) [variant] .

endfm

We adapted the built-in theory of bilinear pairing of Tamarin [21, 108] to
satisfy4 the conditions of Corollary 1. The informal description of Figure 3.3

4Confluence is proved by the absence of critical pairs between the lefthand sides of the three equa-
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is specified using strands as follows.

(Alice) :: fa, f ::[+([n(A, fa)]p),−(XB),−(XC),
+(enc(exp(em(XB,XC),n(A, fa)),sec(A, f ))]

(Bob) :: fb ::[−(XA),+([n(B, fb)]p),−(XC),
− (enc(exp(em(XA,XC),n(B, fb)),Sr)]

(Carol) :: fc ::[−(XA),−(XB),+([n(C, fc)]p),

− (enc(exp(em(XA,XB),n(C, fc)),Sr)]

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+([n(A, fa)]p),−([NB]PB),−([NC]PC),
+(enc(exp(em(PB,PC),n(A, fa)∗NB∗NC),sec(A, f ))]

(Bob) :: fb ::[−([NA]PA),+([n(B, fb)]p),−([NC]PC),
+(enc(exp(em(PA,PC),n(B, fb)∗NA∗NC),Sr)]

(Carol) :: fc ::[−([NA]PA),−([NB]PB),+([n(C, fc)]p),

+(enc(exp(em(PA,PB),n(C, fc)∗NA∗NB),Sr)]

3.5.4 The TAK Group Protocols

The Tripartite Authenticated Key group protocols [10] is a set of authenticated
key agreement protocols that still require only one round of communication.
It is an improvement of the Joux protocol. The four versions of TAK share
the same exchanged message but the computation key is different for each
version. The description of the TAK protocol using an informal Alice & Bob
notation is given in Figure 3.4. However, the four different ways of computing
the keys are given in Figures 3.4, 3.5, 3.6, and 3.7. These four protocols use
the bilinear pairing cryptographic properties explained in Section 3.5.3 plus a
hash function h and the following additive property (and its symmetric version,
since ê is commutative)

ê(Q,W +Z) = ê(Q,W ) · ê(Q,Z) (3.1)

where + is the additive symbol for the group G and · is the additive symbol for
the group GT given ê : G×G→GT . These properties are specified5 as follows.
tions. Termination and FVP are proved by strongly right-irreducibility [60], i.e., righthand sides do not
unify with any lefthand side. CFVP is proved because it is preregular below.

5The additive property (3.1) is not supported by the bilinear pairing of Tamarin [21, 108].
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fmod BPAdd-CFVP is
sorts Nonce NeNonceSet Gen GenP Exp ExpP ExpT .
subsort Nonce < NeNonceSet . subsort Exp < ExpT .
op exp : Gen NeNonceSet -> Exp [ctor] .
op exp : Exp NeNonceSet -> Exp .
op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [ctor assoc comm] .
op p : -> GenP [ctor] .
op em : GenP GenP -> Gen [ctor comm] .
op em : ExpP ExpP -> Exp [comm] .
op [_]_ : NeNonceSet GenP -> ExpP [ctor] .
op [_]_ : NeNonceSet ExpP -> ExpP .
op _+_ : NeNonceSet NeNonceSet -> NeNonceSet [ctor assoc comm] .
op _+_ : ExpP ExpP -> ExpP .
op _·_ : ExpT ExpT -> ExpT [ctor assoc comm] .
var X : Gen . vars Y Z : NeNonceSet . vars P Q : GenP .
eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .
eq [Z]([Y]P) = [Z * Y]P [variant] .
eq em([Y]P, [Z]Q) = exp(em(P,Q),Y * Z) [variant] .
eq ([Y]P) + ([Z]P) = [Y + Z]P [variant] .

endfm

Note that Property 3.1 does not appear explicitly in the equational theory
above and it is transformed as follows. The addition symbol + is split into
two versions, one of them being an associative-commutative constructor and
the other one being a defined symbol. A new equation relating these two
versions of + is added. And symbol · is simply represented as an associative-
commutative constructor. The last, new equation denotes a homomorphic
addition and it is easily handled by variant-based unification because it is de-
fined on disconnected sorts ExpP and NeNonceSet (see [113] for approximations
of homomorphism following the same idea). For example, the key generated
by Alice in TAK4

KA = exp(em([b]p+[h([b]p; [y]p)∗ y]p, [c]p+[h([c]p; [z]p)∗ z]p),

a+(h([a]p; [x]p)∗ x))

is transformed into the common key

KABC = exp(em(p, p),(a+(h([a]p; [x]p)∗ x))∗
(b+(h([b]p; [y]p)∗ y))∗ (c+(h([c]p; [z]p)∗ z)))

by applying the last equation two times, followed by the third and the first
equations (we underline the replaced subterm)
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exp(em([b]p+[h([b]p; [y]p)∗ y]p, [c]p+[h([c]p; [z]p)∗ z]p),

a+(h([a]p; [x]p)∗ x)) =

exp(em([b+(h([b]p; [y]p)∗ y)]p, [c+(h([c]p; [z]p)∗ z)]p),

a+(h([a]p; [x]p)∗ x))) =

exp(exp(em(p, p),a+(h([a]p; [x]p)∗ x),

(b+h([b]p; [y]p)∗ y)∗ (c+h([c]p; [z]p)∗ z)) =

exp(em(p, p),(a+(h([a]p; [x]p)∗ x))∗
(b+(h([b]p; [y]p)∗ y))∗ (c+(h([c]p; [z]p)∗ z)))

If the non-constructor version of + becomes associative-commutative, then
the theory is not FVP. This equational theory works for all the TAK protocols
even if it is not the most general possible; it is left for future work whether
Property 3.1 can be encoded directly. This equational theory satisfies the con-
ditions of Corollary 1. The original and transformed versions of TAK1, TAK2,
and TAK3 are omitted but are available online. The informal description of
the TAK4 protocol given in Figure 3.7 is specified using strands as follows.

(Alice) :: fa, fx, f :: [+([n(A, fa)]p),+([n(A, fx)]p),−(BP),−(YP),−(CP),−(ZP),

+(enc(exp(ê(BP+[h(BP;YP)]YP,CP+[h(CP;ZP)]ZP),

fa +h([n(A, fa)]p; [n(A, fx)]p∗ fx)),sec(A, f )))]

(Bob) :: fb, fy :: [−(AP),−(XP),+([n(B, fb)]p),+([n(B, fy)]p),−(CP),−(ZP),

− (enc(exp(ê(AP+[h(AP;XP)]XP,CP+[h(CP;ZP)]ZP),

fb +h([n(B, fb)]p; [n(B, fy)]p∗ fy)),Sr))]

(Carol) :: fc, fz :: [−(AP),−(XP),−(BP),−(YP),+([n(C, fc)]p),+([n(C, fz)]p),

− (enc(exp(ê(AP+[h(AP;XP)]XP,BP+[h(BP;YP)]YP),

fc +h([n(C, fc)]p; [n(C, fc)]p∗ fc)),Sr))]

After applying the protocol transformation, we obtain

(Alice) :: fa, fx, f :: [+([n(A, fa)]p),+([n(A, fx)]p),

−([NB]PB),−([NY]PB),−([NC]PC),−([NZ]PC),

+(enc(exp(ê(PB,PC),(NB+(h([NB]PB; [NY]PB)∗NY))

∗ (NC+(h([NC]PC; [NZ]PC)∗NZ))
∗ ( fa +h([n(A, fa)]p; [n(A, fx)]p∗ fx))),sec(A, f )))]
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Before Transformation After Transformation

Protocol Property States Time (ms) States Time (ms) States (%) Speedup

DH
auth 137 308,066 111 132,756 81.02 2.32

secrecy 138 322,731 104 142,015 75.36 2.27

STR
auth 34 43,144 31 16,010 91.18 2.69

secrecy 250 1,016,469 117 408,960 46.80 2.49

Joux
auth 38 85,579 37 30,012 97.37 2.85

secrecy 55 247,712 58 78,384 105.45 3.16

TAK1 secrecy 25 259,619 20 126,998 80.00 2.04

TAK2 secrecy 67 365,797 46 152,842 68.66 2.39

TAK3 secrecy 117 670,775 67 216,350 57.26 3.10

TAK4 secrecy 57 371,770 48 181,850 84.21 2.04

Table 3.1: Experimental results for the transformed protocols.

(Bob) :: fb, fy :: [− ([NA]PA),−([NX]PA),+([n(B, fb)]p),+([n(B, fb)]p),

− ([NC]PC),−([NZ]PC),

− (enc(exp(ê(PA,PC),(NA+(h([NA]PA; [NX]PA)∗NX))

∗ (NC+(h([NC]PC; [NZ]PC)∗NZ))
∗ ( fb +h([n(B, fb)]p; [n(B, fy)]p∗ fy))),Sr))]

(Carol) :: fc, fz :: [− ([NA]PA),−([NX]PA),−([NB]PB),−([NB]PB),

+([n(C, fc)]p),+([n(C, fc)]p),

− (enc(exp(ê(PA,PB),(NA+(h([NA]PA; [NX]PA)∗NX))

∗ (NB+(h([NB]PB; [NY]PB)∗NY))

∗ ( fc +h([n(C, fc)]p; [n(C, fz)]p∗ fz))),Sr))]

3.6 Experiments

We have evaluated all the protocols of Section 3.5, both before and after
the transformation. For DH, STR and Joux, we consider two general attack
patterns, one for authentication and another for secrecy of the session key.
For TAKs we consider only a secrecy attack pattern. Both properties of DH
are insecure, authentication of STR is insecure but secrecy is secure [73], both
properties of Joux are insecure [70], and TAK1, TAK2, TAK3, and TAK4 are
secure [10].

In Table 3.1, we report both the number of states and the generation time
of the search space associated to each attack pattern. The transformation itself
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is almost immediate, since the equational theories in these examples are not
so complex. The time and space difference is shown in columns States (%) and
Speedup. These columns demonstrate that the difference between verifying
the protocol with all the crypto properties and verifying the protocol with a
minimal set of the crypto properties is remarkable in three different aspects.
First, for the STR protocol, the transformed protocol produces only 46.80% of
the total number of states of the untransformed version. Second, for the TAK3
protocol, the execution time of the transformed protocol is three times faster
than the untransformed version. Third, for the Joux protocol, even if the
analysis of the transformed protocol produces more states than the analysis
of the untransformed protocol, the execution time is three times faster.

All the experiments were conducted on a PC with a 3.3GHz Intel Xeon E5-
1660 and 64GB RAM. We used Maude v3.0 [35] and Maude-NPA v3.1.4 [2].
The protocol specifications of both before and after the transformation and
the output of each analysis are available at http://safe-tools.dsic.upv.
es/cvtool.

3.7 Conclusions

Our first contribution is a protocol transformation that can safely get rid of
cryptographic properties under some mild conditions. We have demonstrated
with experiments that the time and space difference between verifying the pro-
tocol with all the crypto properties and verifying the protocol with a minimal
set of the crypto properties is remarkable (an average speedup of 2.54). A
similar idea is presented in [77] for XOR and in [76] for DH. These works are
however not comparable to ours, since they are not protocol transformations
but classes of protocols where the analysis using Proverif is sound. In [66],
protocol transformations are studied. However the goal is not to optimize the
verification, but to ensure that a transformed protocol satisfies some security
goals, when the source protocol did, focusing on incremental protocol con-
struction. Our second contribution is an encoding of the theory of bilinear
pairing into Maude-NPA. This encoding goes beyond the encoding of bilin-
ear pairing available in the Tamarin tool, the only crypto tool with such an
equational theory. Since Tamarin [44] and AKISS [17] use term variants, they
could be adapted to use both our protocol transformation and our encoding
of the theory of bilinear pairing. They may even be useful for other crypto
tools with more limited crypto properties such as ProVerif [25], OFMC [22],
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Scyther [40] or Scyther-proof [3]. Specially, since Proverif [25] already incor-
porated the notion of destructors and constructors time ago. As future work,
we plan to study how the protocol transformation applies to other families of
protocols and crypto properties such as homomorphisms [113].
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A−→ B : gNa

B−→ A : gNb

KA = (gNb)Na

KB = (gNa)Nb

KAB = gNa∗Nb

Figure 3.1: DH

A−→ B : gNa

B−→ A : gNb

B−→C : g((g
Nb )Na )

C −→ A,B : gNc

KA = (gNc)(g
((gNb )Na ))

KB = (gNc)(g
((gNa )Nb ))

KC = (g((g
Nb )Na ))Nc

KABC = ggNa∗Nb∗Nc

Figure 3.2: STR

A−→ B,C : aP
B−→ A,C : bP
C −→ A,B : cP

KA = ê(bP,cP)a

KB = ê(aP,cP)b

KC = ê(aP,bP)c

KABC = ê(P,P)a∗b∗c

Figure 3.3: Joux

A−→ B,C : aP;{xP}A

B−→ A,C : bP;{yP}B

C −→ A,B : cP;{zP}C

KA = h(ê(bP,cP)a; ê(yP,zP)x)

KB = h(ê(aP,cP)b; ê(xP,zP)y)

KC = h(ê(aP,bP)c; ê(xP,yP)z)

KABC = h(ê(P,P)a∗b∗c; ê(P,P)x∗y∗z)

Figure 3.4: TAK1

KA = ê(bP,zP)a · ê(yP,cP)a · ê(bP,cP)x

KB = ê(aP,zP)b · ê(xP,cP)b · ê(aP,cP)y

KC = ê(aP,yP)c · ê(xP,bP)c · ê(aP,bP)z

KABC = ê(P,P)a∗y∗c · ê(P,P)x∗b∗c · ê(P,P)a∗b∗z

Figure 3.5: TAK2

KA = ê(yP,cP)x · ê(bP,zP)x · ê(yP,zP)a

KB = ê(aP,zP)y · ê(xP,cP)y · ê(xP,zP)b

KC = ê(aP,yP)z · ê(xP,bP)z · ê(xP,yP)c

KABC = ê(P,P)x∗y∗c · ê(P,P)x∗b∗z · ê(P,P)a∗y∗z

Figure 3.6: TAK3

KA = ê(bP+h(bP;yP)yP,cP+h(cP;zP)zP)a+(h(aP;xP)∗x)

KB = ê(aP+h(aP;xP)xP,cP+h(cP;zP)zP)b+(h(bP;yP)∗y)

KC = ê(aP+h(bP;yP)yP,bP+h(bP;yP)yP)a+(h(cP;cP)∗c)

KABC = ê(P,P)(a+(h(aP;xP)∗x))∗(b+(h(bP;yP)∗y))∗(c+(h(cP;zP)∗z))

Figure 3.7: TAK4
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Abstract We present a framework suited to the analysis of cryptographic protocols
that make use of time in their execution. We provide a process algebra
syntax that makes time information available to processes, and a tran-
sition semantics that takes account of fundamental properties of time.
Additional properties can be added by the user if desirable. This timed
protocol framework can be implemented either as a simulation tool or
as a symbolic analysis tool in which time references are represented by
logical variables, and in which the properties of time are implemented as
constraints on those time logical variables. These constraints are carried
along the symbolic execution of the protocol. The satisfiability of these
constraints can be evaluated as the analysis proceeds, so attacks that
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violate the laws of physics can be rejected as impossible. We demon-
strate the feasibility of our approach by using the Maude-NPA protocol
analyzer together with an SMT solver that is used to evaluate the satisfi-
ability of timing constraints. We provide a sound and complete protocol
transformation from our timed process algebra to the Maude-NPA syn-
tax and semantics, and we prove its soundness and completeness. We
then use the tool to analyze Mafia fraud and distance hijacking attacks
on a suite of distance-bounding protocols.

4.1 Introduction

Time is an important aspect of many cryptographic protocols, and there has
been increasing interest in the formal analysis of protocols that use time.
Model checking of protocols that use time can be done using either an explicit
time model, or by using an untimed model and showing it is sound and com-
plete with respect to a timed model. The former is more intuitive for the user,
but the latter is often chosen because not all cryptographic protocol analysis
tools support reasoning about time. In this paper we describe a solution that
combines the advantages of both approaches. An explicit timed specification
language is developed with a timed syntax and semantics, and is automat-
ically translated to an existing untimed language. The user however writes
protocol specifications and queries in the timed language. In this paper we
describe how such an approach has been applied to the Maude-NPA tool by
taking advantage of its built-in support for constraints. We believe that this
approach can be applied to other tools that support constraint handling as
well.

There are a number of security protocols that make use of time. In general,
there are two types: those that make use of assumptions about time, most of-
ten assuming some sort of loose synchronization, and those that guarantee
these assumptions. The first kind includes protocols such as Kerberos [95],
which uses timestamps to defend against replay attacks, the TESLA proto-
col [101], which relies on loose synchronization to amortize digital signatures,
and blockchain protocols, which use timestamps to order blocks in the chain.
The other kind provides guarantees based on physical properties of time: for
example, distance bounding, which guarantees that a prover is within a cer-
tain distance of a verifier, and secure time synchronization, which guarantees
that the clocks of two different nodes are synchronized within a certain margin
of error. In this paper, we concentrate on protocols using distance bounding,
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both because it has been well-studied, and because the timing constraints are
relatively simple.

A number of approaches have been applied to the analysis of distance
bounding protocols. In [83], an epistemic logic for distance bounding analysis
is presented where timing is captured by means of timed channels, which
are described axiomatically. Time of sending and receiving messages can be
deduced by using these timed channel axioms. In [20], Basin et al. define
a formal model for reasoning about physical properties of security protocols,
including timing and location, which they formalize in Isabelle/HOL and use it
to analyze several distance bounding protocols, by applying a technique similar
to Paulson’s inductive approach [100]. In [41], Debant et al. develop a timing
model for AKiSS, a tool for verifying protocol equivalence in the bounded
session model, and use it to analyze distance bounding protocols. In [98],
Nigam et al. develop a model of timing side channels in terms of constraints
and use it to define a timed version of observational equivalence for protocols.
They have developed a tool for verifying observational equivalence that relies
on SMT solvers. Other work concentrates on simplifying the problem so it
can be more easily analyzed by a model checker, but proving that the simple
problem is sound and complete with respect to the original problem so that the
analysis is useful. In this regard, Nigam et al. [97] and Debant et al. [42] show
that it is safe to limit the size and complexity of the topologies, and Mauw et
al. [81] and Chothia et al. [34] develop timed and untimed models and show
that analysis in the untimed model is sound and complete with respect to the
timed model.

In this paper we illustrate our approach by developing a timed protocol
semantics suitable for the analysis of protocols that use constraints on time and
distance, such as distance bounding, and that can be implemented as either
a simulation tool for generating and checking concrete configurations, or as a
symbolic analysis tool that allows the exploration of all relevant configurations.
We realize the timed semantics by translating it into the semantics of the
Maude-NPA protocol analysis tool, in which timing properties are expressed
as constraints. The constraints generated during the Maude-NPA search are
then checked using an SMT solver.

There are several things that help us. One is that we consider a met-
ric space with distance constraints. Many tools support constraint handling,
e.g., Maude-NPA [57] and Tamarin [85]. Another is that time can be natu-
rally added to a process algebra. Many tools support processes, e.g., Maude-
NPA [115] and AKISS [41].
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The rest of this paper is organized as follows. In Section 4.2, we recall the
Brands-Chaum protocol, which is used as the running example throughout the
paper. In Section 4.3, we present the timed process algebra with its intended
semantics. In Section 4.4, we present a sound and complete protocol trans-
formation from our timed process algebra to an untimed process algebra. In
Section 4.5, we show how our timed process algebra can be transformed into
Maude-NPA strand notation. In Section 4.6, we present our experiments. We
conclude in Section 4.7.

4.2 The Brands-Chaum distance bounding protocol

In the following, we recall the Brands-Chaum distance bounding protocol of
[27], which we will use as the running example for the whole paper.

Example 10. The Brands-Chaum protocol specifies communication between a veri-
fier V and a prover P. P needs to authenticate itself to V, and also needs to prove that
it is within a distance “d" of it. X ;Y denotes concatenation of two messages X and Y ,
commit(N,Sr) denotes commitment of secret Sr with a nonce N, open(N,Sr,C) de-
notes opening a commitment C using the nonce N and checking whether it carries the
secret Sr, ⊕ is the exclusive-or operator, and sign(A,M) denotes A signing message
M. A typical interaction between the prover and the verifier is as follows:

P→V : commit(NP,SP)
//The prover sends his name and a commitment

V → P : NV
//The verifier sends a nonce
//and records the time when this message was sent

P→V : NP⊕NV
//The verifier checks the answer of this exclusive-or
//message arrives within two times a fixed distance

P→V : SP
//The prover sends the committed secret
//and the verifier checks open(NP,SP,commit(NP,SP))

P→V : signP(NV ;NP⊕NV )
//The prover signs the two rapid exchange messages

The previous informal Alice&Bob notation can be naturally extended to in-
clude time. We consider wireless communication between the participants
located at an arbitrary given topology (participants do not move from their
assigned locations) with distance constraints, where time and distance are
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equivalent for simplification and are represented by a real number. We assume
a metric space with a distance function d : A×A→ Real from a set A of partic-
ipants such that d(A,A) = 0, d(A,B) = d(B,A), and d(A,B)≤ d(A,C)+d(C,B).
Then, time information is added to the protocol. First, we add the time when a
message was sent or received as a subindex Pt1 →Vt2 . Second, time constraints
associated to the metric space are added: (i) the sending and receiving times
of a message differ by the distance between them and (ii) the time difference
between two consecutive actions of a participant must be greater or equal to
zero. Third, the distance bounding constraint of the verifier is represented
as an arbitrary distance d. Time constraints are written using quantifier-free
formulas in linear real arithmetic. For convenience, in linear equalities and
inequalities (with <, ≤, > or ≥), we allow both 2 ∗ x = x+ x and the monus
function x−̇y = if y < x then x− y else 0 as definitional extensions.

In the following timed sequence of actions, a vertical bar is included to dif-
ferentiate between the process and some constraints associated to the metric
space. We remove the constraint open(NP,SP,commit(NP,SP)) for simplifica-
tion.

Pt1 →Vt ′1
: commit(NP,SP) | t ′1 = t1 +d(P,V )

Vt2 → Pt ′2
: NV | t ′2 = t2 +d(P,V )∧ t ′1 ≥ t ′1

Pt3 →Vt ′3
: NP⊕NV | t ′3 = t3 +d(P,V )∧ t3 ≥ t ′2

V : t ′3 −̇ t2 ≤ 2∗d
Pt4 →Vt ′4

: SP | t ′4 = t4 +d(P,V )∧ t4 ≥ t3∧ t ′4 ≥ t ′3
Pt5 →Vt ′5

: signP(NV ;NP⊕NV ) | t ′5 = t5 +d(P,V )∧ t5 ≥ t4∧ t ′5 ≥ t ′4

The Brands-Chaum protocol is designed to defend against mafia frauds, where
an honest prover is outside the neighborhood of the verifier (i.e., d(P,V )> d)
but an intruder is inside (i.e., d(I,V )≤ d), pretending to be the honest prover.
The following is an example of an attempted mafia fraud, in which the intruder
simply forwards messages back and forth between the prover and the verifier.
We write I(P) to denote an intruder pretending to be an honest prover P.

Pt1→It2 : commit(NP,SP) | t2 = t1 +d(P, I)
I(P)t2→Vt3 : commit(NP,SP) | t3 = t2 +d(V, I)

Vt3→I(P)t4 : NV | t4 = t3 +d(V, I)
It4→Pt5 : NV | t5 = t4 +d(P, I)
Pt5→It6 : NP⊕NV | t6 = t5 +d(P, I)

I(P)t6→Vt7 : NP⊕NV | t7 = t6 +d(V, I)
V : t7−̇t3 ≤ 2∗d

Pt8→It9 : SP | t9 = t8 +d(P, I)∧ t8 ≥ t5
I(P)t10→Vt11 : SP | t11 = t10 +d(V, I)∧ t11 ≥ t7
I(P)t12→Vt13 : signP(NV ;NP⊕NV )| t13 = t12 +d(V, I)∧ t13 ≥ t11
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Note that, in order for this trace to be consistent with the metric space,
it would require that 2 ∗ d(V, I)+ 2 ∗ d(P, I) ≤ 2 ∗ d, which is unsatisfiable by
d(V,P) > d > 0 and the triangular inequality d(V,P) ≤ d(V, I)+ d(P, I), which
implies that the attack is not possible.

However, a distance hijacking attack is possible (i.e., the time and distance
constraints are satisfiable) where an intruder located outside the neighborhood
of the verifier (i.e., d(V, I) > d) succeeds in convincing the verifier that he is
inside the neighborhood by exploiting the presence of an honest prover in the
neighborhood (i.e., d(V,P) ≤ d) to achieve his goal. The following is an ex-
ample of a successful distance hijacking, in which the intruder listens to the
exchanges messages between the prover and the verifier but builds the last
message.

Pt1 →Vt2 : commit(NP,SP) | t2 = t1 +d(P,V )
Vt2 → Pt3 , It ′3 : NV | t3 = t2 +d(P,V )∧ t ′3 = t2 +d(I,V )

Pt3 →Vt4 , It ′4 : NP⊕NV | t4 = t3 +d(P,V )∧ t ′4 = t3 +d(I,V )

V : t4 −̇ t2 ≤ 2∗d
Pt5 →Vt6 : SP | t6 = t5 +d(P,V )∧ t5 ≥ t3∧ t6 ≥ t4

I(P)t7 →Vt8 : signI(NV ;NP⊕NV ) | t8 = t7 +d(I,V )∧ t7 ≥ t ′4∧ t8 ≥ t6

4.3 A Timed Process Algebra

In this section, we present our timed process algebra and its intended seman-
tics. We restrict ourselves to a semantics that can be used to reason about
time and distance. We discuss how this could be extended in Section 4.7. To
illustrate our approach, we use Maude-NPA’s process algebra and semantics
described in [115], extending it with a global clock and time information.

4.3.1 New Syntax for Time

In our timed protocol process algebra, the behaviors of both honest prin-
cipals and the intruders are represented by labeled processes. Therefore, a
protocol is specified as a set of labeled processes. Each process performs a
sequence of actions, namely sending (+m) or receiving (−m) a message m,
but without knowing who actually sent or received it. Each process may also
perform deterministic or non-deterministic choices. We define a protocol P
in the timed protocol process algebra, written PTPA, as a pair of the form
PTPA = ((ΣTPAP ,ETPAP

),PTPA), where (ΣTPAP ,ETPAP
) is the equational theory
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specifying the equational properties of the cryptographic functions and the
state structure, and PTPA is a ΣTPAP -term denoting a well-formed timed pro-
cess. The timed protocol process algebra’s syntax ΣTPA is parameterized by a
sort Msg of messages. Moreover, time is represented by a new sort Real, since
we allow conditional expressions on time using linear arithmetic for the reals.

Similar to [115], processes support four different kinds of choice: (i) a
process expression P ? Q supports explicit non-deterministic choice between
P and Q; (ii) a choice variable X? appearing in a send message expression +m
supports implicit non-deterministic choice of its value, which can furthermore
be an unbounded non-deterministic choice if X? ranges over an infinite set;
(iii) a conditional if C then P else Q supports explicit deterministic choice
between P and Q determined by the result of its condition C; and (iv) a receive
message expression −m(X1, ...,Xn) supports implicit deterministic choice about
accepting or rejecting a received message, depending on whether or not it
matches the pattern m(X1, ...,Xn). This deterministic choice is implicit, but
it could be made explicit by replacing −m(X1, ...,Xn) ·P by the semantically
equivalent conditional expression −X . if X = m(X1, ...,Xn) then P else nilP ·P,
where X is a variable of sort Msg, which therefore accepts any message.

The timed process algebra has the following syntax, also similar to that
of [115] plus the addition of the suffix @Real to the sending and receiving
actions:

ProcConf ::= LProc | ProcConf & ProcConf | /0
ProcId ::= (Role,Nat)
LProc ::= (ProcId,Nat) Proc

Proc ::= nilP | +(Msg@Real) | − (Msg@Real) | Proc ·Proc |
Proc ? Proc | if Cond then Proc else Proc

• ProcConf stands for a process configuration, i.e., a set of labeled pro-
cesses, where the symbol & is used to denote set union for sets of labeled
processes.

• ProcId stands for a process identifier, where Role refers to the role of
the process in the protocol (e.g., prover or verifier) and Nat is a natural
number denoting the identity of the process, which distinguishes different
instances (sessions) of a process specification.

• LProc stands for a labeled process, i.e., a process Proc with a label
(ProcId,J). For convenience, we sometimes write (Role, I,J), where J
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indicates that the action at stage J of the process (Role, I) will be the
next one to be executed, i.e., the first J− 1 actions of the process for
role Role have already been executed. Note that the I and J of a process
(Role, I,J) are omitted in a protocol specification.

• Proc defines the actions that can be executed within a process, where
+Msg@T , and −Msg@T respectively denote sending out a message or
receiving a message Msg. Note that T must be a variable where the
underlying metric space determines the exact sending or receiving time,
which can be used later in the process. Moreover, “Proc · Proc" denotes
sequential composition of processes, where symbol _._ is associative and
has the empty process nilP as identity. Finally, “Proc ? Proc" denotes an
explicit nondeterministic choice, whereas “if Cond then Proc else Proc"
denotes an explicit deterministic choice, whose continuation depends on
the satisfaction of the constraint Cond. Note that choice is explicitly
represented by either a non-deterministic choice between P1 ? P2 or by
the deterministic evaluation of a conditional expression if Cond then
P1 else P2, but it is also implicitly represented by the instantiation of a
variable in different runs.

In all process specifications we assume four disjoint kinds of variables, similar
to the variables of [115] plus time variables:

• fresh variables: each one of these variables receives a distinct constant
value from a data type Vfresh, denoting unguessable values such as nonces.
Throughout this paper we will denote this kind of variables as f , f1, f2, . . ..

• choice variables: variables first appearing in a sent message +M, which
can be substituted by any value arbitrarily chosen from a possibly infinite
domain. A choice variable indicates an implicit non-deterministic choice.
Given a protocol with choice variables, each possible substitution of these
variables denotes a possible run of the protocol. We always denote choice
variables by letters postfixed with the symbol “?” as a subscript, e.g.,
A?,B?, . . ..

• pattern variables: variables first appearing in a received message −M.
These variables will be instantiated when matching sent and received
messages. Implicit deterministic choices are indicated by terms con-
taining pattern variables, since failing to match a pattern term leads to
the rejection of a message. A pattern term plays the implicit role of
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a guard, so that, depending on the different ways of matching it, the
protocol can have different continuations. Pattern variables are written
with uppercase letters, e.g., A,B,NA, . . ..

• time variables: a process cannot access the global clock, which implies
that a time variable T of a reception or sending action +(M@T ) can
never appear in M but can appear in the remaining part of the process.
Also, given a receiving action −(M1@t1) and a sending action +(M2@t2)
in a process of the form P1 ·−(M1@t1) ·P2 ·+(M2@t2) ·P3, the assumption
that timed actions are performed from left to right forces the constraint
t1 ≤ t2. Time variables are always written with a (subscripted) t, e.g.,
t1, t ′1, t2, t

′
2, . . ..

These conditions about variables are formalized by the function wf : Proc→
Bool defined in Figure 4.1, for well-formed processes. The definition of wf uses
an auxiliary function shVar : Proc→ VarSet, which is defined in Figure 4.2.

wf (P ·+(M@T )) = wf (P)
if (V ar(M)∩V ar(P))⊆ shVar(P)∧T /∈ V ar(M)∪V ar(P)

wf (P ·−(M@T )) = wf (P)
if (V ar(M)∩V ar(P))⊆ shVar(P)∧T /∈ V ar(M)∪V ar(P)

wf (P · (if T then Q else R)) = wf (P ·Q)∧wf (P ·R)
if P 6= nilP and Q 6= nilP and V ar(T )⊆ shVar(P)

wf (P · (Q ? R)) = wf (P ·Q)∧wf (P ·R) if Q 6= nilP orR 6= nilP

wf (P · nilP) = wf (P)
wf (nilP) = True.

Figure 4.1: The well-formed function
shVar(+(M@T ) ·P) = V ar(M)∪ shVar(P)
shVar(−(M@T ) ·P) = V ar(M)∪ shVar(P)
shVar((if T then P else Q) ·R) = V ar(T )∪ (shVar(P)∩ shVar(Q))∪ shVar(R)
shVar((P ? Q) ·R) = (shVar(P)∩ shVar(Q))∪ shVar(R)
shVar(nilP) = /0

Figure 4.2: The shared variables auxiliary function

Example 11. Let us specify the Brands and Chaum protocol of Example 19, where
variables are distinct between processes. A nonce is represented as n(A?, f ), whereas
a secret value is represented as s(A?, f ). The identifier of each process is represented
by a choice variable A?. Recall that there is an arbitrary distance d > 0.
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(Verifier) : −(Commit@t1) ·
+(n(V?, f1)@t2) ·
−((n(V?, f1)⊕NP)@t3) ·
if t3−̇t2 ≤ 2∗d
then −(SP@t4) ·

if open(NP,SP,Commit)
then −(sign(P,n(V?, f1);NP⊕n(V?, f1))@t5) else nilP

else nilP

(Prover) : +(commit(n(P?, f1),s(P?, f2))@t1) ·
−(NV @t2) ·
+((NV ⊕n(P?, f1))@t3) ·
+(s(P?, f2)@t4) ·
+(sign(P?,NV ;n(P?, f2)⊕NV )@t5)

4.3.2 Timed Intruder Model

The active Dolev-Yao intruder model is followed, which implies an intruder
can intercept, forward, or create messages from received messages. However,
intruders are located. Therefore, they cannot change the physics of the met-
ric space, e.g., cannot send messages from a different location or intercept a
message that it is not within range.

In our timed intruder model, we consider several located intruders, mod-
eled by the distance function d : ProcId×ProcId→ Real, each with a family
of capabilities (concatenation, deconcatenation, encryption, decryption, etc.),
and each capability may have arbitrarily many instances. The combined ac-
tions of two intruders requires time, i.e., their distance; but a single intruder
can perform many actions in zero time. Adding time cost to single-intruder
actions could be done with additional time constraints, but is outside the scope
of this paper. Note that, unlike in the standard Dolev-Yao model, we cannot
assume just one intruder, since the time required for a principal to commu-
nicate with a given intruder is an observable characteristic of that intruder.
Thus, although the Mafia fraud and distance hijacking attacks considered in
the experiments presented in this paper only require configurations with just
one prover, one verifier and one intruder, the framework itself allows general
participant configurations with multiple intruders.

Example 12. In our timed process algebra, the family of capabilities associated to an
intruder k are also described as processes. For instance, concatenating two received
messages is represented by the process (where time variables t1, t2, t3 are not actually
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used by the process)

(k.Conc) : −(X@t1) ·−(Y @t2) ·+(X ;Y @t3)

and extracting one of them from a concatenation is described by the process

(k.Deconc) : −(X ;Y @t1) ·+(X@t2)

Roles of intruder capabilities include the identifier of the intruder, and it is possible
to combine several intruder capabilities from the same or from different intruders.
For example, we may say that the +(X ;Y @T ) of a process I1.Conc associated to an
intruder I1 may be synchronized with the−(X ;Y @T ′) of a process I2.Deconc associ-
ated to an intruder I2. The metric space fixes T ′ = T +d(I1, I2), where d(I1, I2)> 0
if I1 6= I2 and d(I1, I2) = 0 if I1 = I2.

A special forwarding intruder capability, not considered in the standard Dolev-
Yao model, has to be included in order to take into account the time travelled by a
message from an honest participant to the intruder and later to another participant,
probably an intruder again.

(k.Forward) : −(X@t1) ·+(X@t2)

4.3.3 Timed Process Semantics

A state of a protocol P consists of a set of (possibly partially executed) labeled
processes, a set of terms in the network {Net}, and the global clock. That is,
a state is a term of the form {LP1 & · · ·&LPn | {Net} | t̄}. In the timed process
algebra, the only time information available to a process is the variable T
associated to input and output messages M@T . However, once these messages
have been sent or received, we include them in the network Net with extra
information. When a message M@T is sent, we store M @ (A : t→ /0) denoting
that message M was sent by process A at the global time clock t, and propagate
T 7→ t within the process A. When this message is received by an action M′@T ′

of process B (honest participant or intruder) at the global clock time t ′, M is
matched against M′ modulo the cryptographic functions, T ′ 7→ t ′ is propagated
within the process B, and B : t ′ is added to the stored message, following the
general pattern M @ (A : t→ (B1 : t1 · · ·Bn : tn)).

The rewrite theory (ΣTPAP+State,ETPAP
,RTPAP

) characterizes the behavior
of a protocol P, where ΣTPAP+State extends ΣTPAP , by adding state constructor
symbols. We assume that a protocol run begins with an empty state, i.e., a
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state with an empty set of labeled processes, an empty network, and at time
zero. Therefore, the initial empty state is always of the form { /0 | { /0} | 0.0}.
Note that, in a specific run, all the distances are provided a priori according to
the metric space and a chosen topology, whereas in a symbolic analysis, they
will simply be variables, probably occurring within time constraints.

State changes are defined by a set RTPAP
of rewrite rules given below.

Each transition rule in RTPAP
is labeled with a tuple (ro, i, j,a,n, t), where:

• ro is the role of the labeled process being executed in the transition.

• i denotes the instance of the same role being executed in the transition.

• j denotes the process’ step number since its beginning.

• a is a ground term identifying the action that is being performed in
the transition. It has different possible values: “+m” or “−m” if the
message m was sent (and added to the network) or received, respectively;
“m” if the message m was sent but did not increase the network, “?” if
the transition performs an explicit non-deterministic choice, “T” if the
transition performs an explicit deterministic choice, “Time" when the
global clock is incremented, or “New" when a new process is added.

• n is a number that, if the action that is being executed is an explicit
choice, indicates which branch has been chosen as the process continu-
ation. In this case n takes the value of either 1 or 2. If the transition
does not perform any explicit choice, then n = 0.

• t is the global clock at each transition step.

Note that in the transition rules RTPAP
shown below, Net denotes the

network, represented by a set of messages of the form M @ (A : t → (B1 :
t1 · · ·Bn : tn)), P denotes the rest of the process being executed and PS denotes
the rest of labeled processes of the state (which can be the empty set /0).

• Sending a message is represented by the two transition rules below, de-
pending on whether the message M is stored, (TPA++), or just discarded,
(TPA+). In (TPA++), we store the sent message with its sending infor-
mation, (ro, i) : t̄, and add an empty set for those who will be receiving
the message in the future (Mσ ′@(ro, i) : t̄→ /0).
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{(ro, i, j) (+M@t ·P) & PS | {Net} | t̄}
−→(ro,i, j,+(Mσ ′),0,t̄)

{(ro, i, j+1) Pσ
′ & PS | {(Mσ

′@(ro, i) : t̄→ /0),Net} | t̄}
if (Mσ

′ : (ro, i) : t̄→ /0) /∈Net
where σ is a ground substitution binding choice variables in M

and σ
′ = σ ]{t 7→ t̄} (TPA++)

{(ro, i, j) (+M@t ·P) & PS | {Net} | t̄}
−→(ro,i, j,Mσ ′,0,t̄) {(ro, i, j+1) Pσ

′ & PS | {Net} | t̄}
where σ is a ground substitution binding choice variables in M

and σ
′ = σ ]{t 7→ t̄} (TPA+)

• Receiving a message is represented by the transition rule below. We
add the reception information to the stored message, i.e., we replace
(M′@((ro′,k) : t ′→ AS)) by (M′@((ro′,k) : t ′→ (AS] (ro, i) : t̄)).

{(ro, i, j) (−(M@t) ·P) & PS | {(M′@((ro′,k) : t ′→ AS)),Net} | t̄}
−→(ro,i, j,−(Mσ ′),0,t̄)

{(ro, i, j+1) Pσ
′ & PS | {(M′@((ro′,k) : t ′→ (AS] (ro, i) : t̄)),Net} | t̄}

IF ∃σ : M′ =EP
Mσ , t̄ = t ′+d((ro′,k),(ro, i)),σ ′ = σ ]{t 7→ t̂} (TPA-)

• An explicit deterministic choice is defined as follows. More specifically,
the rule (TPAif1) describes the then case, i.e., if the constraint T is sat-
isfied, then the process continues as P, whereas rule (TPAif2) describes
the else case, that is, if the constraint T is not satisfied, the process
continues as Q.

{(ro, i, j) ((if T then P else Q) ·R) & PS | {Net} | t̄}
−→(ro,i, j,T,1,t̄) {(ro, i, j+1) (P ·R)&PS | {Net} | t̄}IF T (TPAif1)

{(ro, i, j) ((if T then P else Q) ·R) & PS | {Net} | t̄}
−→(ro,i, j,T,2,t̄) {(ro, i, j+1) (Q ·R)&PS | {Net} | t̄}IF¬T (TPAif2)
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• An explicit non-deterministic choice is defined as follows. The process
can continue either as P, denoted by rule (TPA?1), or as Q, denoted by
rule (TPA?2).

{(ro, i, j) ((P ? Q) ·R) & PS | {Net} | t̄}
−→(ro,i, j,?,1,t̄) {(ro, i, j+1) (P ·R) & PS | {Net} | t̄} (TPA?1)

{(ro, i, j) ((P ? Q) ·R) & PS | {Net} | t̄}
−→(ro,i, j,?,2,t̄) {(ro, i, j+1)(Q ·R) & PS | {Net} | t̄} (TPA?2)

• Global Time advancement is represented by the transition rule below
that increments the global clock enough to make one sent message arrive
to its closest destination.

{PS | {Net} | t̄} −→(⊥,⊥,⊥,Time,0,t̄+t ′) {PS | {Net} | t̄ + t ′}
IF t ′ =mte(PS,Net, t̄)∧ t ′ 6= 0 (PTime)

where the function mte is defined as follows:

mte( /0,Net, t̄) = ∞

mte(P&PS,Net, t̄) = min(mte(P,Net, t̄),mte(PS,Net, t̄))

mte((ro, i, j) nilP,Net, t̄) = ∞

mte((ro, i, j) +(M@t) ·P,Net, t̄) = 0

mte((ro, i, j) − (M@t) ·P,Net, t̄) =

min
({

d((ro, i),(ro′, i′)) | (M′@(ro′, i′) : t0→ AS) ∈ Net
∧∃σ : Mσ =B M′

})
mte((ro, i, j) (if T then P else Q) ·R,Net, t̄) = 0

mte((ro, i, j) P1?P2,Net, t̄) = 0

Note that the function mte evaluates to 0 if some instantaneous action
by the previous rules can be performed. Otherwise, mte computes the
smallest non-zero time increment required for some already sent message
(existing in the network) to be received by some process (by matching
with such an existing message in the network).
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Remark The timed process semantics assumes a metric space with a
distance function d : ProcId×ProcId→ Real such that (i) d(A,A) = 0, (ii)
d(A,B) = d(B,A), and (iii) d(A,B)≤ d(A,C)+d(C,B). For every message
M @ (A : t→ (B1 : t1 · · ·Bn : tn)) stored in the network Net, our semantics
assumes that (iv) ti = t + d(A,Bi), ∀1 ≤ i ≤ n. Furthermore, according
to our wireless communication model, our semantics assumes (v) a time
sequence monotonicity property, i.e., there is no other process C such
that d(A,C)≤ d(A,Bi) for some i, 1≤ i≤ n, and C is not included in the
set of recipients of the message M. Also, for each class of attacks such as
the Mafia fraud or the hijacking attack, (vi) some extra topology con-
straints may be necessary. However, in Section 4.4, timed processes are
transformed into untimed processes with time constraints and the trans-
formation takes care only of conditions (i), (ii), and (iv). For a fixed
number of participants, all the instances of the triangle inequality (iii)
as well as constraints (vi) should be added by the user. In the general
case, conditions (iii), (v), and (vi) can be partially specified and fully
checked on a successful trace.

• New processes can be added as follows.

∀ (ro) Pk ∈ PPA

{PS | {Net} | t̄}
−→(ro,i+1,1,New,0,t̄)
{(ro, i+1,1,x?σ ,y?σ) Pkσρro,i+1 & PS | {Net} | t̄}
where ρro,i+1 is a fresh substitution,

σ is a ground substitution binding x? and y?, and i = id(PS,ro)


(TPA&)

The auxiliary function id counts the instances of a role

id( /0,ro) = 0

id((ro′, i, j)P&PS,ro) =
{

max(id(PS,ro), i) if ro= ro′
id(PS,ro) if ro 6= ro′

where PS denotes a process configuration, P a process, and ro,ro′ role
names.

Therefore, the behavior of a timed protocol in the process algebra is defined
by the set of transition rules RTPAP

= {(TPA++), (TPA+), (PhyTime), (TPA-),
(TPAif1), (TPAif2), (TPA?1), (TPA?2)}∪ (TPA&).
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VerifierProver Intruder

0t̄

4t̄
3t̄

5t̄

1t̄
2t

6t̄

3t̄

5t̄

1t̄
1m

1m

2m 2m

4m4m

{ /0|{ /0}|0.0}→p,0,1,New{(p,0,1) : +(m1@t1) · · · | { /0} | t̄0 = 0.0} m1 = commit(n(p, f1),s(p, f2))

→i,0,1,New

{
(p,0,1) : +(m1@t1) · · ·
(i.F,0,1) :−(X@t′1) ·+(X@t′2)

∣∣∣∣{ /0} | t̄0}

→p,0,1,+(m1)

{
(p,0,2) :−(NV @t2) · · ·
(i.F,0,1) :−(X@t′1) ·+(X@t′2)

∣∣∣∣{(m1@(p,0) : t̄0 → /0)} | t̄0}

→Time

{
(p,0,2) :−(NV @t2) · · ·
(i.F,0,1) :−(X@t′1) ·+(X@t′2)

∣∣∣∣{(m1@(p,0) : t̄0 → /0)} | t̄1 = 1.0}

→i,0,1,−(m1)

{
(p,0,2) :−(NV @t2) · · ·
(i.F,0,2) : +(m1@t′2)

∣∣∣∣{(m1@(p,0) : t̄0 → (i.F,0) : t̄1)} | t̄1}

→i,0,3,+(m1)

{
(p,0,2) :−(NV @t2) · · ·
(i.F,0,2) : nilP

∣∣∣∣{(m1@(i.F,0) : t̄1 → /0
}
| t̄1}

→v,0,1,New

{
(p,0,2) :−(NV @t2) · · ·
(v,0,1) :−(Commit@t′′1 ) · · ·

∣∣∣∣{(m1@(i.F,0) : t̄1 → /0)
}
| t̄1}

→Time

{
(p,0,2) :−(NV @t2) · · ·
(v,0,1) :−(Commit@t′′1 ) · · ·

∣∣∣∣{(m1@(i.F,0) : t̄1 → /0)
}
| t̄2 = 2.0}

→v,0,1,−(m1)

{
(p,0,2) :−(NV @t2) · · ·
(v,0,2) : +(m2@t′′2 ) · · ·

∣∣∣∣{(m1@(i.F,0) : t̄1 → (v,0) : t̄2)
}
| t̄2} m2 = n(v, f3)

→v,0,2,+(m2)

{
(p,0,2) :−(NV @t2) · · ·
(v,0,3) :−(m3@t′′3 ) · · ·

∣∣∣∣{(m2@(v,0) : t̄2 → /0)
}
| t̄2} m3 = (m2⊕NP)

→i,1,1,New

(p,0,2) :−(NV @t2) · · ·
(v,0,3) :−(m3@t′′3 ) · · ·
(i.F,1,1) :−(X ′@t′′′1 ) ·+(X ′@t′′′2 )

∣∣∣∣∣∣{(m2@(v,0) : t̄2 → /0)
}
| t̄2}

→Time

(p,0,2) :−(NV @t2) · · ·
(v,0,3) :−(m3@t′′3 ) · · ·
(i.F,1,1) :−(X ′@t′′′1 ) ·+(X ′@t′′′2 )

∣∣∣∣∣∣{(m2@(v,0) : t̄2 → /0)
}
| t̄3 = 3.0}

→i,1,1,−(m2)

(p,0,2) :−(NV @t2) · · ·
(v,0,3) :−(m3@t′′3 ) · · ·
(i.F,1,2) : +(m2@t′′′2 )

∣∣∣∣∣∣{(m2@(v,0) : t̄2 → (i.F,1) : t̄3)
}
| t̄3}

→i,1,2,+(m2)

(p,0,2) :−(NV @t2) · · ·
(v,0,3) :−(m3@t′′3 ) · · ·
(i.F,1,2) : nilP

∣∣∣∣∣∣{(m2@(i.F,1) : t̄3 → /0)
}
| t̄3}

→Time

{
(p,0,2) :−(NV @t2) · · ·
(v,0,3) :−(m3@t′′3 ) · · ·

∣∣∣∣{(m2@(i.F,1) : t̄3 → /0)
}
| t̄4 = 4.0}

→p,0,2,−(m2)

{
(p,0,3) : +(m4@t3) · · ·
(v,0,3) :−(m3@t′′3 ) · · ·

∣∣∣∣{(m2@(i.F,1) : t̄3 → (p,0) : t̄4)
}
| t̄4} m4 = (m2⊕n(p, f1))

→p,0,3,+(m4)

{
(p,0,4) : +(m5@t4) · · ·
(v,0,3) :−(m3@t′′3 ) · · ·

∣∣∣∣{(m4@(p,0) : t̄4 → /0)
}
| t̄4} m5 = s(p, f2)

→i,2,1,New

{
(v,0,3) :−(m3@t′′3 ) · · ·
(i.F,2,1) :−(X ′′@t′′′′1 ) ·+(X ′′@t′′′′2 )

∣∣∣∣{(m4@(p,0) : t̄4 → /0)
}
| t̄4}

→Time

{
(v,0,3) :−(m3@t′′3 ) · · ·
(i.F,2,1) :−(X ′′@t′′′′1 ) ·+(X ′′@t′′′′2 )

∣∣∣∣{(m4@(p,0) : t̄4 → /0)
}
| t̄5 = 5.0}

→i,3,1,−(m4)

{
(v,0,3) :−(m3@t′′3 ) · · ·
(i.F,2,1) : +(m4@t′′′′2 )

∣∣∣∣{(m4@(p,0) : t̄4 → (i.F,2) : t̄5)
}
| t̄5}

→i,3,2,+(m4)

{
(v,0,3) :−(m3@t′′3 ) · · ·
(i.F,2,1) : nil

∣∣∣∣{(m4@(i.F,2) : t̄5 → /0)
}
| t̄5}

→Time
{
(v,0,3) :−(m3@t′′3 ) · · ·

∣∣{(m4@(i.F,2) : t̄5 → /0)
}
| t̄6 = 6.0}

→v,0,3,−(m4)
{
(v,0,4) :−(SP@t4) · · ·

∣∣{(m4@(i.F,2) : t̄5 → (v,0) : t̄6)
}
| t̄6}

Figure 4.3: Brand and Chaum execution for a prover, an intruder, and a verifier
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Example 13. Continuing Example 21, a possible run of the protocol is represented in
Figure 4.3 for a prover p, an intruder i, and a verifier v. A simpler, graphical repre-
sentation of the same run is included at the top of the figure. There, the neighborhood
distance is d = 1.0, the distance between the prover and the verifier is d(p,v) = 2.0,
but the distance between the prover and the intruder as well as the distance between
the verifier and the intruder are d(v, i) = d(p, i) = 1.0, i.e., the honest prover p is
outside v’s neighborhood, d(v, p) > d, where d(v, p) = d(v, i) + d(p, i). Only the
first part of the rapid message exchange sequence is represented and the forwarding
action of the intruder is denoted by i.F.

The prover sends the commitment m1 = commit(n(p, f1),s(p, f2)) at instant t̄0 =
0.0 and is received by the intruder at instant t̄1 = 1.0. The intruder forwards m1
at instant t̄1 and is received by the verifier at instant t̄2 = 2.0. Then, the verifier
sends m2 = n(v, f3) at instant t̄2, which is received by the intruder at instant t̄3 = 3.0.
The intruder forwards m2 at instant t̄3, which is received by the prover at instant
t̄4 = 4.0. Then, the prover sends m4 = (m2⊕n(p, f1)) at instant t̄4 and is received by
the intruder at instant t̄5 = 5.0. Finally, the intruder forwards m4 at instant t̄5 and is
received by the verifier at instant t̄6 = 6.0. Thus, the verifier sent m2 at time t̄2 = 2.0
and received m4 at time t̄6 = 6.0. But the protocol cannot complete the run, since
t̄6− t̄2 = 4.0 < 2∗d = 2.0 is unsatisfiable.

Our time protocol semantics can already be implemented straightforwardly
as a simulation tool. For instance, [83] describes distance bounding proto-
cols using an authentication logic, which describes the evolution of the proto-
col, [97] provides a strand-based framework for distance bounding protocols
based on simulation with time constraints, and [41] defines distance bounding
protocol using some applied-pi calculus. Note, however, that, since the num-
ber of metric space configurations is infinite, model checking a protocol for a
concrete configuration with a simulation tool is very limited, since it cannot
prove the absence of an attack for all configurations. For this reason, we follow
a symbolic approach that can explore all relevant configurations.

In the following section, we provide a sound and complete protocol trans-
formation from our timed process algebra to the untimed process algebra of
the Maude-NPA tool. In order to do this, we make use of an approach intro-
duced by Nigam et al. [97] in which properties of time, which can include both
those following from physics and those checked by principals, are represented
by linear constraints on the reals. As a path is built, an SMT solver can be
used to check that the constraints are satisfiable, as is done in [98].
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4.4 Timed Process Algebra into Untimed Process Algebra
with Time Variables and Timing Constraints

In this section, we consider a more general constraint satisfiability approach,
where all possible (not only some) runs are symbolically analyzed. This pro-
vides both a trace-based insecure statement, i.e., a run leading to an insecure
secrecy or authentication property is discovered given enough resources, and
an unsatisfiability-based secure statement, i.e., there is no run leading to an
insecure secrecy or authentication property due to time constraint unsatisfia-
bility.

Example 14. Consider again the run of the Brands-Chaum protocol given in Fig-
ure 4.3. All the terms of sort Real, written in blue color, are indeed variables that
get an assignment during the run based on the distance function. Then, it is possi-
ble to obtain a symbolic trace from the run of Figure 4.3, where the following time
constraints are accumulated:

t̄1 = t̄0 +d((p,0),(i.F,0)), d((p,0),(i.F,0))≥ 0

t̄2 = t̄1 +d((v,0),(i.F,0)), d((v,0),(i.F,0))≥ 0

t̄3 = t̄2 +d((v,0),(i.F,1)), d((v,0),(i.F,1))≥ 0

t̄4 = t̄3 +d((p,0),(i.F,1)), d((p,0),(i.F,1))≥ 0

t̄5 = t̄4 +d((p,0),(i.F,2)), d((p,0),(i.F,2))≥ 0

t̄6 = t̄5 +d((v,0),(i.F,2)), d((v,0),(i.F,2))≥ 0

Note that these constraints are unsatisfiable when combined with (i) the assump-
tion d > 0, (ii) the verifier check t̄6− t̄2 ≤ 2 ∗ d, (iii) the assumption that the hon-
est prover is outside the verifier’s neighborhood, d((p,0),(v,0)) > d, (iv) the tri-
angular inequality from the metric space, d((p,0),(v,0)) ≤ d((p,0),(i.F,0)) + d(
(i.F,0),(v,0)), and (v) the assumption that there is only one intruder d((i.F,0),
(i.F,1)) = 0 and d((i.F,0),(i.F,2)) = 0.

As explained previously in the remark, there are some implicit conditions
based on the mte function to calculate the time increment to the closest desti-
nation of a message. However, themte function disappears in the untimed pro-
cess algebra and those implicit conditions are incorporated into the symbolic
run. In the following, we define a transformation of the timed process algebra
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by (i) removing the global clock; (ii) adding the time data into untimed mes-
sages of a process algebra without time (as done in [97]); and (iii) adding linear
arithmetic conditions over the reals for the time constraints (as is done in [98]).
The soundness and completeness proof of the transformation is included in the
full version of the paper, available at https://arxiv.org/abs/2010.13707.

Since all the relevant time information is actually stored in messages of
the form M @ (A : t→ (B1 : t1 · · ·Bn : tn)) and controlled by the transition rules
(TPA++),(TPA+), and (TPA-), the mapping tpa2pa of Definition 11 below trans-
forms each message M@t of a timed process into a message M @ (A : t?→AS?)
of an untimed process. That is, we use a timed choice variable t? for the send-
ing time and a variable AS? for the reception information (B1 : t ′1 · · ·Bn : t ′n)
associated to the sent message. Since choice variables are replaced by specific
values, both t? and AS? will be replaced by the appropriate values that make
the execution and all its time constraints possible. Note that these two choice
variables will be replaced by logical variables during the symbolic execution.

Definition 10 (Adding Time Variables and Time Constraints to Untimed Processes).
The mapping tpa2pa from timed processes into untimed processes and its auxiliary
mapping tpa2pa* are defined as follows:

tpa2pa( /0) = /0
tpa2pa((ro,i, j)P & PS) = (ro,i, j) tpa2pa*(P,ro,i) & tpa2pa(PS)

tpa2pa*(nilP,ro, i) = nilP
tpa2pa*( +(M@t) . P,ro, i) = +(M@((ro, i) : t?→ AS?)) . tpa2pa*(Pγ,ro, i)

where γ = {t 7→ t?}
tpa2pa*( −(M@t) . P,ro, i) =
− (M@((ro′, i′) : t ′→ ((ro, i) : t)]AS)) .
if t = t ′+d((ro, i),(ro′, i′))∧d((ro, i),(ro′, i′))≥ 0 then tpa2pa*(P,ro, i) else nilP

tpa2pa*( (if C then P else Q) . R,ro,i,x,y)
= (if C then tpa2pa*(P,ro,i,x,y) else tpa2pa*(Q,ro,i,x,y)) . tpa2pa*(R,ro,i,x,y)

tpa2pa*( (P ? Q) . R,ro,i,x,y)
= (tpa2pa*(P,ro,i,x,y) ? tpa2pa*(Q,ro,i,x,y)) . tpa2pa*(R,ro,i,x,y)

where t? and AS? are choice variables different for each one of the sending actions,
ro′, i′, t ′,d,AS are pattern variables different for each one of the receiving actions, P,
Q, and R are processes, M is a message, and C is a constraint.

Example 15. The timed processes of Example 21 are transformed into the following
untimed processes. We remove the “else nilP" branches for clarity.
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(Verifier) : −(Commit @ A1 : t ′1→ V? : t1]AS1) ·
if t1 = t ′1 +d(A1,V?)∧d(A1,V?)≥ 0 then
+(n(V?, f1) @ V? : t2?→ AS2?) ·
−((n(V?, f1)⊕NP) @ A3 : t ′3→ V? : t3]AS3) ·
if t3 = t ′3 +d(A3,V?)∧d(A3,V?)≥ 0 then
if t3−̇t2? ≤ 2∗d then
−(SP @ A4 : t ′4→ V? : t4]AS4) ·
if t4 = t ′4 +d(A4,V?)∧d(A4,V?)≥ 0 then
if open(NP,SP,Commit) then
−(sign(P,n(V?, f1);NP⊕n(V?, f1)) @ A5 : t ′5→ V? : t5]AS5)

if t5 = t ′5 +d(A5,V?)∧d(A5,V?)≥ 0
(Prover) : +(commit(n(P?, f1),s(P?, f2))@P? : t1?→ AS1?) ·

−(V ;NV @ A2 : t ′2→ V? : t2]AS2) ·
if t2 = t ′2 +d(A2,P?)∧d(A2,P?)≥ 0 then
+((NV ⊕n(P?, f1))@P? : t3?→ AS3?) ·
+(s(P?, f2)@P? : t4?→ AS4?) ·
+(sign(P?,NV ;n(P?, f2)⊕NV )@P? : t5?→ AS5?))

Example 16. The timed processes of Example 23 for the intruder are transformed
into the following untimed processes. Note that we use the intruder identifier I asso-
ciated to each role instead of a choice variable I?.

(I.Conc) : −(X@ A1 : t1→ I : t ′1]AS1) ·
if t ′1 = t1 +d(A1, I)∧d(A1, I)≥ 0 then
−(Y @ A2 : t2→ I : t ′2]AS2) ·
if t ′2 = t2 +d(A2, I)∧d(A2, I)≥ 0 then
+(X ;Y @I : t3?→ AS?)

(I.Deconc) : −(X ;Y @ A1 : t1→ I : t ′1]AS1) ·
if t ′1 = t1 +d(A1, I)∧d(A1, I)≥ 0 then
+(X@I : t2?→ AS?)

(I.Forward) : −(X@ A1 : t1→ I : t ′1]AS1) ·
if t ′1 = t1 +d(A1, I)∧d(A1, I)≥ 0 then
+(X@I : t2?→ AS?)

Once a timed process is transformed into an untimed process with time
variables and time constraints using the notation of Maude-NPA, we rely on
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both a soundness and completeness proof from the Maude-NPA process no-
tation into Maude-NPA forward rewriting semantics and on a soundness and
completeness proof from Maude-NPA forward rewriting semantics into Maude-
NPA backwards symbolic semantics, see [114, 115]. Since the Maude-NPA
backwards symbolic semantics already considers constraints in a very general
sense [57], we only need to perform the additional satisfiability check for linear
arithmetic over the reals.

4.5 Timed Process Algebra into Strands in Maude-NPA

This section is provided to help in understanding the experimental output.
Although Maude-NPA accepts protocol specifications in either the process al-
gebra language or the strand space language, it still gives outputs only in the
strand space notation. Thus, in order to make our experimental output easier
to understand, we describe the translation from timed process into strands
with time variables and time constraints. This translation is also sound and
complete, as it imitates the transformation of Section 4.4 and the transforma-
tion of [114,115].

Strands [62] are used in Maude-NPA to represent both the actions of hon-
est principals (with a strand specified for each protocol role) and those of
an intruder (with a strand for each action an intruder is able to perform
on messages). In Maude-NPA, strands evolve over time. The symbol | is
used to divide past and future. That is, given a strand [ msg±1 , . . . , msg±i |
msg±i+1, . . . , msg±k ], messages msg±1 , . . . ,msg±i are the past messages, and mes-
sages msg±i+1, . . . ,msg±k are the future messages (msg±i+1 is the immediate future
message). Constraints can be also inserted into strands. A strand [msg±1 , . . . ,
msg±k ] is shorthand for [nil | msg±1 , . . . ,msg±k ,nil]. An initial state is a state
where the bar is at the beginning for all strands in the state, and the net-
work has no possible intruder fact of the form m∈I . A final state is a state
where the bar is at the end for all strands in the state and there is no negative
intruder fact of the form m /∈I .

In the following example, we illustrate how the timed process algebra can
be transformed into strands specifications of Maude-NPA.

Example 17. The timed processes of Example 21 are transformed into the following
strand specification.
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(Verifier) : [−(Commit @ A1 : t ′1→V : t1]AS1),

(t1 = t ′1 +d(A1,V )∧d(A1,V )≥ 0),
+(n(V, f1) @ V : t2→ AS2),

−((n(V, f1)⊕NP) @ A3 : t ′3→V : t3]AS3),

(t3 = t ′3 +d(A3,V )∧d(A3,V )≥ 0),
(t3−̇t2 ≤ 2∗d),
−(SP @ A4 : t ′4→V : t4]AS4),

(t4 = t ′4 +d(A4,V )∧d(A4,V )≥ 0),
open(NP,SP,Commit),
−(sign(P,n(V, f1);NP⊕n(V, f1))@ A5 : t ′5→V : t5]AS5),

(t5 = t ′5 +d(A5,V )∧d(A5,V )≥ 0)]
(Prover) : [+(commit(n(P, f1),s(P, f2))@P : t1→ AS1),

−(NV @ A2 : t ′2→V : t2]AS2),

(t2 = t ′2 +d(A2,P)∧d(A2,P)≥ 0),
+((NV ⊕n(P, f1))@P : t3→ AS3),

+(s(P, f2)@P : t4→ AS4),

+(sign(P,NV ;n(P, f2)⊕NV )@P : t5→ AS5)]

We specify the desired security properties in terms of attack patterns in-
cluding logical variables, which describe the insecure states that Maude-NPA
is trying to prove unreachable. Specifically, the tool attempts to find a back-
wards narrowing sequence path from the attack pattern to an initial state
until it can no longer form any backwards narrowing steps, at which point it
terminates. If it has not found an initial state, the attack pattern is judged
unreachable.

The following example shows how a classic mafia fraud attack for the
Brands-Chaum protocol can be encoded in Maude-NPA’s strand notation.

Example 18. Following the strand specification of the Brands-Chaum protocol given
in Example 31, the mafia attack of Example 19 is given as the following attack pat-
tern. Note that Maude-NPA uses symbol === for equality on the reals, +=+ for ad-
dition on the reals, *=* for multiplication on the reals, and -=- for subtraction on
the reals. Also, we consider one prover p, one verifier v, and one intruder i at fixed
locations. Extra time constraints are included in an smt section, where a triangular
inequality has been added. The mafia fraud attack is secure for Brands-Chaum and
no initial state is found in the backwards search.

eq ATTACK-STATE(1) --- Mafia fraud
= :: r :: --- Verifier

[ nil, -(commit(n(p,r1),s(p,r2)) @ i : t1 -> v : t2),
((t2 === t1 +=+ d(i,v)) and d(i,v) >= 0/1),
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+(n(v,r) @ v : t2 -> i : t2''),
-(n(v,r) * n(p,r1) @ i : t3 -> v : t4),
(t3 >= t2 and (t4 === t3 +=+ d(i,v)) and d(i,v) >= 0/1),
((t4 -=- t2) <= (2/1 *=* d)) | nil ] &

:: r1,r2 :: --- Prover
[ nil, +(commit(n(p,r1),s(p,r2)) @ p : t1' -> i : t1''),

-(n(v,r) @ i : t2'' -> p : t3'),
((t3' === t2'' +=+ d(i,p)) and d(i,p) >= 0/1),
+(n(v,r) * n(p,r1) @ p : t3' -> i : t3'') | nil ]

|| smt(d(v,p) > 0/1 and d(i,p) > 0/1 and d(i,v) > 0/1 and d(v,i) <= d and
(d(v,i) +=+ d(p,i)) >= d(v,p) and d(v,p) > d)

|| nil || nil || nil [nonexec] .

4.6 Experiments

As a feasibility study, we have encoded several distance bounding protocols
in Maude-NPA. It was necessary to slightly alter the Maude-NPA tool by
(i) including minor modifications to the state space reduction techniques to
allow for timed messages; (ii) the introduction of the sort Real and its asso-
ciated operations; and (iii) the connection of Maude-NPA to a Satisfiability
Modulo Theories (SMT) solver1 (see [96] for details on SMT). The specifi-
cations, outputs, and the modified version of Maude-NPA are available at
http://personales.upv.es/sanesro/indocrypt2020/.

Although the timed model allows an unbounded number of principals, the
attack patterns used to specify insecure goal states allow us to limit the num-
ber of principals in a natural way. In this case we specified one verifier, one
prover, and one attacker, but allowed an unbounded number of sessions.

In Table 4.1 below we present the results for the different distance-bounding
protocols that we have analyzed. Two attacks have been analyzed for each pro-
tocol: a mafia fraud attack (i.e., an attacker tries to convince the verifier that
an honest prover is closer to him than he really is), and a distance hijack-
ing attack (i.e., a dishonest prover located far away succeeds in convincing a
verifier that they are actually close, and he may only exploit the presence of
honest participants in the neighborhood to achieve his goal). Symbol X means
the property is satisfied and × means an attack was found. The columns la-
belled tm(sec) give the times in seconds that it took for a search to complete.
Finally, the column labeled PreProc gives the time it takes Maude-NPA to

1Several SMT solvers are publicly available, but the programming language Maude [35] currently
supports CVC4 [1] and Yices [5].
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Protocol PreProc (sec) Mafia tm (sec) Hijacking tm (sec)
Brands and Chaum [27] 3.0 X 4.3 × 11.4
Meadows et al (nV ⊕nP,P) [83] 3.7 X 1.3 X 22.5
Meadows et al (nV ,nP⊕P) [83] 3.5 X 1.1 × 1.5
Hancke and Kuhn [67] 1.2 X 12.5 X 0.7
MAD [30] 5.1 X 110.5 × 318.8
Swiss-Knife [72] 3.1 X 4.8 X 24.5
Munilla et al. [94] 1.7 X 107.1 X 4.5
CRCS [102] 3.0 X 450.1 × 68.6
TREAD [14] 2.4 X 4.7 × 4.2

Table 4.1: Experiments performed for different distance-bounding protocols
perform some preprocessing on the specification that eliminates searches for
some provably unreachable state. This only needs to be done once, after which
the results can be used for any query, so it is displayed separately.

We note that, since our semantics is defined over arbitrary metric spaces,
not just Euclidean space, it is also necessary to verify that an attack returned
by the tool is realizable over Euclidean space. We note that the Mafia and
hijacking attacks returned by Maude-NPA in these experiments are all realiz-
able on a straight line, and hence are realizable over n-dimensional Euclidean
space for any n. In general, this realizability check can be done via a final step
in which the constraints with the Euclidean metric substituted for distance is
checked via an SMT solver that supports checking quadratic constraints over
the reals, such as Yices [5], Z3 [8], or Mathematica [4]. Although this feature
is not yet implemented in Maude-NPA, we have begun experimenting with
these solvers.

4.7 Conclusions

We have developed a timed model for protocol analysis based on timing con-
straints, and provided a prototype extension of Maude-NPA handling proto-
cols with time by taking advantage of Maude’s support of SMT solvers, as
was done by Nigam et al. in [98], and Maude-NPA’s support of constraint
handling. We also performed some initial analyses to test the feasibility of
the approach. This approach should be applicable to other tools that support
constraint handling.

There are several ways this work can be extended. One is to extend the
ability of the tool to reason about a larger numbers or principals, in particular
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an unbounded number of principals. This includes an unbounded number of
attackers; since each attacker must have its own location, we cannot assume
a single attacker as in Dolev-Yao. Our specification and query language, and
its semantics, supports reasoning about an unbounded number of principals,
so this is a question of developing means of telling when a principal or state
is redundant and developing state space reduction techniques based on this.

Another important extension is to protocols that require the full Euclidean
space model, in particular those in which location needs to be explicitly in-
cluded in the constraints. This includes for example protocols used for local-
ization. For this, we have begun experimenting with SMT solvers that support
solving quadratic constraints over the reals.

Looking further afield, we consider adding different types of timing mod-
els. In the timing model used in this paper, time is synonymous with distance.
But we may also be interested including other ways in which time is advanced,
e.g. the amount of time a principal takes to perform internal processing tasks.
In our model, the method in which timing is advanced is specified by the
mte function, which is in turn used to generate constraints on which mes-
sages can be ordered. Thus changing the way in which timing is advanced
can be accomplished by modifying the mte function. Thus, potential future
research includes design of generic mte functions together with rules on their
instantiation that guarantee soundness and completeness

Finally, there is also no reason for us to limit ourselves to time and location.
This approach should be applicable to other quantitative properties as well.
For example, the inclusion of cost and utility would allow us to tackle new
classes of problems not usually addressed by cryptographic protocol analysis
tools, such as performance analyses (e.g., resistance against denial of service
attacks), or even analysis of game-theoretic properties of protocols, thus open-
ing up a whole new set of problems to explore.
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Abstract We present a formal framework for the analysis of cryptographic proto-
cols that make use of time and space in their execution. In a previous
work we provided a timed process algebra syntax and a timed transi-
tion semantics. The timed process algebra only made message sending-
and-reception times available to processes whereas the timed transition
semantics modelled the actual time interactions between processes. In
this paper we extend the previous process algebra syntax to make spatial
location information also available to processes and provide a transition
semantics that takes account of fundamental properties of both time and
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space. This time and space protocol framework can be implemented ei-
ther as a simulation tool or as a symbolic analysis tool in which time and
space information are not represented by specific values but by logical
variables, and in which the properties of time and space are reasoned
about in terms of constraints on those time and space logical variables.
All these time and space constraints are carried along the symbolic ex-
ecution of the protocol and their satisfiability can be evaluated as the
analysis proceeds, so attacks that violate the laws of physics can be dis-
carded as impossible. We demonstrate the feasibility of our approach by
using the Maude-NPA protocol analyzer together with an SMT solver
that is used to evaluate the satisfiability of timing and location con-
straints. We provide a sound and complete protocol transformation from
our time and space process algebra to the Maude-NPA syntax and se-
mantics, and we prove its soundness and completeness. We analyze two
protocols using time and space constraints.

5.1 Introduction

The laws of physics are an important aspect of many cryptographic protocols,
and there has been increasing interest in the formal analysis of protocols that
require them to function properly. Model checking of protocols that use time
and space can be done using either an explicit model with time and space
information or by using an untimed model and showing it is sound and com-
plete with respect to a time and space model. The former is more intuitive for
the user, but the latter is often chosen because not all cryptographic protocol
analysis tools support reasoning about either time or space.

In previous Chapter 4 as well as [13], we provided a framework for analyzing
protocols involving time. We combined the advantages of both approaches:
an explicit timed specification language was developed with a timed syntax
and semantics, and was automatically and faithfully translated into an existing
untimed language. We applied this approach to the Maude-NPA tool by taking
advantage of its built-in support for constraints and analyzed Mafia fraud and
distance hijacking attacks on a suite of distance-bounding protocols.

We celebrate Joshua Guttman with a paper on a tool and approach based
on one of his most important contributions to security: the strand space model
introduced by Thayer, Herzog, and Guttman in [62]. In this graph-based
model both protocol roles and adversarial actions are represented by strands,
which are lists of terms sent and received by a principal in the order that they
occur. A protocol execution (or bundle) is constructed by matching sent terms
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with received terms in different strands. We have used strand spaces as the
basis of Maude-NPA syntax and semantics [53], and have found that they allow
us to represent them in a very natural way. We have also found [115], that this
syntax and semantics can be naturally extended to a process algebra syntax
and semantics. Moreover, strand spaces are very amenable to extension via
adding constraints to the strand space implementation. In particular, we have
found this approach useful for adding features such as state space reduction
[56,57], deterministic and nondeterministic choice [115], timed protocols [13],
and now, protocols that use both space and time.

In previous Chapter 4 as well as [13], we assumed a metric space with a dis-
tance function such that (i) d(A,A) = 0, (ii) d(A,B) = d(B,A), and (iii) d(A,B)≤
d(A,C)+d(C,B). In this paper, we actually compute the real distances accord-
ing to a three-dimensional space: d(A,B)2 = (Ax−Bx)

2+(Ay−By)
2+(Az−Bz)

2.
We extend the previous process algebra syntax to make spatial location in-
formation also available to processes and provide a transition semantics that
takes account of fundamental properties of both time and location. The new
time and space protocol framework clearly subsumes and extends the previous
time framework.

As it already happened in [13], this time and space protocol framework can
be implemented either as a simulation tool or as a symbolic analysis tool in
which time and space information is not represented by specific values but by
logical variables, and in which the properties of time and space are represented
as constraints on those time and space logical variables. All these time and
space constraints are carried along the symbolic execution of the protocol and
their satisfiability can be evaluated as the analysis proceeds, so attacks that
violate the laws of physics can be discarded as impossible. We realize the time
and space semantics by translating it into the semantics of the Maude-NPA
protocol analysis tool, in which time and space are expressed as constraints.
The constraints generated during the Maude-NPA search are then checked
using an embedded SMT solver.

We believe that this approach can be applied to other tools that support
constraint handling as well. Many tools support constraint handling, e.g.,
Maude-NPA [57] and Tamarin [85]. The laws of physics can be naturally added
to a process algebra. Many tools support processes, e.g., Maude-NPA [115]
and AKISS [41].

The rest of this paper is organized as follows. In Section 5.2, we present our
two running examples: the Brands-Chaum protocol and a secure localization
protocol. In Section 5.3, we present the time and space process algebra with
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its intended semantics. In Section 5.4, we present a sound and complete pro-
tocol transformation from our time and space process algebra to an untimed
process algebra with constraints. In Section 5.5, we present a second transfor-
mation from the untimed process algebra into Maude-NPA strand notation.
We conclude in Section 5.6.

5.1.1 Related work

There are a number of security protocols that make use of time. In general,
there are two types: those that make use of assumptions about time, most
often assuming some sort of loose synchronization, and those that guarantee
these assumptions. The first kind includes protocols such as Kerberos [95],
which uses timestamps to defend against replay attacks, the TESLA proto-
col [101], which relies on loose synchronization to amortize digital signatures,
and blockchain protocols, which use timestamps to order blocks in the chain.
The other kind provides guarantees based on physical properties of time: for
example, distance bounding, which guarantees that a prover is within a certain
distance of a verifier, and secure time synchronization, which guarantees that
the clocks of two different nodes are synchronized within a certain margin of
error. We refer the reader to [13] for a discussion on timed protocols.

For location-based protocols, the concepts of physical proximity, secure
localization, secure neighbor discovery and secure distance measurement are
used quite often. In [19,20,107], Basin et al. define formal models for reasoning
about physical properties of security protocols, including timing and location,
using Isabelle/HOL and a technique similar to Paulson’s inductive approach
[100]. The notion of secure distance measurement has been studied in [29,31,
32,79]. In [79], Message Time Of Arrival Codes (MTACs) are developed, a new
class of cryptographic primitives that allow receivers to verify if an adversary
has manipulated the message arrival time in a similar way to how Message
Authentication Codes protect message integrity.

5.2 Two Time and Space Protocols

Example 19. The Brands-Chaum protocol [27] specifies communication between a
verifier V and a prover P. P needs to authenticate itself to V, and also needs to prove
that it is within a distance “d" of it. A typical interaction between the prover and the
verifier is as follows, where NA denotes a nonce generated by A, SA denotes a secret
generated by A, X ;Y denotes concatenation of two messages X and Y , commit(N,S)
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denotes commitment of secret S with a nonce N, open(N,S,C) denotes opening a
commitment C using the nonce N and checking whether it carries the secret S, ⊕ is
the exclusive-or operator, and sign(A,M) denotes A signing message M.

P→V : commit(NP,SP)
//The prover sends his name and a commitment

V → P : NV
//The verifier sends a nonce and records the time when this message was sent

P→V : NP⊕NV
//The verifier checks the answer message arrives within two times a fixed distance

P→V : SP
//The prover sends the committed secret and the verifier opens the commitment

P→V : signP(NV ;NP⊕NV )
//The prover signs the two rapid exchange messages

In previous Chapter 4 as well as [13], , we already considered this Brands-
Chaum protocol. We assumed the participants were located at an arbitrary
given topology (participants do not move from their assigned locations) with
distance constraints, where time and distance are equivalent for simplification
and are represented by a real number. We assumed a metric space with a
distance function d : A ×A → Real from a set A of participants such that
d(A,B)≥ 0, d(A,A) = 0, d(A,B) = d(B,A), and d(A,B)≤ d(A,C)+d(C,B).

In this paper, we assume coordinates Px, Py, Pz for each participant P and
the distance function d : A ×A → Real calculated from the positions of the
participants. From now on, we will use the following notation in order to
improve readability: bd(A,B)c that provides the set of constraints associated
to a symbolic distance between participants A and B and d((x,y,z),(x′,y′,z′))
that calculates the actual distance between participants A and B from their
given concrete coordinates:

bd(A,B)c := (d(A,B)≥ 0∧d(A,B)2 = (Ax−Bx)
2 +(Ay−By)

2 +(Az−Bz)
2)

d((x,y,z),(x′,y′,z′)) :=
√

(x− x′)2 +(y− y′)2 +(z− z′)2

The previous informal Alice&Bob notation was naturally extended to in-
clude time in Chapter 4 and we further extend it here to include both time
and location. First, we add the time when a message was sent or received as
a subindex Pt1 → Vt2 . Second, the sending and receiving times of a message
differ by the distance between them just by adding the location constraints
bd(A,B)c. Third, the distance bounding constraint of the verifier is repre-
sented as an arbitrary distance d. Time and space constraints are written
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Figure 5.1: Mafia Attack Figure 5.2: Hijacking Attack

using quantifier-free formulas in real arithmetic. For convenience, we allow
both 2 ∗ x = x+ x and the monus function x−̇y = if y < x then x− y else 0 as
definitional extensions.

In the following time and space sequence of actions, a vertical bar differ-
entiates between the process and corresponding constraints associated to the
metric space. We remove the constraint open(NP,SP,commit(NP,SP)) for sim-
plification. The following action sequence differs from Chapter 4 only on the
terms bd(P,V )c.

Pt1 →Vt ′1
: commit(NP,SP) | t ′1 = t1 +d(P,V )∧bd(P,V )c

Vt2 → Pt ′2
: NV | t ′2 = t2 +d(P,V )∧ t2 ≥ t ′1∧bd(P,V )c

Pt3 →Vt ′3
: NP⊕NV | t ′3 = t3 +d(P,V )∧ t3 ≥ t ′2∧bd(P,V )c

V : t ′3 −̇ t2 ≤ 2∗d
Pt4 →Vt ′4

: SP | t ′4 = t4 +d(P,V )∧ t4 ≥ t ′3∧bd(P,V )c
Pt5 →Vt ′5

: signP(NV ;NP⊕NV ) | t ′5 = t5 +d(P,V )∧ t5 ≥ t ′4∧bd(P,V )c

The Brands-Chaum protocol is designed to defend against mafia frauds, where
an honest prover is outside the neighborhood of the verifier (i.e., d(P,V )> d)
but an intruder is inside (i.e., d(I,V )≤ d), pretending to be the honest prover
as depicted in Figure 5.1. The following is an example of an attempted mafia
fraud, in which the intruder simply forwards messages back and forth between
the prover and the verifier. We write I(P) to denote an intruder pretending to
be an honest prover P.
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Pt1→It2 : commit(NP,SP) | t2 = t1 +d(P, I)∧bd(P, I)c
I(P)t2→Vt3 : commit(NP,SP) | t3 = t2 +d(V, I)∧bd(V, I)c

Vt3→I(P)t4 : NV | t4 = t3 +d(V, I)∧bd(V, I)c
It4→Pt5 : NV | t5 = t4 +d(P, I)∧bd(P, I)c
Pt5→It6 : NP⊕NV | t6 = t5 +d(P, I)∧bd(P, I)c

I(P)t6→Vt7 : NP⊕NV | t7 = t6 +d(V, I)∧bd(V, I)c
V : t7−̇t3 ≤ 2∗d

Pt8→It9 : SP | t9 = t8 +d(P, I)∧ t8 ≥ t5∧bd(P, I)c
I(P)t10→Vt11 : SP | t11 = t10 +d(V, I)∧ t11 ≥ t7∧bd(V, I)c
I(P)t12→Vt13 : signP(NV ;NP⊕NV )| t13 = t12 +d(V, I)∧ t13 ≥ t11∧bd(V, I)c

This attack is physically unfeasible, since it would require that 2 ∗ d(V, I)+
2 ∗ d(P, I) ≤ 2 ∗ d, which is unsatisfiable by d(V,P) > d > 0 and the triangu-
lar inequality d(V,P) ≤ d(V, I) + d(P, I), satisfied in three-dimensional space.
This attack was already unfeasible in Chapter 4 using only the metric space
assumptions.

However, a distance hijacking attack is possible (i.e., the time and distance
constraints are satisfiable), as depicted in Figure 5.2, where an intruder located
outside the neighborhood of the verifier (i.e., d(V, I)> d) succeeds in convincing
the verifier that he is inside the neighborhood by exploiting the presence of
an honest prover in the neighborhood (i.e., d(V,P) ≤ d) to achieve his goal.
The following is an example of a successful distance hijacking, in which the
intruder listens to the exchanges messages between the prover and the verifier
but builds the last message.

Pt1 →Vt2 : commit(NP,SP) | t2 = t1 +d(P,V )∧bd(P,V )c
Vt2 → Pt3 , It ′3 : NV | t3 = t2 +d(P,V )∧bd(P,V )c

| t ′3 = t2 +d(I,V )∧bd(V, I)c
Pt3 →Vt4 , It ′4 : NP⊕NV | t4 = t3 +d(P,V )∧bd(P,V )c

| t ′4 = t3 +d(I,P)∧bd(I,P)c
V : t4 −̇ t2 ≤ 2∗d

Pt5 →Vt6 : SP | t6 = t5 +d(P,V )∧bd(P,V )c
| t5 ≥ t3∧ t6 ≥ t4

I(P)t7 →Vt8 : signI(NV ;NP⊕NV ) | t8 = t7 +d(I,V )∧bd(I,V )c
| t7 ≥ t ′4∧ t8 ≥ t6

This attack was feasible in Chapter 4 using the metric space assumptions,
and it is also possible in three-dimensional space. Note that an attack may
be possible in some metric space but it may not be possible in all metric
spaces, let alone in Euclidean metric spaces like three-dimensional space. This
inspired us to add location to our previous framework, as motivated by the
following protocol.
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Fig. 5. Family of hyperbolas between two
beacons

Fig. 6. Intersection of three hyperbolas

base station can subtract it out to obtain the equation v · (tbi − tbj) = di − dj . This
equation defines a hyperbola on which the signal-emitting device must be located, as
shown in figure 5. Given multiple hyperbolas (one per each pair of beacons), they must
“intersect” in the device’s true location (see fig. 6).

TDoA-based localization satisfies the SDM property because all beacons’ measure-
ments are based on a single signal broadcast by the device. Observe that the time of
signal emission does not enter into the TDoA calculation. Therefore, unlike distance
bounding protocols, TDoA localization is not vulnerable to the distance enlargement
attack, in which the device delays its response to a challenge in order to pretend that it
is located farther than it really is.

4.3 Signal Strength

Signal strength drops off as the inverse square of the distance [SHS01, Rap96]. A con-
stant difference between the relative strengths of received signals does not imply that
the device lies on a certain hyperbola, and the protocol of section 4.2 does not work.

The protocol based on hash chains from section 4.1 can still be used. All that is
needed is some way of converting the received signal into distance. Suppose that the
malicious device artificially modifies its response, e.g., emits at a lower than normal
signal strength in order to pretend that it is located farther away than it really is. As
long as the modification is the same for all receiving beacons, as will be the case when
localization is based on a single broadcast response, the protocol works.

Technically, this is not the same property as SDM, as the error in reported distances is
not constant across all beacons (a constant difference in signal strength does not imply
a constant difference in distance). Nevertheless, the same general principle applies. For
all beacons which receive the same signal, the reported distance will differ from the
true distance by a fixed amount, which depends on the true distance. Therefore, the
adversary cannot pass verification for an arbitrary false location claim.

All of the above protocols assume that the signal sent by the device which is being
localized cannot be modified or delayed before reaching the beacons. For example, if
signal strength is artificially boosted in transit by some colluding device, localization
will be incorrect. Similarly, if a non-radio signal is used, it can be artificially “speeded
up” by one or more colluding devices who talk to each other by radio. Finding effective
defenses against these attacks is an interesting topic for future research.

Figure 5.3: Trilateration
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Figure 5.4: Insecure Figure 5.5: Secure

Example 20. A secure localization protocol determines the physical location of a
mobile device such as a sensor, a mobile phone, or a small computer with appli-
cations to location-based access control and security. In [109], a malicious device
may lie about its location in an environment with different beacons to appear either
farther away than its true location or closer than it really is.

We consider a very simple protocol in two-dimensional space. A device sends a
timestamp to different beacons. All beacons are honest and receive the timestamp.
Figure 5.3 shows how three beacons infer the position of the device by trilateration,
i.e., the intersection of the hyperbolas associated to the distance travelled from the
device’s location. There is a base station that receives the positions inferred by the
beacons and checks whether they coincide or not.

D→ Bei : timestamp
//The device broadcasts a timestamp, maybe different to its
//actual time to appear farther or closer than its true location

Bei→ Ba : timediff ; Bei
x ; Bei

y
//Each beacon sends to a base station the difference between
//the received timestamp and the actual reception time plus
//her position.

An informal Alice-Bob presentation with time and location is as follows, where
(Di

x,D
i
y) is the inferred location of the device D according to beacon Bei. The

base calculates whether the positions of the device inferred by the beacons
coincide, in symbols D1

x = · · ·= Dn
x and D1

y = · · ·= Dn
y .
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Dt1 → Bei
t ′1

: t | t ′1 = t1 +d(D,Bei)∧bd(D,Bei)c
Bei : t̄ = t −̇ t ′1 | t̄ ≥ 0

Bei
t2 → Bat ′2

: t̄ ; Bei
x ; Bei

y | t ′2 = t2 +d(Bei,Ba)∧bd(Bei,Ba)c
Ba : t̄2 = (D1

x−Be1
x)

2 +(D1
y−Be1

y)
2

...
Ba : t̄2 = (Dn

x−Ben
x)

2 +(Dn
y−Ben

y)
2

Ba : D1
x = · · ·= Dn

x ∧D1
y = · · ·= Dn

y

If the device is honest, the constraints on the real numbers computed by the
base station are always satisfied. If the device is malicious, [109] shows two
interesting configurations.

(i) (Insecure configuration) If the beacons are in the same lobe of a hy-
perbola, as shown in Figure 5.4, it is possible for a malicious device at
position P to choose a timestamp to pretend to be at position P′.

(ii) (Secure configuration) If there are four beacons and they form a rect-
angle, shown in Figure 5.5, then [109] proves that the device is always
caught by the base station.

Note that these two statements, (i) an attack and (ii) the absence of any
attack, are verified by our time and space process algebra below without re-
quiring exact positions. That is, (i) is verified just by showing an execution
where the computed time and space constraints are satisfied and (ii) is veri-
fied by obtaining a finite search space where all the computed time and space
constraints are unsatisfiable.

5.3 A Time and Space Process Algebra

In Chapter 4 we provided a timed process algebra syntax and a timed tran-
sition semantics. The timed process algebra only made message sending-and-
reception times available to processes whereas the timed transition semantics
modelled the actual time interactions between processes under metric space
constraints. In this section, we extend the previous process algebra syntax
to make spatial location information also available to processes and provide
a transition semantics that models the actual time and space interactions be-
tween processes and Euclidean space constraints.
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5.3.1 New Syntax for Location

In our time and space protocol process algebra, the behaviors of both honest
principals and the intruders are represented by labeled processes. Therefore,
a protocol is specified as a set of labeled processes. Each process performs a
sequence of actions, namely sending (+m) or receiving (−m) a message m, but
without knowing who actually sent it or received it. Each process may also
perform deterministic or non-deterministic choices. We define a protocol P
in the time and space protocol process algebra, written PTPA, as a pair of the
form PTPA = ((ΣTPAP ,ETPAP

),PTPA), where (ΣTPAP ,ETPAP
) is the equational

theory specifying the equational properties of the cryptographic functions and
the state structure, and PTPA is a ΣTPAP -term denoting a well-formed time and
space process. The time and space protocol process algebra’s syntax ΣTPA is
parameterized by a sort Msg of messages. Moreover, time and coordinates are
represented by a new sort Real, since we allow conditional expressions on time
and location to be constraints in real polynomial arithmetic.

Similar to [13, 115], processes support four different kinds of choice: (i) a
process expression P ? Q supports explicit non-deterministic choice between
P and Q; (ii) a choice variable X? appearing in a send message expression +m
supports implicit non-deterministic choice of its value, which can furthermore
be an unbounded non-deterministic choice if X? ranges over an infinite set; (iii)
a conditional if C then P else Q supports explicit deterministic choice between
P and Q determined by the result of its condition C; and (iv) a receive message
expression −m(X1, ...,Xn) supports implicit deterministic choice about accept-
ing or rejecting a received message, depending on whether or not it matches
the pattern m(X1, ...,Xn). This deterministic choice is implicit, but it could
be made explicit by replacing −m(X1, ...,Xn) ·P by the semantically equivalent
conditional expression −X . if X = m(X1, ...,Xn) then P else nilP, where X is a
variable of sort Msg, which therefore accepts any message.

The time and space process algebra has the following syntax, also similar
to that of [13, 115] plus the addition of the suffix @Real to the sending and
receiving actions:

ProcConf ::= LProc | ProcConf & ProcConf | /0
ProcId ::= (Role,Nat)
LProc ::= (ProcId,Nat,Real,Real,Real) Proc

Proc ::= nilP | +(Msg@Real) | − (Msg@Real) | Proc ·Proc |
Proc ? Proc | if Cond then Proc else Proc
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• ProcConf stands for a process configuration, i.e., a set of labeled pro-
cesses, where the symbol & is used to denote set union for sets of labeled
processes.

• ProcId stands for a process identifier, where Role refers to the role of
the process in the protocol (e.g., prover or verifier) and Nat is a natural
number denoting the identity of the process, which distinguishes different
instances (sessions) of a process specification.

• LProc stands for a labeled process, i.e., a process Proc with a label
(ProcId,J). For convenience, we sometimes write (Role, I,J,x,y,z), where
J indicates that the action at stage J of the process (Role, I) will be the
next one to be executed, i.e., the first J−1 actions of the process for role
Role have already been executed. The three Real elements x,y,z repre-
sent the coordinates on three-dimensional space. Note that the I and J
of a process (Role, I,J,x,y,z) are omitted in a protocol specification.

• Proc defines the actions that can be executed within a process, where
+Msg@T , and −Msg@T respectively denote sending out a message or
receiving a message Msg. Note that T must be a variable where the un-
derlying Euclidean space determines the exact sending or receiving time,
which can be used later in the process. Moreover, “Proc · Proc" denotes
sequential composition of processes, where symbol _._ is associative and
has the empty process nilP as identity. Finally, “Proc ? Proc" denotes an
explicit nondeterministic choice, whereas “if Cond then Proc else Proc"
denotes an explicit deterministic choice, whose continuation depends on
the satisfaction of the constraint Cond. Note that choice is explicitly
represented by either a non-deterministic choice between P1 ? P2 or by
the deterministic evaluation of a conditional expression if Cond then
P1 else P2, but it is also implicitly represented by the instantiation of a
variable in different runs.

In all process specifications we assume five disjoint kinds of variables, similar
to the variables of [115] plus time variables as in Chapter 4 and location
coordinate variables:

• fresh variables: each one of these variables receives a distinct constant
value from a data type Vfresh, denoting unguessable values such as nonces.
Throughout this paper we will denote this kind of variables as f , f1, f2, . . ..
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• choice variables: variables first appearing in a sent message +M, which
can be substituted by any value arbitrarily chosen from a possibly infinite
domain. A choice variable indicates an implicit non-deterministic choice.
Given a protocol with choice variables, each possible substitution of these
variables denotes a possible run of the protocol. We always denote choice
variables by letters postfixed with the symbol “?” as a subscript, e.g.,
A?,B?, . . ..

• pattern variables: variables first appearing in a received message −M.
These variables will be instantiated when matching sent and received
messages. Implicit deterministic choices are indicated by terms con-
taining pattern variables, since failing to match a pattern term leads to
the rejection of a message. A pattern term plays the implicit role of
a guard, so that, depending on the different ways of matching it, the
protocol can have different continuations. Pattern variables are written
with uppercase letters, e.g., A,B,NA, . . ..

• time variables: a process cannot access the global clock, which implies
that a time variable T of a reception or sending action +(M@T ) can
never appear in M but can appear in the remaining part of the process.
Also, given a receiving action −(M1@t1) and a sending action +(M2@t2)
in a process of the form P1 ·−(M1@t1) ·P2 ·+(M2@t2) ·P3, the assumption
that timed actions are performed from left to right forces the constraint
t1 ≤ t2. Time variables are always written with a (subscripted) t, e.g.,
t1, t ′1, t2, t

′
2, . . ..

• coordinate variables: a process can only access its own coordinates x,
y, and z. Its coordinates can be sent and coordinate variables can be
received, sent again and used in comparisons. The location of a process
never changes, so coordinate variables can never be updated. Coordi-
nate variables are always written with a (subscripted) x, y or z, e.g.,
x1,x′1,y2,z′2, . . ..

These requirements about variables are formalized by the function wf :
Proc→ Bool for well-formed processes given in Chapter 4. The definition of
wf uses an auxiliary function shVar : Proc→ VarSet also given in Chapter 4.

Example 21. Let us specify the Brands and Chaum protocol of Example 19, where
variables are distinct between processes. A nonce is represented as n(A?, f ), whereas
a secret value is represented as s(A?, f ). The identifier of each process is represented
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by a choice variable A?. Recall that there is an arbitrary distance d > 0. Since
participants in this protocol do not make use of their own coordinates, the following
specification is identical to that of Chapter 4.

(Verifier,x,y,z) : −(Commit@t1) ·
+(n(V?, f1)@t2) ·
−((n(V?, f1)⊕NP)@t3) ·
if t3−̇t2 ≤ 2∗d
then −(SP@t4) ·

if open(NP,SP,Commit)
then −(sign(P,n(V?, f1);NP⊕n(V?, f1))@t5)

(Prover,x,y,z) : +(commit(n(P?, f1),s(P?, f2))@t1) ·
−(NV @t2) ·
+((NV ⊕n(P?, f1))@t3) ·
+(s(P?, f2)@t4) ·
+(sign(P?,NV ;n(P?, f1)⊕NV )@t5)

Example 22. Let us specify the secure localization protocol of Example 20 for four
beacons. The timestamp is represented by variable t.

(Bei,x,y,z) : −(t@t1) ·
+(((t−̇t1) ; x ; y)@t2) ·
−((ok@t3) ·nilP

(Ba,x,y,z) : −((t ′1 ; x1 ; y1)@t1) ·
−((t ′2 ; x2 ; y2)@t2) ·
−((t ′3 ; x3 ; y3)@t3) ·
−((t ′4 ; x4 ; y4)@t4) ·
if ∃dx,dy : (t ′1)

2 = (dx− x1)
2 +(dy− y1)

2∧
(t ′2)

2 = (dx− x2)
2 +(dy− y2)

2∧
(t ′3)

2 = (dx− x3)
2 +(dy− y3)

2∧
(t ′4)

2 = (dx− x4)
2 +(dy− y4)

2 then +(ok@t5) else nilP

5.3.2 Time and Space Intruder Model

The active Dolev-Yao intruder model is followed, which implies that an in-
truder can intercept, forward, or create messages from received messages. We
assume that intruders are located and cannot change their location, as in Chap-
ter 4. In particular, they cannot change the physics of the metric space, e.g.,
cannot send messages from a different location or intercept a message that it
is not within range.
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In our time and space intruder model, we consider several located intrud-
ers, each with its own coordinates, with a family of capabilities (concatenation,
deconcatenation, encryption, decryption, etc.), and each capability may have
arbitrarily many instances. The combined actions of two intruders requires
time, i.e., their distance; but a single intruder can perform many actions in
zero time1. Note that, unlike in the standard Dolev-Yao model, we cannot
assume just one intruder, since the time required for a principal to commu-
nicate with a given intruder is an observable characteristic of that intruder.
Thus, although the Mafia fraud and distance hijacking attacks of the Brands
and Chaum protocol and the insecure and secure configurations of the secure
localization protocol only require one intruder, the framework itself allows gen-
eral participant configurations with multiple intruders; although one intruder
co-located with each honest participant is enough [97].

Example 23. In our timed process algebra, the family of capabilities associated to an
intruder k are also described as processes. For instance, concatenating two received
messages is represented by the process2

(k.Conc,x,y,z) : −(X@t1) ·−(Y @t2) ·+(X ;Y @t3)

and extracting one of them from a concatenation is described by the processes

(k.DeconcLeft,x,y,z) : −(X ;Y @t1) ·+(X@t2)

(k.DeconcRight,x,y,z) : −(X ;Y @t1) ·+(X@t2)

Roles of intruder capabilities include the identifier of the intruder, and it is possible
to combine several intruder capabilities from the same or from different intruders.
For example, we may say that the +(X ;Y @t) of a process I1.Conc associated to an
intruder I1 may be synchronized with the −(X ;Y @t ′) of a process I2.DeconcLeft
associated to an intruder I2. The physical space determines that t ′ = t + d(I1, I2),
where d(I1, I2)> 0 if I1 6= I2 and d(I1, I2) = 0 if I1 = I2.

As presented in Chapter 4, a special forwarding intruder capability, not consid-
ered in the standard Dolev-Yao model, has to be included in order to take into account
the time travelled by a message from an honest participant to the intruder and later
to another participant, possibly another intruder.

(k.Forward,x,y,z) : −(X@t1) ·+(X@t2)
1Adding time cost to single-intruder actions could be done with additional time constraints, but is

outside the scope of this paper.
2Time variables t1, t2, t3 as well as its coordinates are not actually used by the intruder but could be

in the future.
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5.3.3 Time and Space Process Semantics

A state of a protocol P consists of a set of (possibly partially executed) labeled
processes, a set of terms in the network {Net}, and the global clock. That is,
a state is a term of the form {LP1 & · · ·&LPn | {Net} | t̄}.

In Chapter 4, the only time information available to a process is the vari-
able T associated to input and output messages M@T ; the global clock is
inaccessible. However, once these messages have been sent or received, we
included them in the network Net with extra information. When a message
M@T is sent, we stored M @ (A : t→ /0) denoting that message M was sent by
process A at the global time clock t, and propagated T 7→ t within the process
A. When this message is received by an action M′@T ′ of process B (honest
participant or intruder) at the global clock time t ′, M is matched against M′

modulo the cryptographic functions, T ′ 7→ t ′ is propagated within the process
B, and B : t ′ is added to the stored message, following the general pattern
M @ (A : t→ (B1 : t1 · · ·Bn : tn)).

In our new time and space process algebra, we simply annotate stored
messages with the coordinates from where the message was sent and, when the
message is received by another process, we calculate actual distances between
the stored coordinates and the coordinates of the current process. When a
message M@T is sent by process (A,x,y,z), we store M @ (A : x,y,z, t → /0)
denoting that message M was sent at the global time clock t from location
(x,y,z). When this message is received by an action M′@T ′ of process B (honest
participant or intruder) at the global clock time t ′, M is matched against M′

modulo the cryptographic functions, T ′ 7→ t ′ is propagated within the process
B, and B : t ′ is added to the stored message, following the general pattern
M @ (A : x,y,z, t→ (B1 : t1 · · ·Bn : tn)). No reception coordinates are stored, but
we check that process B is reachable from process A at distance t ′− t, i.e.,
(t ′− t)2 = (Bx−Ax)

2 +(By−Ay)
2 +(Bz−Az)

2.
The rewrite theory (ΣTPAP+State,ETPAP

,RTPAP
) characterizes the behavior

of a protocol P, where ΣTPAP+State extends ΣTPAP , by adding state constructor
symbols. We assume that a protocol run begins with an empty state, i.e., a
state with an empty set of labeled processes, an empty network, and at time
zero. Therefore, the initial empty state is always of the form { /0 | { /0} | 0.0}.
Note that, in a specific run, all the distances are provided a priori according
to the Euclidean space and a chosen topology, whereas in a symbolic analysis,
they will be represented by variables, probably occurring within space and
time constraints.
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State changes are defined by a set RTPAP
of rewrite rules given below.

Each transition rule in RTPAP
is labeled with a tuple (ro, i, j,a,n, t), where:

• ro is the role of the labeled process being executed in the transition.

• i denotes the instance of the same role being executed in the transition.

• j denotes the process’ step number since its beginning.

• a is a ground term identifying the action that is being performed in
the transition. It has different possible values: “+m” or “−m” if the
message m was sent (and added to the network) or received, respectively;
“m” if the message m was sent but did not increase the network, “?” if
the transition performs an explicit non-deterministic choice, “T” if the
transition performs an explicit deterministic choice, “Time" when the
global clock is incremented, or “New" when a new process is added.

• n is a number that, if the action that is being executed is an explicit
choice, indicates which branch has been chosen as the process continu-
ation. In this case n takes the value of either 1 or 2. If the transition
does not perform any explicit choice, then n = 0.

• t is the global clock at each transition step.

Note that in the transition rules RTPAP
shown below, Net denotes the

network, represented by a set of messages of the form M @ (A : x,y,z, t→ (B1 :
t1 · · ·Bn : tn)), P denotes the rest of the process being executed and PS denotes
the rest of labeled processes of the state (which can be the empty set /0).

• Sending a message is represented by the two transition rules below, de-
pending on whether the message M is stored, (TPA++), or is just dis-
carded, (TPA+). In (TPA++), we store the sent message with its sending
information, (ro, i) : t̄, and add an empty set for those who will be receiv-
ing the message in the future (Mσ ′@(ro, i) : x,y,z, t̄→ /0).
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{(ro, i, j,x,y,z) (+M@t ·P) & PS | {Net} | t̄}
−→(ro,i, j,+(Mσ ′),0,t̄)

{(ro, i, j+1,x,y,z) Pσ
′ & PS | {(Mσ

′@(ro, i) : x,y,z, t̄→ /0),Net} | t̄}
if (Mσ

′ : (ro, i) : x,y,z, t̄→ /0) /∈Net
where σ is a ground substitution binding choice variables in M

and σ
′ = σ ]{t 7→ t̄} (TPA++)

{(ro, i, j,x,y,z) (+M@t ·P) & PS | {Net} | t̄}
−→(ro,i, j,Mσ ′,0,t̄)

{(ro, i, j+1,x,y,z) Pσ
′ & PS | {Net} | t̄}

where σ is a ground substitution binding choice variables in M
and σ

′ = σ ]{t 7→ t̄} (TPA+)

• Receiving a message is represented by the transition rule below. We
add the reception information to the stored message, i.e., we replace
(M′@((ro′,k) : x′,y′,z′, t ′→AS)) by (M′@((ro′,k) : x′,y′,z′, t ′→ (AS](ro, i) :
t̄)).

{(ro, i, j,x,y,z) (−(M@t) ·P) & PS |
{(M′@((ro′,k) : x′,y′,z′, t ′→ AS)),Net} | t̄}

−→(ro,i, j,−(Mσ ′),0,t̄)

{(ro, i, j+1,x,y,z) Pσ
′ & PS |

{(M′@((ro′,k) : x′,y′,z′, t ′→ (AS] (ro, i) : t̄)),Net} | t̄}
IF ∃σ : M′ =EP

Mσ , t̄ = t ′+d((x,y,z),(x′,y′,z′)),σ ′ = σ ]{t 7→ t̄} (TPA-)

• An explicit deterministic choice is defined as follows. More specifically,
the rule (TPAif1) describes the then case, i.e., if the constraint T is sat-
isfied, then the process continues as P, whereas rule (TPAif2) describes
the else case, that is, if the constraint C is not satisfied, the process
continues as Q.

{(ro, i, j,x,y,z) ((if C then P else Q) ·R) & PS | {Net} | t̄}
−→(ro,i, j,C,1,t̄) {(ro, i, j+1,x,y,z) (P ·R)&PS | {Net} | t̄} IF C (TPAif1)

{(ro, i, j,x,y,z) ((if C then P else Q) ·R) & PS | {Net} | t̄}
−→(ro,i, j,C,2,t̄) {(ro, i, j+1,x,y,z) (Q ·R)&PS | {Net} | t̄} IF ¬C (TPAif2)

• An explicit non-deterministic choice is defined as follows. The process
can continue either as P, denoted by rule (TPA?1), or as Q, denoted by
rule (TPA?2).
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{(ro, i, j,x,y,z) ((P ? Q) ·R) & PS | {Net} | t̄}
−→(ro,i, j,?,1,t̄) {(ro, i, j+1,x,y,z) (P ·R) & PS | {Net} | t̄} (TPA?1)

{(ro, i, j,x,y,z) ((P ? Q) ·R) & PS | {Net} | t̄}
−→(ro,i, j,?,2,t̄) {(ro, i, j+1,x,y,z)(Q ·R) & PS | {Net} | t̄} (TPA?2)

• Global Time advancement is represented by the transition rule below
that increments the global clock enough to make one sent message arrive
to its closest destination.

{PS | {Net} | t̄} −→(⊥,⊥,⊥,Time,0,t̄+t ′) {PS | {Net} | t̄ + t ′}
IF t ′ =mte(PS,Net, t̄)∧ t ′ 6= 0 (PhyTime)

where the function mte is defined as follows:

mte( /0,Net, t̄) = ∞

mte(P&PS,Net, t̄) = min(mte(P,Net, t̄),mte(PS,Net, t̄))

mte((ro, i, j,x,y,z) nilP,Net, t̄) = ∞

mte((ro, i, j,x,y,z) +(M@t) ·P,Net, t̄) = 0

mte((ro, i, j,x,y,z) − (M@t) ·P,Net, t̄) =

min
({

d((x,y,z),(x′,y′,z′)) | (M′@(ro′, i′) : x′,y′,z′, t ′→ AS) ∈ Net
∧∃σ : Mσ =B M′

})
mte((ro, i, j,x,y,z) (if T then P else Q) ·R,Net, t̄) = 0

mte((ro, i, j,x,y,z) P1?P2,Net, t̄) = 0

Note that the function mte evaluates to 0 if some instantaneous action
by the previous rules can be performed. Otherwise, mte computes the
smallest non-zero time increment required for some already sent message
(existing in the network) to be received by some process (by matching
with such an existing message in the network).

Further time and space constraints In [13], the timed process seman-
tics assumed only a metric space with a distance function d : ProcId×
ProcId→ Real such that (i) d(A,A) = 0, (ii) d(A,B) = d(B,A), and (iii)
d(A,B)≤ d(A,C)+d(C,B). For every message M @ (A : t→ (B1 : t1 · · ·Bn :
tn)) stored in the network Net, the semantics ensured that (iv) ti =
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t+d(A,Bi), ∀1≤ i≤ n. Furthermore, according to our wireless communi-
cation model, our semantics assumed (v) a time sequence monotonicity
property, i.e., there is no other process C such that d(A,C) ≤ d(A,Bi)
for some i, 1 ≤ i ≤ n, and C is not included in the set of recipients of
the message M. Also, for each class of attacks such as the Mafia fraud
or the hijacking attack analyzed in Chapter 4, (vi) some extra topology
constraints were necessary (see Figures 5.1 and 5.2).
In our time and space semantics, all those assumptions except (v) are un-
necessary by considering actual coordinates. This simplifies the transfor-
mation of time and space processes into untimed processes of Section 5.4
compared to the transformation presented in Chapter 4.

• New processes can be added as follows.



∀ (ro) Pk ∈ PPA

{PS | {Net} | t̄}
−→(ro,i+1,1,New,0,t̄)
{(ro, i+1,1,x?σ ,y?σ ,z?σ) Pkσρro,i+1 & PS | {Net} | t̄}
where ρro,i+1 is a fresh substitution,

σ is a ground substitution binding x?,y?,z?,
and i = id(PS,ro)


(TPA&)

The auxiliary function id counts the instances of a role

id( /0,ro) = 0

id((ro′, i, j,x,y,z)P&PS,ro) =
{

max(id(PS,ro), i) if ro= ro′
id(PS,ro) if ro 6= ro′

where PS denotes a process configuration, P a process, and ro,ro′ role
names.

Therefore, the behavior of a timed protocol in the process algebra is defined
by the set of transition rules RTPAP

= {(TPA++), (TPA+), (PhyTime), (TPA-),
(TPAif1), (TPAif2), (TPA?1), (TPA?2)}∪ (TPA&).

Example 24. Continuing Example 21, it is possible to create a configuration of the
Brands and Chaum for the mafia attack (which are impossible due to unsatisfiability
of the timing and distance constraints) with a prover p, an intruder i, and a verifier
v. The neighborhood distance is set to d = 1.0, the verifier is at coordinates (0,0,0),
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the prover is at (2,0,0), and the intruder is at (1,0,0). That is, the distance between
the prover and the verifier is d(p,v) = 2.0, but the distance between the prover and
the intruder as well as the distance between the verifier and the intruder are d(v, i) =
d(p, i) = 1.0, i.e., the honest prover p is outside v’s neighborhood, d(v, p)> d, where
d(v, p) = d(v, i)+d(p, i).

Example 25. Continuing Example 22, it is possible to create a configuration of the
beacons protocol where a malicious device is caught cheating. We consider four
beacons at the following positions in two-dimensional space (we omit z = 0): Be1 :
(0,0), Be2 : (4,0), Be3 : (0,3), and Be4 : (4,3). We assume a device at position
(4,6). If the device is honest and sends the right timestamp, the distances d1,d2,d3,d4
computed by each beacon are

d1 =
√
(4−0)2 +(6−0)2 =

√
16+36 =

√
52,

d2 =
√

(4−4)2 +(6−0)2 =
√

36 = 6,

d3 =
√

(4−0)2 +(6−3)2 =
√

16+9 =
√

25 = 5,

d4 =
√

(4−4)2 +(6−4)2 =
√

9 = 3

the base station receives the distances and the beacons positions and computes the
following set of equations

52 = (x−0)2 +(y−0)2

36 = (x−4)2 +(y−0)2

25 = (x−0)2 +(y−3)2

9 = (x−3)2 +(y−3)2

and it is not difficult to calculate x and y by Gaussian elimination:

x = ((36+16−36)+16)/8 = (16+16)/8 = 4

y = ((52−25)+9)/6 = (27+9)/6 = 36/6 = 6

If the device is malicious and sends the original timestamp plus 1 unit, the dis-
tances d1,d2,d3,d4 computed by each beacon are d1 =

√
52− 1, d2 = 6− 1 = 5,

d3 = 5−1 = 4, and d4 = 3−1 = 2. But when plugged in the previous equations, it is
easy to check that the device is lying.
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As it already happened in Chapter 4 with our timed protocol semantics,
our new time and space protocol semantics can be implemented straightfor-
wardly as a simulation tool. Note, however, that, since the number of different
topologies is infinite, model checking a protocol for a concrete configuration
with a simulation tool is very limited, since it cannot prove the absence of an
attack for all topologies. For this reason, we follow a symbolic approach that
can explore all relevant configurations.

In the following section we provide a sound and complete protocol trans-
formation from our time and space process algebra to the untimed process
algebra with constraints of the Maude-NPA tool, in a similar manner to the
protocol transformation provided in Chapter 4. In order to do this, we repre-
sent time and location information as well as those constraints checked by the
participants as real arithmetic constraints. As a path is built, an SMT solver
can be used to check that the constraints are satisfiable as we did in [13] only
for time.

5.4 Time and Space Process Algebra into Untimed Process
Algebra

In this section, we extend the general constraint satisfiability approach of
Chapter 4 where all possible (not only some) runs are symbolically analyzed.
This time and space semantics provides both a trace-based insecure statement,
i.e., a run leading to an insecure secrecy or authentication property where
all constraints are satisfiable is discovered given enough resources, and an
unsatisfiability-based secure statement, i.e., there is no run leading to an in-
secure secrecy or authentication property due to time and space constraint
unsatisfiability.

Example 26. Consider again the initial configuration for the Brands-Chaum proto-
col of Example 24. We can abstract away from the specific locations and just use
logical variables for the coordinates of the prover (px, py), the verifier (vx,vy), and
the intruder (ix, iy). Then, it is possible to obtain a symbolic trace using logical vari-
ables t̄0, . . . , t̄6 where the following time constraints are accumulated:

t1 = t0 +d((px, py),(ix, iy))

t2 = t1 +d((vx,vy),(ix, iy))

t3 = t2 +d((vx,vy),(ix, iy))
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t4 = t3 +d((px, py),(ix, iy))

t5 = t4 +d((px, py),(ix, iy))

t6 = t5 +d((vx,vy),(ix, iy))

Note that these constraints are unsatisfiable when combined with (i) the assumption
d > 0, (ii) the verifier check t̄6− t̄2 ≤ 2∗d, (iii) the assumption that the honest prover
is outside the verifier’s neighborhood, d((px, py),(vx,vy)) > d, (iv) the triangular
inequality d((px, py),(vx,vy)) ≤ d((px, py),(ix, iy)) + d((vx,vy),(ix, iy)), and (v) the
assumption that there is only one intruder.

Example 27. Consider again the initial configuration for the beacons protocol of
Example 25. Again, we can abstract away from the specific locations and just put
logical variables for the coordinates of the four beacons x1,x2,x3,x4,y1,y2,y3,y4,
the base station (but they are irrelevant) and the malicious device dx,dy. Then, it
is possible to obtain a symbolic trace using logical variables t0, . . . , t4 and the sent
timestamp t where the following time and space constraints are accumulated:

t1 = t0 +d((dx,dy),(x1,y1))

t2 = t0 +d((dx,dy),(x2,y2))

t3 = t0 +d((dx,dy),(x3,y3))

t4 = t0 +d((dx,dy),(x4,y4))

(t− t1)2 = (dx− x1)
2 +(dy− y1)

2

(t− t2)2 = (dx− x2)
2 +(dy− y2)

2

(t− t3)2 = (dx− x3)
2 +(dy− y3)

2

(t− t4)2 = (dx− x4)
2 +(dy− y4)

2

It is easy to check that a malicious device will be caught if t 6= t0.

As explained previously, there are some implicit conditions based on the
mte function to calculate the time increment to the closest destination of a
message. However, the mte function is unnecessary in the untimed process
algebra, where those implicit conditions are incorporated into the symbolic
run. In the following, we define a transformation of the time and space pro-
cess algebra by (i) removing the global clock; (ii) adding the time data into
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untimed messages of a process algebra without time; (iii) adding the coordi-
nates of each process to the untimed messages of a process algebra without
space information; and (iv) adding real arithmetic conditions over the reals
for the time and location constraints (those generated by the time and space
semantics and those checked by the processes).

Since all the relevant time information is actually stored in messages of the
form M @ (A : x,y,z, t→ (B1 : t1 · · ·Bn : tn)) and controlled by the transition rules
(TPA++),(TPA+), and (TPA-), the mapping phy2pa of Definition 11 below trans-
forms each message M@t of a timed process into a message M @ (A : x?,y?,z?, t?→
AS?) of an untimed process. That is, we use a timed choice variable t? for the
sending time, choice variables x?,y?,z? for the coordinates and a variable AS?
for the reception information (B1 : t ′1 · · ·Bn : t ′n) associated to the sent message.
The transformation below ensures that the choice variables for the coordinates
are all the same within the messages of the untimed process. Since choice vari-
ables are replaced by specific values, t?,x?,y?,z? and AS? will be replaced by
the appropriate values that make the execution and all its time and space con-
straints possible. Note that these choice variables will be replaced by logical
variables during the symbolic execution.

Definition 11 (Adding Real Variables and Time and Space Constraints). The map-
ping phy2pa from time and space processes into untimed processes and its auxiliary
mapping phy2pa* is defined as follows:

phy2pa( /0) = /0
phy2pa((ro,i, j,x,y,z)P & PS) = (ro,i, j)phy2pa*(P,ro,i,x,y,z) & phy2pa(PS)

phy2pa*(nilP,ro, i,x,y,z) = nilP
phy2pa*( +(M@t) . P,ro, i,x,y,z) =
+(M@((ro, i) : x?,y?,z?, t?→ AS?)) . phy2pa*(Pγ,ro, i,x,y,z)

where γ = {t 7→ t?}
phy2pa*( −(M@t) . P,ro, i,x,y,z) =
− (M@((ro′, i′) : x′,y′,z′, t ′→ ((ro, i) : t)]AS)) .
if t = t ′+d((x?,y?,z?),(x′,y′,z′)) then phy2pa*(P,ro, i) else nilP

phy2pa*( (if C then P else Q) . R,ro,i,x,y,z)
= (if C then phy2pa*(P,ro,i,x,y,z) else phy2pa*(Q,ro,i,x,y)) . phy2pa*(R,ro,i,x,y,z)

phy2pa*( (P ? Q) . R,ro,i,x,y,z)
= (phy2pa*(P,ro,i,x,y,z) ? phy2pa*(Q,ro,i,x,y,z)) . phy2pa*(R,ro,i,x,y,z)

where t? and AS? are choice variables different for each one of the sending ac-
tions, x?,y?,z? are always the same variables for all sending or receiving actions,
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ro′, i′, t ′,d,x′,y′,z′,AS are pattern variables different for each one of the receiving
actions, P, Q, and R are processes, M is a message, and C is a constraint.

The soundness and completeness proof of this transformation is almost
identical to the soundness and completeness proof of Chapter 4, available at
https://arxiv.org/abs/2010.13707, since it just replaces time constraints by
the time and space constraints associated to the expression d((x,y,z),(x′,y′,z′)).

Example 28. The time and space processes of Example 21 are transformed into the
following untimed processes. We remove the “else nilP" branches for clarity.

(Verifier) : −(Commit @ A1 : x1,y1,z1, t ′1→ V? : t1]AS1) ·
if t1 = t ′1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0 then
+(n(V?, f1) @ V? : x?,y?,z?, t2?→ AS2?) ·
−((n(V?, f1)⊕NP) @ A3 : x3,y3,z3, t ′3→ V? : t3]AS3) ·
if t3 = t ′3 +d((x3,y3,z3),(x?,y?,z?))∧d((x3,y3,z3),(x?,y?,z?))≥ 0 then
if t3−̇t2? ≤ 2∗d then
−(SP @ A4 : x4,y4,z4, t ′4→ V? : t4]AS4) ·
if t4 = t ′4 +d((x4,y4,z4),(x?,y?,z?))∧d((x4,y4,z4),(x?,y?,z?))≥ 0 then
if open(NP,SP,Commit) then
−(sign(P,n(V?, f1);NP⊕n(V?, f1)) @ A5 : x5,y5,z5, t ′5→ V? : t5]AS5) ·
if t5 = t ′5 +d((x5,y5,z5),(x?,y?,z?))∧d((x5,y5,z5),(x?,y?,z?))≥ 0 then
nilP

(Prover) : +(commit(n(P?, f1),s(P?, f2))@P? : x?,y?,z?, t1?→ AS1?) ·
−(V ;NV @ A2 : x2,y2,z2, t ′2→ V? : t2]AS2) ·
if t2 = t ′2 +d((x2,y2,z2),(x?,y?,z?))∧d((x2,y2,z2),(x?,y?,z?))≥ 0 then
+((NV ⊕n(P?, f1))@P? : x?,y?,z?, t3?→ AS3?) ·
+(s(P?, f2)@P? : x?,y?,z?, t4?→ AS4?) ·
+(sign(P?,NV ;n(P?, f1)⊕NV )@P? : x?,y?,z?, t5?→ AS5?))

Example 29. The time and space processes of Example 23 for the intruder are trans-
formed into the following untimed processes. Note that we use the intruder identifier
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I associated to each role instead of a choice variable I?.

(I.Conc) : −(X@ A1 : x1,y1,z1, t1→ I : t ′1]AS1) ·
if t ′1 = t1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0 then
−(Y @ A2 : x2,y2,z2, t2→ I : t ′2]AS2) ·
if t ′2 = t2 +d((x2,y2,z2),(x?,y?,z?))∧d((x2,y2,z2),(x?,y?,z?))≥ 0 then
+(X ;Y @I : x?,y?,z?, t3?→ AS?)

(I.DeconcLeft) : −(X ;Y @ A1 : x1,y1,z1, t1→ I : t ′1]AS1) ·
if t ′1 = t1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0 then
+(X@I : x?,y?,z?, t2?→ AS?)

(I.Forward) : −(X@ A1 : x1,y1,z1, t1→ I : t ′1]AS1) ·
if t ′1 = t1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0 then
+(X@I : x?,y?,z?, t2?→ AS?)

Example 30. The time and space processes of Example 22 are transformed into the
following untimed processes. We remove the “else nilP" branches for clarity.

(Bei,x,y,z) : −(t@x1,y1,z1, t ′1→ Be? : t1]AS1) ·
if t1 = t ′1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0 then
+(((t−̇t1) ; x? ; y?)@x?,y?,z?, t2→ AS2?) ·
−((ok@x3,y3,z3, t ′3→ Be? : t3]AS3) ·
if t3 = t ′3 +d((x3,y3,z3),(x?,y?,z?))∧d((x3,y3,z3),(x?,y?,z?))≥ 0 then
nilP

(Ba,x,y,z) : −((t ′1 ; x′1 ; y′1)@x1,y1,z1, t ′1→ Ba? : t1]AS1) ·
if t1 = t ′1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0 then
−((t ′2 ; x′2 ; y′2)@x2,y2,z2, t ′2→ Ba? : t2]AS2) ·
if t2 = t ′2 +d((x2,y2,z2),(x?,y?,z?))∧d((x2,y2,z2),(x?,y?,z?))≥ 0 then
−((t ′3 ; x′3 ; y′3)@x3,y3,z3, t ′3→ Ba? : t3]AS3) ·
if t3 = t ′3 +d((x3,y3,z3),(x?,y?,z?))∧d((x3,y3,z3),(x?,y?,z?))≥ 0 then
−((t ′4 ; x′4 ; y′4)@x4,y4,z4, t ′4→ Ba? : t4]AS4) ·
if t4 = t ′4 +d((x4,y4,z4),(x?,y?,z?))∧d((x4,y4,z4),(x?,y?,z?))≥ 0 then
if ∃dx,dy : (t ′1)

2 = (dx− x′1)
2 +(dy− y′1)

2∧
(t ′2)

2 = (dx− x′2)
2 +(dy− y′2)

2∧
(t ′3)

2 = (dx− x′3)
2 +(dy− y′3)

2∧
(t ′4)

2 = (dx− x′4)
2 +(dy− y′4)

2

then +(ok@x?,y?,z?, t5→ AS5?)

Once a time and space process is transformed into an untimed process
with time and location variables and time and locations constraints using the

141



notation of Maude-NPA, we can easily adapt the soundness and complete-
ness proof of Chapter 4, which relies on both a soundness and completeness
proof from the Maude-NPA process notation into Maude-NPA forward rewrit-
ing semantics and on a soundness and completeness proof from Maude-NPA
forward rewriting semantics into Maude-NPA backwards symbolic semantics,
see [114, 115]. Since the Maude-NPA backwards symbolic semantics already
considers constraints in a very general setting [57], we only need to perform
the additional satisfiability check for real polynomial arithmetic.

5.5 Timed Process Algebra into Strands in Maude-NPA

This section is provided to help in understanding the experimental work. Al-
though Maude-NPA accepts protocol specifications in either the process al-
gebra notation or the strand space notation, its output is given in the stand
space notation. Thus, in order to make our experiments easier to understand,
we describe the translation from untimed processes with time and space con-
straints into untimed strands with time and location variables and time and
space constraints. This translation is also sound and complete, as it replicates
the transformation of [114,115].

Strands [62] are used in Maude-NPA to represent both the actions of hon-
est principals (with a strand specified for each protocol role) and those of
an intruder (with a strand for each action an intruder is able to perform
on messages). In Maude-NPA strands evolve over time. The symbol | is
used to divide past and future. That is, given a strand [ msg±1 , . . . , msg±i |
msg±i+1, . . . , msg±k ], messages msg±1 , . . . ,msg±i are the past messages, and mes-
sages msg±i+1, . . . ,msg±k are the future messages (msg±i+1 is the immediate future
message). Constraints can be also inserted into strands. A strand [msg±1 , . . . ,
msg±k ] is shorthand for [nil | msg±1 , . . . ,msg±k ,nil]. An initial state is a state
where the bar is at the beginning for all strands in the state, and the net-
work has no possible intruder fact of the form m∈I . A final state is a state
where the bar is at the end for all strands in the state and there is no negative
intruder fact of the form m /∈I .

In the following, we illustrate how the untimed process algebra can be
transformed into strands specifications of Maude-NPA for our two running
examples. We simply replaced · by comma, and each if-then-else by its boolean
constraint.
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Example 31. The untimed processes of Example 28 are transformed into the follow-
ing strands.

(Verifier) : [−(Commit @ A1 : x1,y1,z1, t ′1→ V? : t1]AS1),

(t1 = t ′1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0),
+(n(V?, f1) @ V? : x?,y?,z?, t2?→ AS2?),

−((n(V?, f1)⊕NP) @ A3 : x3,y3,z3, t ′3→ V? : t3]AS3),

(t3 = t ′3 +d((x3,y3,z3),(x?,y?,z?))∧d((x3,y3,z3),(x?,y?,z?))≥ 0),
(t3−̇t2? ≤ 2∗d),
−(SP @ A4 : x4,y4,z4, t ′4→ V? : t4]AS4),

(t4 = t ′4 +d((x4,y4,z4),(x?,y?,z?))∧d((x4,y4,z4),(x?,y?,z?))≥ 0),
open(NP,SP,Commit),
−(sign(P,n(V?, f1);NP⊕n(V?, f1)) @ A5 : x5,y5,z5, t ′5→ V? : t5]AS5),

(t5 = t ′5 +d((x5,y5,z5),(x?,y?,z?))∧d((x5,y5,z5),(x?,y?,z?))≥ 0)]

(Prover) : [+(commit(n(P?, f1),s(P?, f2))@P? : x?,y?,z?, t1?→ AS1?),

−(V ;NV @ A2 : x2,y2,z2, t ′2→ V? : t2]AS2),

(t2 = t ′2 +d((x2,y2,z2),(x?,y?,z?))∧d((x2,y2,z2),(x?,y?,z?))≥ 0),
+((NV ⊕n(P?, f1))@P? : x?,y?,z?, t3?→ AS3?),

+(s(P?, f2)@P? : x?,y?,z?, t4?→ AS4?),

+(sign(P?,NV ;n(P?, f1)⊕NV )@P? : x?,y?,z?, t5?→ AS5?))]

Example 32. The untimed processes of Example 30 are transformed into the follow-
ing strands.

(Bei,x,y,z) : [−(t@x1,y1,z1, t ′1→ Be? : t1]AS1),

(t1 = t ′1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0),
+(((t−̇t1) ; x? ; y?)@x?,y?,z?, t2→ AS2?),

−((ok@x3,y3,z3, t ′3→ Be? : t3]AS3),

(t3 = t ′3 +d((x3,y3,z3),(x?,y?,z?))∧d((x3,y3,z3),(x?,y?,z?))≥ 0)]
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(Ba,x,y,z) : [−((t ′1 ; x′1 ; y′1)@x1,y1,z1, t ′1→ Ba? : t1]AS1),

(t1 = t ′1 +d((x1,y1,z1),(x?,y?,z?))∧d((x1,y1,z1),(x?,y?,z?))≥ 0),
−((t ′2 ; x′2 ; y′2)@x2,y2,z2, t ′2→ Ba? : t2]AS2),

(t2 = t ′2 +d((x2,y2,z2),(x?,y?,z?))∧d((x2,y2,z2),(x?,y?,z?))≥ 0),
−((t ′3 ; x′3 ; y′3)@x3,y3,z3, t ′3→ Ba? : t3]AS3),

(t3 = t ′3 +d((x3,y3,z3),(x?,y?,z?))∧d((x3,y3,z3),(x?,y?,z?))≥ 0),
−((t ′4 ; x′4 ; y′4)@x4,y4,z4, t ′4→ Ba? : t4]AS4),

(t4 = t ′4 +d((x4,y4,z4),(x?,y?,z?))∧d((x4,y4,z4),(x?,y?,z?))≥ 0),
(t ′1)

2 = (dx− x′1)
2 +(dy− y′1)

2∧
(t ′2)

2 = (dx− x′2)
2 +(dy− y′2)

2∧
(t ′3)

2 = (dx− x′3)
2 +(dy− y′3)

2∧
(t ′4)

2 = (dx− x′4)
2 +(dy− y′4)

2


+(ok@x?,y?,z?, t5→ AS5?)]

We specify the desired security properties in terms of attack patterns in-
cluding logical variables, which describe the insecure states that Maude-NPA is
trying to prove unreachable. The specifications, outputs, and a modified ver-
sion of Maude-NPA are available at http://personales.upv.es/sanesro/
guttman2021. Specifically, the tool attempts to find a backwards narrowing
sequence path from the attack pattern to an initial state until it can no longer
form any backwards narrowing steps, at which point it terminates. If it has
not found an initial state, the attack pattern is judged unreachable.

The following examples show how a classic mafia fraud attack for the
Brands-Chaum protocol can be specified in Maude-NPA’s strand notation.
Note that Maude-NPA uses symbol === for equality on the reals, +=+ for
addition on the reals, *=* for multiplication on the reals, and -=- for sub-
traction on the reals. Extra time and space constraints are included in an
smt section. In general, Maude-NPA requires an SMT solver that supports
checking quadratic constraints over the reals, such as Yices [5], Z3 [8], or
Mathematica [4].

Example 33. Following the strand specification of the Brands-Chaum protocol given
in Example 31, the mafia attack of Example 19 is given as the following attack pat-
tern. We consider one prover p, one verifier v, and one intruder i at fixed locations
(px, py, pz), (vx,vy,vz) and (ix, iy, iz), respectively. Brands-Chaum is secure against
the mafia fraud attack and no initial state is found in the backwards search.

eq ATTACK-STATE(1) --- Mafia fraud
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= :: r :: ---Alice --- Verifier
[ nil,
-(commit(n(b,r1),s(b,r2)) @ i : ix,iy,iz,t1 -> a : t2),
((t2 === t1 +=+ dai) and (dai > 0/1) and
((dai *=* dai) === (((ix -=- ax) *=* (ix -=- ax)) +=+ ((iy -=- ay) *=* (iy -=- ay)))

+=+ ((iz -=- az) *=* (iz -=- az)))),
+(n(a,r) @ a : ax,ay,az,t2 -> i : t2'''),
-(n(a,r) * n(b,r1) @ i : ix,iy,iz,t3 -> a : t4),
((t4 === (t3 +=+ dai)) and (dai > 0/1) and
(((t4 -=- t2) <= (2/1 *=* d)) and (d > 0/1)) | nil ]

&
:: r1,r2 :: ---Bob --- Prover
[ nil,
+(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1' -> i : t1''),
-(n(a,r) @ i : ix,iy,iz,t2'' -> b : t3'),
((t3' === (t2'' +=+ dbi)) and (dbi > 0/1) and
((dbi *=* dbi) === ((((ix -=- bx) *=* (ix -=- bx)) +=+ ((iy -=- by) *=* (iy -=- by)))

+=+ ((iz -=- bz) *=* (iz -=- bz))))),
+(n(a,r) * n(b,r1) @ b : bx,by,bz,t3' -> i : t3'') | nil ]
|| smt(((dai +=+ dbi) > d) and (dbi > 0/1) and (dab > 0/1) and (dai > 0/1) and

((dab *=* dab) === ((((ax -=- bx) *=* (ax -=- bx)) +=+
((ay -=- by) *=* (ay -=- by))) +=+ ((az -=- bz) *=* (az -=- bz)))))

Example 34. Continuing Example 33, the hijacking attack of Example 19 is given
as the following attack pattern. And the backwards search of Maude-NPA from this
attack pattern does find an initial state.

eq ATTACK-STATE(2) --- Hijacking
= :: r :: --- Alice --- Verifier
[ nil,
-(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1 -> a : t2),
((t2 === t1 +=+ dab) and (dab > 0/1) and
((dab *=* dab) === (((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))

+=+ ((az -=- bz) *=* (az -=- bz)))),
+(n(a,r) @ a : ax,ay,az,t2 -> b : t3 # i : t2''),
-(n(a,r) * n(b,r1) @ b : bx,by,bz,t3 -> a : t4 # i : t4''),
((t4 === t3 +=+ dab)),
((t4 -=- t2) <= (2/1 *=* d)),
-(s(b,r2) @ b : bx,by,bz,t5 -> a : t6),
((t6 === t5 +=+ dab)),
-(sign(i,(n(a,r) * n(b,r1)) ; n(a,r)) @ i : ix,iy,iz,t7 -> a : t8),
((t8 === (t7 +=+ dai)) and (dai > 0/1) and
((dai *=* dai) === (((ax -=- ix) *=* (ax -=- ix)) +=+ ((ay -=- iy) *=* (ay -=- iy)))

+=+ ((az -=- iz) *=* (az -=- iz))))
| nil ]

&
:: r1,r2 :: ---Bob --- Prover
[ nil,
+(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1 -> a : t2),
-(n(a,r) @ a : ax,ay,az,t2 -> b : t3 # i : t3''),
((t3 === (t2 +=+ dab)) and (dab > 0/1) and
((dab *=* dab) === (((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))
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+=+ ((az -=- bz) *=* (az -=- bz)))),
+(n(a,r) * n(b,r1) @ b : bx,by,bz,t3 -> a : t4 # i : t4''),
+(s(b,r2) @ b : bx,by,bz,t5 -> a : t6) | nil]

|| smt( (dai > d) and (dab <= d))

Example 35. Following the strand specification of the beacons protocol given in
Example 32, we can give a very general attack pattern.

eq ATTACK-STATE(0) =
:: r :: --- Intruder
[ nil, +(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4) | nil ]
&
:: r1 :: --- Beacon 1
[ nil ,
-(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4),
((t1 === t0 +=+ dbe1) and (dbe1 > 0/1) and
((dbe1 *=* dbe1) === (((be1x -=- x1) *=* (be1x -=- x1))

+=+ ((be1y -=- y1) *=* (be1y -=- y1))) +=+ ((be1z -=- z1) *=* (be1z -=- z1)))),
+((t1 -=- t) ; be1x ; be1y @ Be1 : be1x,be1y,be1z,t1 -> Ba : t1'),
-(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1'' # Be2 : t2'' # Be3 : t3'' # Be4 : t4''),
((t1'' === t5 +=+ dbabe1) and (dbabe1 > 0/1) and
((dbabe1 *=* dbabe1) === (((be1x -=- bax) *=* (be1x -=- bax))

+=+ ((be1y -=- bay) *=* (be1y -=- bay))) +=+ ((be1z -=- baz) *=* (be1z -=- baz))))
| nil]

&
:: r2 :: --- Beacon 2
[ nil ,
-(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4),
((t2 === t0 +=+ dbe2) and (dbe2 > 0/1) and
((dbe2 *=* dbe2) === (((be2x -=- x1) *=* (be2x -=- x1))

+=+ ((be2y -=- y1) *=* (be2y -=- y1))) +=+ ((be2z -=- z1) *=* (be2z -=- z1)))),
+((t2 -=- t) ; be2x ; be2y @ Be2 : be2x,be2y,be2z,t2 -> Ba : t2'),
-(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1'' # Be2 : t2'' # Be3 : t3'' # Be4 : t4''),
((t2'' === t5 +=+ dbabe2) and (dbabe2 > 0/1) and
((dbabe2 *=* dbabe2) === (((be2x -=- bax) *=* (be2x -=- bax))

+=+ ((be2y -=- bay) *=* (be2y -=- bay))) +=+ ((be2z -=- baz) *=* (be2z -=- baz))))
| nil]

&
:: r3 :: --- Beacon 3
[ nil ,
-(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4),
((t3 === t0 +=+ dbe3) and (dbe3 > 0/1) and
((dbe3 *=* dbe3) === (((be3x -=- x1) *=* (be3x -=- x1))

+=+ ((be3y -=- y1) *=* (be3y -=- y1))) +=+ ((be3z -=- z1) *=* (be3z -=- z1)))),
+((t3 -=- t) ; be3x ; be3y @ Be3 : be3x,be3y,be3z,t3 -> Ba : t3'),
-(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1'' # Be2 : t2'' # Be3 : t3'' # Be4 : t4''),
((t3'' === t5 +=+ dbabe3) and (dbabe3 > 0/1) and
((dbabe3 *=* dbabe3) === (((be3x -=- bax) *=* (be3x -=- bax))
+=+ ((be3y -=- bay) *=* (be3y -=- bay))) +=+ ((be3z -=- baz) *=* (be3z -=- baz))))
| nil]

&
:: r4 :: --- Beacon 4
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[ nil ,
-(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4),
((t4 === t0 +=+ dbe4) and (dbe4 > 0/1) and
((dbe4 *=* dbe4) === (((be4x -=- x1) *=* (be4x -=- x1))

+=+ ((be4y -=- y1) *=* (be4y -=- y1))) +=+ ((be4z -=- z1) *=* (be4z -=- z1)))),
+((t4 -=- t) ; be4x ; be4y @ Be4 : be4x,be4y,be4z,t4 -> Ba : t4'),
-(ok(r') @ Ba : bax,bay,baz,t5 -> Be1 : t1'' # Be2 : t2'' # Be3 : t3'' # Be4 : t4''),
((t4'' === t5 +=+ dbabe4) and (dbabe4 > 0/1) and
((dbabe4 *=* dbabe4) === (((be4x -=- bax) *=* (be4x -=- bax))

+=+ ((be4y -=- bay) *=* (be4y -=- bay))) +=+ ((be4z -=- baz) *=* (be4z -=- baz))))
| nil]

&
:: r' :: --- Base Station
[ nil ,
-((t1 -=- t) ; be1x ; be1y @ Be1 : be1x,be1y,be1z,t1 -> Ba : t1'),
((t1' === t1 +=+ dbabe1) and (dbabe1 > 0/1) and
((dbabe1 *=* dbabe1) === (((be1x -=- bax) *=* (be1x -=- bax))

+=+ ((be1y -=- bay) *=* (be1y -=- bay))) +=+ ((be1z -=- baz) *=* (be1z -=- baz)))),
-((t2 -=- t) ; be2x ; be2y @ Be2 : be2x,be2y,be2z,t2 -> Ba : t2'),
((t2' === t2 +=+ dbabe2) and (dbabe2 > 0/1) and
((dbabe2 *=* dbabe2) === (((be2x -=- bax) *=* (be2x -=- bax))

+=+ ((be2y -=- bay) *=* (be2y -=- bay))) +=+ ((be2z -=- baz) *=* (be2z -=- baz)))),
-((t3 -=- t) ; be3x ; be3y @ Be3 : be3x,be3y,be3z,t3 -> Ba : t3'),
((t3' === t3 +=+ dbabe3) and (dbabe3 > 0/1) and
((dbabe3 *=* dbabe3) === (((be3x -=- bax) *=* (be3x -=- bax))

+=+ ((be3y -=- bay) *=* (be3y -=- bay))) +=+ ((be3z -=- baz) *=* (be3z -=- baz)))),
-((t4 -=- t) ; be4x ; be4y @ Be4 : be4x,be4y,be4z,t4 -> Ba : t4'),
((t4' === t4 +=+ dbabe4) and (dbabe4 > 0/1) and
((dbabe4 *=* dbabe4) === (((be4x -=- bax) *=* (be4x -=- bax))

+=+ ((be4y -=- bay) *=* (be4y -=- bay))) +=+ ((be4z -=- baz) *=* (be4z -=- baz)))),
(((t1 -=- t) *=* (t1 -=- t)) === (((dx -=- be1x) *=* (dx -=- be1x))

+=+ ((dy -=- be1y) *=* (dy -=- be1y))) and
((t2 -=- t) *=* (t2 -=- t)) === (((dx -=- be2x) *=* (dx -=- be2x))

+=+ ((dy -=- be2y) *=* (dy -=- be2y))) and
((t3 -=- t) *=* (t3 -=- t)) === (((dx -=- be3x) *=* (dx -=- be3x))

+=+ ((dy -=- be3y) *=* (dy -=- be3y))) and
((t4 -=- t) *=* (t4 -=- t)) === (((dx -=- be4x) *=* (dx -=- be4x))

+=+ ((dy -=- be4y) *=* (dy -=- be4y)))),
+(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1'' # Be2 : t2'' # Be3 : t3'' # Be4 : t4''),
(t5 >= t1' and t5 >= t2' and t5 >= t3' and t5 >= t4') | nil]

|| smt((t =/== t0))

The insecure configuration of Figure 5.4 is now obtained by just adding extra
constraints to the attack pattern: (i) fixing concrete locations for the beacons in a
hyperbola, (ii) adding the distances from the malicious device to the beacons, (iii)
adding the distances inferred by the beacons from the malicious device, and (iv)
adjusting the sent timestamp to differ from the actual sending time in the appropriate
amount to fake the base station. And the backwards search of Maude-NPA from this
attack pattern does find an initial state.

smt( --- hyperbola with a^2 = 4, b^2 = 5, c^2 = 9
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(t > t0) and (t0 === 0/1) and (z1 === 0/1) and
(be1z === 0/1) and (be2z === 0/1) and (be3z === 0/1) and
(be4z === 0/1) and (baz === 0/1) and
((be1x === 3/1) and (be1y === 5/2)) and
((be2x === 3/1) and (be2y === -(5/2))) and
((be3x === 4/1) and ((be3y *=* be3y) === 60/4) and (be3y > 0/1)) and
((be4x === 4/1) and ((be4y *=* be4y) === 60/4) and (be4y < 0/1)) and
(x1 === -(3/1)) and (dx === 3/1) and (dy === y1) and (y1 === 0/1))

The secure configuration of Figure 5.5 is now obtained by just adding extra con-
straints to the attack pattern: (i) fixing concrete locations for the beacons in a rect-
angle for a parametric height and width, and (ii) asking whether the timestamp is
different from the sending time.

smt( (t =/== t0) and (t >= 0/1) and z1 === 0/1 and baz === 0/1 and
be1z === 0/1 and be2z === 0/1 and be3z === 0/1 and be4z === 0/1 and
(h > 0/1) and (v > 0/1) and (be1x === 0/1) and (be1y === 0/1) and
(be2x === be1x) and (be2y === be1y +=+ v) and
(be3x === be1x +=+ h) and (be3y === be1y) and
(be4x === be1x +=+ h) and (be4y === be1y +=+ v))

Our analysis of this protocol uncovered some interesting challenges that would need
to be addressed in future research. When we gave the constraints to the SMT solvers,
including Yices [5] and Z3 [8], which support non-linear real arithmetic, none of
them were able to prove that they were unsatisfiable. It was not until we simplified
them by hand by using Gaussian elimination on the matrix defined by the coefficients
of the constraints, producing the set of constraints given below, that we were able
to get one solver, Mathematica [4], to prove unsatisfiability. This suggest that more
research is needed on heuristics for preprocessing the types of constraints that arise
from reasoning about time and space protocols so that they can be handled by avail-
able SMT solvers.

5.6 Conclusions

We have extended our previous paper with a time model for protocols using
time constraints to a time and space model for protocol analysis based on
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timing and space constraints. We have also extended our previous prototype
of Maude-NPA handling protocols with time to handle time and space by
taking advantage of Maude’s support of SMT solvers, and Maude-NPA’s sup-
port of constraint handling. We have used the Brands and Chaum protocol
to illustrate how this extension is natural and smoothly subsumes our pre-
vious time-only framework, and a secure localization protocol with complex
location and time constraints. This approach should be applicable to other
tools that support constraint handling. There are several ways this work can
be extended, as suggested within the paper. And there are many interest-
ing protocols that can be tested with this time and space model, for example
protocols using the Message Time Of Arrival Codes (MTACs) of [79].
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CHAPTER 6

Variant-based Equational Unification under Constructor
Symbols
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Abstract Equational unification of two terms consists of finding a substitution
that, when applied to both terms, makes them equal modulo some equa-
tional properties. A narrowing-based equational unification algorithm
relying on the concept of the variants of a term is available in the most
recent version of Maude, version 3.0, which provides quite sophisticated
unification features. A variant of a term t is a pair consisting of a sub-
stitution σ and the canonical form of tσ . Variant-based unification is
decidable when the equational theory satisfies the finite variant prop-
erty. However, this unification procedure does not take into account
constructor symbols and, thus, may compute many more unifiers than
the necessary or may not be able to stop immediately. In this paper, we
integrate the notion of constructor symbol into the variant-based unifi-
cation algorithm. Our experiments on positive and negative unification
problems show an impressive speedup.
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6.1 Introduction

Equational unification of two terms is of special relevance to many areas in
computer science, including logic programming, and consists of finding a sub-
stitution that, when applied to both terms, makes them equal modulo some
equational properties. Several algorithms have been developed in the litera-
ture for specific equational theories, such as associative-commutative symbols,
exclusive-or, Diffie-Hellman, or Abelian Groups (see [15]). Narrowing was
proved to be complete for unification [68] and several cases have been stud-
ied where narrowing provides a decidable unification algorithm [11, 12]. A
narrowing-based equational unification algorithm relying on the concept of
the variants of a term [38] has been developed in [60] and it is available in the
most recent version of Maude, version 3.0, which provides quite sophisticated
unification features [35,46].

Several tools and techniques rely on Maude’s advanced unification capabili-
ties, such as termination [47] and local confluence and coherence [48,49] proofs,
narrowing-based theorem proving [104] or testing [103], and logical model
checking [16, 58]. The area of cryptographic protocol analysis has also ben-
efited from advanced unification algorithms: Maude-NPA [55], Tamarin [45]
and AKISS [17] rely on the different unification features of Maude. Further-
more, numerous decision procedures for formula satisfiability modulo equa-
tional theories also rely on unification, either based on narrowing [111] or by
using variant generation in finite variant theories [91].

Constructor symbols are extensively used in computer science: for repre-
senting data instead of functions, for manipulating programs as data, or for
reasoning in complex semantic structures. In an equational theory, construc-
tors can be characterized in the ”no junk, no confusion" style of Goguen and
Burstall [28], providing the mathematical semantics of the equational theory
as the initial algebra of a Maude functional module, which corresponds to the
least Herbrand model in logic programming (see [35]). However, this more
general notion of constructor differs from the “logic" notion of a functor and
the “functional" notion of a symbol not appearing in the root position of the
left-hand side of any equation. The notion of a constructor symbol has not
yet been integrated into the variant-based equational unification procedure of
Maude and, thus, it may compute many more unifiers than the necessary or
it may not be able to stop immediately. In this paper, we integrate the no-
tion of constructor symbol into the variant-based unification algorithm with
an impressive speedup.
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After some preliminaries in Section 6.2, we recall variant-based unification
in Section 6.3. In Section 6.4, we define our new unification algorithm that
reduces the total execution time. Our experiments in Section 6.5 show that
this improved unification algorithm works well in practice. We conclude in
Section 6.6.

6.2 Preliminaries

We follow the classical notation and terminology from [18] for term rewriting,
from [15] for unification, and from [86] for rewriting logic and order-sorted
notions.

We assume an order-sorted signature Σ = (S,≤,Σ) with a poset of sorts
(S,≤). The poset (S,≤) of sorts for Σ is partitioned into equivalence classes,
called connected components, by the equivalence relation (≤∪≥)+. We assume
that each connected component [s] has a top element under ≤, denoted >[s]
and called the top sort of [s]. This involves no real loss of generality, since
if [s] lacks a top sort, it can be easily added. We also assume an S-sorted
family X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite.
T

Σ
(X )s is the set of terms of sort s, and T

Σ,s is the set of ground terms of sort
s. We write T

Σ
(X ) and T

Σ
for the corresponding order-sorted term algebras.

Given a term t, V ar(t) denotes the set of variables in t.
Positions are represented by sequences of natural numbers denoting an

access path in the term when viewed as a tree. The top or root position
is denoted by the empty sequence Λ. We define the relation p ≤ q between
positions as p≤ p for any p; and p≤ p.q for any p and q. Given U ⊆ Σ∪X ,
PosU(t) denotes the set of positions of a term t that are rooted by symbols or
variables in U . The set of positions of a term t is written Pos(t), and the set of
non-variable positions PosΣ(t). The subterm of t at position p is t|p and t[u]p
is the term t where t|p is replaced by u.

A substitution σ ∈S ubst(Σ,X ) is a sorted mapping from a finite subset
of X to T

Σ
(X ). Substitutions are written as σ = {X1 7→ t1, . . . ,Xn 7→ tn} where

the domain of σ is Dom(σ) = {X1, . . . ,Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to T

Σ
(X ). The application of a substitution

σ to a term t is denoted by tσ or σ(t). For simplicity, we assume that every
substitution is idempotent, i.e., σ satisfies Dom(σ)∩Ran(σ) = /0. The restric-
tion of σ to a set of variables V is σ |V , i.e., ∀x ∈V , σ |V (x) = σ(x) and ∀x 6∈V ,
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σ |V (x) = x. Composition of two substitutions σ and σ ′ is denoted by σ ◦σ ′.
Combination of two substitutions σ and σ ′ such that Dom(σ)∩Dom(σ ′) = /0
is denoted by σ ∪σ ′. We call a substitution σ a variable renaming if there is
another substitution σ−1 such that (σσ−1)|Dom(σ) = id.

A Σ-equation is an unoriented pair t = t ′, where t, t ′ ∈T
Σ
(X )s for some sort

s∈ S. An equational theory (Σ,E) is a pair with Σ an order-sorted signature and
E a set of Σ-equations. Given Σ and a set E of Σ-equations, order-sorted equa-
tional logic induces a congruence relation =E on terms t, t ′ ∈T

Σ
(X ) (see [87]).

We say σ1 =E σ2 iff σ1(x) =E σ2(x) for any variable x. Throughout this paper
we assume that T

Σ,s 6= /0 for every sort s, because this affords a simpler deduc-
tion system. An equational theory (Σ,E) is regular if for each t = t ′ in E, we
have V ar(t) = V ar(t ′). An equational theory (Σ,E) is linear if for each t = t ′ in
E, each variable occurs only once in t and in t ′. An equational theory (Σ,E) is
sort-preserving if for each t = t ′ in E, each sort s, and each substitution σ , we
have tσ ∈T

Σ
(X )s iff t ′σ ∈T

Σ
(X )s. An equational theory (Σ,E) is defined us-

ing top sorts if for each equation t = t ′ in E, all variables in V ar(t) and V ar(t ′)
have a top sort. Given two terms t and t ′, we say t is more general than t ′,
denoted as t wE t ′, if there is a substitution η such that tη =E t ′. Similarly,
given two substitutions σ and ρ, we say σ is more general than ρ for a set
W of variables, denoted as σ |W wE ρ|W , if there is a substitution η such that
(σ ◦η)|W =E ρ|W . The wE relation induces an equivalence relation 'E , i.e.,
t 'E t ′ iff t wE t ′ and t vE t ′.

An E-unifier for a Σ-equation t = t ′ is a substitution σ such that tσ =E t ′σ .
For V ar(t)∪V ar(t ′) ⊆W , a set of substitutions CSUW

E (t = t ′) is said to be
a complete set of unifiers for the equality t = t ′ modulo E away from W iff:
(i) each σ ∈ CSUW

E (t = t ′) is an E-unifier of t = t ′; (ii) for any E-unifier ρ

of t = t ′ there is a σ ∈ CSUW
E (t = t ′) such that σ |W wE ρ|W ; and (iii) for all

σ ∈ CSUW
E (t = t ′), Dom(σ)⊆ (V ar(t)∪V ar(t ′)) and Ran(σ)∩W = /0. Given a

conjunction Γ of equations, a set U of E-unifiers of Γ is said to be minimal
if it is complete and for all distinct elements σ and σ ′ in U , σ wE σ ′ implies
σ =E σ ′. A unification algorithm is said to be finitary and complete if it always
terminates after generating a finite and complete set of unifiers. A unification
algorithm is said to be minimal and complete if it always returns a minimal
and complete set of unifiers.

A rewrite rule is an oriented pair l → r, where l 6∈X and l,r ∈ T
Σ
(X )s

for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a
set of rewrite rules. The set R of rules is sort-decreasing if for each t → t ′ in
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R, each s ∈ S, and each substitution σ , t ′σ ∈ T
Σ
(X )s implies tσ ∈ T

Σ
(X )s.

The rewriting relation on T
Σ
(X ), written t →R t ′ holds between t and t ′ iff

there exist p ∈ PosΣ(t), l→ r ∈ R and a substitution σ , such that t|p = lσ , and
t ′ = t[rσ ]p. The relation →R/E on T

Σ
(X ) is =E ;→R;=E . The transitive (resp.

transitive and reflexive) closure of →R/E is denoted →+
R/E (resp. →∗R/E).

Reducibility of →R/E is undecidable in general since E-congruence classes
can be arbitrarily large. Therefore, R/E-rewriting is usually implemented by
R,E-rewriting under some conditions on R and E such as confluence, termi-
nation, and coherence (see [69, 89, 92]). A relation →R,E on T

Σ
(X ) is defined

as: t →R,E t ′ iff there is a non-variable position p ∈ PosΣ(t), a rule l → r in
R, and a substitution σ such that t|p =E lσ and t ′ = t[rσ ]p. The narrowing
relation  R,E on T

Σ
(X ) is defined as: t σ

 R,E t ′ iff there is a non-variable po-
sition p ∈ PosΣ(t), a rule l→ r in R, and a substitution σ such that t|pσ =E lσ
and t ′ = (t[r]p)σ . We call (Σ,B,E) a decomposition of an order-sorted equa-
tional theory (Σ,E ]B) if B is regular, linear, sort-preserving, defined using top
sorts, and has a finitary and complete unification algorithm, and equations E
are oriented into rules −→E such that they are sort-decreasing and convergent,
i.e., confluent, terminating, and strictly coherent modulo B [48, 80, 89]. The
irreducible version of a term t is denoted by t↓E,B.

Given a decomposition (Σ,B,E) of an equational theory and a term t, a pair
(t ′,θ) of a term t ′ and a substitution θ is an E,B-variant (or just a variant) of
t if tθ↓E,B=B t ′ and θ↓E,B=B θ [38,60]. A complete set of E,B-variants [60] (up
to renaming) of a term t is a subset, denoted by [[t]]~E,B, of the set of all E,B-
variants of t such that, for each E,B-variant (t ′,σ) of t, there is an E,B-variant
(t ′′,θ) ∈ [[t]]~E,B such that (t ′′,θ)wE,B (t ′,σ), i.e., there is a substitution ρ such
that t ′ =E t ′′ρ and σ |V ar(t) =E (θρ)|V ar(t). A decomposition (Σ,B,E) has the
finite variant property (FVP) [60] (also called a finite variant decomposition)
iff for each Σ-term t, there exists a complete and finite set [[t]]~E,B of variants
of t. Note that whether a decomposition has the finite variant property is
undecidable [26], but a technique based on the dependency pair framework
has been developed in [60] and a semi-decision procedure that works well in
practice is available in [33].

6.3 Variant-based Equational Unification in Maude 3.0

Rewriting logic [86] is a flexible semantic framework within which different
concurrent systems can be naturally specified (see [88]). Rewriting Logic is
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efficiently implemented in the high-performance system Maude [35], which
has itself a formal environment of verification tools thanks to its reflective
capabilities (see [36,88]).

Maude 3.0 offers quite sophisticated symbolic capabilities (see [90] and ref-
erences therein). Among these symbolic features, equational unification [35]
is a twofold achievement. On the one hand, Maude provides an order-sorted
equational unification command for any combination of symbols having any
combination of associativity, commutativity, and identity [46]. This is re-
markable, since there is no other system with such an advanced unification
algorithm. On the other hand, a narrowing-based equational unification algo-
rithm relying on the concept of the variants [38] of a term is also available.
A variant of a term t is a pair consisting of a substitution σ and the canoni-
cal form of tσ . Narrowing was proved to be complete for unification in [68],
but variant-based unification is decidable when the equational theory satisfies
the finite variant property [38, 60]. The finite variant property has become
an essential property in some research areas, such as cryptographic protocol
analysis, where Maude-NPA [55], Tamarin [45] and AKISS [17] rely on the
different unification features of Maude.

Let us make explicit the relation between variants and equational unifica-
tion. First, we define the intersection of two sets of variants. Without loss of
generality, we assume in this paper that each variant pair (t ′,σ) of a term t
uses new freshly generated variables.

Definition 12 (Variant Intersection). [60] Given a decomposition (Σ,B,E) of an
equational theory, two Σ-terms t1 and t2 such that W∩ = V ar(t1) ∩ V ar(t2) and
W∪ = V ar(t1)∪V ar(t2), and two sets V1 and V2 of variants of t1 and t2, respec-
tively, we define V1∩V2 = {(u1σ ,θ1σ ∪θ2σ ∪σ) | (u1,θ1) ∈V1∧ (u2,θ2) ∈V2∧∃σ :
σ ∈ CSUW∪

B (u1 = u2)∧ (θ1σ)|W∩ =B (θ2σ)|W∩}.

Then, we define variant-based unification as the computation of the vari-
ants of the two terms in a unification problem and their intersection.

Corollary 2 (Finitary E -unification). [60] Let (Σ,B,E) be a finite variant decompo-
sition of an equational theory. Given two terms t, t ′, the set CSU∩E∪B(t = t ′) = {θ |
(w,θ) ∈ [[t]]~E,B∩ [[t ′]]~E,B} is a finite and complete set of unifiers for t = t ′.

The most recent version 3.0 of Maude [35] incorporates variant-based unifi-
cation based on the folding variant narrowing strategy [60]. First, there exists
a variant generation command of the form:
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get variants [ n ] in ModId : Term .

where n is an optional argument providing a bound on the number of variants
requested, so that if the cardinality of the set of variants is greater than the
specified bound, the variants beyond that bound are omitted; and ModId is
the identifier of the module where the command takes place. Second, there
exists a variant-based unification command of the form:

variant unify [ n ] in ModId : T1 =? T1' /\ ... /\ Tk =? Tk' .

where k≥ 1 and n is an optional argument providing a bound on the number of
unifiers requested, so that if there are more unifiers, those beyond that bound
are omitted; and ModId is the identifier of the module where the command
takes place.

Example 36. Consider the following equational theory for exclusive-or that assumes
three extra constants a, b, and c. The second equation is necessary for coherence
modulo AC.

fmod EXCLUSIVE-OR is
sorts Elem EXor .
subsort Elem < EXor .
ops a b c : -> Elem .
op mt : -> EXor .
op _*_ : EXor EXor -> EXor [assoc comm] .
vars X Y Z U V : [EXor] .
eq [idem] : X * X = mt [variant] .
eq [idem-Coh] : X * X * Z = Z [variant] .
eq [id] : X * mt = X [variant] .

endfm

The attribute variant specifies that these equations will be used for variant-based
unification. Since this theory has the finite variant property (see [38, 60]), given the
term X * Y it is easy to verify that there are seven most general variants.

Maude> get variants in EXCLUSIVE-OR : X * Y .

Variant #1 ... Variant #7
[EXor]: #1:[EXor] * #2:[EXor] ... [EXor]: %1:[EXor]
X --> #1:[EXor] ... X --> %1:[EXor]
Y --> #2:[EXor] ... Y --> mt
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Note that Maude produces fresh variables of the form #n:Sort or %n:Sort using
two different counters (see [35] for details). When we consider a variant unification
problem between terms X ∗Y and U ∗V , there are 57 unifiers:

Maude> variant unify in EXCLUSIVE-OR : X * Y =? U * V .
Unifier #1 ... Unifier #2
X --> %1:[EXor] * %3:[EXor] ... X --> %1:[EXor] * %3:[EXor]
Y --> %2:[EXor] * %4:[EXor] ... Y --> %2:[EXor]
V --> %1:[EXor] * %2:[EXor] ... V --> %1:[EXor] * %2:[EXor]
U --> %3:[EXor] * %4:[EXor] ... U --> %3:[EXor]

However, this variant-based unification algorithm may compute many more
unifiers than the necessary or may not be able to stop immediately. For
instance, it is well-known that unification in the exclusive-or theory is unitary,
i.e., there exists only one most general unifier modulo exclusive-or [71]. For
the unification problem X ∗Y ?

=U ∗V of Example 36, the most general unifier
w.r.t. wE∪B is {X 7→ Y ∗U ∗V}, which should be appropriately written as
σ = {X 7→ Y ′ ∗U ′ ∗V ′,Y 7→ Y ′,U 7→ U ′,V 7→ V ′}. Note that {Y 7→ X ∗U ∗V},
{U 7→ Y ∗ X ∗V}, and {V 7→ Y ∗U ∗ X} are equivalent to the former unifier
w.r.t. wE∪B by composing σ with, respectively, ρ1 = {Y ′ 7→ X ′′ ∗U ′′ ∗V ′′,X ′ 7→
X ′′,U ′ 7→U ′′,V ′ 7→V ′′}, ρ2 = {U ′ 7→Y ′′∗X ′′∗V ′′,X ′ 7→X ′′,Y ′ 7→Y ′′,V ′ 7→V ′′}, and
ρ3 = {V ′ 7→Y ′′∗U ′′∗X ′′,X ′ 7→ X ′′,U ′ 7→U ′′,Y ′ 7→Y ′′}. Similarly, {X 7→U,Y 7→V}
and {X 7→V,Y 7→U} are equivalent to all the previous ones.

Furthermore, since the variants of both terms are generated by Corollary 2,
there may be very simple unification problems such as X ?

= t where the gener-
ation of the variants of t is unnecessary. For example, when unifying terms X
and U ∗V , the variants of U ∗V are generated

Maude> variant unify in EXCLUSIVE-OR : X =? U * V .

Unifier #1 Unifier #2 Unifier #3
X --> %1:[EXor] * %2:[EXor] X --> mt X --> #2:[EXor] * #3:[EXor]
V --> %1:[EXor] V --> #1:[EXor] V --> #1:[EXor] * #2:[EXor]
U --> %2:[EXor] U --> #1:[EXor] U --> #1:[EXor] * #3:[EXor]

Unifier #4 Unifier #5 Unifier #6
X --> #1:[EXor] X --> #1:[EXor] X --> #1:[EXor]
V --> #1:[EXor] * #2:[EXor] V --> #2:[EXor] V --> mt
U --> #2:[EXor] U --> #1:[EXor] * #2:[EXor] U --> #1:[EXor]

Unifier #7
X --> #1:[EXor]
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V --> #1:[EXor]
U --> mt

but it is clear that the simplest, most general unifier is {X 7→U ∗V}. In [59], a
new procedure to reduce the number of variant unifiers in situations like this
was developed. We showed that this new procedure pays off in practice using
both the exclusive-or and the abelian group equational theories.

6.4 Constructor-Root Variant-based Unification

Both the “logic" notion of a functor and the “functional" notion of a con-
structor refer to a symbol not appearing in the root position of the left-hand
side of any predicate or equation. This notion of constructor allows to split
a signature Σ as a disjoint union Σ = D ]C where D are called defined sym-
bols and C are called constructor symbols. In a decomposition (Σ,B,E), the
canonical term algebra CanΣ/(E,B) = {t↓E,B| t ∈ T

Σ
} is typically made of con-

structor terms, but this more general notion of constructor differs from the
“logic" and “functional" notions. A decomposition (Σ,B,E) protects a con-
structor decomposition (C ,BC ,EC ) iff C ⊆ Σ, BC ⊆ B, and EC ⊆ E, and for all
t, t ′ ∈ TC (X ) we have: (i) t =BC t ′ ⇐⇒ t =B t ′, (ii) t = t↓EC ,BC ⇐⇒ t = t↓E,B,
and (iii) CanC /(EC ,BC ) = CanΣ/(E,B)|C . A constructor decomposition (C ,BC , /0)
is called free. For instance, the modular exponentiation property typical of
Diffie-Hellman protocols is defined using two versions of the exponentiation
operator and an auxiliary associative-commutative symbol ∗ for exponents so
that (zx)y = (zy)x = zx∗y. Note that, in the lefthand side of the equation, the
outermost exponentiation operator is defined, whereas the innermost expo-
nentiation operator is constructor.

fmod DH-CFVP is
sorts Exp Elem ElemSet Gen .
subsort Elem < ElemSet .
ops a b c : -> Elem [ctor] .
op exp : Gen ElemSet -> Exp [ctor] .
op exp : Exp ElemSet -> Exp .
op _*_ : ElemSet ElemSet -> ElemSet [assoc comm ctor] .
var X : Gen .
vars Y Z : ElemSet .
eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm
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Note that it may not always be possible to provide a (free) constructor de-
composition, such as Example 36 where the exclusive-or symbol works both
as defined and constructor (see [35] for a detailed discussion). However, it
is common to combine an equational theory with many different additional
constructor symbols, as shown in Section 6.5.

The notion of a constructor symbol has not yet been integrated into the
variant-based equational unification procedure of Maude. An integration of
the notion of constructor involves two challenges. On the one hand, when we
consider the variant unification problem above between terms X and U ∗V ,
the fast unification algorithm of [59] is able to return only one unifier but still
generates all the variants of term U ∗V , unnecessarily consuming resources.
On the other hand, a unification problem between terms f (X ∗Y ) and g(U ∗V )
where f and g are different constructor symbols forces the generation of all
the variants of the terms X ∗Y and U ∗V wasting resources. Let us consider a
unification problem C1[X ]

?
=C2[t] where both C1 and C2 are made of constructor

symbols and either there exists σ s.t. C1[2]σ =B C2[2]σ or there is no such σ .

Definition 13 (Constructor-root Position). Given a decomposition (Σ,B,E) protect-
ing a free constructor decomposition (C ,BC , /0) and given a Σ-term t and a position
p∈Pos(t), we say p is a constructor-root position in t if for all q < p, root(t|q)∈C .

Definition 14 (Constructor-root Variable). Given a Σ-term t and a variable x, we say
x is a constructor-root variable in t if for all p ∈ Posx(t), p is constructor-root in t.

First, we define the case when there exists σ s.t. C1[2]σ =B C2[2]σ . In-
tuitively, a variant unifier σ of t1 and t2 is constructor-root if each variable in
Ran(σ) is under a constructor-root variable of t1 and t2.

Definition 15 (Constructor-root Variant Unifier). Given a decomposition (Σ,B,E)
protecting a free constructor decomposition (C ,BC , /0), two Σ-terms t1 and t2 s.t.
W∩ = V ar(t1) ∩ V ar(t2), W∪ = V ar(t1) ∪ V ar(t2), (u1,θ1) ∈ [[t1]]~E,B, (u2,θ2) ∈
[[t2]]~E,B, and σ ∈ CSUW∪

B (u1 = u2) s.t. (θ1σ)|W∩ =B (θ2σ)|W∩ , the unifier (θ1∪θ2)σ
is called constructor-root if for each x 7→ t ∈σ , either (i) x 7→ t is a variable renaming,
(ii) x is a constructor-root variable in u1 and u2, or (iii) for each x′ 7→ t ′ ∈ σ \{x 7→ t}
(and there exists at least one such binding) s.t. t ′ =B C[t], then x′ is a constructor-root
variable in u1 and u2.

Let us motivate the usefulness of a constructor-root unifier. Given the uni-
fication problem X ?

= V∗U above, the unifier {X 7→%1∗%2, V 7→%1, U 7→%2}
is constructor-root, since X is a constructor-root variable in the left unificand
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and V and U are not constructor-root variables but the variables %1 and %2
used in the bindings of V and U appear in the binding of X. Hence, we can
safely avoid the generation of the variants of V ∗U . Note that the unifier
{X 7→ mt, V 7→ %1, U 7→ %1} is not constructor-root because V and U are not
constructor-root variables and for the bindings V 7→%1 and U 7→%1 there is no
other binding x′ 7→ t ′ such that %1 is a subterm of t ′ and x′ is a constructor-root
variable.

Lemma 16 (Constructor-root Variant Unifier). Given a decomposition (Σ,B,E) pro-
tecting a free constructor decomposition (C ,BC , /0), two Σ-terms t1 and t2 s.t. W∩ =
V ar(t1)∩V ar(t2), W∪ = V ar(t1)∪V ar(t2), (u1,θ1) ∈ [[t1]]~E,B, (u2,θ2) ∈ [[t2]]~E,B,
and a constructor-root variant unifier σ ∈CSUW∪

B (u1 = u2) s.t. (θ1σ)|W∩ =B (θ2σ)|W∩ ,
then ∀(u′1,θ ′1) ∈ [[t1]]~E,B s.t. (u′1,ρ) ∈ [[u1]]~E,B and θ ′1|W∪ =B θ1ρ|W∪ , if there ex-
ists σ ′ ∈ CSUW∪

B (u′1 = u2) s.t. (θ ′1σ ′)|W∩ =B (θ2σ ′)|W∩ , then ((θ1 ∪ θ2)σ)|W∪ and
((θ ′1 ∪ θ2)σ

′)|W∪ are both equational unifiers of t1 and t2 but ((θ1 ∪ θ2)σ)|W∪ wE∪B

((θ ′1∪θ2)σ
′)|W∪ . Similarly for any (u′2,θ

′
2) ∈ [[t2]]~E,B.

Proof 2. By contradiction. Let us assume ∃σ ′ ∈CSUW∪
B (u′1 = u2) s.t. ((θ1∪θ2)σ)|W∪ 6wE∪B

((θ ′1∪θ2)σ
′)|W∪ . First, θ ′1|t1 = θ1|t1ρ|u1 and thus the difference is in σ |u2 and σ ′|u2 .

By the constructor-root property, ∀x 7→ t ∈ σ |u2 either x is a constructor-root variable
in u2 or ∀x′ 7→ t ′ ∈ (σ \ {x 7→ t})|u2 s.t. t ′ =B C[t], x′ is a constructor-root variable
in u2. But then ∀y ∈ V ar(u2), there exist y 7→ w1 ∈ σ |u2 and y 7→ w2 ∈ σ ′|u2 and
(w2,ρ) ∈ [[w1]]~E,B, i.e., σ |u2 wE∪B σ ′|u2 , which contradicts the assumption.

We define the case when there is no σ s.t. C1[2]σ =B C2[2]σ . Intuitively,
two terms that form a constructor-root failure pair will never unify despite
any further variant computation.

Definition 17 (Constructor-root Failure Pair). Given a decomposition (Σ,B,E) pro-
tecting a free constructor decomposition (C ,BC , /0), two Σ-terms t1 and t2 s.t. W∩ =
V ar(t1)∩V ar(t2), W∪=V ar(t1)∪V ar(t2), (u1,θ1)∈ [[t1]]~E,B, and (u2,θ2)∈ [[t2]]~E,B,
the pair (u1,u2) is a constructor-root failure pair if CSUW∪

B (u1 = u2) = /0 and there ex-
ists two constructor contexts C1[2, . . . ,2] and C2[2, . . . ,2], terms v1, . . . ,vn,w1, . . . ,wm,
and fresh distinct variables x1, . . . ,xn,y1, . . . ,ym s.t. u1 =B C1[v1, . . . ,vn], u2 =B C2[w1, . . . ,wm],
and CSUW∪

B (C1[x1, . . . ,xn] =C2[y1, . . . ,ym]) = /0 .

Let us motivate the usefulness of a constructor-root failure pair. Given
the unification problem f(X∗Y) ?

= g(V∗U) above where f and g are different
constructor symbols without axioms, the two terms do not unify modulo the
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axioms of ∗ but neither f (W ) and g(W ′) do. Hence, we can safely avoid the
generation of the variants of V ∗U and X ∗Y .

Lemma 18 (Constructor-root Failure Pair). Given a decomposition (Σ,B,E) pro-
tecting a free constructor decomposition (C ,BC , /0), two Σ-terms t1 and t2 s.t. W∪ =
V ar(t1)∪V ar(t2), (u1,θ1)∈ [[t1]]~E,B, (u2,θ2)∈ [[t2]]~E,B, and (u1,u2) is a constructor-
root failure term, then CSUW∪

E∪B(u1 = u2) = /0.

Proof 3. Immediate by Definition 17.

These positive and negative stopping criteria, however, become useful only
if we do not generate all the variants a priori, as it is done in Corollary 2 as
well as the fast unification technique of [59]. Some incremental generation of
variants is required.

Example 37. Consider the following theory where constructors have the ctor at-
tribute.

fmod FASTvsCR is sort S .
ops a b c : -> S [ctor] .
op s : S -> S [ctor] .
op g : S S -> S .
op f : S S S -> S .
vars X Y Z W : S .
eq f(a,X,Y) = s(Y) [variant] .
eq f(b,X,Y) = g(X,Y) [variant] .
eq g(c,Y) = s(Y) [variant] .

endfm

Consider the unification problem (a) f (X ,Y,Z) = s(W ) with only two unifiers and its
variant generation.
variant unify in FG : f(X, Y, Z) =? s(W) .

Unifier #1 Unifier #2
X --> a X --> b
Y --> #2:S Y --> c
Z --> #1:S Z --> %1:S
W --> #1:S W --> %1:S

f(X,Y,Z)
{X7→a}
zz {X7→b} %%

?
= s(W)

s(Z) g(Y,Z)
{Y7→c} ��

s(Z)

Let us assume we have an expression♣ with a considerably large narrowing tree
and two new unification problems (b) f (X ,Y,♣) = s(W ) and (c) f (X ,♣,Z) = s(W ).
Note that the unifiers of (a) are still valid for (b), whereas only the first unifier of (a)
is valid for (c), assuming ♣ never narrows into c. Both the variant-based unification
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command of Maude and the fast command of [59] cannot avoid the computation of♣
in both unification problems (b) and (c). However, the technique described below is
able to avoid the full computation of ♣ in (b), since the two unifiers are constructor-
root, although it cannot avoid the full computation of ♣ in (c).

We extend the notions of constructor-root unifier and constructor-root
failure pair to the pairwise combination of all the variants of a unification
problem.

Definition 19 (Constructor-Root Intersection). Given a decomposition (Σ,B,E) pro-
tecting a free constructor decomposition (C ,BC , /0), two Σ-terms t1 and t2 such that
W∩ = V ar(t1)∩V ar(t2) and W∪ = V ar(t1)∪V ar(t2), and two sets V1 and V2 of
variants of t1 and t2, respectively, we say that an intersection V1∩V2 is constructor-
root if for each leaf (u1,θ1) ∈V1 (resp. (u2,θ2) ∈V2), and for each leaf (u2,θ2) ∈V2
(resp. (u1,θ1) ∈ V1) such that σ ∈ CSUW∪

B (u1 = u2) and (θ1σ)|W∩ =B (θ2σ)|W∩ , we
have (θ1∪θ2)σ is constructor-root.

Definition 20 (Failure Intersection). Given a decomposition (Σ,B,E) protecting a
free constructor decomposition (C ,BC , /0) two Σ-terms t1 and t2 such that W∩ =
V ar(t1)∩V ar(t2) and W∪ = V ar(t1)∪V ar(t2), and two sets V1 and V2 of variants
of t1 and t2, respectively, we say that an intersection V1∩V2 is a failure intersection if
for each leaf (u1,θ1) ∈V1 (resp. (u2,θ2) ∈V2), and for each leaf (u2,θ2) ∈V2 (resp.
(u1,θ1) ∈ V1) such that σ ∈ CSUW∪

B (u1 = u2) and (θ1σ)|W∩ =B (θ2σ)|W∩ , we have
the pair (u1,u2) is a constructor-root failure pair.

The following example shows that the folding variant narrowing trees of
both terms t1, t2 of a unification problem t1 = t2 must be unfolded down to a
frontier where all leaves of t1 are tested for unification with all the leaves of t2.

Example 38. Let us consider Example 37 and the unification problem f (X ,Y,Z) =
f (U,V,W ).

variant unify in FG : f(X, Y, Z) =? f(U, V, W) .

Unifier #1 Unifier #2 Unifier #3 Unifier #4
X --> %1:S X --> a X --> a X --> b
Y --> %2:S Y --> %2:S Y --> #2:S Y --> c
Z --> %3:S Z --> %1:S Z --> #1:S Z --> #1:S
U --> %1:S U --> a U --> b U --> a
V --> %2:S V --> %3:S V --> c V --> #2:S
W --> %3:S W --> %1:S W --> #1:S W --> #1:S
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f(X,Y,Z)
{X 7→a}
ww {X7→b} ''

?
= f(U,V,W)

{U7→a}
ww {X7→b} ''

s(Z) g(Y,Z)
{V7→c} ��

s(W) g(V,W)
{V7→c} ��

s(Z) s(W)

The terms at the top position of both narrowing trees clearly unify, but the unifier
is not constructor-root, so we must continue expanding both narrowing trees. The
condition that all leaves of t1 are unifiable with all the leaves of t2 is reached only
at depth 2. Indeed, if we expand the left unificand completely but the right unificand
only down to the leftmost branch, then the two leaves of the narrowing tree of the left
unificand unify with the leftmost leaf of the narrowing tree of the right unificand, but
we may miss the last two unifiers reported above if we stop here.

We define variant-based unification as the computation of the variants of
the two terms in a unification problem. We abuse the notation and write
P([[t]]~E,B) for the powerset of all the subsets of [[t]]~E,B such that each V ∈
P([[t]]~E,B) corresponds to the variants of a term t associated to a particular
narrowing tree produced by the folding variant narrowing strategy from term
t. We also write CSU∩,V1,V2

E∪B (t = t ′) for a version of the unification algorithm of
Corollary 2 that uses sets V1 and V2 of variants of t and t ′, respectively, instead
of generating all the variants.

Definition 21 (Constructor-Root Variant-based Unification). Let (Σ,B,E) be a finite
variant decomposition of an equational theory protecting a free constructor decom-
position (C ,BC , /0). Given two terms t, t ′ and two sets of variants V1 ∈ P([[t]]~E,B),
V2 ∈ P([[t ′]]~E,B), the constructor-root variant unifiers are

CSU∩E∪B(t = t ′) =



/0 if ∃V1 ∈ P([[t]]~E,B),V2 ∈ P([[t ′]]~E,B),
and they are the smallest sets s.t
V1∩V2 is a failure intersection

CSU∩,V1,V2
E∪B (t = t ′) if ∃V1 ∈ P([[t]]~E,B),V2 ∈ P([[t ′]]~E,B),

and they are the smallest sets s.t
V1∩V2 is constructor-root

CSU
∩,[[t]]~E,B,[[t ′]]~E,B
E∪B (t = t ′) otherwise
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Proposition 22 (Constructor-Root Variant-based Unification). Let (Σ,B,E) be a fi-
nite variant decomposition of an equational theory protecting a free constructor de-
composition (C ,BC , /0). Given two terms t, t ′, the set CSU∩E∪B(t = t ′) is a finite and
complete set of unifiers for t = t ′.

Proof 4. By contradiction. Let us assume that CSU∩E∪B(t = t ′) is not a complete set
of unifiers of t and t ′. That is, there exists a unifier ρ ′ ∈ CSU∩E∪B(t = t ′) and there
is no unifier ρ ∈ CSU∩E∪B(t = t ′) s.t. ρ wE∪B ρ ′. By definition, there exist smallest
sets V1 ∈ P([[t]]~E,B), V2 ∈ P([[t ′]]~E,B) s.t. V1∩V2 is constructor-root or a failure pair.
The case of a failure pair is immediate by Lemma 18. Since ρ ′ ∈ CSU∩E∪B(t = t ′),
we have that there exists u1,u2,θ1,θ2,σ s.t. ρ ′ = θ1σ ∪ θ2σ ∪σ , (u1,θ1) ∈ [[t]]~E,B,
(u2,θ2) ∈ [[t ′]]~E,B, σ ∈ CSUW∪

B (u1 = u2), and (θ1σ)|W∩ =B (θ2σ)|W∩ . Since V1 ∩V2
is constructor-root, there must be two leaves (v1,τ1) ∈ V1, (v2,τ2) ∈ V2 and a sub-
stitution τ3 s.t. τ3 ∈ CSUW∪

B (v1 = v2), (τ1τ3)|W∩ =B (τ2τ3)|W∩ , and (τ1 ∪ τ2)τ3 is
constructor-root. Furthermore, the variant (u1,θ1) (resp. (u2,θ2)) is obtained by fur-
ther narrowing of v1 (resp. v2), i.e., (u1,τ

′
1)∈ [[v1]]~E,B and (u2,τ

′
2)∈ [[v2]]~E,B. But then

the conclusion follows, since the statement is ((τ1∪ τ2)τ3)|W∪ wE∪B ((θ1∪θ2)σ)|W∪ .

6.5 Experimental Evaluation

We have performed some experiments with the constructor-root variant-based
unification, which are available at http://safe-tools.dsic.upv.es/cr-mgvu.

All the experiments were conducted on a PC with a 3.3GHz Intel Xeon
E5-1660 and 64GB RAM. We created a battery of 15 different unification
problems for both the exclusive-or and the abelian group theories. These are
among the most complicated cryptographic theories in protocol analysis that
Maude-NPA [55], Tamarin [45] and AKISS [17] can hardly handle. Indeed, the
exclusive-or and the abelian group theories cannot be specified in Maude using
constructor symbols and we introduce arbitrary constructors f1, f2, f3, f4, f5,
where the subindex indicates the number of arguments. This is a common
situation in crypto protocol analysis where the cryptographic properties are
combined with many different additional constructor symbols. Experiments
using other cryptographic theories, such as Diffie-Hellmann exponentiation,
or more traditional programs, such as manipulating complex data structures,
could also have been included but were discarded because the improvement is
less remarkable.

For each problem and theory, we computed: (i) the unifiers using the stan-
dard variant unify command provided by the C++ core system of Maude;
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Unification problem #maude #fast #cr #cr+fast Tmaude Tfast Tcr Tcr+fast

P1 V1
?
=V2 ∗V3 ∗V4 57 1 1 1 50 95 1 1

P2 V1
?
= f3(V2 ∗V3 , f1(V3 ∗V4), f2(V2 , f1(V4))) 61 1 1 1 172 243 2 2

P3 V1 ∗V2
?
=V3 ∗V4 57 8 41 8 9 89 83 131

P4 V1 ∗V2
?
= f2(V3 , f1(V4 ∗V5)) 28 4 4 4 12 18 8 10

P5 f1(a)∗ f1(V1 ∗V2)
?
= f1(b∗V3)∗ f1(c∗V4) 74 54 74 54 53 112 161 268

P6 f1(V1)
?
= f1(V2 ∗V3 ∗ f2(V4 ,V5)) 21 1 1 1 4 17 1 1

P7 f2(V1,V2 ∗V3 ∗V4)
?
= f2(V5 ∗ f1(V6 ∗V7),V8) 1596 1 1 1 3473 41592 9 9

P8 f3(V1 ,V2 ,V3)
?
= f3( f1(V4 ∗V5), f1(V6 ∗V7 ∗V8), f1( f1(V9))) 399 1 1 1 507 3289 8 8

P9 f4(V1,V2 ∗V3 , f1(V2 ∗V4 ∗V5),V3)
?
=

f4( f2(V6 ,V7)∗V6 ,V8,V9 , f1( f1(V10)))
492 14 1 1 122544 61184 14 14

P10 f5(V1 ,V2 ∗V3 ∗V4 , f2(V5 , f1(V3 ∗V4)),V4, f1(V6 ∗V7))
?
=

f5( f2(V8 ,V9),V10 ,V11, f1( f1(V8)),V12)
161 11 1 1 6780 9249 16 16

P11 f1(V1 ∗V2)
?
= f2(V3 ∗V4 ∗V5 , f2(V4 ,V5)) 0 0 0 0 985 125 1 1

P12 f2(V1 ,V2 ∗V3 ∗V4)
?
= f3(V5 ∗ f1(V6 ∗V7),V8 ,V9) 0 0 0 0 2987 57 1 1

P13 f3(V1 ,V2 ,V3 ∗V4)
?
= f2( f1(V5 ∗V6 ∗V7), f1( f1(V8))) 0 0 0 0 468 48 1 1

P14 f4(V1,V2 ∗V3 , f1(V2 ∗V4 ∗V5),V3)
?
=

f3( f2(V6 ,V7)∗V6 ,V8 , f1( f1(V9)))
0 0 0 0 118028 53653 1 1

P15 f5(V1 ,V2 ∗V3 ∗V4 , f2(V5 , f1(V3 ∗V4)),V6, f1(V7 ∗V8))
?
=

f4( f2(V9 ,V10),V11 , f1( f1(V9)),V12)
0 0 0 0 6968 7033 1 1

Table 6.1: Experimental evaluation (exclusive-or)

(ii) the unifiers using the algorithm CSUeE∪B(t = t ′) of [59]; (iii) the unifiers
using the algorithm CSU∩E∪B(t = t ′) of Definition 21, and (iv) the unifiers us-
ing the algorithm CSUeE∪B(t = t ′) obtained from CSU∩E∪B(t = t ′) by replacing
CSU∩,V1,V2

E∪B (t = t ′) with CSUe,V1,V2
E∪B (t = t ′) from [59]. Note that (ii), (iii), and (iv)

are implemented at the metalevel of Maude. We measured both the number
of computed unifiers and the time required for their computation.

Table 6.1 (resp. Table 6.2) shows the results obtained for the exclusive-or
(resp. abelian group) theory. T/O indicates that a generous 4 hours timeout
was reached without any response. The first column describes the unification
problem, while the following #maude, #fast, #cr and #cr+fast columns show the
number of computed unifiers for all four unification algorithms (i), (ii), (iii),
(iv) described above and the columns Tmaude, Tfast, Tcr and Tcr+fast show the
time (in milliseconds) required to execute the unification command. Note that
it is unfair to compare the performance between compiled code (Tmaude col-
umn) and interpreted code (Tfast, Tcr and Tcr+fast columns), i.e., the C++ core
system of Maude and a Maude program using Maude’s metalevel. However,
our constructor-root unification algorithm is able to beat the compiled code
in almost all the unification problems.

Tables 6.1 and 6.2 show that the cr+fast combination is the best choice,
since it combines the benefits of both the fast unification algorithm of [59] and
the new constructor-root unification algorithm cr. For the number of unifiers,
cr always reported less unifiers than Maude except for problem P20, where
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Unification problem #maude #fast #cr #cr+fast Tmaude Tfast Tcr Tcr+fast

P16 V1
?
=V2 +V3 +V4 3702 1 1 1 4344602 5034046 1 1

P17 V1
?
= f3(V2 +V3 , f1(V3 +V4), f2(V2 , f1(V4))) 3789 1 1 1 6956340 5413107 2 2

P18 V1 +V2
?
=V3 +V4 3611 664 3313 664 36258 547115 253078 657746

P19 V1 +V2
?
= f2(V3 , f1(V4 +V5)) 376 8 52 8 26425 5083 366 2000

P20 f1(a)+ f1(V1 +V2)
?
= f1(b+V3)+ f1(c+V4) 316 193 316 193 10202 4175 3161 6976

P21 f1(V1)
?
= f1(V2 +V3 + f2(V4 ,V5)) 158 1 1 1 426 1410 2 2

P22 f2(V1 ,V2 +V3 +V4)
?
= f2(V5 + f1(V6 +V7),V8) - - 1 1 T/O T/O 11 11

P23 f3(V1 ,V2,V3)
?
=

f3( f1(V4 +V5), f1(V6 +V7 +V8), f1( f1(V9)))
- - 1 1 T/O T/O 11 13

P24 f4(V1 ,V2 +V3 , f1(V2 +V4 +V5),V3)
?
=

f4( f2(V6 ,V7)∗V6 ,V8,V9 , f1( f1(V10)))
- - 1 1 T/O T/O 19 19

P25 f5(V1 ,V2+V3+V4, f2(V5, f1(V3+V4)),V4 , f1(V6+V7))
?
=

f5( f2(V8 ,V9),V10,V11, f1( f1(V8)),V12)
- - 1 1 T/O T/O 24 24

P26 f1(V1 +V2)
?
= f2(V3 +V4 +V5 , f2(V4 ,V5)) - 0 0 0 T/O 5594580 1 1

P27 f2(V1,V2 +V3 +V4)
?
= f3(V5 + f1(V6 +V7),V8 ,V9) - 0 0 0 T/O 4399334 1 1

P28 f3(V1,V2 ,V3 +V4)
?
= f2( f1(V5 +V6 +V7), f1( f1(V8))) - 0 0 0 T/O 3757585 1 1

P29 f4(V1 ,V2 +V3 , f1(V2 +V4 +V5),V3)
?
=

f3( f2(V6 ,V7)∗V6 ,V8 , f1( f1(V9)))
- - 0 0 T/O T/O 1 1

P30 f5(V1 ,V2+V3+V4, f2(V5, f1(V3+V4)),V6 , f1(V7+V8))
?
=

f4( f2(V9 ,V10),V11 , f1( f1(V9)),V12)
- - 0 0 T/O T/O 1 1

Table 6.2: Experimental evaluation (abelian group)

both report the same number. However, both the cr and the fast algorithm
are incomparable and cr reported less unifiers than fast in the unification
problems P9 and P10, whereas fast reported less unifiers than cr in the unifica-
tion problems P3,P5,P18,P19,P20. As for the execution time, cr can beat both
Maude and the fast algorithm for almost all the unification problems. Indeed,
unification in the abelian group is so complex that neither Maude nor fast can
terminate in most of the unification problems (e.g., P22,P23,P24,P25, and more),
whereas cr did.

Our best contribution are the non-unifiable problems in the third block
of Tables 6.1 and 6.2. Our new constructor-root unification algorithm imme-
diately terminates, whereas neither Maude nor fast could, as shown in the
unification problems P11,P12,P13,P14,P15,P26,P27,P28,P29,P30.

6.6 Conclusion and Future Work

The variant-based equational unification algorithm implemented in the most
recent version of Maude, version 3.0, may compute many more unifiers than
the necessary or may not be able to stop immediately. Constructor symbols are
extensively used in computer science, but they have not been integrated into
the variant-based equational unification procedure of Maude. In this paper,
we have redefined the variant-based unification algorithm and our experiments
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on some unification problems show an impressive speedup. Especially for non-
unifiable problems, where many resources are wasted.

As far as we know, this is the only research line to reduce the number
of variant unifiers. The closest work is to combine standard unification algo-
rithms with variant-based unification, such as [50,51]. Note that the construc-
tor variant unification of [91] is not connected to our work, since it is based on
a new notion of constructor variant. This is just a step forward on developing
new techniques for improving variant-based unification and we plan to reduce
even more the number of variant unifiers.
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Part III

Conclusions
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CHAPTER 7

Conclusions and Future Work

In this chapter, we describe our conclusions and future work for each publica-
tion in this thesis.

• In Chapter 2, we were able to specify two APIs Yubikey & YubiHSM and
analyze security properties automatically, going beyond the capabilities
of previous work in the literature. This research raised different chal-
lenges to be solved, first, managing Lamport clocks, which give a partial
ordering of events with minimal overhead, second, managing mutable
memory in terms of synchronization messages, and, third, the inclusion
of an ordering between some events. All this combined with the use of
exclusive-or, which complicated things. In the future, we would like to
analyze more APIs and even more challenging problems.

• In Chapter 3, we studied different approaches to overcome the prob-
lem that some cryptographic properties are difficult to handle by re-
cent crypto tools. First, we provided a security protocol transformation,
which relies on the notion of constructor term variant, that can safely
get rid of all cryptographic properties exposed in the set of protocols we
analyzed. The transformed protocols had a better analysis performance
than the original ones. And second, we were able to specify and use
the bilinear pairing theory, which is used in identity-based protocols.
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Both our protocol transformation and the specification of bilinear pair-
ing may be useful for other crypto tools. In the future, we would like
to study other security protocols with cryptographic properties such as
homomorphism.

• In Chapter 4, we expanded the capabilities of the crypto tool Maude-
NPA by modeling the traveled distance time of a message between two
participants. We encoded several security protocols of the family of
Distance Bounding Protocols and, thanks to the connection of Maude-
NPA to a Satisfiability Modulo Theories (SMT) that the Maude System
support, we were to analyze several types of attacks, such as Mafia fraud.
In the future, we would like to consider other families of protocols relying
on distances or traveled time.

• In Chapter 5, we expanded the previous chapter to handle not only time
but also space information. We used the Brands and Chaum protocol
to show how this addition of a location in space is natural and equally
subsumes our last specification of time. This new approach offers the
possibility of describing secure localization protocols with complex lo-
cation and time constraints. In the future, we would like to consider
protocols that use Message Time of Arrival Codes (MTACs).

• In Chapter 6, we introduced a new variant-based equational unifica-
tion algorithm that relies on the notion of constructor symbols. We
considered unification problems for exclusive-or and abelian group the-
ories which are the most complicated cryptographic theories in security
protocol analysis showing an impressive speed-up in the experiments,
especially for non-unifiable problems, where normally many resources
are wasted. In the future, we would like to improve even more these
techniques.
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