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Abstract

Palliative Care (PC) is specialized medical care that aims to improve patients’ quality
of life with serious illnesses. Historically, it has been applied to terminally ill patients,
especially those with oncologic diagnoses. However, current research results suggest
that PC positively affects the quality of life of patients with different conditions. The
current trend on PC is to include non-oncological patients with conditions such as
Chronic Obstructive Pulmonary Disease (COPD), organ function failure or dementia.
However, the identification of patients with those needs is complex, and therefore
alternative tools based on clinical data are required.

The growing demand for PC may benefit from a screening tool to identify patients
with PC needs during hospital admission. Several tools, such as the Surprise Question
(SQ) or the creation of different indexes and scores, have been proposed with varying
degrees of success. Recently, the use of artificial intelligence algorithms, specifically
Machine Learning (ML), has arisen as a potential solution given their capacity to
learn from the Electronic Health Records (EHRs) and with the expectation to provide
accurate predictions for admission to PC programs.

This thesis focuses on creating ML-based digital tools for identifying patients with
palliative care needs at hospital admission. We have used mortality and frailty as the
two clinical criteria for decision-making, being short survival and increased frailty, as
our targets to make predictions. We also have focused on implementing these tools in
clinical settings and studying their usability and acceptance in clinical workflows.

To accomplish these objectives, first, we studied and compared ML algorithms for
one-year survival in adult patients during hospital admission. To do so, we defined
a binary variable to predict, equivalent to the SQ and defined the set of predictive
variables based on literature. We compared models based on Support Vector Mac-
hine (SVM), k-Nearest Neighbours (kNN), Random Forest (RF), Gradient Boosting
Machine (GBM) and Multilayer Perceptron (MLP), attending to their performance,
especially to the Area under the ROC curve (AUC ROC). Additionally, we obtai-
ned information on the importance of variables for tree-based models using the GINI
criterion.

Second, we studied frailty measurement of Quality of Life (QoL) in candidates for
PC intervention. For this second study, we narrowed the age of the population to
elderly patients (≥ 65 years) as the target group. Then we created three different
models: 1) for the adaptation of the one-year mortality model for elderly patients,
2) a regression model to estimate the number of days from admission to death to
complement the results of the first model, and finally, 3) a predictive model for frailty
status at one year. These models were shared with the academic community through
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Abstract

a web application a that allows data input and shows the prediction from the three
models and some graphs with the importance of the variables.

Third, we proposed a version of the 1-year mortality model in the form of an
online calculator. This version was designed to maximize access from professionals
by minimizing data requirements and making the software responsive to the current
technological platforms. So we eliminated the administrative variables specific to the
dataset source and worked on a process to minimize the required input variables while
maintaining high the model’s AUC ROC. As a result, this model retained most of the
predictive power and required only seven bed-side inputs.

Finally, we evaluated the Clinical Decision Support System (CDSS) web tool on
PC with an actual set of users. This evaluation comprised three domains: evaluation
of participant’s predictions against the ML baseline, the usability of the graphical in-
terface, and user experience measurement. A first evaluation was performed, followed
by a period of implementation of improvements and corrections to the platform de-
tected during the interview. Then, the second round of evaluation was executed with
another set of participants. The platform passed the usability test and excelled in user
experience in both rounds. During the validation sessions, the participants indicated
that they felt important to have a predictive tool for palliative care referral in their
daily workflow.

The results of this thesis comprehend part of the technological results of the Europe-
an project InAdvance and have been published in five scientific contributions, including
journals and conferences in the field of medical informatics, information systems and
integrated care.

ahttps://demoiapc.upv.es/
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Resumen

Los Cuidados Paliativos (PC) son cuidados médicos especializados cuyo objetivo es
mejorar la calidad de vida de los pacientes con enfermedades graves. Históricamente,
se han aplicado a los pacientes en fase terminal, especialmente a los que tienen un
diagnóstico oncológico. Sin embargo, los resultados de las investigaciones actuales
sugieren que la PC afecta positivamente a la calidad de vida de los pacientes con
diferentes enfermedades. La tendencia actual sobre la PC es incluir a pacientes no
oncológicos con afecciones como la EPOC, la insuficiencia de funciones orgánicas o
la demencia. Sin embargo, la identificación de los pacientes con esas necesidades es
compleja, por lo que se requieren herramientas alternativas basadas en datos clínicos.

La creciente demanda de PC puede beneficiarse de una herramienta de cribado
para identificar a los pacientes con necesidades de PC durante el ingreso hospitalario.
Se han propuesto varias herramientas, como la Pregunta Sorpresa (SQ) o la creación
de diferentes índices y puntuaciones, con distintos grados de éxito. Recientemente,
el uso de algoritmos de inteligencia artificial, en concreto de Machine Learning (ML),
ha surgido como una solución potencial dada su capacidad de aprendizaje a partir
de las Historias Clínicas Electrónicas (EHR) y con la expectativa de proporcionar
predicciones precisas para el ingreso en programas de PC. Esta tesis se centra en la
creación de herramientas digitales basadas en ML para la identificación de pacientes
con necesidades de cuidados paliativos durante el ingreso hospitalario. Hemos utilizado
mortalidad y fragilidad como los dos criterios clínicos para la toma de decisiones, siendo
la corta supervivencia y la mayor fragilidad nuestros objetivos a predecir. Después,
nos hemos centrado en su implementación en entornos clínicos y hemos estudiado su
usabilidad y aceptación en los flujos de trabajo clínicos.

Esta tesis se centra en la creación de herramientas digitales basadas en ML para la
identificación de pacientes con necesidades de cuidados paliativos en el momento del
ingreso hospitalario. Hemos utilizado la mortalidad y la fragilidad como los dos crite-
rios clínicos para la toma de decisiones, siendo la corta supervivencia y el aumento de
la fragilidad, nuestros objetivos para hacer predicciones. También nos hemos centrado
en la implementación de estas herramientas en entornos clínicos y en el estudio de su
usabilidad y aceptación en los flujos de trabajo clínicos.

Para lograr estos objetivos, en primer lugar, estudiamos y comparamos algoritmos
de ML para la supervivencia a un año en pacientes adultos durante el ingreso hos-
pitalario. Para ello, definimos una variable binaria a predecir, equivalente a la SQ y
definimos el conjunto de variables predictivas basadas en la literatura. Comparamos
modelos basados en Support Vector Machine (SVM), k-Nearest Neighbours (kNN),
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Random Forest (RF), Gradient Boosting Machine (GBM) y Multilayer Perceptron
(MLP), atendiendo a su rendimiento, especialmente al Área bajo la curva ROC (AUC
ROC). Además, obtuvimos información sobre la importancia de las variables para los
modelos basados en árboles utilizando el criterio GINI.

En segundo lugar, estudiamos la medición de la fragilidad de la calidad de vida
(QoL) en los candidatos a la intervención en PC. Para este segundo estudio, redujimos
la franja de edad de la población a pacientes ancianos (≥ 65 años) como grupo objeti-
vo. A continuación, creamos tres modelos diferentes: 1) la adaptación del modelo de
mortalidad a un año para pacientes ancianos, 2) un modelo de regresión para estimar
el número de días desde el ingreso hasta la muerte para complementar los resultados
del primer modelo, y finalmente, 3) un modelo predictivo del estado de fragilidad a
un año. Estos modelos se compartieron con la comunidad académica a través de una
aplicación web b que permite la entrada de datos y muestra la predicción de los tres
modelos y unos gráficos con la importancia de las variables.

En tercer lugar, propusimos una versión del modelo de mortalidad a un año en
forma de calculadora online. Esta versión se diseñó para maximizar el acceso de los
profesionales minimizando los requisitos de datos y haciendo que el software respon-
diera a las plataformas tecnológicas actuales. Así pues, se eliminaron las variables
administrativas específicas de la fuente de datos y se trabajó en un proceso para mi-
nimizar las variables de entrada requeridas, manteniendo al mismo tiempo un ROC
AUC elevado del modelo. Como resultado, este modelo conservó la mayor parte del
poder predictivo y sólo requirió siete variables de entrada obtenibles durante visitas a
pie de cama.

Por último, evaluamos la herramienta web del sistema de apoyo a las decisiones
clínicas (CDSS) en el PC con un conjunto real de usuarios. Esta evaluación compren-
día tres ámbitos: la evaluación de las predicciones de los participantes frente a la línea
de base del ML, la usabilidad de la interfaz gráfica y la medición de la experiencia del
usuario. Se realizó una primera evaluación, seguida de un periodo de implementación
de mejoras y correcciones en la plataforma detectadas durante la entrevista. A conti-
nuación, se ejecutó la segunda ronda de evaluación con otro conjunto de participantes.
La plataforma superó la prueba de usabilidad y destacó en experiencia de usuario
en ambas rondas. Durante las sesiones de validación, los participantes indicaron que
consideraban importante contar con una herramienta predictiva para la derivación de
cuidados paliativos en su flujo de trabajo diario.

Los resultados de esta tesis forman parte de los resultados tecnológicos del pro-
yecto europeo InAdvance y han sido publicados en cinco contribuciones científicas,
incluyendo revistas y conferencias en el campo de la informática médica, los sistemas
de información y la atención integrada.

bhttps://demoiapc.upv.es/
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Resum

Les Cures Pal·liatives (PC) són cures mèdiques especialitzades l’objectiu de les quals
és millorar la qualitat de vida dels pacients amb malalties greus. Històricament, s’han
aplicat als pacients en fase terminal, especialment als quals tenen un diagnòstic onco-
lògic. No obstant això, els resultats de les investigacions actuals suggereixen que les
PC afecten positivament a la qualitat de vida dels pacients amb diferents malalties. La
tendència actual sobre les PC és incloure a pacients no oncològics amb afeccions com
la malaltia pulmonar obstructiva crònica, la insuficiència de funcions orgàniques o la
demència. No obstant això, la identificació dels pacients amb aqueixes necessitats és
complexa, per la qual cosa es requereixen eines alternatives basades en dades clíniques.

La creixent demanda de PC pot beneficiar-se d’una eina de garbellat per a iden-
tificar als pacients amb necessitats de PC durant l’ingrés hospitalari. S’han proposat
diverses eines, com la Pregunta Sorpresa (SQ) o la creació de diferents índexs i pun-
tuacions, amb diferents graus d’èxit. Recentment, l’ús d’algorismes d’intel·ligència
artificial, en concret de Machine Learning (ML), ha sorgit com una potencial solució
donada la seua capacitat d’aprenentatge a partir de les Històries Clíniques Electròni-
ques (EHR) i amb l’expectativa de proporcionar prediccions precises per a l’ingrés en
programes de PC. Aquesta tesi se centra en la creació d’eines digitals basades en ML
per a la identificació de pacients amb necessitats de cures pal·liatives durant l’ingrés
hospitalari. Hem utilitzat mortalitat i fragilitat com els dos criteris clínics per a la
presa de decisions, sent la curta supervivència i la major fragilitat els nostres objectius
a predir. Després, ens hem centrat en la seua implementació en entorns clínics i hem
estudiat la seua usabilitat i acceptació en els fluxos de treball clínics.

Aquesta tesi se centra en la creació d’eines digitals basades en ML per a la iden-
tificació de pacients amb necessitats de cures pal·liatives en el moment de l’ingrés
hospitalari. Hem utilitzat la mortalitat i la fragilitat com els dos criteris clínics per a
la presa de decisions, sent la curta supervivència i l’augment de la fragilitat, els nostres
objectius per a fer prediccions. També ens hem centrat en la implementació d’aquestes
eines en entorns clínics i en l’estudi de la seua usabilitat i acceptació en els fluxos de
treball clínics.

Per a aconseguir aquests objectius, en primer lloc, estudiem i comparem algorismes
de ML per a la supervivència a un any en pacients adults durant l’ingrés hospitalari.
Per a això, definim una variable binària a predir, equivalent a la SQ i definim el conjunt
de variables predictives basades en la literatura. Comparem models basats en Support
Vector Machine (SVM), k-Nearest Neighbours (kNN), Random Forest (RF), Gradient
Boosting Machine (GBM) i Multilayer Perceptron (MLP), atenent el seu rendiment,
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especialment a l’Àrea sota la corba ROC (AUC ROC). A més, vam obtindre informació
sobre la importància de les variables per als models basats en arbres utilitzant el criteri
GINI.

En segon lloc, estudiem el mesurament de la fragilitat de la qualitat de vida (QoL)
en els candidats a la intervenció en PC. Per a aquest segon estudi, vam reduir la
franja d’edat de la població a pacients ancians (≥ 65 anys) com a grup objectiu. A
continuació, creem tres models diferents: 1) l’adaptació del model de mortalitat a un
any per a pacients ancians, 2) un model de regressió per a estimar el nombre de dies des
de l’ingrés fins a la mort per a complementar els resultats del primer model, i finalment,
3) un model predictiu de l’estat de fragilitat a un any. Aquests models es van compartir
amb la comunitat acadèmica a través d’una aplicació web c que permet l’entrada de
dades i mostra la predicció dels tres models i uns gràfics amb la importància de les
variables.

En tercer lloc, vam proposar una versió del model de mortalitat a un any en forma
de calculadora en línia. Aquesta versió es va dissenyar per a maximitzar l’accés dels
professionals minimitzant els requisits de dades i fent que el programari responguera a
les plataformes tecnològiques actuals. Així doncs, es van eliminar les variables adminis-
tratives específiques de la font de dades i es va treballar en un procés per a minimitzar
les variables d’entrada requerides, mantenint al mateix temps un AUC ROC elevat.
Com a resultat, aquest model va conservar la major part del poder predictiu i només
va requerir set variables d’entrada obtenibles durant visites a peu de llit.

Finalment, avaluem l’eina web del sistema de suport a les decisions clíniques
(CDSS) en el PC amb un conjunt real d’usuaris. Aquesta avaluació comprenia tres
àmbits: l’avaluació de les prediccions dels participants enfront de la línia de base del
ML, la usabilitat de la interfície gràfica i el mesurament de l’experiència de l’usua-
ri. Es va realitzar una primera avaluació, seguida d’un període d’implementació de
millores i correccions en la plataforma detectades durant l’entrevista. A continuació,
es va executar la segona ronda d’avaluació amb un altre conjunt de participants. La
plataforma va superar la prova d’usabilitat i va destacar en experiència d’usuari en
totes dues rondes. Durant les sessions de validació, els participants van indicar que
consideraven important comptar amb una eina predictiva per a la derivació de cures
pal·liatives en el seu flux de treball diari.

Els resultats d’aquesta tesi formen part dels resultats tecnològics del projecte euro-
peu InAdvance i han sigut publicats en cinc contribucions científiques, incloent revistes
i conferències en el camp de la informàtica mèdica, els sistemes d’informació i l’atenció
integrada.

chttps://demoiapc.upv.es/
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Acronyms
ACP Advanced Care Planning

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

AUC ROC Area under the ROC curve

AUTH Aristotle University of Thessaloniki

BDSLab Biomedical Data Science Lab

BER Balanced Error Rate

BUN Blood Urea Nitrogen

CDSS Clinical Decision Support System

CER Comparative Effectiveness Research

CI Confidence Interval

COPD Chronic Obstructive Pulmonary Disease

CPOE Computerized Provider Order Entry

CRP C-Reactive Protein

DL Deep Learning

DNN Deep Neural Network

DRG Diagnosis Related Group

EHR Electronic Health Record

FI Frailty Index

GBM Gradient Boosting Machine

GUI Graphical User Interface
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HP Healthcare Provider

HULAFE Hospital Universitario La Fe

ICIC International Conference on Integrated Care

ICU Intensive Care Unit

kNN k-Nearest Neighbours

MAR Missing at Random

MCAR Missing Completely at Random

MLP Multilayer Perceptron

ML Machine Learning

MNAR Missing Not At Random

OYM One-Year Mortality

PC Palliative Care

PU Positive-Unlabeled

QA/QI Quality Assurance and Quality Improvement

QoL Quality of Life

RCT Randomized Control Trial

RFE Recursive Feature Elimination

RF Random Forest

RL Reinforcement Learning

RMSE Root Mean Squared Error

ReLU Rectified Linear Unit

SQ Surprise Question

SUS System Usability Scale

SVM Support Vector Machine

SaaS Software as a Service

SoA State-of-the-Art

UEQ-S User Experience Questionnaire (short version)

UPV Universitat Politècnica de València

UX User eXperience

WHO World Health Organization
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Chapter 1

Introduction

1.1 Motivation
Clinical data availability has been improving since the start of the century due to
the increase in the implementation and adoption of the EHR technology across the
globe [Liang et al., 2021]. The primary purpose of EHR systems is to support individual
patient care by facilitating access to clinical evidence. However, there are secondary
uses to this information, such as using this information to explore alternatives to
standard care using retrospective information.

Among these projects and studies using retrospective data stand out, the ones using
Artificial Intelligence (AI). The increased use of computerised systems in the clinical
practice since the 1990s [Hughes, 2003] and the steady increment of computational
power [Mack, 2011] have allowed researchers to handle increasing amounts of data and
therefore create more complex and accurate predictive models.

The first application using clinical data and AI were the ones known as expert
systems; these applications implemented the knowledge available as a set of rules to be
applied to the system’s input [Compton and Jansen, 1988]. Probably the best example
of this kind of system, due to its impact, successful implementation and validity, is the
Computerized Provider Order Entry (CPOE) [Khajouei and Jaspers, 2010]. CPOE
systems allowed the physicians to introduce the different medications prescribed to
patients. The system checked their correctness and adherence in different dimensions:
allergies, incompatibility and dosage, among others.

However, expert systems are based on a compilation of the available knowledge and
clinical guidelines, and despite their contribution to improving the healthcare pathway,
they did not provide new knowledge. With the development of Machine Learning (ML)
algorithms and their ability to process several inputs simultaneously, the possibility to
discover new patterns in the data, until now limited to the human cognitive capacity,
exponentially increased [Yu et al., 2018]. This meant that the availability of the EHR
not only provided the required amount of data for the system to learn from but also
the possibility to explore the effect of the different clinical features on a given problem.
ML algorithms historically had been divided into two broad categoriesd, depending
on the output of the problem. The problems where an specific value or category is
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predicted are called supervised problems, e.g., predicting 30 days survival status after
ICU admission. Problems where the output is unknown and the subjects or cases are
clustered using their clinical features are known as unsupervised problems.

Despite the significant amount of research produced by the intersection of AI and
medicine, there is a lack of implementation of these results into clinical practice [Belard
et al., 2017, Yang et al., 2016, Devaraj and Viernes, 2014, Elwyn et al., 2013, Yang et al.,
2015]. Implementing machine learning models as part of the Healthcare Provider (HP)
software stack, primarily as CDSS, present a series of challenges. Usability, ease of use
and minimal disruption of the actual clinical workflow are common desirable properties
to maximise the probability of adoption. Some socio-cultural factors also intervene
in the implementation, such as the perception and confidence of the HP and their
organisation on the software. Therefore it is necessary to study the difficulties for
adoption in clinical settings of CDSS systems [Liberati et al., 2017].

With the estimated increasing demand for PC in the near future [Etkind et al.,
2017] it is necessary to use tools that help HP to identify patients with these needs.
Admission to PC is currently based on the prognosis provided by the medical team
and techniques such as the Surprise Question (SQ) [Downar et al., 2017] that rely on
the subjective opinion of the medical team. Introducing data-driven approaches to the
detection and referral of patients with PC could help make decisions more objective
and, sometimes, more precise. In addition, using automated within the information
systems could contribute to better resource management Sutton et al. [2020].

Given this context, we felt the need to research ML applications in the realm of PC.
We focused the content of this thesis on helping HPs decide which patients admitted
to the hospital could benefit from entering the PC programs. Our effort did not stop
with constructing predictive models; we also researched designing and implementing
properly usable software integrated within the clinical workflow.

1.2 Research aim, questions and objectives
The use of patient data from the EHR to evaluate the appropriateness of the admission
to PC programs poses a number of challenges that need to be addressed. First of all it
is needed to determine which of the variables available in the EHR systems are relevant
to the problem, if any. This task includes the selection of proxy problems, i.e., the
secondary and more objective prediction targets that could work as an equivalent for
PC needs. We have expressed these knowledge gaps as research questions, which will
be answered during this thesis.

RQ1 Is it possible to predict One-Year Mortality (OYM) of hospital admitted patients
using ML algorithms using their admission profile?

RQ2 Is it possible to estimate the survival time of an admitted patient?
dCurrently, there are some intermediate categories such as semi-supervised learning or PU learning,

but their distinction is not as relevant as supervised/non-supervised.
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RQ3 Can we contribute to a better understanding of the factors that help predicting
mortality within the year?

RQ4 Is it possible to predict a patient frailty status one year after admission?

RQ5 What are the benefits of a CDSS including frailty and mortality prediction mod-
els?

RQ6 Will HPs validate and accept a CDSS based on mortality and frailty models?

The research work conducted in this thesis aims to provide solutions to these ques-
tions by empirically validated scientific methods applied to the study of all-cause mor-
tality and frailty using data from their admission profiles. To this end, the following
objectives were defined:

O1 Review the state-of-the-art in mortality and frailty prediction and which variables
are relevant to the problem.

O2 Develop and compare ML models to predict OYM on all-cause admitted adult
patients.

O3 Adapt the OYM models to older patients (age ≥ 65).

O4 Develop regression models to estimate the survival time from admission of older
all-cause admitted patients.

O5 Research and select a Quality of Life (QoL) indicator to work alongside the mor-
tality criteria to help select which older patients could benefit from PC programs.

O6 Develop a predictive model for QoL useful to decide referral to PC interventions.

O7 Implement a CDSS to help HP decide about PC referral.

O8 Evaluate the usability, user-experience and perception that HPs have of the
CDSS for PC decision-making.

1.3 Thesis contributions
This section presents the main contributions of this thesis. First, a summary of the
most relevant aspects of each contribution is presented. Next, the scientific publications
in high impact journals and conferences are listed. Finally, the technological and
software results are compiled.
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1.3.1 Main contributions
C1 - Comparative study of machine learning methods to predict OYM

In this study, we compared different supervised ML algorithms for the task of
predicting all-cause mortality after hospital admission for adult patients. This
study started from the clinical status of the patient at admission that clinical
experts considered relevant and compared the performance of the different ML
algorithms using evaluation metrics. The importance of the different variables
was also assessed to extract information data-driven information from the prob-
lem. This work was published as a journal article P1 [Blanes-Selva et al., 2021a]

C2 - Frailty and Mortality predictive models for older patients

In this other study, we focused our efforts on older patients (age ≥ 65); explor-
ing the mortality criteria used as a proxy for all-cause hospital admitted older
patients. In addition to the one-year mortality we estimated the need of a mor-
tality regression, to approximate the length of the survival, specially for those
with a life expectancy under a year due to its effects on the palliative pathway
and resources management. Besides the mortality criteria, we determined an
age-specific metric by proposing frailty as a third PC criteria. We used Deep
Neural Networks (DNNs) and Gradient Boosting Machines (GBMs) to create
the predictive models and extracted knowledge from them in the form of vari-
able contribution to the prediction. This work was published as a journal article
P2 [Blanes-Selva et al., 2022a]. The models were incorporated into a predictive
service that was registered to the UPV software catalogue S1.

C3 - Responsive and minimalist bedside mortality calculator
When working with predictive models for difficult tasks such as mortality, re-
searchers tend to include as much information as possible to maximise the model’s
predictive power. Usually, these required variables include administrative infor-
mation such as the department where the patient was admitted, if the patient
was admitted from the emergency room or other codes that may not be adapt-
able to other EHRs. We addressed these problems by designing a minimalist
OYM model, removing EHR specific variables and including the minimum num-
ber of variables to minimise the required input by the HP while maximising its
performance. The model was also implemented in a responsive website as a cal-
culator, with the main aim to help HP during bedside consultations. The study
was published as a journal article P3 [Blanes-Selva et al., 2021b]

C4 - PC CDSS user-centred validation
As the culmination of the previous studies, our team developed a web CDSS plat-
form including the predictive models of C2 and C3. This platform was evaluated
using a user-centred validation. Validation sessions with 21 HPs from 6 different
countriese were performed, collecting thoughts, questions and opinions about the
platform as well as usability and user experience results. The results of these

eItaly, Brazil, Spain, Greece, Scotland and Portugal
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evaluations were published as a journal article P4 [Blanes-Selva et al., 2022b].
Afterwards, we implemented the final version of the platform and presented the
results in the International Conference on Integrated Care (ICIC) conference P5.
The platform was registered in the UPV software catalogue S2.

1.3.2 Scientific publications

The main scientific contributions of this thesis have been published in three different
peer-review journals and one conference of medical informatics, user interaction and
integrated care specialized disciplines. The publications are listed as follows:

P1 - Vicent Blanes-Selva, Vicente Ruíz-García, Salvador Tortajada, José-Miguel Benedí,
Bernardo Valdivieso, Juan M. García-Gómez. ‘Design of 1-year mortality forecast at
hospital admission: A machine learning approach’. Health Informatics Journal, 27(1),
1460458220987580. January 2021. [Blanes-Selva et al., 2021a].

IF: 2.932 (JCR 2019): 12/27 SCIE Medical Informatics (Q2)

P2 - Vicent Blanes-Selva, Ascensión Doñate-Martínez, Gordon Linklater, and Juan M.
García-Gómez. ‘Complementary frailty and mortality prediction models on older pa-
tients as a tool for assessing palliative care needs’. Health Informatics Journal 28(2),
14604582221092592. June 2022. [Blanes-Selva et al., 2022a].

IF: 2.681 (JCR 2020): 19/30 SCIE Medical Informatics (Q3)

P3 - Vicent Blanes-Selva, Ascensión Doñate-Martínez, Gordon Linklater, Jorge Garcés-
Ferrer and Juan M. García-Gómez. ‘Responsive and Minimalist App Based on Ex-
plainable AI to Assess Palliative Care Needs during Bedside Consultations on Older
Patients’. Sustainability, 13(17), 9844. September 2021. [Blanes-Selva et al., 2021b].

IF: 3.251 (JCR 2020): 124/274 SCIE Environmental Sciences (Q2)

P4 - Vicent Blanes-Selva, Sabina Asensio-Cuesta, Felipe Pereira Mesquita, Ascensión
Doñate-Martínez and Juan M. García-Gómez. ‘User-centred Design of a Clinical
Decision Support System for Palliative Care: Insights from Healthcare Profession-
als’. [Blanes-Selva et al., 2022b]

Published as a preprint on medRxiv. Under consideration for SAGE Digital Health.

P5 - Vicent Blanes-Selva, Ascensión Doñate-Martínez, Gordon Linklater, Sabina Asensio-
Cuesta, Felipe Pereira Mesquita, Jorge Garcés-Ferrer, Ángel Sánchez-García and Juan
M. García-Gómez. ‘The Aleph: A Multi-Purpose Clinical Decision Support Platform
for Palliative Care Screening’

Presented in the 22nd International Conference on Integrated Care (ICIC 2022) as
abstract with presentation and future publication at the International Foundation for
Integrated Care. IF: 5.120.
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1.3.3 Software
The line of research followed during this thesis has produced the Aleph Platform
(thealeph.upv.es). Aleph is a multi-purpose CDSS platform that includes different
predictive services and allows predictive services to ‘plug and play’ to the platform
benefiting from a consistent and validated interface. At this moment, a dedicated
service of Aleph for PC includes the compact mortality model published in P3 and a
service containing the three predictive models published in P2. This last service and
the Aleph platform were registered as software in the UPV technological catalogue.
The following list summarizes the software contributions produced during this thesis.

S1 - Vicent Blanes-Selva and Juan M. García-Gómez. ‘S-106-2022 - Módulo de predic-
ción de mortalidad y fragilidad para cuidados paliativos’. Explora I+D+i Registry of
the Universitat Politècnica de València. In process.

S2 - Vicent Blanes-Selva, Sabina Asensio-Cuesta, Ángel Sánchez-García and Juan M.
García-Gómez. ‘S-105-2022 - The Aleph’. Explora I+D+i Registry of the Universitat
Politècnica de València. In process.

1.3.4 Other contributions
During the development of this doctoral thesis, the author participated in other projects
that, despite not having a direct relationship with the PC topic, contributed to the
knowledge of other fields related to this thesis, such as ML predictive models trained
with data from EHR and development of systems focused on the final user and their
acceptance.

The first group was related to using technology to help in the public policy decision-
making for the obesity problem. The author participated in the European project
CrowdHEALTH, where the main goal was to implement a predictive service-connected
to CrowdHEALTH’s platform that helped to screen for unidentified obese patients. As
a direct result of this work, two conference papers were published: the first described
the models used in the obesity predictive service [Blanes-Selva et al., 2020] and the
second one described the whole architecture of the CrowdHEALTH platform [Mavro-
giorgou et al., 2020].

In parallel to that work, the author implemented a Telegram chatbot to gather
health habits, mostly eating and exercise, from the general population. This project
started as a CrowdHEALTH deliverable but soon evolved into its own project due to
the chatbot’s complexity and possibilities. Several designs were proposed, including
colour scheme, images and application name. After pooling more than 400 mem-
bers of the UPV community, the final design was selected, including the name of the
chatbot: Wakamola. Wakamola is registered in the UPV technical catalogue and
produced three research articles: the first one presented the chatbot and the data
collected [Asensio-Cuesta et al., 2021a], the second analysed the lifestyle changes reg-
istered in the chatbot due to the COVID-19 confinement [Asensio-Cuesta et al., 2021b].
Finally the third article explored the differences between the three pilots performed
using Wakamola [Asensio-Cuesta et al., 2021c]. The software was released as free soft-
ware under the GNU Public License v3. https://github.com/bdslab-upv/Wakamola.
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The author contributed to the development of predictive models to aid dispatching
emergency medical calls by classifying them in terms of life-threatening level, admissi-
ble response delay and emergency system jurisdiction [Ferri et al., 2021]. In addition,
the author is participating in the CANCERLESS project, which is expected to develop
micro-simulation models to evaluate the best policies to help the homeless population
with cancer prevention and treatment.

1.4 Projects and partners
The development of this thesis has occurred in the context of the InAdvance Project,
funded by the European Commission.

InAdvance Patient-centred pathways of early palliative care, supportive ecosystems
and appraisal standard f. Funded by the European Commission (Grant agreement
number 825750).

Objectives: The overall aim of the InAdvance project is to improve the benefit of
the palliative care interventions for patients, families and caregivers, and profession-
als through the design of effective, replicable and cost-effective early palliative care
interventions focused on and oriented by the patients.

Partners: Polibienestar, Universitat de València (Valencia, Spain), Hospital Uni-
versitario La Fe (HULAFE) (Valencia, Spain), NHS Highland (Inverness, Scotland),
Erasmus MC (Netherlands), Aristotle University of Thessaloniki (AUTH) (Greece),
University of Leeds (United Kingdom), Salumedia Labs (Seville, Spain), Sabien, UPV
(Valencia, Spain), Santa Casa de Misericórdia Amadora (Portugal), AGE Platform
Europe (Brussels, Belgium), Wita Care (Italy) and Biomedical Data Science Lab
(BDSLab), UPV (Valencia, Spain).

1.4.1 Other projects
During this period other projects funded by the European Commission and the Agencia
Valenciana de Seguridad y Respuesta a las Emergencias have been carried out with
the participation of partners from several countries:

CrowdHEALTH Collective wisdom driving public health policiesg. Funded by the
European Commission (Grant agreement number 727560).

Objectives: CrowdHEALTH aims to create Holistic Health Records. These are
structured health records that may include several types of information that are rele-
vant to a patient’s health status, such as laboratory medical data, clinical data, lifestyle
data collected by the patient or relatives, social care data, or physiological and envi-
ronmental data collected by medical devices and sensors.

Partners: ATOS (Spain), Engineering - Ingegneria Informatica Spa (Italy), Siemens
(Romania), Singular Logic Cyprus Ltd (Cyprus), EOPYY (Greece), The National In-
stitute of Public Health (Slovenia), Karolinska Institutet (Sweden), German Research

fhttps://www.inadvanceproject.eu/ Last accessed November 26, 2022
ghttps://crowdhealth.eu/ Last accessed November 26, 2022
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Center for Artificial Intelligence (Germany), BioAssist (Greece), Information Catalyst
(UK), Care Across (UK), LeanXcale (Spain), University of Piraeus Research Center
(Greece), Universitat Politécnica de Madrid (Madrid, Spain), IT Innovation Centre
(UK), Jožef Stefan Institute (Slovenia), University of Ljubljana (Slovenia), European
Federation for Medical Informatics (Switzerland), Taiwan Medical University (Taipei,
Taiwan) and HULAFE (Valencia, Spain) including BDSLab as a third party.

CANCERLESS Cancer prevention and early detection among the homeless popula-
tion in Europe: Co-adapting and implementing the Health Navigator Modelh. Funded
by the European Commission (Grant agreement number 965351).

Objective: The aim of the CANCERLESS project is to promote timely access to
primary and secondary cancer prevention services among people experiencing home-
lessness though the adaptation and implementation of the patient navigator model.

Partners: Medical University of Vienna (Austria), Polibienestar, Universitat de
València (Valencia, Spain), Kveloce (Spain), Consejeria de Familia, Juventud y Política
Social (Madrid, Spain), Servicio Madrileño de Salud (Madrid, Spain), International
Foundation for Integrated Care (Netherlands), Praksis (Greece), FEANTSA (Bel-
gium), Prolepsis (Greece), Anglia Ruskin University (UK) and Biomedical Data Sci-
ence Lab (BDSLab), UPV (Valencia, Spain).

112 Emergency Service Servicio de desarrollo de un método experto de ayuda a
la clasificación de la demanda sanitaria de urgencias, emergencias extrahospitalarias
y llamada sanitaria 112. Funded by Agencia Valenciana de Seguridad y Respuesta a
las Emergencias.

Objective: The objective of the project is to assess the possibility of improving
the classification of out-of-hospital emergency incidents using techniques based on ML,
applied to both structured clinical data and unstructured free text fields.

Partners: Conselleria de Sanitat Universal i Salut Pública (Valencia, Spain), In-
telligent Data Analysis Laboratory, Universitat de València (Valencia, Spain) and
BDSLab, UPV (Valencia, Spain).

1.5 Thesis outline
This thesis is divided into seven chapters that describe the work carried out during the
different studies. Chapter 1 has introduced the motivations, research objectives and
main contributions. Chapter 2 describes the thesis rationale, introducing the clinical
background and the methodology used during the thesis. Chapter 3 presents the first
study composing this thesis where we compared different ML algorithms to predict
OYM on adults. Chapter 4 describes our work with older patients, including two
new PC inclusion criteria with the mortality regression and the use of frailty status.
Chapter 5 describes the creation of a minimalist and portable model implemented in
a responsive web application and designed to be used during bedside consultation. In

hhttps://cancerless.eu/ Last accessed November 26, 2022
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Chapter 6 we described Aleph in its demonstrator version and the user-centred val-
idation in terms of usability and user experience that led to its first release version.
Finally, Chapter 7 ends this dissertation with the concluding remarks and recommen-
dations to continue with the research developed in this thesis.

For a graphical overview of the thesis, and its associate contributions, Figure 1.1
outlines the thesis contributions structured among the thesis chapters, along with the
publications, research projects, transfer actions, patents and the software developed
during this study.
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Chapter 2

Background

This chapter describes the thesis rationale divided into three sections. First, the con-
cepts of Palliative Care (PC) and Advanced Care Planning (ACP) are introduced
including their definitions, brief history and its current status and evidences support-
ing their implementation. Secondly, we will introduce the ML framework used during
the thesis, the conceptual ideas between the models as well as their mathematical
interpretation. Finally, we will introduce the concept of Clinical Decision Support
System (CDSS) and review their taxonomy.

2.1 Palliative Care and Advance Care Planning

2.1.1 Definitions

According to the World Health Organization (WHO), “PC is an approach that improves
the QoL of patients (adults and children) and their families who are facing problems
associated with life-threatening illness. It prevents and relieves suffering through the
early identification, correct assessment and treatment of pain and other problems,
whether physical, psychosocial or spiritual” [WHO, 2020].

While PC programmes aim to address the suffering of these patients, their scope
is not limited only to physical symptoms. PC aims to support patients and their
caregivers, and focus on help addressing practical needs, bereavement counselling and
offering support systems to help patients live as actively as possible until death [WHO,
2020]. Therefore, PC should be provided through person-centred and integrated health
services by multidisciplinary teams including physicians, nurses, psychologists and
other professionals able to help with spiritual distress.

On the other hand, Advanced Care Planning (ACP) is defined as “conversations
that cover an individual’s specific health conditions, their options for care, and what care
best fits their personal wishes, including at the end of life” [Fulmer et al., 2018]. Despite
their conceptual difference, both concepts, PC and ACP are related in practice. When
the possibility of near-death is presented to the patients, PC appears as one option to
be presented to the patient. Therefore, ACP should always exist alongside PC.

11
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2.1.2 Brief history: oncological and non-oncological care
The first global definition of PC was issued by the WHO in 1990 [Radbruch et al.,
2020]. However, prior to then, there are documented historical events that contributed
to the appearance of the field, such as the creation of the L’Association des Dames
du Calvaire in 1984, the foundation of the Society for the Prevention and relief of
cancer in 1911 and the acknowledgement of the abandonment of dying people from
medical professionals in the 1950s [Milligan and Potts, 2009]. In 1967 Cicely Saunders,
one of the pioneers of the PC culture, founded St. Christopher Hospice the world’s
first modern hospice [Richmond, 2005]. All these PC advancements where focused on
oncological patients.

In 2002 the WHO updated their definition of PC, acknowledging that PC should
be available when required to everyone with a life-limiting illness, regardless of their
diagnosis. This definition removed the notion that PC is exclusive for those diagnosed
with cancer. In 2004, The National Institute of Clinical Excellencei suggested that
this general level of PC should be an integral clinical skill for all caring professionals,
as most PC will be provided by the dying person’s day-to-day professional carers. In
2006, the Scottish Partnership for Palliative Carej included in their definition of PC
the involvement of the family and caregivers. Despite this scope expanding definitions,
professional careers treated PC as equivalent for terminal or end-of-life care [Milligan
and Potts, 2009].

For many years, clinical procedures and research around PC have been focused
on oncological patients. However, since the WHO’s 2002 definition of PC, research
has also focused on PC programmes for non-oncological patients. PC research has
been developed significantly for diseases such as heart failure, renal failure, chronic
obstructive pulmonary disease (COPD) or Neurodegenerative diseases such as demen-
tia [Mahtani-Chugani et al., 2010].

2.1.3 Clinical Routine and evidence
In practice, PC is usually provided upon exhaustion of disease-modifying treatments;
this means that patients in need are admitted late if at all to these programmes [Bakitas
et al., 2015]. However, several studies have found benefits of performing a timely
referral to PC. Bakitas et al.. [Bakitas et al., 2009] performed a Randomized Control
Trial (RCT) comparing PC against usual care that reported a statistically significant
improvement on QoL and mood in patients that underwent early PC. In 2015, the
same author [Bakitas et al., 2015] reported improved 1-year survival in patient enrolled
in PC. Temel et al.in 2010 [Temel et al., 2010] also found the improvement on QoL
and mood in their RCT for patients included in PC.

There is no clear consensus on the concrete timing for PC to be considered early
PC. This is due to the different trajectories of the many diseases to which PC has
been applied. In their article, Temel et al. [Temel et al., 2010] recruited patients
with non-small-cell lung cancer within eight weeks after diagnosis; however, using the

ihttps://www.nice.org.uk/
jhttps://www.palliativecarescotland.org.uk/
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diagnosis as the sole sentinel point may not be appropriate for other types of cancer
or non-cancer diseases.

Hospital admission is a great checkpoint to consider and start addressing PC
needs [Fischer et al., 2006]. During this time, the patient is a captive audience and
exacerbation of an illness may promote self-reflection, which could be a great trigger
to initiate ACP conversations. According to the same authors, the most important
barrier to start PC earlier in the disease’s progression is the failure to identify limited
life expectancy. Therefore, medical criteria to identify patients in need of PC are re-
quired. This criteria are often referred in the scientific literature as triggers, screening
tools or referral tools.

The Surprise Question (SQ) (”Would you be surprised if this patient died within the
next x months?”) has been used as a referral tool for PC programs. The SQ is meant
to be asked to themselves by the physicians in charge of the patient. If the answer is
negative, then a short survival is expected, and therefore ACP conversations may be
triggered. This method has been included as part of the Gold Standard Framework
(GSF) proactive identification guidance tool in the UK [Thomas et al., 2017]. As
main benefits, the SQ does not require clinicians to collect clinical data, use scoring
algorithms or estimate life expectancy [White et al., 2017]. However, the performance
of this method has been found to be poorly to modest in the systematic review and
meta-analysis by Downar et al. [Downar et al., 2017]. Therefore, there is a need to
find more accurate alternatives to this tool.

The search for a PC timely-referral screening tool has led to several research studies
trying to evaluate the current criteria and propose new alternatives. Nelson et al. [Nel-
son et al., 2013] reviewed the PC inclusion criteria for patients admitted to Intensive
Care Unit (ICU), were the most predominant criteria were: diagnosis for terminal ill-
ness, a short expected survival and concerns/petitions by the patient or their family
or caregivers during the ACP. This article concluded that the use of specific screening
tools for PC could help reduce the ICU resource utilization. Fischer et al. [Fischer et al.,
2006] proposed the CARING criteria (Primary diagnosis of cancer, Admissions ≥ 2,
Resident in nursing home, ICU admission with multi-organ failure, ≥ 2 Non-cancer
hospice guidelines [Organization, 1996]). Clinical scores have also been proposed as
predictive tools, some examples are: the Palliative Prognostic Score [Pirovano et al.,
1999], the Palliative Prognostic Index [Morita et al., 1999], Palliative Performance
Scale [Lau et al., 2009], the Supportive and Palliative Care Indicators Tool [Highet
et al., 2014] or the PROFUND index [Bernabeu-Wittel et al., 2011]. These scores are
a set of rules that add points if certain conditions are present in the patient and then
assess the situation depending on the number of points obtained.

More recent scientific works have focused on constructing mortality predictive mod-
els to be used as a referral tool for PC programs. The most prominent examples are the
different versions of the HOMR model [van Walraven et al., 2015]: HOMR-Now! [van
Walraven and Forster, 2017], m-HOMR [Wegier et al., 2021] and the Deep Learn-
ing (DL) model proposed by Avati et al. [Avati et al., 2018]. However, these models
target adult population (≥ 18 years old), which may include healthier individual,
making them easier to predict and therefore overestimating the predictive power of
the models. Also, some of them incorporate variables that are hard to obtain during
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the first admission hours.
Despite the different scientific efforts present in the literature, there is not a decisive

solution in the search for the definitive PC referral tool yet. Clinical scores are easier to
validate externally since they habitually require less data but at the expense of being
less powerful than predictive models. Also, the lack of adoption of these technologies
in clinical practice presents a problem that should be carefully studied. Besides, other
criteria than bad outcome or poor survival expectation should be explored in order to
find a better approximation to the PC criteria.

2.2 Machine Learning

2.2.1 Concepts and definitions
As seen in the previous section, the field of PC could benefit from the use of data-
driven techniques to improve the detection of patients in need of these programs.
Retrospective data availability alongside AI techniques offer the potential to create
predictive tools that could help HPs in this task. Among the different options, ML
algorithms are the candidates to create more accurate referral tools.

The first ML definition was proposed by Arthur Samuel in 1959: “Field of study that
gives computers the ability to learn without being explicitly programmed” [El Naqa and
Murphy, 2015]. In other words, ML is a discipline that comprises algorithms that use
large sets of data inputs and outputs to recognise patterns and effectively learn to solve
problems based on data examples [Helm et al., 2020]. A subtype of these algorithms
generates and adjusts mathematical predictive models that retain relevant information
about the dataset distribution to make predictions when new data is presented. Other
subtypes just run on the input data and find patterns and connections among them.

2.2.2 Overview of ML pipeline
Data scientists and ML practitioners follow a linear process. After the data is obtained,
usually from EHRs or downloaded as public datasets, it has to suffer a series of trans-
formations, which usually receive the name of preprocessing (subsection 2.2.3) and
includes dimensionality reduction, treatment of categorical variables and strategies to
deal with missing data [Albon, 2018]. After that, a ML algorithm should be selected
and trained on the data (subsection 2.2.4). Finally, an evaluation process is needed
to estimate the performance of the model (subsection 2.2.5). Usually this pipeline is
iterative and explore different strategies regarding algorithms and hyper-parameters in
order to maximize the performance metric of the final model. Figure 2.1 shows visually
the overview of a common ML pipeline.

2.2.3 Preprocessing for EHR tabular data
Categorical variables

ML algorithm implementations use only numeric values as inputs. This means that
a determined kind of information from the EHR should be mapped into a numerical
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Figure 2.1: Overview of the classical ML pipeline. Usually the pipeline is executed several time with
alternative algorithms and hyper-parameters on each step to find the best performing strategy.

representation to be used on the models. The most common case is the categorical
variables. Categorical variables can take a set of defined and limited values. For
example, a diagnosis upon admission expressed on their ICD-10 codek, in this scenario,
the variable admission_diagnosis could have any of the ICD-10 available codes such
as: K22.1 (Ulcer of esophagus with bleeding), N17.9 (Acute kidney failure) or C70.9
(Malignant neoplasm of meninges). Another typical example could be the department
where the patient is admitted, e.g., Cardiology, Gynaecology or Neurosurgery. A naive
and useful approximation to solve the problem is to assign a positive integer to each
possible category. However, there are some pitfalls to this strategy. First, if the total
number of possible values is not defined and after shipping the predictive model to
productionl environment, a variable presents a new value. A solution to this problem
is implementing the ”unknown” category or use the One Hot Encoder, where the
unknown value is implemented as zeros in all the categories. Each strategy has its
perks, depending on the context and the predictive model used, and should be chosen
carefully.

Another possible downfall is to ignore possible relations between the values. For
khttps://www.verywellhealth.com/finding-icd-codes-2615311 Last accessed November 26, 2022
lA term from software development that means that the product has passed the appropriate tests

and is being exploited
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example, if the health status after the examination is coded from excellent” to ”very
frail” in five different categories, assigning successive values can help to simplify dis-
criminant frontiers. These strategy choices are vital to the correct learning of the
model since a predictive model can only be as good as the data available to train it
and belong to the Feature Engineering field.

Missing values

Missing values are a common problem when data from EHR should be used to train pre-
dictive models. The term missing values refer to variables whose value is not present in
the data. Three different missing patterns have been identified: Missing Completely at
Random (MCAR), Missing at Random (MAR) and Missing Not At Random (MNAR).
MCAR correspond to completely aleatory errors, such as information system errors
that wipe random fields and therefore are very unlikely to happen. MAR occurs when
the missing pattern is not random but can be fully accounted for by variables where
there is complete information. MNAR is the most predominant in the EHR. For
example, laboratory results are missing for certain patients because the physician in
charge did not consider its condition required lab tests.

As with the previous situation, missing values are also represented by non-numerical
values, and therefore preprocessing strategy on the dataset is necessary before training
the model. The naïve strategy in this case is to remove features or cases containing
missing values or to use a specific value to indicate that the value is missing. This first
strategy has substantial drawbacks, especially when dealing with MNAR. First, bias
could be introduced, e.g., healthier patients did not get blood analysis and therefore,
the model is only observing sicker patients. Furthermore, because removing the amount
of available data is going to affect the performance of the model, as more data is
removed, more information is lost, and therefore the function learnt by the ML usually
have a more significant difference from the reality. Marking the missing values with
a specific numerical value could work if the variable is categorical, e.g., the admission
department or if the variable has impossible values, e.g., using -1 if the age value is
missing. However, this strategy is not consistent with the different data types and
needs particular caution to be performed.

The final option is the imputation, in which the main drawback is that the data
fed to the model is not real and could introduce bias. However, it is usually the best
option to avoid losing too much information and predictive power. There are multiple
imputation algorithms that we could classify on two different groups: imputation by
statistics of the variable and imputation by likelihood of the samples.

Imputation by statistics consists in taking all the available values for a given vari-
able and calculating the mean, the median, the most frequent value or any other
simple statistic and then filling the missing values in that variable with the result.
Using statistics is not very accurate and can introduce noise to the models. However,
it is computationally cheap and works fairly well in practice.

The imputation by likelihood involves using a complex algorithm that tries to fill
the missing values using other available input samples. For that, ML algorithms are
often used, for example, using regression or classification models to predict the missing
feature or use models based on similarity such as kNN (subsection 2.2.4).
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Dimensionality reduction

In general, ML practitioners try to keep the maximum amount of information. How-
ever, there are situations where we will want to reduce the dimensionality of our data,
i.e., reduce the number of input variables. For example, when the dimensionality is
very high, and the number of available samples is relatively low, we can fall into the
curse of dimensionality or the extraordinarily rapid growth in the difficulty of prob-
lems as the number of dimensions increases [Kuo and Sloan, 2005]. Another situation
could be due to data being introduced manually by the users when it is desirable to
keep only the most relevant or informative variables and find an equilibrium between
the number of dimensions and the model’s performance.

Within this field, there are two prominent families of algorithms. On the one hand,
the feature projection algorithms, the main objective of which is to move the data
points to another representation space with fewer dimensions. Some of the foremost
exponents of this field are: Principal Component Analysis [Szlam et al., 2014], Linear
Discriminant Analysis [Balakrishnama and Ganapathiraju, 1998], Autoencoders [Wang
et al., 2016] or Uniform manifold approximation and projection [McInnes et al., 2018].

On the other hand, we find the feature selection group of algorithms, which keep
the data on the original representation space but try to eliminate the less relevant
dimensions. The selection can be performed based on multiple criteria, for example,
removing the variables with low variance. Variable selection could also be based on
some measure of variable importance, e.g., GINI importance [Nembrini et al., 2018] on
decision tree models or the weights on a regression. The selection could be univariate,
if the analysis only takes into account one variable at a time, or multivariate if it
considers interactions between variables. A common multivariate algorithm is the
Recursive Feature Elimination (RFE). In short, RFE follows these steps: 1) train a
model with a precise importance measure (decision trees, regressions, Artificial Neural
Networks...), 2) Obtain the importance measure for every variable 3) Remove the k
less important variables and 4) return to the first step until the desired number of
variables is reached.

2.2.4 ML taxonomy
As staged by the definitions, the ML field contains different algorithms, which may
be divided into different categories and subcategories. This taxonomy is changing as
the field develops and new studies appear. Also, different authors present different
taxonomies, depending on their vision of the field. In this section, we will focus on a
broad, classical and widely accepted set of categories.

The first category split between the fields is based on how these models learn. In
classic taxonomies, there were two main categories: supervised and unsupervised learn-
ing. The difference between them is the presence (or absence) of the target variables or
ground truth. Supervised learning focuses on finding a function to map the data input
(X) to their output/target (Y ). Meanwhile, unsupervised learning focuses on find-
ing patterns in the data and grouping the different data points (x ∈ X) by similarity.
Some categories represent a mix between supervised and unsupervised learning, such as
semi-supervised learning or its subcategory Positive-Unlabeled (PU) Learning [Fusilier
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et al., 2015]. However, most of the algorithms in this category are adaptations from the
main categories tweaked to deal with missing targets on parts of the data. In recent
years, a new type of learning has appeared and gained popularity. In this case, the
model acts as an agent, and its actions into the environment and other agents produce
a reaction that is used as feedback to be learnt from. This kind of learning has received
the name of Reinforcement Learning (RL).

Within the supervised learning category we could find two main subdivisions: clas-
sification and regression. Classification algorithms map the input data into a cat-
egories or classes, e.g., given the picture of a skin lesion, determine the diagnosis.
Whereas regression models map their inputs into a continuous value, e.g., given clini-
cal information about a patient, determine their tumour burden in the sentinel node.
As well as other taxonomy levels, there are other ML applications falling on distinct
and minority categories. For example, there are supervised applications which out-
put is structured instead of a category or a continuous value, such as Part of Speech
Tagging [Marquez et al., 2000] used to analyse clinical notes on the EHR.

Unsupervised learning aggregates those data-driven methods that do not use a tar-
get variable. Among their subcategories, we could find clustering, which consists on
aggregating the different data points into categories, based on similarity measure, e.g.,
the euclidean distance, calculated as the difference between the dimensional valuesm

of two data points (x and d) (see Equation 2.1). Another important subfield of unsu-
pervised learning is dimensionality reduction. These techniques aim to move the data
from a high dimensional space to reduced dimensionality keeping as much information
as possible. Sometimes these methods are used as part of the data preprocessing steps
before applying another ML algorithm.

d(x, d) = ||x− d|| =

√√√√ D∑
i=1

(xi − qi)2 (2.1)

However, and despite the multiple learning algorithms present in the ML taxonomy,
this thesis is going to focus on supervised learning, concretely on classification and
regression algorithms. We found this kind of learning is the best fit to answer our
research questions due to the availability of retrospective cases containing labels. To
be more specific, we will make use of the following methods.

Support Vector Machines

The Support Vector Machine (SVM) was proposed by Vladimir Vapnik and their
team [Guyon et al., 1993]. In its origins, the SVM was designed as a non-probabilistic
binary linear classifier. Intuitively, the SVM algorithm works by placing the data
points in the representation space and then finding a linear frontier that separates the
data into two classes. In addition to this, the SVM tries to maximize the width of
the gap between the two classes. Figure 2.2 shows a graphical representation of the
algorithm.

mEach dimension is a variable. The set of dimensions is also known in the ML field as features
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The mathematical formulation of the binary SVM is the following: given the train-
ing vectors Xi ∈ Rp, i = 1...n and the label vector y ∈ {1,−1}n, the method objective
is to find a direction vector w ∈ Rp and the bias b ∈ R such that the prediction given
by sign(wtφ(x) + b) is correct for most of the classes.

Figure 2.2: Graphical representation of the frontier and margin obtained through the SVM algorithm
on separable data.

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi

subject to yi(w
Tφ(xi) + b) ≥ 1− ζi,

ζi ≥ 0, i = 1..n

(2.2)

Equation 2.2 is the formulation for the SVM soft margin problem. This means
that it accepts miss-classified samples, making the algorithm feasible for non linearly
separable data. ζ is the slack variable introduced to obtain the soft margins, and C is
a regularization parameter for ζ. The optimization problem can be transformed into
a dual problem (2.3):

min
α

1

2
αTQα− eTα

subject to yTα = 0

0 ≤ αi ≤ C, i = 1...n

(2.3)

Where e is the vector of all ones, and Q is an n by n positive semidefinite matrix
Qij ≡ yiyjK(xi, xj) where K(xi, xj) = φ(xi)

Tφ(xj) is a kernel, designed for non linear-
ity. The αi terms are called the dual coefficients they are upper-bounded by C. Once
the optimization problem is solved, the decision function for a given sample is (2.4):
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∑
i∈SV

yiαiK(xi, x) + b (2.4)

K-Nearest Neighbours

The main idea behind the kNN is to place the training samples in a representation
space, and then, when new samples are required to be classified, the algorithm searches
its closest neighbour and assigns the same label to the new sample. Euclidean distance
(equation 2.1) is often used to determine the proximity between the data points. How-
ever, any distance measure between two points (x, d ∈ Rp) can be implemented, and
popular implementations of the algorithm usually include several options by default,
such as Manhattan or Mahalanobis (equations 2.5 and 2.6). Also, the algorithm al-
lows using multiple (K) neighbours to assign their value to the new sample. The most
common methods to use are simple voting or weighted voting using the inverse of their
distance to the new sample.

dmanhattan(x, d) = ||x− d||1 =
n∑

i=1

|xi − di| (2.5)

dmahalanobis(x, d) =
√
(x− d)TS−1(x− d)

where S is the nonsingular covariance matrix of the data
(2.6)

Decision Trees

Decision Trees are ordered lists of conditions following the structure if X then Y else
Z. This kind of abstraction has been present in collective thought for generations and
therefore, the invention of the concept can’t be traced to an specific time and location.
Some scholars have suggested that the first reference of a decision tree as we know
it came in 1959 [Belson, 1959]. However, the reference publication regarding these
models is Breiman’s book [Breiman et al., 2017],the first version of which appeared in
1984.

The goal of Decision Trees is to predict a target variable value based on a set of
rules inferred from the training data features. This set of rules are represented in the
tree nodes (see Figure 2.4) when the optimization algorithm chooses a variable and a
threshold value to divide the space into two groups. Once the tree is trained, predicting
a new sample consists of following the tree from the root (upper node) to one of the
leaves (terminal nodes), using the variables of that sample to decide the path on the
splits. The class assigned to the new data point is the majority class, if not unanimous,
of the training set. Decision Trees can also be used for regression problems. In this
case, the value predicted by the tree is a statistic of the training samples on that leaf
such as the median or the mean.

The mathematical process to create the tree splits is as follows: Qm represents
the training data at node m, For each candidate split θ = (j, tm) where j is one of
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Figure 2.3: kNN method for a binary classification problem: one-year mortality using hospital admis-
sion data. Data has been projected to two dimensions before the classification. The representation
space is divided into two regions based on the distances to the training samples.

the features and tm is a threshold value, partition the data into Qleft
m (θ) and Qright

m (θ)
subsets.

Qleft
m (θ) = {(x, y)|xj ≤ tm}

Qright
m (θ) = Qm \Qleft

m (θ)
(2.7)

The quality of the split candidate is then evaluated using a loss function H(), which
offers different alternatives for classification and regression trees.

θ∗ = argmin
θ

G(Qm, θ)

G(Qm, θ) =
N left

m

Nm

H(Qleft
m (θ)) +

N right
m

Nm

H(Qright
m (θ))

(2.8)

The algorithm is recursive for subsets Qleft
m (θ∗) and Qright

m (θ∗), having different stop
criteria: reaching the maximum defined depth, Nm being inferior to the minimum
number of samples defined to split a node or reaching the value of 1.

Once the Decision Tree is fit to the data, we could determine the importance of the
different features using the GINI importance criterion [Nembrini et al., 2018, Menze
et al., 2009], which indicates how often a feature j was selected and their discriminative
power. To obtain this criterion first we need to calculate the impurity (i) for each of the
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Figure 2.4: Example of Decision Tree trained with 100 samples from two different classes. Nodes
contain the variable and the feature used to make the split, the GINI impurity values and how many
samples of each class are left on the node.

tree nodes (τ). On the binary classification scenario (class ∈ 0, 1 ), the node impurity
is defined as

i(τ) = 1− p20 − p21 (2.9)

Splitting the node into two different sub-nodes (τl and τr) with its different number
of samples pl =

nl

n
and pr =

nr

n
causes impurity decrease

∆i(τ) = i(τ)− pti(τl)− pri(τr) (2.10)

The impurity decrease created by splitting a node by the j feature is added together
for all the tree nodes, obtaining the GINI importance (IG) of that feature

IG(j) =
∑
τ

∆ij(τ) (2.11)

The GINI importance can also be extended to models composed from different
Decision Trees (T)

IG(j) =
∑
T

∑
τ

∆ij(τ, T ) (2.12)
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Random Forests

The Random Forest (RF) model appeared the first time in the publication by Ho et
al.in 1995 [Ho, 1995]. In 2001 Breiman et al.extended the algorithm, combining the
idea of a random selection of features introduced by Ho and the bagging procedure.

Intuitively, an RF is an ensemble of multiple Decision Trees that learn from the
same training set and produce a prediction on new data by voting with their predic-
tions. Each tree is trained using a random subset of the training data points and a
subset of the features. The goal for this is to reduce the variance and, therefore, the
over-fitting on the training set due to the nature of the single decision trees. A perk
of this design is the possibility to train this meta-model in parallel since the Decision
Trees have no dependence on each other nor the ensemble model. Figure 2.5 shows a
simple representation of the method.

Figure 2.5: Random Forest basic functioning schema for classification.

Gradient Boosting Machines

The gradient boosting concept is derived from the observations that boosting can
be interpreted as an optimization algorithm by Leo Breiman [Breiman, 1997]. The
first gradient boosting algorithms were developed by Friedman [Friedman, 2001, 2002].
Despite sharing the same basic intuition as the RF, a model composed by an en-
semble of decision trees, the mathematical formulation is very different due to the
boosting greedy algorithm that incorporates each tree into the Gradient Boosting Ma-
chine (GBM). In this models, the trees are not computed in parallel, but are included
one at a time into the ensemble. The algorithm follow an optimization process to find
the best tree to incorporate in every iteration. The output of the GBM for regression
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tasks is computed as follows:

ŷ = FM(x) =
M∑

m=1

hm(x) (2.13)

Each of the M decision trees hm provides an output for each data point (x). Sim-
ilarly to other boosting algorithms, the GBM (FM) is generated by greedily adding
Decision Trees:

Fm(x) = Fm−1(x) + hm(x) (2.14)

The newly added tree (hm) is fitted to minimize the sum of the losses (Lm), given
a previous set of trees (Fm−1)

hm = argmin
h

Lm = argmin
h

∑
x∈X

l(yi, Fm−1(x) + h(x)) (2.15)

The sum of trees FM(xi) =
∑

m hm(xi) produce a continuous value and therefore
can not be used to predict classes. To perform the mapping to a classification version,
the probability that xi belongs to the positive class is modeled as p(yi = 1|xi) =
σ(FM(x1)) where σ is the sigmoid function.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are connectionist computational models inspired
by the biological model of the brain. ANNs use computational units (neurons) and
connections between them to process the data input. The first concept of the ANN
appeared in 1943 with the computational model of a biological neuron [McCulloch and
Pitts, 1943]. Later, in 1958 and 1967 appeared the perceptron, which is the basis for
the ANN and the first multilayer ANN [Rosenblatt, 1958, Ivakhnenko et al., 1967].

Multilayer Perceptron (MLP) are universal function appropriators that try to learn
functions defined as f(·) : Rm → Ro, where m is the number of input features and o
is the number of dimensions on the output. Given a set of features and a target, the
MLP algorithm can learn a non-linear function that approximates to the real function
of the dataset in either classification and regression problems.

Figure 2.6 presents an example of a simple MLP, where the left part corresponds
to the input layer, which works as an entry point of the data to the model. The middle
layer in the figure is the hidden layer composed of three different neurons (s11, s12, s13),
each of the neurons is performing a weighted linear summation, where θmij correspond
to the weight of the m layer, j refers to the input neuron id and i correspond to the
end-side neuron. Xm defines the values entering the model by the input layer.

Usually, a non-linear function is applied on the value of each neuron after the
weighted linear summation is performed: g(·) : R → R. Some common functions are
the hyperbolic tangent or the sigmoid function (equations 2.16 and 2.17). Finally,
the output layer receives the values from the last hidden layer, performs the weighted
linear summation and outputs the result. In some cases, a final activation function
is applied to the output, for example, the softmax function (equation 2.18), which
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Figure 2.6: Visual representation of a MLP with a single hidden layer and three output units. Color
on each connection matches the source neuron

normalizes the output values so that each of the single output could be interpreted as
a class probability.

sigmoid(x) = 1

1 + e−x
(2.16)

tanh(x) = ex − e−x

ex + e−x
(2.17)

softmax(z)i =
exp(zi)∑k
l=1 exp(zl)

(2.18)

The mathematical formulation for a binary classification MLP is defined as follows:
given a training dataset (x1, y1), (x2, y2), ..., (xn, yn) where xi ∈ Rn and yi ∈ {0, 1}, a
one hidden layer perceptron computes the following function on its hidden layer’s ith
neuron:
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s1i (x; Θ) = g(

M0∑
j=0

θ1ijxj) (2.19)

While the function computed on the ith neuron from the output layer is defined
as:

s2i (x; Θ) = g(

M1∑
j=0

θ2ijs
1
j(x)) (2.20)

For a neural network to adjust its parameters (θmij ) and learn the target function,
the most commonly used algorithm is the Backpropagation. This algorithm com-
putes the gradient of the loss function regarding the network’s weights. The weight
actualization on the output layer (1 ≤ i ≤ M2, 0 ≤ j ≤ M1) is defined as:

∆θ2ij = −ρ
∂qS(Θ)

∂θ2ij
=

ρ

N

N∑
n=1

σ2
i (xn)s

1
j(xn)

σ2
i (xn) = (tni − s2i (xn))g

′(φ1
i (xn))

(2.21)

Where qS(Θ) represents the loss function used, ρ is a hyper-parameter called learn-
ing rate, that is used to ponder the amount of change introduced in the weights at
each backpropagation iteration, and σ3

i refers to the error, or difference, between the
actual target tni and the network output value s3i .

The weight actualization on the hidden layers (1 ≤ i ≤ M1, 0 ≤ j ≤ M0) follows
the next formulation:

∆θ1ij = −ρ
∂qS(Θ)

∂θ1ij
=

ρ

N

N∑
n=1

σ1
i (xn)s

1
j(xn)

σ1
i (xn) = (

M2∑
r=1

σ2
r(xn)θ

2
ri)g

′(φ1
i (xn))

(2.22)

Deep Learning

Deep Learnings (DLs) is the family of algorithms and applications that make use of
Deep Neural Networks (DNNs). The most basic definition of a DNN is an ANN with
multiple hidden layers. However, this definition is blurry, and there is no hard threshold
differencing between a deep and a shallow ANN such as the MLP. Some studies
such as [Winkler and Le, 2017] used one hidden layer as threshold, labeling as ”deep“
networks with more than one hidden layer, while in practice, the two-hidden layer
perceptron was a common application. Due to the increase in computing power through
the years [Mack, 2011] and therefore the capacity to increase the free parameters on
the models, some practitioners use higher thresholds such as six hidden layers.

DL is the most recent chapter in ANN’s history, and the apparition of the field can
be traced back to some milestones. The first of them was the discovery of the gradient

26



2.2. Machine Learning

vanishing problem and how to solve it [Hochreiter, 1998]. When a neural network
had more than two layers, the gradients, and the weight variations, calculated by the
backpropagation algorithm decreased significantly. This meant that the first layers
of the network could not learn. Another important landmark was the apparition of
the first convolutional neural network [Fukushima and Miyake, 1982] and the publica-
tion of the Long short-term memory (LSTM) networks [Hochreiter and Schmidhuber,
1997]. Finally, due to the development of the Graphical Processing Units (GPUs)
and the algorithms to take advantage of their high parallelism in 2012 AlexNet ap-
peared [Krizhevsky et al., 2012], a convolutional DNN that outperformed the other
competitors during the ImageNet Large Scale Visual Recognition Challenge.

Several mechanisms have been incorporated into DNNs to make them feasible to
train and overcome the gradient vanishing problem. The most notorious is the use of
the Rectified Linear Unit (ReLU) activation functions [Maas et al., 2013] (equation
2.23). ReLU is a non-linear function, so it allows the network to model complex
functions by stacking layers. Moreover, the function is ranged between [0,+∞), hence
allowing the gradient not to vanish as there is no saturation in any range of the
function·

ReLU (x) = max (0, x) (2.23)

Another important contribution to solve the gradient vanishing problem is the
Batch Normalization (equation 2.24). Batch Normalization is a technique employed
to normalize the inputs of a layer which provides a couple of benefits to the training
process. First, since the inputs are always normalized in the same numerical range, the
layer can focus on learning the relations between the inputs rather than the adjacent
layers. Second, batch normalization also significantly accelerates the training process,
ensuring higher learning rates do not produce outlier activations.

µB =
1

N

N∑
i=1

xi

σ2
B =

1

N

N∑
i=1

(
xi − µB

)2
x̂i = γ

xi − µB√
σ2
B

+ β

(2.24)

The last two deep-learning approaches used during our research were: the leaky
ReLU activation function and the Dropout method. Leaky ReLU (equation 2.25)
presents a slight slope on the negative side (ε) to address the ”dying ReLU”, when a
negative activation becomes 0 and is unlikely to recover a non-zero value.

LReLU(x) = max(0, x) + ε ∗min(0, x) (2.25)

The Dropout method is applied to individual layers to deactivate them during
training (Figure 2.7). This makes the process noisier and forces the nodes to take on
more responsibility for the inputs. Also, Dropout simulates a sparse activation, which
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encourages the network to learn a sparse representation as a side-effect. Therefore this
mechanism can be interpreted as a regularization method.

Figure 2.7: Dropout example over the last two layers of a ANN in two different iteration. Dropout
rate is set to 0.5 so half of the neurons are deactivated in each iteration

2.2.5 Evaluation
Evaluating predictive models is a crucial part of the ML workflow and allows the
researchers to estimate how good the models are fitted to predict the actual data.
There are two basic types of validation, depending on the origin of the data, external
and internal validations. External validation is referred to the use of new participant-
level data, external to those used for model development [Riley et al., 2016]. This
external data could be classified as retrospective, if the data already has been recorded
or prospective if a pilot or a clinical protocol is in place to gather the data required for
the validation.

In contrast, internal validation refers to evaluating the models using the develop-
ment’s dataset. Internal validation is always the first step towards model validation
since it can estimate their predictive power. However, it cannot ensure the model’s
applicability to other data sources due to the difference in populations and data dis-
tributions. It is widely known that models should not be evaluated with the same
data points used to train them, due to the overfittingn, which produce over-optimist
results. Several methods have been developed to split the dataset into train and test
sets in order to perform more accurate results, some of them are: 1) Holdout, a simple
method to split the data into two sets, usually a proportion of 80%/20%; depending on
the number of data available, using the bigger split to train the model and the other
to evaluate it. 2) K-Folding, the data is split into k sets, usually between 4 and 10,
and over k iterations, one of the sets is chosen to be validation and the others are used
to train the models. This ensures that the model is evaluated with every data point

nThe production of an analysis that corresponds too closely or exactly to a particular set of data,
and may therefore fail to fit additional data or predict future observations reliably. - Oxford dictionary
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(see Figure 2.8). 3) Resampling methods, such as bootstrap [Efron and Tibshirani,
1994], that performs a data split similar to holdout but uses the test split to sample
different new sets of data and evaluate the model with them.

Figure 2.8: Visual representation of K-folding on a dataset using the parameter K = 5

Classification metrics

Alongside these evaluation techniques, several metrics are needed to estimate the pre-
dictive power of the models in different dimensions. During this project we have focused
on binary classification methods, as opposed to multi-class classification. Some of the
most relevant metrics for binary classification are 1) Sensitivity (equation 2.26), also
called true positive ratio, which measures the percentage of correctly classified samples
among the ones predicted by the model to be positive. 2) Specificity (equation 2.27),
or true negative ratio, which is the sensitivity counterpart for the samples predicted
as negative. 3) Balanced accuracy, or Balanced Error Rate (BER) in its negative
form, is the arithmetic mean of the sensitivity and the specificity (equation 2.28). All
these metrics are based on the Confusion Matrix obtained when comparing the output
of the classifier with the real class (see Figure 2.9).

SEN =
TP

TP + FN
(2.26)

SPE =
TN

TN + FP
(2.27)

29



Chapter 2. Background

Figure 2.9: Confusion matrix for a binary classification problem
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(2.28)

The ROC curve is also a very relevant performance measurement in binary clas-
sification. Usually, the curve is plotted using the Sensitivity in the y-axes and 1 −
specificity on the x-axes. From the curve it is possible to obtain the AUC ROC statis-
tic, also called C-statistic which is the area delimited by the curve in a 1x1 plot (Figure
2.10). The main property of this metric is that it doesn’t depend on the classification
threshold and represents how much the model can distinguish between two classes.

The AUC ROC is closely related to the Mann-Whitney U statistic, and can be
approximated using the formula in Equation 2.30

AUC ROC =
1

|P | ∗ |N |
∗
∑
p∈P

∑
n∈N

S(p, n) (2.29)

(2.30)

Where P and N are the sets containing the probability assigned to the model to
the true positive and true negative samples and the function S is defined as

S(p, n) =


0 p < n
1
2

p == n

0 p > n

(2.31)

Another classification metric used during this thesis is the accuracy, which mea-
sures the percentage of data points correctly classified (equation 2.32). This metric is
also compatible with multi-class classification without complementary strategies such
as pairwise analysis [Landgrebe and Duin, 2007].
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Figure 2.10: Example of ROC curve and AUC ROC statistic

accuracy(y, ŷ) = 1

n

n−1∑
i=0

[y = ŷ] (2.32)

Regression metrics

Regression problems have their own metrics, during this thesis we have focused on two
of the most classical: mean squared error and mean absolute error (equation
2.33). Both metrics measure the average error between the real values and model
prediction among all test data points.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

MAE =
1

n

n∑
i=1

|yi − ŷi|
(2.33)

2.3 Clinical Decision Support Systems

2.3.1 Definition
Clinical Decision Support System (CDSS), also known as Computerized Decision Sup-
port System, is a widely used term within the medical informatics field. CDSS can
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be traced to the 1970s [Shortliffe and Buchanan, 1975]. Like many other concepts,
there are different relevant definitions from various authors. Kawamoto et al.in 2005
defined a CDSS as “any electronic system designed to aid directly in clinical decision
making, in which characteristics of individual patients are used to generate patient-
specific assessments or recommendations that are then presented to clinicians for con-
sideration” [Kawamoto et al., 2005]. Another definition states, “A Clinical Decision
Support System (CDSS) is intended to improve healthcare delivery by enhancing med-
ical decisions with targeted clinical knowledge, patient information, and other health
information” [Sutton et al., 2020]. Therefore, we can determine that CDSSs are a
vast category of information systems; however, they share common traits: a CDSS is a
software, or a software module, that using available information is meant to help HPs
with the decision-making process.

Classic CDSSs include features such as alerts, reminders, automatic calculations, or
care summary dashboards that provide performance feedback on quality indicators and
information retrieval tools for context-specific knowledge [Bright et al., 2012]. Their
positive effect on the adherence to clinical guidelines increased patient safety, improved
service quality, increased service time dedicated directly to the patients and decreased
costs, among others [Sutton et al., 2020, Tundjungsari et al., 2017].

Regarding the human-system interaction, there is no single interaction process
with a CDSS. Their usage is very context-and implementation-dependent. However,
there are general theoretical approaches to the information flow between all the parts
involved in the process [Yu et al., 2018]. In Figure 2.11 we can observe the three most
common scenarios: a conventional clinical practice, a clinical practice where clinicians
make use of EHR data and CDSS to get feedback which they can incorporate into
their reasoning process and a final scenario where the CDSS is integrated within the
EHRs.

2.3.2 Taxonomy: attributes and examples

CDSS could be classified onto different axes, depending on the analysed dimension [Sim
and Berlin, 2003]. However, the most common classification refers to how the infor-
mation is represented internally. Sim and Berlin name this axis as Reasoning Method.
The methods present on this axis can be split into two different categories: knowledge-
based and non-knowledge based [Sutton et al., 2020]. Knowledge-based CDSS have
the clinical information used to make decisions codified as “if-else” conditions. These
systems represent the real information as states or facts, then an inference engine tries
to match the available facts to the different rules composing the ruleset. The inference
engine stops when no more rules can be applied or the trigger of a specific rule halts
the process explicitly. The rule set incorporated into the system is usually created to
match expert consensus from clinical guidelines and attention protocols. Due to its
nature, this kind of system helps HPs to have better adhesion to standard practices.
However, the approach is not free from pitfalls. The two most relevant to implementing
and using the systems are the complexity derived from mapping clinical guidelines into
a coherent and concise ruleset. Even when a fuzzy logic inference engine [Anooj, 2012]
is used in the system, a significant amount of effort designing and testing the system
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Figure 2.11: Model of information flow in clinical practice, as described by [Yu et al., 2018]. a) In a
conventional setting, the clinical case is presented to the physicians, which make their decision based
on their reasoning and expertise. The information derived from this process is also registered on the
EHR. b) In the conventional scenario using CDSSs, the information from the EHR is introduced to an
algorithm, and their output is provided to the physicians, which use that output/prediction as part
of their reasoning in order to make a decision. c) In this scenario, the CDSS is completely integrated,
and it registers their outcomes on the EHR in addition to providing them to the physicians

.

is required. The other main drawback of this approach is that no new information is
extracted from the use of the system.

Probably the most successful knowledge-based CDSSs are the subcategory known
as Computerized Provider Order Entry (CPOE) [Khajouei and Jaspers, 2010]. CPOE
systems allow physicians to introduce the prescribed medication to patients, and the
system then performs a list of checks to ensure the safety and adhesion to the clinical
protocol. These checks usually include but are not limited to dosage control, patients’
allergies to prescribed medications and incompatibility or interactions between drugs.
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According to the different studies reviewed by [Khajouei and Jaspers, 2010] CPOEs
have a significant impact on quality of drug management, reduced serious medical
errors and, incomplete or inappropriate prescription and even decreased length of stay
and costs.

On the other hand, ML-based CDSS are not dependent on hand-crafted rules
adapted from the current medical knowledge, but they depend on rules extracted
from clinical data. These models are trained using clinical data on specific problems
and allow the different models to infer the relationship within the datasets, as seen in
the previous section. However, these models are not free from pitfalls in their design
and implementation. The system designers should ensure that the model has indeed
generalized appropriately from the data instead of using patterns derived from noise
and bias collecting the data. Related to this problem, a very recommended practice
when developing the models is to perform an external validation using data from other
sources. The main objective of this testing is to ensure that the model has learned
relevant medical data instead of patterns introduced by the protocols or idiosyncrasy
from the original centres. Therefore, the process required to implement and ensure the
correctness of the models also requires a significant amount of resources.

There have been some successful and notorious examples of non-knowledge based
CDSSs. One of the most successful fields for ML in clinical practice is the medical
imaging. Samala et al.in 2016 developed a method to detect masses in breast to-
mosynthesis using convolutional neural networks and transfer learning [Samala et al.,
2016]. In 2018 Poplin et al.created a system to predict cardiovascular risk factors using
images from the retinal fundus and DL [Poplin et al., 2018]. In 2019 Khumancha et
al.developed an application to detect lung cancer from computerized tomography scans
also using convolutional neural networks [Khumancha et al., 2019]. Other applications
based on data from the EHR have also been successful such as the short term predic-
tion of mortality by Makar and colleagues [Makar et al., 2015] or the development of
a score to predict adverse events such ICU transfer or death [Churpek et al., 2014].
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Comparative study of ML methods
to predict one-year mortality

Palliative Care (PC) programs aim to improve the Quality of Life in patients with
dire prognoses. However, the decision to start the palliative approach, alongside or
separate from curative treatment, is not clear and therefore needs well-defined criteria.
PC programs usually have limited resources; this fact makes the decision even more
difficult. Currently, one of the most used criteria to detect poor outcomes and PC needs
is the Surprise Question (SQ). Nevertheless, this method is based on the subjective
opinion of the healthcare professional evaluating the case at a given moment. In
this chapter, we propose the use of a data-driven approach, in the form of Machine
Learning (ML) model constructed using data from the Electronic Health Record (EHR)
on hospital admission, to provide a more objective alternative to the SQ. In addition,
we compare the performance of different ML algorithms on the mortality prediction
task.

The contents of this chapter were published in a scientific journal article by Blanes-
Selva et al, (2021b) - thesis contribution P1

3.1 Background and significance
An increasing number of people have multiple morbidities and conditions in the final
moments of their lives, current medicine tries to maintain a quality of life of these
people, including their needs in the final moments. In this situation, PC tries to
facilitate the life of people in these conditions from a patient perspective.

PC is a multidisciplinary care that aims to grant comfort to the patient, avoid
painful and/or aggressive treatments, alleviate pain, other symptoms, psychological
and spiritual distress [Kelley and Morrison, 2015]. In addition, there are some studies
which prove that patients receiving early PC present a better quality of life, mood,
satisfaction with the treatment [Bakitas et al., 2009, Zimmermann et al., 2014, Temel
et al., 2010] and even a longer survival when compared to patients whose PC was
delayed [Bakitas et al., 2015].

A criterion for the PC inclusion is desirable as early as possible. An adverse event
such as a hospital admission could be considered a convenient episode to check this

35



Chapter 3. Comparative study of ML methods to predict one-year mortality

criterion. Nowadays, the main indicator to include a patient in PC is the clinical
criterion of a potential exitus within the next 12 months. An example of that is the
surprise question described in Moss et al [Moss et al., 2008].

Mortality forecast has been previously studied by other groups. Buurman et al. [Bu-
urman et al., 2008] proposed a method for predicting 90-day mortality risk using few
clinical features: Barthel index [Mahoney et al., 1965], Charlson score [Charlson et al.,
1994], and Malignancy and Blood Urea Nitrogen (BUN) (mmol/L). The authors of
this study calculated how modifications of the features affect the outcome. The study
reported AUC ROC = 0.77 (CI 95%, 0.72 - 0.82). Bernabeu-Wittel et al. [Bernabeu-
Wittel et al., 2011] proposed a method for detecting 1-year mortality for polypatholog-
ical patients. That model computed the PROFUND score, based on some features to
assign a mortality risk to the patient: Age, Hemoglobin, and Barthel index, No care-
giver or caregiver other than the spouse, hospital admissions ≥ 4 in last 12 months and
positive for few diseases. The PROFUND score is mapped onto mortality (in less than
a year) probability. The reported validation result was AUC ROC = 0.7 (CI 95%, 0.67
- 0.74). Van Walraven et al. [van Walraven et al., 2015] reported a 1-year mortality
forecast model based on patient demographics, health burden, and severity of acute
illness. The model uses a binomial logistic regression. The AUC ROC ranged from
0.89 (CI 95%, 0.87 - 0.91) to 0.92 (CI 95%, 0.91 - 0.92). Recently, Avati et al. [Avati
et al., 2018] presented a deep neural network for 1-year mortality prediction by using
13,654 features, corresponding to the different ICD9 codes in different time windows
through the year. They reported an AUC ROC of 0.93 for all validation patients but
only 0.87 for admitted patients. A summary of previous studies is provided in Table
3.1.

Approach No. of features AUC ROC Reference

Buurman 4 0.77 (CI 95%, 0.72 - 0.82) [Buurman et al., 2008]

PROFUND 9 0.70 (CI 95%, 0.67 - 0.74) [Bernabeu-Wittel et al., 2011]

HOMR 11 0.89 (CI 95%, 0.87 - 0.91) to [van Walraven et al., 2015]

0.92 (CI 95%, 0.91–0.92)

Deep learning 13,654 0.93 (all); 0.87 (admitted patients) [Avati et al., 2018]

Table 3.1: Summary of previous mortality studies

Based on the promising results in the literature we have addressed the design of a
high-performance predictive model of 1-year mortality exclusively based on observa-
tions at hospital admission. The overall aim of our study was to provide quantitative
methods to healthcare caregivers to decide the inclusion of patients in the PC pro-
gram during the hospital admission. To this aim, we have designed and evaluated five
predictive models from the state-of-the-art machine learning discipline.

These models are meant to be more complex, in terms of algorithm, parameters and
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amount of data needed than the first studies we presented but with less requirements
that Avati’s deep learning approximation, being the most adequate option for our
dataset size.

The models presented in this work are continued in the InAdvance project (http:
//www.inadvanceproject.eu/) along with other kinds of models such as frailty and
resource consumption models to create a complete CDSS [Mazzaglia et al., 2016] for
the PC inclusion decision. This CDSS is meant to join other information systems
created to improve the PC process, such as O’Connor et al. [O’Connor et al., 2009]
and Dy et al. [Dy et al., 2011]

3.2 Materials
The data of the study was extracted from the Electronic Health Records from Hospital
La Fe. We gathered all the hospitalization episodes of adult patients (≥ 18 years old),
excluding those related to mental health, gynecology and obstetrics, from January 2014
to December 2017 (a total number of 114,393 cases) that have been discharged from
the hospital. All the patients received standard care, so no effects like a prolonged
survival from PC [Bakitas et al., 2015] affect the data. To guarantee independent
observations, we selected a random single episode for each patient, reaching a total of
65,279 episodes.

The dataset contains information about the previous and current admission (seven
features), laboratory test results (seven features) and a list of 28 selected diseases for
which the patient is positive or negative. Sex, age, Charlson index, and Barthel tests
result are also available. This adds up a total of 36 features which can be obtained
straightforwardly in the first hours of admission. Some of these features were used,
with positive results, in previous studies.

Target variable was exitus after 1-year from the admission date. The number of
patients that have died in less than a year (positive cases) was 8113 (∼12.43%), the
number of negative cases is 57,166 (∼87.57%). The whole variable description can
be seen in Table 3.2. The distributions for Admission Destination and Service are
represented in Figures 3.1 and 3.2 respectively.

3.3 Methods

3.3.1 Development of the models
Five machine learning techniques were employed for developing our predictive mod-
els: Gradient Boosting Machine [Friedman, 2001], Random Forest [Breiman, 2001],
K-Nearest Neighbors [Cover and Hart, 1967], Multilayer Perceptron (MLP) [Hinton
and Carbonell, 1990], and Support Vector Machine [Guyon et al., 1993]. The imple-
mentation of the scikit-learn toolkit [Pedregosa et al., 2011] was employed in all of
them except in the MLP which uses Keras and TensorFlow [Abadi et al., 2016]. More-
over, the optimization tool TPOT [Olson et al., 2016] was used in order to find a good
model to fit the data.
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Variable Types Missing Distribution

Sex CAT 0 Males: 51.86%
Age INT 0 61.33 ± 18.38
Urgent admission BOOL 0 Yes: 56.97%
Admission destination CAT 0 -
Service CAT 0 -
Admission cause CAT 0 -
Prev. stays INT 0 6.119 ± 9.502
Barthel test INT 56,214 67.268 ± 37.919
Prev. admissions INT 0 0.300 ± 0.789
Prev. emergency room INT 0 0.935 ± 1.691
Charlson score INT 0 4.233 ± 3.238
Albumin (g/dL) REAL 46,857 2.955 ± 0.677
Creatinine (mg/dL) REAL 16,920 0.505 ± 1.063
Hemoglobin (g/dL) REAL 14,434 11.703 ± 2.228
Leucocytes (Cel/mL) REAL 14,434 9.457 ± 7.389
C-Reactive Protein (CRP) (mg/L) REAL 30,285 63.083 ± 84.48
Sodium (mEq/L) REAL 17,183 139.672 ± 4.35
Urea (mg/dL) REAL 18,459 46.255 ± 34.63
Acute myocardial infarction BOOL 0 Yes: 3.09%
Congestive heart failure BOOL 0 Yes: 6.14%
Peripheral vascular disease BOOL 0 Yes: 4.88%
Cerebrovascular disease BOOL 0 Yes: 6.76%
Dementia BOOL 0 Yes: 1.5%
Chronic pulmonary disease BOOL 0 Yes: 10.03%
Rheumatic disease BOOL 0 Yes: 1.6%
Peptic ulcer disease BOOL 0 Yes: 1.57%
Mild liver disease BOOL 0 Yes: 5.77%
Diabetes without complications BOOL 0 Yes: 13.19%
Diabetes with complications BOOL 0 Yes: 1.27%
Hemiplegia paraplegia BOOL 0 Yes: 1.28%
Renal disease BOOL 0 Yes: 7.46%
Malignancy BOOL 0 Yes: 18.2%
Moderate severe liver disease BOOL 0 Yes: 1.49%
Metastasis BOOL 0 Yes: 3.27%
AIDS BOOL 0 Yes: 0.57%
Delirium BOOL 0 Yes: 0.12%

Table 3.2: Features information.
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Figure 3.1: Distribution for admission destination. Legend: CMX = Maxilofacial Surgery, CCA =
Cardiovascular Surgery , CTO = Thoracic Surgery, ONC = Oncology, ORL = Otorhinolaryngology,
UHP = Hepato-pancreato-biliary Surgery, MIN = Internal Medicine, GIN = Gynaecology, NER =
Neurology, MDI = Autoinmune Diseases, NEM = Pneumology, MCE = Short Stay Unit, URO =
Urology, UCI = Intensive Care Unit, CGD = General Surgery, CAR = Cardiology and COT =
Orthopedic Surgery and Traumatology.

Figure 3.2: Distribution for service. Share the same codes as Figure 3.1, including CUR = Brachyther-
apy, CPL = Plastic Surgery, HEM = Hematology and Hemotherapy, CVA = Angiology and Vascular
Surgery and NCG = Neurosurgery.
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3.3.2 Feature importance
We studied the relevance of each feature for the final prediction by calculating the
GINI importance provided by the Gradient Boosting Machine. The GINI importance
measures the average gain of purity by splits of a given variable. If the variable is
discriminant for the problem, it tends to split mixed labeled nodes into pure single
class nodes [Breiman et al., 2017].

3.3.3 Validation of the state-of-the-art models
As a first step, we have compared our model with the PROFUND and Buurman’s
model using the same evaluation method. For the Buurman’s model, a clinical com-
mittee led by Vicente Ruiz-García at Hospital La Fe adapted the Buurman’s proposal
as 1-year mortality index, using a linear regression with the 1-year mortality target
variable. Besides, we evaluated the original PROFUND model proposed in Bernabeu-
Wittel et al. [Bernabeu-Wittel et al., 2011] The validation of the other models in state
of the art was not possible due to the lack of part of their features in our data system.

3.3.4 Evaluation of the models
First, we have computed the ROC Curve [Guyon et al., 2008] for each model and
calculated the optimum probability threshold (minimum probability to assign the pos-
itive class to a sample) running our models using a random split of the data from
separating train and test. We iterated over all the different values that could change
the specificity and the sensitivity of the model and kept the threshold that minimizes
the balanced error rate (BER) [Guyon et al., 2008].

Once the threshold is established for each model, we internally validated them using
a 100-repetition stratified hold-out (80% of the data in order to train the model and
20% for test it). The missing values have been imputed using an iterative approach
that models each feature with missing values as a function of other features, available
in scikit-learn as IterativeImputer [Van Buuren and Groothuis-Oudshoorn, 2011]. Five
metrics have been stored for each experiment (accuracy, AUC ROC, specificity, sen-
sitivity, and balanced error rate) [Breiman et al., 2017, Guyon et al., 2008]. For each
metric, the mean and the 95% confidence interval have been computed.

In addition to this process, we performed a second round of experimentations,
where we trained the models using a balanced set of data by oversampling the positive
class using the SMOTE [Chawla et al., 2002] technique. This will help us to determine
which are the effect of class imbalance in the ML algorithms for this problem.

3.4 Results
Following the above methodology, this section analyses the results of the proposed
machine learning models, including a validation from Buurman’s modified model and
PROFUND from the literature. In terms of AUC ROC, the model based on GBM
achieves the higher score with 0.91, being followed by the Random Forest and the
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Multi-Layer Perceptron. Table 3.3 contains means and confidence interval at 95% for
all proposed models and selected metrics. Table 3.4 provides the same experiments
as staged before but using SMOTE as an oversampling technique for the positive
class. Once again, the Gradient Boosting Machine is the model with higher AUC ROC
(0.908), followed by the Random Forest. Results using SMOTE are slightly worse on
the selected metrics. As for the variable importance, Service, Urea and Leucocytes
obtained the higher scores (10.6%, 10.32%, 8.65%), followed by CRP (7.65%) and Age
(6.99%). Table 3.5 lists every variable and its Gini Importance.

3.5 Discussion
The prediction of death before 1 year could be a relevant criterion to admit the patients
into palliative care programs [Moss et al., 2008]. Also, the prediction of the death at
admission of the patient would help the hospital management to better manage its
resources in a more accurate way.

We used the area under the ROC curve as the comparison metric because is the
common metric to all other works in the State-of-the-Art (SoA). We also chose the
threshold for considering a sample into the positive class taking the value that mini-
mizes the balanced error rate.

The Buurman’s modified model and the PROFUND index have been validated,
the models described in our work outperform them in terms of AUC ROC, sensitivity
and specificity. Whereas our models presented a bigger number of features (36) than
the mentioned articles (four for Buurman’s modified model and nine for PROFUND
index).

Comparing with the most recent work, Avati et al. [Avati et al., 2018] that presented
a neural network with 18 hidden layers of 512 neurons each was trained with 177,011
patients. The models in our approach are trained with 52,223 patients. The network
used 13,654 features as input, our model uses only 36. Finally, they achieved an
AUC ROC of 0.93 for all their patients but it only achieved 0.87 when only admitted
patients are considered. We achieved better results using a significative smaller amount
features, this led to a more compact model that also is more interpretable since the
best performing model is based on decision trees.

The results obtained using the oversampling technique in the training set are very
similar to the ones obtained in the original experiment. The main differences are in
the optimal thresholds, which increased in all cases due to the change in proportion in
the classes.

The best results in our models achieved the interval reported by van Walraven et
al. [van Walraven et al., 2015]: 0.89–0.92 AUC ROC. Despite the number of final
features is smaller in HOMR (10) two of their features are composed: “charlson co-
morbidity index score” (15 items) and “diagnostic risk score” (70 items), so at the end,
HOMR requires more information about the patients than our models. The perfor-
mance comparison with Avati et al. [Avati et al., 2018] and HOMR have been made
using their reported results which implies the use of different evaluations and datasets.

We obtained consistent results compared to other studies. In HOMR the features
that are capable to add more points to the index are the admitting service (up to
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Chapter 3. Comparative study of ML methods to predict one-year mortality

Variable Importance (%) Variable Importance (%)

Service 10.60 Malignancy 0.90
Urea 10.32 Sex 0.68

Leucocytes 8.65 Congestive heart failure 0.51
CRP 7.88 Renal disease 0.42
Age 7.65 Dementia 0.40

Creatinine 6.99 Chronic pulmonary disease 0.35
Albumin 6.66 Diabetes without complications 0.34

Prev. Stays 5.83 Acute myocardial infarction 0.30
Hemoglobin 5.67 Moderate severe liver disease 0.26

Sodium 5.07 Cerebrovascular disease 0.26
Charlson score 4.55 Mild liver disease 0.24

Admission destination 3.65 Peripheral Vascular Disease 0.22
Barthel test 3.20 Rheumatic Disease 0.21

Prev. emergency room 1.98 Hemiplegia Paraplegia 0.20
Cause of admission 1.71 Peptic Ulcer Disease 0.20
Prev. admissions 1.70 Diabetes with complications 0.17
Urgent admission 1.10 Delirium 0.16

Metastasis 0.95 AIDS 0.05

Table 3.5: Variable importance provided by GBC sorted by decreasing importance.

28) and the age × comorbidity (other 28 points). We agree with the most important
variable (real service code) and the fifth one in importance order (age). Our second
most important variable, nitrogen in urea, is included among the Buurmans model.
Moreover, creatinine in blood is related to the BUN and is a variable also associated
with mortality is our results.

It is known from the scientific literature cited above that morbidities, together
with age and functionality (in our case measured by the Charlsons index) are the main
predictors of mortality. However, our study on the importance of the variables shows
that morbidities such as COPD score low, which is consistent with the van Walraven
et al. [van Walraven et al., 2015] rule, which gives it only 2 points out of 35. Something
similar happens with dementia, which scores only 3points.

The value of Urea and Creatinine indicate renal failure measured in two different
ways, and we also know that these are predictors in other mortality prediction rules
such as Buurman’s et al. [Buurman et al., 2008] rule, where they appear as predictive
with once again the functional situation.

Our models confirm that the disease variables weight the decision process, but they
are less important when no other disease is present. The models also guide us to con-
sider that administrative variables such as previous urgent admissions, previous stays
and destination of admission may have an additional weight not considered until now
that contribute more to mortality than the fact of suffering a specific disease. Having
this information updated permanently will allow for the adjustment of additional risks
for patients who are acutely admitted to hospital through the Emergency Services.

We compared the method we have used to assigning importance to the different
variables in the dataset, the GINI importance provided by the Gradient Boosting
Machine, to other methods based on features ablation. We used a technique called
Feature ranking with RFE from scikit-learn [Pedregosa et al., 2011]. The RFE starts
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training a model and obtains the variable importance. The least important variables
are removed from the dataset, and the process continues recursively until a minimal
set of variables is obtained. The results obtained were almost identical to the ones
presented in this work, so we conclude that, in addition to its reputation in other areas
such as machine learning interpretability, GINI importance is a robust indicator to
feature’s significance in the model.

The clinical features included in our work have clinical relevance and appear in other
clinical prediction rules. They appears in the records of our hospital databases in Spain
and allow the creation of alerts for the clinicians to address patients, to palliative care
programs not only for advanced oncology patients but for other chronic pathologies
as dementia (a critical literature review exploring the challenges of delivering effective
palliative care to older people with dementia, cardiac failure, or COPD or end-stage
renal disease)[Klinedinst et al., 2019, Bostwick et al., 2017, Birch and Draper, 2008].

This study has caused a direct impact on Hospital La Fe since the model based
on the Gradient Boosting Machine has been implemented in the pre-production in-
formation systems and it is on a test stage. Once in the day, a program gathers all
the admitted patients’ data and extracts the features, this information is passed to
the model who gives a posteriori probability and a label prediction, this information
is stored on a separated table of the same database including the timestamp.

The main limitation of the study was the use of data from only one hospital, we
can’t ensure that the models learned with the study population are effective with
patients of another country/region, or another type of hospital, Hospital La Fe is a
tertiary Hospital a referral in the Valencia region, with different patients and severity.

In addition, the models had only an internal derivation, so we need to refine and
validate this model to reproduce the findings with different settings (smaller hospital
and with less severity illness) perhaps outside the same city or Valencian community,
where we can have a population with different habits such diet or lifestyle. It is
necessary to work on additional criteria for palliative care admission besides mortality,
for example, introducing the available resources in the decision-making process. Also,
an inclusion criterion for chronic patients is needed since their illness trajectories are
different from other patients [Murray et al., 2005].

The work presented in this article is being continued in the InAdvance project, a
European project about palliative care which aims to research and standardize some
palliative care procedures as well as other aspects such as admission criteria. Our
work in this project is to develop predictive models for mortality, frailty and resource
consumption which integrated into CDSS could be proven as reliable and objective
inclusion criteria for palliative care. This PC criterion is intended to be unbiased and
independent from the place the care takes place, so other institutions such as hospices
or nursing homes can take advantage of them with the only restriction of having access
to the variables the model needs to run.

3.6 Conclusion
This work proposes machine-learning forecast of 1-year exitus using data from hospital
admission. Our forecast achieved an area under ROC curve of 0.9 and a BER of
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0.17, being the Gradient Boosting Machine the best model. The features used in
the models correspond to basic demographic and administrative information, some
laboratory results and a list of positives or negatives for certain diseases. The presented
models could have an instant impact on every hospital, only the feature extraction
module and the table for results need to be adapted to the particular information
system of every hospital, the rest of the components are ready to set in production.
Our results have reached the best results in the state-of-the-art, corresponding to the
HOMR index which validation in few Canadian hospitals produces AUC ROC from
0.89 to 0.92.
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Chapter 4

Frailty and mortality predictive
models for older patients

With the current trend toward global ageing, it is not surprising that the need for
PC has also increased. Since most people in need of PC are over 65 years old, it
makes sense to design a series of tools that focus on that group of patients, trying
to improve precision among that segment. Moreover, in this chapter, we continued
our previous work but focused solely on older patients. In addition to developing 1-
year mortality models, we tried to estimate better the survival and create a regression
model to complement the prediction. Therefore, our main contribution is the creation
of a frailty index to develop ML predictive models to assess frailty status and use it
alongside mortality to help on the PC referral.

The contents of this chapter were published in a scientific journal article by Blanes-
Selva et al, (2022a) - thesis contribution P2

4.1 Introduction
Palliative Care (PC) is a holistic approach that improves patients’ quality of life with
life-limiting diseases. It is recommended to incorporate early in the disease trajectory,
even in conjunction with potentially curative treatments [Callaway et al., 2018]. PC
can improve quality of life [Temel et al., 2010], mood [Bakitas et al., 2009], symp-
tom control [Yennurajalingam et al., 2011], reduce emergency department visits and
hospitalisation [Quinn et al., 2020], and even increase 1-year survival [Bakitas et al.,
2015].

PC services have traditionally been mainly accessed by cancer patients, but there
is growing consensus about the importance of promoting access for patients with non-
malignant disease at earlier stages [McIlfatrick, 2007, Higginson and Addington-Hall,
2001, Kingston et al., 2020]. Patients’ prognoses and functional decline are two cru-
cial elements in decision-making to be considered by healthcare professionals in the
introduction of PC need assessment and PC conversations with older people.

On the one hand, it is estimated that at least 75% of patients would benefit from ac-
cess to PC during their terminal illness [Etkind et al., 2017]. Nevertheless, uncertainty
about prognostication is cited as a common barrier to PC referral, particularly for
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patients with non-malignant diseases [Murray et al., 2015]. On the other hand, frailty
in older patients is defined as a state characterised by reduced physiological reserve
and loss of resistance to stressors caused by accumulated age-related deficits [Clegg
et al., 2013]. Two of the most popular frailty dimensions are the frail phenotype by
Fried et al. [Fried et al., 2001], which describes frailty as a biological syndrome; and
the Frailty Index (FI) by Mitnitski et al. [Mitnitski et al., 2001], which is based on
health deficits accumulations, also, frailty has been defined since a more comprehensive
approach taking into consideration a holistic understating of the person. In this sense,
frailty can be experienced by a decrease in human functioning at the physical level
and psychological and social domains [Gobbens et al., 2010]. Raudonis et al. [Raudo-
nis and Daniel, 2010] suggest in their study that frail older adults could benefit from
involvement in PC programs as frailty is associated with poor health outcomes and
death [Koller and Rockwood, 2013].

Different strategies have been used to try to aid prognostication. Clinical intuition
was harnessed with the Surprise Question (“Would I be surprised if this patient died in
the next year?”) which, has been promoted as a tool to prompt clinicians to recognise
patients with a limited prognosis [Moss et al., 2008]. However, in 2017 Downar et
al. [Downar et al., 2017] published a systematic review of the surprise question, con-
cluding that more accurate tools are required given its poor to modest performance
as a mortality predictor. Also, it has been demonstrated that the risk of death in-
creases with lower performance levels and with falling performance levels, but survival
data varied across different healthcare systems [Linklater et al., 2012]. In this line,
the Supportive and Palliative Care Indicators Tool (SPICT) proposes a set of clinical
indicators of poor prognosis developed through a consensus of expert opinion [Highet
et al., 2014], which has shown to have a predictive accuracy of up to 78% [Woolfield
et al., 2019]. Other studies have used data analysis to propose alternative tools to
predict short-term mortality. Bernabeu-Wittel in 2010 developed the PROFUND in-
dex [Bernabeu-Wittel et al., 2011], a predictive model for patients with multimorbidity.
Van Walraven et al.in 2015 proposed HOMR [van Walraven et al., 2015], a tool for
predicting one-year mortality in adults (≥18 years and ≥ 20 years for the different
cohorts). In 2018 Avati et al. [Avati et al., 2018] proposed a deep learning approach
to identify patients with a survival between 3 and 12 months a, in 2019 Wegier et
al. [Wegier et al., 2019] proposed a version of HOMR but using only variables available
at the admission. In 2021, our team also presented a one-year mortality model for
adults [Blanes-Selva et al., 2021a].

Additionally, and as stated before, quantifying frailty is important since as patients
become frail, advance care planning conversations should be prioritised to establish
patient goals and wishes in advancing serious illness [Porter et al., 2020], which may
include the involvement in PC programmes. A wide array of frailty indexes has been
proposed to assess the health status of older adults. The frailty index has been used to
predict mortality and poor health outcomes [Shamliyan et al., 2013]. Some studies have
tried to predict frailty status: Babič et al.in 2019 [Babič et al., 2019] use a clustering
approach to identify clusters considering the prefrail, non-frail and frail status using
ten numerical variables for adults over 60 years old. Sternberg et al. [Sternberg et al.,
2012] in 2012 tried to identify frail patients with their methods against the VES frailty
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score [Saliba et al., 2001] for patients over 65 years old. Bertini et al. [Bertini et al.,
2018] in 2018 created two predictive models for patients over 65 years old: one to
assess frailty risk using the probability of hospitalisation or death within the year and
a second one to assess worsening risk to each subject in the lower risk class.

Based on these previous results, our aim in this work is to propose a set of ma-
chine learning tools capable of making predictions about mortality and frailty for older
patients, oncological and non-oncological, so healthcare professionals can benefit from
quantitative approaches on data-driven evidence when deciding advance care planning.
In this sense, we propose the creation of three different but complementary models:
a) a one-year mortality classifier that will work as a binary predictor; b) a survival
regression model aimed to obtain a prediction in days from admission to death; and c)
a one-year frailty classifier to predict the health status, assessed by the Frailty Index,
of a patient one year after admission. The authors consider that the combination of
both mortality and frailty criteria, working as complementary information sources, can
positively impact detecting needs to start PC conversations.

4.2 Materials

4.2.1 Basic description
Data was extracted from the system on Nov 1 2019. The dataset contained hospital
admissions records for older patients (age ≥ 65) from Jan 1 2011, to Dec 31 2018.
Patients admitted to psychiatry and obstetrics services were excluded from the study.

Data contains a total of 39,310 hospitalisation episodes corresponding to 19,753
unique patients. The cohort was composed of 9780 males and 9973 females with a
mean age of 80.75 years (see Table 4.1).

Sex N Mean Age (years) STD Age (years)

Female 9973 80.75 8.67
Male 9780 77.44 8.24
All 19753 79.11 8.62

Table 4.1: Patient demographic information.

4.2.2 Mortality target variables
Mortality target variables were extracted from administrative admission data and the
recorded death date of regional civil registration. Patients alive during data extraction
were censored for the regression problem due to our inability to know their survival
time from admission. However, patients alive with an admission date prior to Nov 1,
2018 (one year prior to the extraction) could be included since we could determine
their mortality status within the year.
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4.2.3 Frailty target variable

As for the frailty target, following the work of Searle et al. [Searle et al., 2008], we
calculated the FI of every episode (admission frailty) and sorted them chronologically.
The target FI of a given episode was the admission frailty of the following episode
if this next episode happened within the year. We used the most recent episode as
the target if a patient had multiple admissions during the following year. Otherwise,
target frailty was set to the same value as the current admission frailty. Most recent
episodes and patients with only one episode were removed because no posterior data
was available, so we considered them as censored data. Figure 4.1 presents an example
of target FI calculation for each possible situation.

Figure 4.1: Visual representation of the algorithm to calculate the target FI in all four possible
situations.

Finally, we stratified the FI into four categories according to the work of Hoover et
al. [Hoover et al., 2013] and aggregated the two less severe frailty conditions (Non-Frail
+ Vulnerable) and the two more frail statuses (Frail + Most Frail). Variables used in
the frailty index are listed in Table 4.2 and were extracted as part of the original 147
variables.
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Variables N Variables N
Yes No Yes No

Difficulties in dressing 3829 35481 Difficulties in urinating 3683 35627
Difficulties in bathing 5999 33311 Difficulties in stooling 3121 36189
Difficulties in grooming 5242 34068 Difficulties in eating 2965 36345
Difficulties in moving 3398 35912 Hypertension 30975 8335
COPD 9724 29586 Heart Failure 13228 26082
Stroke 9828 29482 Parkinson 1655 37655
Thyroid Disorders 4538 34772 Diabetes Mellitus 15910 23400
Gastro. or liver disease 27401 11909 Musculoskeletal Diseases 24330 14980
Dementia 4479 34831 Malnutrition 2718 36592
Pressure Ulcers 1886 37424 Anaemia 12546 26764
Hear impairment 6777 32533 Gastrointestinal problems 12567 26743
Chronic renal failure 8679 30631 Depression 587 38723
Cancer 16536 22774 Constipation 5088 34222
Atrial fibrillation 12434 26876 Visual impairment 20100 19210
Psychiatric disease 19436 19874

Table 4.2: List of variables included in the frailty index and their distribution. All variables are
binary, and their distribution represents the condition’s presence (Yes) or absence (No).

4.2.4 Data censoring and distributions
After data censoring, the one-year mortality target variable distribution was: 24985
(65.83%) episodes were negative cases (time to exitus > 365 days), and 13431 (34.17%)
episodes were positive (time to exitus ≤ 365 days) as shown in Figure 4.2A. The survival
regression target variable (20959 episodes; mean 368.59; range [0 to 3033]) presents a
right-skewed shape, as can be observed in its density plot in Figure 4.2B.

The admission FI (mean 0.27; std 0.12) and the FI target variable (22859 episodes;
mean 0.32; std 0.14), resembled a slightly skewed normal distribution (plot in Figure
4.2C and Figure 4.2D), while the distributions of the different categories are: Non-
Frail 986 (2.2%), Vulnerable 10911 (24.34%), Frail 25638 (57.19%), Most Frail 7294
(16.27%). As aggrupation of two categories: Non-Frail + Vulnerable 11897 (26.54%),
Frail + Most Frail 32932 (73.46%), data represented in Figure 4.2E.

4.3 Methods

4.3.1 Predictive models
As the first approach for predictive models, we have selected the Gradient Boosting
Machines (GBM) [Friedman, 2001], which can be used for classification and regres-
sion. GBMs are ensemble models composed of decision trees. This model follows
an iterative training algorithm. In each step, the tree that minimises the selected
loss function is added to the ensemble until the hyperparameter setting the number
of trees is reached. The GBM models are known for their notable performance on
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Figure 4.2: A) One-year mortality target distribution; B) Density plot from survival regression target
variable; C) Density plot from the FI target variable; D) Density plot from the admission FI; E) FI
categories distribution.

different problems [Touzani et al., 2018, Chen et al., 2018, Zhou et al., 2019].
Our second approximation to the predictive models is through the Deep Neural

Network (DNN) [Hinton and Carbonell, 1990]. Due to the tabular nature of the data,
we are using a multilayer perceptron topology, which is composed of interconnected
neurons. Weights connect the neurons, and their output is a function of the sum of the
inputs to the neuron, applying a non-linear activation function afterwards [Gardner
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and Dorling, 1998]. Our models are using Batch Normalisation [Ioffe and Szegedy,
2015] and Dropout [Srivastava et al., 2014] as regularisation methods and the Leaky
ReLU [Maas et al., 2013] function as activation function. Deep learning has been a
trendy technology when dealing with the increasing amount of data, and its application
to medicine is growing [Piccialli et al., 2021].

4.3.2 Hyperparameters and variable selection
To select the hyperparameters and make the selection of variables, we split the datasets
(80%/20%) into a design set and an evaluation set. Then, we used a recursive feature
elimination process as a filter method on the design set. This process starts with the
whole set of features, trains a tree-based model, and calculates each variable’s relevance
using the GINI importance [Nembrini et al., 2018], which measures the average gain of
purity in the tree splits. Finally, less relevant variables are eliminated. The process is
repeated until the desired number of features is obtained. The number of variables was
set to 20 in each task, a number of variables able to be handled by a human operator,
with two variables eliminated each iteration. Table A.1 on Annex A describes each
selected variable.

The selection of hyperparameters for each model was performed using the Optuna
optimisation library [Akiba et al., 2019]. Using this approach, we selected the most
relevant hyperparameters for the GBM and the DNN and provided feasible ranges.
During the process, the method selects a value for each hyperparameter, trains the
model with 80% of the design set, and evaluates it with the remaining 20% and the
appropriate metric. As more iterations occur, Optuna makes a smarter selection of
the hyperparameters until the algorithm reaches a selected number of iterations. The
hyperparameters used in each model can be consulted in Table A.2 in Annex A.

4.3.3 Evaluation
We used the bootstrap technique [Efron and Tibshirani, 1994] to evaluate the models
with 1000 resamples on the unseen evaluation set. To evaluate the performance of the
one-year mortality and the frailty binary classifier, we selected the following metrics:
area under ROC curve (AUC ROC), accuracy, sensitivity (or True Positive Rate) and
specificity (or True Negative Rate). We selected the mean absolute error (MAE) for
the survival regression model. In addition, we repeated the regression experiments
using only those cases where the prediction is < 500 days. In addition, since the GBM
is an explicable model, we reported the contribution of each variable in percentage.

4.3.4 Comparison with baseline models
To compare our mortality regression model with state of the art, we have performed
survival analysis over the data processed with the same pipelines described above.
We chose the Cox regression model [Cox, 1972], from which we obtained survival
estimations for patients by calculating the survival expected time. We trained a binary
Logistic Regression to compare the classification models for both mortality and frailty.
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4.3.5 Software
The whole experimentation described in this work has been carried out using the
python 3 programming language [VanRossum and Drake, 2010], and the following
scientific libraries and packages: numpy as the main mathematical library [Harris
et al., 2020], pandas’ data frames to handle the data representation [McKinney et al.,
2010], scikit-learn’s implementation of GBM [Pedregosa et al., 2011], Pytorch’s DNN
implementation [Paszke et al., 2019], Optuna as hyperparameters selection [Akiba
et al., 2019] and lifelines’ implementation of the Cox model [Davidson-Pilon, 2019].

4.4 Results

4.4.1 Associations between distributions
The Spearman’s correlation coefficient between the survival target in days and the
admission FI was −0.10 while the correlation between survival and the target FI was
−0.16; both correlations were statistically significant (p < 0.001). The similarity
between the binary 1-year mortality target and the binary FI target was studied using
the Chi-Squared test. However, we had to reject the null independence hypothesis (p
< 0.001), and therefore it exists a similarity between both binary variables.

4.4.2 One-year mortality classifier
GBM and DNN performed very closely (0.87 Confidence Interval (CI) 95% [0.86, 0.87]
and 0.86 CI 95% [0.85, 0.86] AUC ROC), both outperforming the logistic regression
baseline, complete results and metrics on Table 4.3.

Model AUC ROC Sensitivity (TPR) Specificity (TNR) Accuracy

GBM 0.87 [0.86, 0.88] 0.78 [0.76, 0.82] 0.79 [0.75, 0.81] 0.79 [0.77, 0.80]
DNN 0.86 [0.85, 0.86] 0.79 [0.74, 0.83] 0.76 [0.71, 0.81] 0.77 [0.75, 0.79]

Log. Reg. 0.80 [0.79, 0.81] 0.75 [0.63, 0.80] 0.69 [0.64, 0.81] 0.71 [0.69, 0.75]

Table 4.3: One-year mortality classifier evaluation. Reporting the mean and the 95% CI

4.4.3 Survival regression
The Cox regression produced a MAE of 444.8 days while the GBM and the DNN model
achieved a MAE of 333.13 and 338.88 days, respectively. The GBM outperformed the
other models when using only samples with survival < 500, complete performance for
survival regression models on Table 4.4.

4.4.4 One-year frailty
The classification model based on the logistic regression achieved an AUC ROC of
0.84, while the GBM and DNN outperformed it with an AUC ROC of 0.89. Complete
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Model MAE MAE (<500d)

GBM 333.13 [323.10, 342.49] 94.67 [92.02, 97.49]
DNN 338.88 [329.07, 349.37] 103.21 [100.47, 106.08]
Cox 444.80 [438.90, 450.90] 116.71 [115.23, 118.08]

Table 4.4: Mortality regressor evaluation. Reporting the mean and the 95% confidence interval.

metrics for the frailty classification are available in Table 4.5.

Model AUC ROC Sensitivity (TPR) Specificity (TNR) Accuracy

GBM 0.89 [0.88, 0.90] 0.77 [0.73, 0.81] 0.85 [0.81, 0.89] 0.79 [0.78, 0.81]
DNN 0.89 [0.88, 0.90] 0.76 [0.72, 0.83] 0.85 [0.78, 0.89] 0.79 [0.77, 0.82]

Log. Reg. 0.84 [0.83, 0.85] 0.74 [0.70, 0.78] 0.78 [0.73, 0.83] 0.75 [0.73, 0.77]

Table 4.5: Frailty classifier evaluation. Reporting the mean and the 95% confidence interval.

4.4.5 GINI Importances
Following the previous methodology, we have calculated the GINI importance for each
of the GBM predictive models. For the one-year mortality model, the most important
variables were: Number of Active Groups, Charlson Index and Age. In the regression
task: Number of Active Groups, Charlson Index and Service whereas in the model
version including only cases with survival < 500 days were: Leukocytes, C-reactive
protein and Urea. Finally, the most relevant features in the frailty model were the
Charlson Index, Number of previous Emergency Room visits and Hypertension. Com-
plete details in Table 4.6.

4.5 Discussion
The overall aim of this study was to develop machine learning models capable of
making predictions about mortality and frailty focused on older adults so that health
professionals can benefit from quantitative approaches based on data-driven evidence.
We have developed a ML model to predict frailty status within the year without using
other problems as proxies. Regarding the mortality criterion, and despite different
approximations to this task in the literature, we decided to focus on older patients to
be more specific within this age group.

Our one-year mortality model ranked among the best general admission mod-
els in terms of AUC ROC (0.87 CI 95% [0.86, 0.88]). Outperforming PROFUND
(0.77) [Bernabeu-Wittel et al., 2011], scoring slightly below HOMR (0.89-0.92) [van
Walraven et al., 2015], mHOMR (0.89) [Wegier et al., 2019] and our previous work [Blanes-
Selva et al., 2021a]. However, the results are in the same range as Avati’s deep learning
approach (0.93, 0.87 for admitted only patients) [Avati et al., 2018]. However, our
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Variable GINI 1YM(%) GINI Reg.(%) GINI Reg.<500(%) GINI Frailty (%)

Charlson Index 14.45 8.40 1.65 29.86
Number Active Groups 16.28 12.97 3.24 -
Service 7.66 10.46 8.37 2.05
Leukocytes 5.58 6.78 14.41 0.60
Age 9.36 5.83 3.25 4.51
Barthel Index 6.23 6.09 5.43 5.10
Urea 5.28 4.62 9.62 0.83
Number Previous ER 1.04 4.42 2.25 10.9
C-Reactive Protein (CRP) 2.68 4.45 10.31 -
RDW-SD 4.80 3.20 4.77 2.28
DRG 3.89 4.05 4.92 1.16
Admission Diagnose Code 1.78 7.26 2.96 0.63
Glucose 2.20 2.18 5.89 1.63
RDW-CV 2.80 2.88 3.60 2.00
Creatinine 2.42 2.57 3.49 1.65
Number of previous stays 1.60 2.56 5.20 0.72
Hypertension - - - 9.67
Haematocrit 2.15 1.56 3.61 1.85
Filtered Glomerular CKD - 7.41 1.24 -
Psychiatric Disease - - - 8.29
Atrial Fibrillation - - - 7.92
Gastro. or Liver Disease - - - 7.59
Potassium 1.38 1.27 4.12 0.76
Metastatic Tumour 5.35 - - -
Sodium 3.07 - - -
Number Previous ER 365d - 1.04 1.67 -

Table 4.6: GINI importance of the GBM for mortality and frailty tasks. Variables are sorted using
the sum of the GINI importances in all tasks.

model is not fully comparable since it targeted older adults (≥ 65 years old); mean-
while, all the mentioned studies use inclusion criteria of ≥ 18, except Avati, which
includes paediatric records. Yourman et al. [Yourman et al., 2012] reviewed prognosis
indices for older patients, where the better AUC ROC for the 1-year index was 0.83,
which is below our lower 95% CI bound. The authors believe that excluding younger
and possibly healthier patients from the sample made the problem more difficult and
negatively affected the metrics. This is the case of our previous work in [Blanes-Selva
et al., 2021a], which used data from the same hospital but reported better results us-
ing the whole adult population. As expected, the GBM model performed significantly
better than the Logistic Regression counterpart and slightly better than the DNN
model.

Our survival regression model scored a mean absolute error of 329.97 days, outper-
forming the 444.8 days scored by the cox model. Despite obtaining better predictions
than one of the most used models when dealing with survival time, a mean error of
almost a year does not adequately meet this model’s original purpose. When removing
cases where survival time is longer than 500 days, the GBM performs better than the
other models achieving a mean error of 94.67 days; this improves the prediction error
and will be likely better accepted by the health care professionals. This improvement
in the predictive power is likely due to removing the long tail in the distribution that
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includes infrequent values and outliers. It would also be possible to train a model using
cases where survival was less than 365 days. In this case, the model would be used
only when the one-year mortality produces a positive result; a preliminary result using
the GBM configuration produced an MAE of 69.89 CI 95% [67.83, 72.08]. A further
study concerning health care experts’ preferences is needed to know if this alternative
is preferred over the standard approximation.

The 1-year frailty model scored a 0.89 AUC ROC on GBM and DNN, outper-
forming the logistic regression version (0.84 AUC ROC). These results demonstrate
a significant predictive power for assessing a patient’s frailty index category one year
from admission. As far as the authors know, this is the first study where a model
is used to predict a future frailty status without using proxies such as mortality or
disability. These models use variables containing information about the current frailty
status combined with other factors such as the previous stays in the emergency room
or the age to determine the future frailty status. Since most of the variables are shared
with the other two mortality models, the addition of a few extra variables means that
we can obtain a prediction regarding the patient’s health decay with a low extra effort.
Each model was set with the 20 most relevant variables from a total of 147, a num-
ber that was arguably too high to be used by a human operator. This selection was
performed using the Random Forest’s GINI importance criteria with recursive feature
elimination as a data-driven method. This method is known to have a favourable bias
towards categorical variables with many categories and continuous variables. However,
it is widely used because it is fast and straightforward to compute [Nembrini et al.,
2018]. In the end, all three models share a great number of variables (Table 4.6), being
only 26 different variables. The selected variables by the recursive feature elimination
algorithm are coherent with the different mortality works in the literature [Bernabeu-
Wittel et al., 2011, van Walraven et al., 2015]. In addition, this final set of variables can
be obtained easily a few hours after admission, where the first diagnosis and laboratory
tests are performed.

These results provide a complementary perspective based on an objective measure
of frailty to initiate early PC. The mean admission FI was 0.27 ± 0.12, and its shape
resembles a normal distribution. This is a coherent behaviour with the findings in the
Mitnitski et al.study [Mitnitski et al., 2001], where the most impaired groups have a
bigger FI mean, and the distribution is shaped like a normal distribution, as opposed
to the less impaired groups, which had a smaller mean FI and can be approximated
using a gamma distribution. The correlation between our admission FI and MR target
in days is –0.10, lower than the one reported in [Mitnitski et al., 2001], which was
–0.234. This means that the frailty index used in this work for this sample is less
associated with mortality. However, the Chi-Squared test performed on both binary
targets discarded the hypothesis of independence, so in our sample, we can confirm a
weak association between both criteria.

The relationship between frailty and mortality have been studied previously [Sham-
liyan et al., 2013], pointing to the association between both. Despite the similarity in
the input variables, the target variable distributions are poorly correlated and have
different shapes. Both criteria have been highlighted as important for accessing PC in
previous studies and are related. However, they reflect two different distributions, and
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the authors think of them as two complementary criteria. Therefore, we conclude that
the best approximation for taking advantage of both mortality and frailty criteria is
to have different predictive models working simultaneously, increasing the information
to support the decision-making process. The incorporation of the frailty criterion may
represent an added value for those health professionals deciding about inclusion in PC
services. This is in line with Almagro et al.(2017) [Almagro et al., 2017], showing
that poor vital prognosis as the sole criterion for initiating PC among COPD patients
should be critically appraised.

This study’s clinical impact resides in the potential to predict adverse outcomes
for hospital admitted patients within the following year. First, we choose one year as
a horizon to make the mortality prediction; as stated elsewhere [Avati et al., 2018],
longer than 12 months is not desirable due to the difficulty in the predictions and
the limited resources of the programs, which are better to focus on immediate needs.
Thus, referral to PC may be focused on immediate needs. Also, despite being more
difficult to predict, the information provided by the survival regression model may help
contextualise the one-year mortality model results. Therefore, healthcare professionals
would be supported with additional information such as the magnitude of the remaining
time until death in days, weeks or months. Including these models into clinical practice
could help anticipate the decline in admitted patients, allowing healthcare professionals
to allocate scarce resources to patients who will need them the most.

The main contribution of this work is the development of the frailty predictive
model, which is a novel approach to try to identify patients in need of ACP. This
frailty approach complements the more traditional mortality approach, which we also
tried to enrich by adding one-year mortality classification and regression to provide
more information to healthcare experts during the decision-making process without
providing excessive extra information burden. The three models were implemented as
an online Clinical Decision Support System [Hajioff, 1998] available to any healthcare
expert for academic use until further validations at [Blanes-Selva, 2021]. Besides, we
have demonstrated the complementariness of the mortality and frailty models testing
the low correlation between both factors in our dataset, so we should treat them as
complementary criteria.

The main limitation of this study is the use of data from only one hospital. There-
fore, internal validation only assures the performance of the models with similar data.
We cannot ensure the reported efficiency in other hospitals and other patient popula-
tions [Sáez et al., 2021]. Also, data from the same centres can change over time for var-
ious reasons, such as a change in protocols or external agents such as a pandemic [Sáez
and García-Gómez, 2018, Sáez et al., 2020]. Additional external validations are needed
for future work. Broader populations can be approached by implementing predictive
models using EHR, supporting an effective identification of patients needing further
specialised care [Jung et al., 2019]. Thus, besides external validation of the models,
future authors’ work will require significant software development and implementation
project to connect these systems with hospital EHR and avoid manual input by pro-
fessionals. Also, the maturity of the models and the software wrapping them needs
to be field-tested before their inclusion as a standard tool to the hospital information
system.
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4.6 Conclusion
This work proposes using three different machine learning models based on hospital
admission data to assess the PC needs of older adults and help healthcare professionals
in the decision-making process. The authors constructed three different but comple-
mentary predictive systems: a one-year mortality model, a regression mortality model
to provide more information about the first prediction, and a one-year frailty model.
Previous mortality models are using machine learning methods available elsewhere,
but they are not specifically focused on older populations. Also, to our knowledge,
this is the first study predicting one-year frailty status based on a frailty index. As
previous studies have shown, mortality and frailty could be relevant criteria to admit
patients to PC programs. Therefore, health professionals could benefit from using
data-driven accurate predictions of these two dimensions on patients over 65. In addi-
tion to the benefits experienced by patients and their families, the early identification
of these patients’ needs can help better manage the available health and social care
resources and reduce costs overall. Consequently, the authors propose using predic-
tions in both mortality and frailty as complementary predictions to help assess PC
needs due to its relevance but weak correlation, reliability and great predictive power.
The described models have been implemented and publicly available for the academic
purpose at [Blanes-Selva, 2021].
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Chapter 5

Responsive and minimalist bedside
mortality calculator

Mortality and frailty models published in scientific literature have demonstrated to
have a great predictive power and make the correct prediction consistently. However,
the models usually include administrative variables, the values of which depend on the
hospital’s idiosyncrasy. This means that some variables may not be available in every
Electronic Health Record (EHR), or that the variables present a different set possible
values e.g., the admission department. This makes difficult the implantation of models
trained with other data sources. Besides this problem, models tend to incorporate a
large amount of variables in order to maximize their predictive power. This trend does
not represent a problem if the model is fully implemented with hospital’s information
systems and is able to collect most of the information automatically. However, a lot
of work and maturity is needed to reach this scenario and therefore CDSSs including
these models need a manual input that can interfere with the clinical workflow if the
number or required inputs is too large. In this chapter we present our approach to
a minimalist mortality predictive model, deployed into a website adapted for use on
portable devices.

The content of this chapter was published in the scientific journal article by Blanes-
Selva et al, (2021b) - thesis contribution P3. The software produced during this work
is accessible through: http://palliative-calculator.upv.es

5.1 Introduction
The World Health Organization (WHO) [Roberts et al., 1998] defines healthcare sus-
tainability as “the ability to meet the needs of the present without compromising
the ability to meet future needs”. This topic is increasingly important [Borgonovi
et al., 2018] and possibly especially challenging in developed countries, where ageing
raises healthcare costs [Kyeremanteng et al., 2018]. However, regardless of the health
policies in different countries, there is an interest in cost-effective alternatives that
deliver (at least) the same quality of care, especially among older populations and
those with chronic conditions and morbidity. PC has gained the attention of clinicians
and researchers in recent years as both an alternative to standard care and through a
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combined approach for these patient groups [Wallerstedt et al., 2019].
According to the recent redefinition of PC by Radbruch et al.in 2020 [Radbruch

et al., 2020]: “Palliative care is the active holistic care of individuals across all ages with
serious health-related suffering due to severe illness and especially of those near the
end of life. It aims to improve the quality of life of patients, their families and their
caregivers”. Several studies have shown positive clinical results in patients involved
in PC programs: an improvement in the quality of life and mood [Temel et al., 2010,
Bakitas et al., 2009], symptom control [Yennurajalingam et al., 2011] and the reduction
of emergency department visits and hospitalisations [Quinn et al., 2020].

Besides the clinical implications, the economic impact of PC programs has also
been studied. In 2010, Simoens et al. [Simoens et al., 2010] reviewed different studies
trying to compare the cost of PC against standard care; the authors found that PC
was consistently cheaper. Kyeremanteng et al. [Kyeremanteng et al., 2018], in 2016,
reviewed how PC affected the length of stay in the intensive care unit (ICU), which
is an expensive form of healthcare. The authors found that PC consultations tend to
reduce the length of stay in the ICU. Similarly, Smith et al. [Smith et al., 2014] found
in another review that PC programs are frequently less expensive than comparator
groups, and, in most cases, the difference is statistically significant.

It is estimated that approximately 75% of patients nearing end-of-life may benefit
from PC interventions [Etkind et al., 2017]. The same authors projected an increase
of 25% to 42.4% of people requiring PC in England and Wales, and it is reasonable to
expect other developed countries will also have increased PC needs. However, despite
the sound evidence of PC being clinically beneficial and cost-effective, it remains under-
resourced in many countries.

Clearly, it is important to identify those patients who may benefit from PC at
the appropriate time, since those interventions are positive in clinical and economic
healthcare areas. Different criteria have been used, also known as triggers, based on
different clinical diagnoses or the detection of more personalised PC needs [Kayastha
and LeBlanc, 2020]. A limited prognosis is still a widely used criterion when screen-
ing for patients who may benefit from PC interventions [Etkind et al., 2017]. The
SQ has been widely used and promoted to identify patients likely to die within the
next year, and therefore possibly benefit from PC [Downar et al., 2017]. However,
the SQ performs poorly to modestly, and further studies are needed to develop more
accurate tools [Downar et al., 2017]. In addition to the SQ, there are other tools
aimed to predict all-cause mortality. Some of the more accurate ones are data-driven
and based on statistics and machine learning: the PROFUND index [Bernabeu-Wittel
et al., 2011], HOMR [van Walraven et al., 2015], which has been modified in further
publications [van Walraven and Forster, 2017, Wegier et al., 2019], or a deep learning
approximation [Avati et al., 2018]. In addition, our team presented a machine-learning-
based approximation that targets adults (≥ 18) [Blanes-Selva et al., 2021a].

Despite the different literature approximations to this problem and the good pre-
dictive power reported for the different models, implementing these predictive models
in clinical practice is not easy. The CDSS implementation in one organisation can fail
due to user acceptance, as potential users can consider the outputs irrelevant or unre-
liable, or that the CDSS interfere in their workflow [Mahadevaiah et al., 2020]. Leslie
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et al. [Leslie et al., 2006] provide a list of key features that are very important during
the CDSS design, which we can summarise as follows: the tool should meet the user
needs, adapt to the clinical workflow and be flexible enough to allow the healthcare
professional to manage in their own way.

In concrete, CDSS powered by machine-learning technology has been utilised suc-
cessfully in several clinical applications, especially dealing with medical imaging in
fields such as radiology, dermatology or ophthalmology [Yu et al., 2018]. However,
other fields, such as biomarker discovery or clinical outcome prediction, have also ben-
efitted from incorporating machine learning algorithms. In the review performed by
Yu et al. [Yu et al., 2018], two categories of challenges are discussed: technical chal-
lenges, which includes the data quality and interpretability of the models, and social,
economic and legal challenges, where the author remarks on the importance of the
integration of the tool with the clinical workflows.

A particularly interesting use of CDSS is in bedside applications, where the clin-
ical professionals do not need to spend much time working on documentation or on
a desktop computer using the available tools through mobile devices [Ehrler et al.,
2018]. Some studies focused on the usability of mobile clinical decision support models
have proposed checklists, also known as heuristics, to determine if applications com-
ply with usability standards. A recent example is Reeder et al. [Reeder et al., 2019],
who compile a heuristic focused on mobile CDSS applications. When designing these
bedside apps, one essential principle is to show only the necessary information needed
to proceed. In other words, the application should be as minimalist as possible, whilst
keeping the original functionalities and objectives. Some approximations to bedside
mortality risk assessment have been studied in the past, proposing scores and indexes
for different health issues, such as acute pancreatitis [Singh et al., 2009], acute ischemic
stroke [O’Donnell et al., 2012], non-cardiac surgery [Glance et al., 2012] and, recently,
for COVID-19 [Bertsimas et al., 2020]. Despite the increase in research around pre-
dictive models using mobile applications in the health domain, we found very little
information about any apps used in practice. One of the few apps available is the
COVID-19 mortality calculator [Bertsimas et al., 2020]. However, to the best of the
authors’ knowledge, there is no mobile app to predict 1-year general mortality at the
bedside. The aim of this study is twofold. On the one hand, the aim is to create
a compact version of the 1-year mortality model using common and easy-to-gather
variables during admission based on the larger model developed by the authors previ-
ously [Blanes-Selva et al., 2022a]. On the other hand, the aim is to implement a web
application (web app) so that health care professionals can assess PC needs during
bedside examinations utilising a smartphone or a tablet.

5.2 Materials and Methods

5.2.1 Data
This study makes use of the same dataset as the one described in [Blanes-Selva et al.,
2022a]. EHR information was collected from admissions for older patients (65 years
old), excluding those admitted to the psychiatry department. Data comprise 1 January
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2011 to 31 December 2018, containing 39,310 different admission episodes from 19,753
different patients. Patients death date was available in the EHR and was used to
calculate the one-year mortality target variable.

5.2.2 Feature Selection and Modelling
To create a compacter model, we applied a strategy to reduce the number of variables,
starting with the list of the 20 most important variables obtained from our previous
work [Blanes-Selva et al., 2022a]. In addition, we removed the administrative variables
that may be not compatible with other information systems: Diagnosis Related Group
(DRG), admission code and department code. The final list of variables composing
the dataset is available in Table 5.1.

Variable Rank Mean ± Std Missings

Number of Active Groups (Meds) 1 2.44 ± 3.68 0%
Charlson Index 2 4.77 ± 3.34 0.2%
Barthel Index 3 51.91 ± 39.75 73.4%

Metastatic Tumour 4 -o 0%
Age 5 79.4 ± 8.36 0%

Urea (mg/dL) 6 61.19 ± 43.36 37.1%
RDW SDp (fL) 7 49.66 7.36 21.7%

Leukocyte (103/µL) 8 9.23 ± 6.85 21.6%
RDW CVq (%) 9 15.26 2.43 21.7%

Sodium (mEq/L) 10 139.89 ± 4.92 21.2%
C Reactive Protein (mg/L) 11 55.1 ± 70.54 47.3%

Creatinine (mg/dL) 12 1.23 ± 1 20.7%
Haematocrit (%) 13 36.24 ± 5.8 21.6%
Glucose (mg/dL) 14 122.5 ± 54.98 24%

Number of Previous ER 15 6.04 ± 6.56 1.4%
Number of Previous Admissions 16 7.62 ± 7.49 0%

Potassium (mEq/L) 17 4.22 ± 0.61 22.5%

Table 5.1: Variable summary and ranking. Rank represents the order of the variable according to the
GINI importance. Mean pm Std column describe the statistical mean of the feature and its standard
deviation. Missings column represent the percentage of missing values of that feature

In the next step, we ranked the variables according to their importance using
an iterative method. The algorithm starts with a whole list of variables, and then
an explainable model is trained using them and the importance of every variable is
obtained. We used the random forest model as this explainable model, using the GINI
criteria to determine the importance of each variable after the model was fitted. After
this, the variable with less importance was removed from the list. The process ended

oDistribution for categorical variable metastatic tumour is Yes: 77 (0.2%); No: 38339 (99.8%).
pRed blood cell distribution width standard deviation.
qed blood cell distribution width coefficient of variation.
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when only one variable was left. The ranking of every variable was the iteration when
it was removed from the list in reverse order.

To determine the optimum number of variables, we took the ranking obtained in
the previous step and applied the following algorithm: starting with the most relevant
variable, a model-based gradient boosting machine is trained and validated with the
10-fold validation method, using nine sections of the data to train the model and one
to test it. The AUC ROC [Bradley, 1997] is computed for the 10 test splits, averaged
and stored as a result for the first variable. The process continues, adding the following
variable in the ranking to the model until the final iteration, where all variables are
included in the model.

Among the selected variables (Table 5.1), there are missing values, except in the
age and the number of active groups. We hypothesised that the main mechanism pro-
ducing these missing values is the clinical criterion, where tests are not performed if
the physicians do not consider their results important to diagnose or treat the patient.
The missing values produced by this mechanism are known as Missing Not At Ran-
dom (MNAR) [Haneuse et al., 2021]. To use the maximum amount of information,
an imputation method was needed. In our case, we combined the inclusion of an im-
putation mask (a dummy variable indicating if the data are present) and an iterative
imputation technique [Van Buuren and Groothuis-Oudshoorn, 2011]. We decided to
use both techniques following the results of Sperrin and Martin [Sperrin and Martin,
2020] because it improves the modelling when dealing with MNAR, but has no detri-
mental effects for missing at random. Following the original data criteria, the only
required input for the user is the age and the number of active groups prescribed to
the patients during admission.

5.2.3 Explainability Layer
When a new sample introduced by the user reaches the gradient boosting machine, an
explainer object is created to interpret the effect of the different variables of the sample
in the prediction. This explainer object is the TreeExplainer, which is implemented in
the SHAP library [Lundberg and Lee, 2017]. The output of this process is the Shapley
values. Every value corresponds to one variable; positive values indicate that the value
on this variable pushes the prediction to the positive class, which is mortality within
the year in our case. In addition, the bigger the absolute value, the greater the effect
on the prediction. We have created a bar graph to represent these values visually,
showing only the most relevant ones (bigger absolute value) and adopting the green
for the negative values (greater for the patient survival) and red for the positive ones.

5.2.4 APP Implementation and Software
Finally, and after determining the optimal number of variables, a model was trained
using all the available cases. The model was then deployed in a publicly available
Django web application. We used the Bootstrap library to make the website respon-
sive and adapt the size and elements display in all screen sizes. The app’s interface was
designed to be as minimalist and functional as possible, following the heuristic from
Reeder et al. [Reeder et al., 2019] when applicable. Figure 5.1 illustrates the whole
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methodology workflow. Model creation and evaluation process were performed using
the NumPy [Harris et al., 2020], pandas [McKinney et al., 2010] and scikit-learn [Pe-
dregosa et al., 2011] libraries working with the Python programming language in its
3.8 version.

Figure 5.1: Methodology process summary from the initial data to the web application.

5.3 Results

Table 1 shows the results of the data exploration through variable parameters and the
number of missing values. In addition, it includes the importance ranking obtained
for each variable. The most relevant variables are the number of active groups (in the
medications provided), the Charlson Index, the Barthel Index and the patient’s age.
Results for the second experiment can be observed in Figure 5.2. Each coloured bar
represents the mean AUC ROC using the 10-fold model with the N most important
variables determined by the previous experiment. Grey bars on the top represent
the 95% confidence interval. The mean AUC ROC values increase as the number
of variables grow, but changes are not statistically significant when the number of
variables is greater than nine.

Figures 5.3a,b show the final aspect of the tool when accessing it from a smartphone.
Figure 5.3a presents the form where the health care professional enters the patients’
data. Units have been added to laboratory tests fields, as well as a tooltip with the
reference values to help the users. The number of variables has been selected according
to the heuristic principle of Is only (and all) information essential to decision making
displayed on the screen? and Has the need to scroll been minimized and where necessary,
are navigation facilities repeated at the bottom of the screen?. The order and position
of the layout have been influenced as well by the heuristic. Figure 5.3b shows a results
example, a modal panel that appears over the previous screen, including the numeric
value for the prediction in percentage, and the variable importance bar plot built from
the Shapley values. The missing indicators are displayed on the bar graph with the
suffix “missing” if the explainer found the variable relevant.
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Figure 5.2: AUC ROC values when increasing the number of variables. The horizontal line marks
the result for the selected number of variables in the final version. Vertical lines on top of each bar
represent the width of the confidence interval at 95%

Figure 5.3: Screenshots from the application running on Firefox Focus in Android device: (a) main
screen where the user has to input the data; (b) results and explainability graph.
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5.4 Discussion
The experimentation reported in the first place which variables were more informative
to create the predictive model. With this information, we calculated the metrics of
the model using an increasing number of variables to determine the optimum num-
ber of variables. Our objective was to maximise the performance of the model while
keeping the required number of inputs low. Setting a low number of required inputs is
important from the design perspective [Bargas-Avila et al., 2010] to minimise the time
required to use the tool, which directly affects the interference in the clinical workflow
and the chances of successful implementation [Leslie et al., 2006]. Therefore, we fol-
lowed the heuristic by [Reeder et al., 2019] when possible, although some checkpoints
did not apply due to the app’s small size.

Using the minimalist approach, the authors believe that seven variables is the
most convenient number of variables to incorporate in this model. This gives a final
evaluation of the model is an AUC ROC of 0.83 with a 95% confidence interval of
[0.82 to 0.84]. Arguments favouring increasing or reducing the number of variables
can be made, but there is no precise study about how this factor affects repetitive
tasks over time. Previous mortality models proposed in the literature have achieved a
greater predictive performance, such as HOMR (0.89 to 0.92 AUC ROC) in its different
versions [van Walraven et al., 2015, van Walraven and Forster, 2017, Wegier et al.,
2019], Avati’s deep learning approach (0.87 AUC ROC on admitted patients) [Avati
et al., 2018] and our previous work, which achieved 0.91 of AUC ROC [Blanes-Selva
et al., 2021a].

However, this is not a fair comparison for three main reasons. First, the previously
mentioned studies are aimed at adults (18), and Avatis work even includes paediatric
information, whereas this work was focused on older patients (65). Since age is a de-
terminant mortality factor recognised in the literature [Bernabeu-Wittel et al., 2011,
van Walraven et al., 2015, van Walraven and Forster, 2017, Wegier et al., 2019, Avati
et al., 2018, Blanes-Selva et al., 2021a], limiting the dataset to older patients removes
younger and healthier patients and makes classification more difficult. There are few
1-year mortality admission predictive indices focused on older patients. Inouye et
al. [Inouye et al., 2003] reported an AUC ROC of 0.83 in development and 0.77 in
validation, whereas Fischer et al. [Fischer et al., 2006] reported 0.82 in development.
Both studies report a similar performance to our results. Still, the indices were de-
veloped with a relatively small number of cases, 525 and 435, respectively, which may
lead to weaker results than modern studies with bigger samples. Secondly, despite
some of these studies using easily obtained variables, such as the HOMR-now! [van
Walraven and Forster, 2017] derived from the HOMR model using data immediately
available at hospital admission, none of them have been designed to be a compact and
bedside clinical decision support tool. Lastly, with the design of this model, admin-
istrative variables have been avoided to predict mortality as they could be difficult
to obtain or could not be exchangeable between different healthcare systems, such
as the department where the patients are admitted. Other works in the literature
include variables that may present difficulties implementing the system in different
hospitals due to having varying protocols or administration; for example, the original
HOMR study [van Walraven et al., 2015] used, as variables, if the admission has been
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performed by ambulance or if the patient receives oxygen at home.
The variables that compose this predictive model are similar to those used in other

studies. The Charlson Index was also used in HOMR and HOMR-now! [van Walraven
et al., 2015, van Walraven and Forster, 2017]; The Barthel Index had been used in
the PROFUND index [Bernabeu-Wittel et al., 2011]; BUN was the second most rele-
vant variable in our previous study [Blanes-Selva et al., 2021a] and some studies have
identified that this variable is associated with mortality in different contexts [Arihan
et al., 2018, Wu et al., 2009, Cauthen et al., 2008]. Age has been used in all of the
previously mentioned models, and is strongly associated with mortality. Other vari-
ables have been tested in their association with mortality. In our study, the number of
active groups in medication resulted in one of the most informative predictors, despite
other studies not finding a direct association [Martín-Pérez et al., 2019]. Gelder et
al. [de Gelder et al., 2016] considered this variable in their 90-days mortality model,
but it did not make the cut of the final model. Using the explainability method, we
detected a strong negative interaction when the variable has a value of 0. We hypothe-
sise that this is the case for terminal patients on non-curative treatment. Lower values
for this variable have positive effects on the prediction, whereas this effect declines
and turns negative as the value increases. This pattern is expected, since patients
with more prescribed medications are likely to have a more complex health status and
an increased number of comorbidities. RDW-SD measures the standard deviation in
the variability of red cell volume/size (RDW). In 2010 Patel et al. [Patel et al., 2010]
conducted a meta-analysis where the RDW test was a strong predictor for mortality
in older adults. The metastatic tumour is a condition related to survival and has been
used in previous works as well [Blanes-Selva et al., 2021a].

Accurate predictions can be helpful to health care professionals using these types
of tools, but the users need to understand why a specific prediction has been made.
As Shortliffe and Sepúlveda stated in [Shortliffe and Sepúlveda, 2018], black boxes are
unacceptable. It is necessary to provide an explanation of why the tool has made a
certain recommendation in order for the professionals to accept or override it. Carroll
et al. [Carroll et al., 2002] also point to the lack of explanation for the proposed solution
as a pitfall for CDSS. In this sense, in this work, we tried to address this situation
by providing a graphic representation of the Shapley values [Lundberg and Lee, 2017];
this graphic shows the most relevant variables pushing the prediction to higher or lower
mortality within the year probability.

Prognosis-based interventions are one of the most common ways to detect patients
in need of PC. According to Kayastha and Leblanc [Kayastha and LeBlanc, 2020],
there are two other identification types: need-based and trigger-based. On the one
hand, need-based assessments use different tools, such as questionnaires and the need
from the clinician’s agreement on how to interpret the results, which could lead to
too many referrals. On the other hand, trigger-based assessments define a set of
conditions to trigger the intervention that is a mix of both prognosis and needs. The
tool proposed in this work falls into the prognosis-based category. One of the downsides
of this approximation is that it does not provide information about the concrete needs
a patient may have. It may be interesting to complement the output provided from
our tool with other criteria in order to apply an additional filter and improve the PC
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needs identification. Recently, Wegier et al. [Wegier et al., 2021] studied this possibility
in their work by assessing PC needs using symptomatology and readiness to engage
in advance care planning on patients already identified using their predictive model
mHOMR. Most of the patients identified presented unmet PC needs in accordance
with the study criteria. This result opens the possibility to improve the effectiveness
of mortality models with other PC needs assessment tools.

Resource allocation to PC programs is a relevant challenge because these programs
present a list of clinical benefits to the patients but are often under-resourced [Temel
et al., 2010, Bakitas et al., 2009, Yennurajalingam et al., 2011, Quinn et al., 2020]. If
available, PC is usually provided to patients with a high symptom burden or in the
terminal phase of illness. However, a shift to an early PC approach is advocated [Haun
et al., 2017]. In addition to this, some studies have proven different PC interventions
to be cost-effective compared to standard care [Kyeremanteng et al., 2018, Simoens
et al., 2010, Smith et al., 2014]. Early PC has shown lower hospital costs during hospi-
tal admission [May et al., 2015] or costs savings over routine care [Lowery et al., 2013].
Combined with the anticipated increased PC demand alongside limited resources, these
facts create the necessity to identify which patients could benefit more from PC inter-
ventions. A bedside tool, such as the one presented in this work, can help identify those
patients in an agile way, so that the PC delivery can be improved and, therefore, bring
clinical benefits and less expensive care to those in need, improving the sustainability
of the healthcare system.

The main goal of this work was to create a quick-to-use tool to determine which
patients may benefit from PC. Besides the identification power, the main benefit of
having a compact tool is the reduced time needed for completion, which is essential
to the tool’s success [Shortliffe and Sepúlveda, 2018, Carroll et al., 2002]. The main
strengths of this study are, first, the creation of a compact all-cause mortality model
during hospital admission, obtaining a good discriminative power of 0.82 of AUC ROC.
Second, this minimalist design, in addition to the lack of hospital-specific variables,
allowed us to create a clinical decision tool as a web app to be used in any portable
device with an internet connection and a web browser. Finally, the tool provides a
numerical result and uses explanatory techniques to help the health care profession-
als in their final decision making, providing more context to accept or override the
prediction. This simple tool presented a good predictive power and can quickly de-
tect patients in need of PC and aid the effective allocation of resources to improve
healthcare sustainability.

The main limitation of this study resides in its validation. Evaluation of the predic-
tive model has been performed only within the same dataset using the K-fold validation
strategy from a single institution. Thus, we cannot ensure the reported effectiveness
in other contexts or other populations [Sáez et al., 2021]. External validation with
other hospitals and populations is needed. Another important limitation of this tool
is that the data input and the output calculation are disconnected from the EHR
system. Simplifying the data input for the models to be used in a bedside tool was
addressed during the study methodology. Still, the output prediction is not recorded
anywhere, so it will require a manual introduction of the results in another system;
this could prove difficult for both the case review process for healthcare workers and
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for the acceptance of the tool for other stakeholders, such as hospital administrators or
policymakers, who are unable to obtain a ‘big picture’ from the application records [Pe-
tersen et al., 2015, Ganasegeran and Abdulrahman, 2019]. However, the disconnection
from the EHR and the application not storing any data solve most of the privacy and
data security difficulties, which are a barrier to the large scale adoption of mHealth
applications [Petersen et al., 2015].

5.5 Conclusions
Older populations with chronic conditions or multimorbidity are increasing, which
may mean an increased demand and use of health care services, with PC interven-
tions among them. Unfortunately, there are many barriers in accessing PC, such as
limited resources or late referrals when a person is in their last phase of the end-
of-life process. This minimalist and simple predictive model can support the early
identification of patients in need of PC, requiring only a minimum investment of time
by clinicians. Tools such as this can facilitate the management of complex patients
and overcome decision-making difficulties in integrating PC in daily clinical practice.
A better PC identification delivers clinical benefits to the patients and could help
to allocate resources, improving the system’s sustainability. The tool is available at:
http://palliative-calculator.upv.es (accessed on November 26, 2022).
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Chapter 6

Validation of a clinical decision
support platform for palliative care:
The Aleph

The use of ML to aid in clinical problems such as the PC referral has generated promis-
ing results. However, these solutions rarely leave the laboratories and get implemented
in clinical practice. Scientific literature presents an exhaustive list of pitfalls and condi-
tions for the development of a CDSS. In this chapter, we are going to review the most
common problems present during the CDSS implantation and evaluate our system, the
Aleph, using a user-centred methodology. This methodology includes using the system
in a ’near-live’ scenario and the use of usability and user experience questionnaires.

The contents of this chapter as preprint in medRxiv by Blanes-Selva et al, (2022b)
and under consideration for SAGE Digital Health - thesis contribution P4. The soft-
ware produced during this work is accessible through: https:// thealeph.upv.es

6.1 Introduction
Clinical Decision Support Systems (CDSSs) are computer systems designed to impact
clinician decision-making about individual patients at the point in time that these
decisions are made [Berner, 2007]. Interest and research about CDSS are motivated by
their potential benefits documented in the scientific literature: increased patient safety
by reducing medical errors or avoiding advice against protocol; improved service quality
due to better adherence to guidelines, and increased service time dedicated directly to
the patients; cost reduction by processing faster the demands and avoiding duplicated
tests; improved administrative functions by incorporating elements such as automatic
documentation; diagnosis support and workflow improvement [Sutton et al., 2020,
Tundjungsari et al., 2017].

However, despite the multiple virtues that CDSSs could bring, there has been a lack
of adoption of these systems into the clinical practice [Belard et al., 2017, Yang et al.,
2016, Devaraj and Viernes, 2014, Elwyn et al., 2013, Yang et al., 2015]. Several studies
pointed to the main barriers to adoption, in which we could find two broad categories:
socio-cultural factors and usability. Socio-cultural barriers refer to the beliefs of health
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care professionals or their organisation regarding the CDSSs, such as the idea of loss
of autonomy, the feeling of being replaced by the system, low computer literacy, lack
of trust in the system, failure to fulfil a perceived clinical need, legal uncertainties and
misalignment between human needs and the technical system [Khairat et al., 2018,
Liberati et al., 2017, Yu et al., 2018, Carroll et al., 2002]. Liberati et al. [Liberati
et al., 2017] proposed several strategies to deal with those barriers depending on the
physicians’ beliefs regarding the CDSSs. Most of them are based on communication,
training, and highlighting the system’s benefits.

On the other hand, usability barriers refer to the difficulties found by the user while
using the software. The most common problems in this category are the difficulty to
operate the software, the disruption of the workflow, the decrease of face-to-face time
with the patients [Sutton et al., 2020] and the alert fatigue due to excess notifications
by the system [Carroll et al., 2002, Press et al., 2015]. These challenges have been
addressed previously by other authors by performing usability pilots with potential
software end-users, mostly HPs, in order to identify and correct the different usability
problems of their CDSSs [Press et al., 2015, Genes et al., 2016, Richardson et al., 2017,
Thum et al., 2014].

Usability studies usually follow a general scheme. The participants are exposed to
the software in a controlled environment and the session is usually taped and/or with
the researchers taking field notes. Participants must try accomplishing tasks mimicking
real scenarios, which in some studies receive the name on “near-live” simulations [Li
et al., 2012]. Think-Aloud methodology [Eccles and Arsal, 2017] is commonly used
during the whole study, this method consists of asking the participants to express
their doubts, opinions, and in general, any thought regarding their experience with the
tool. Finally, the usability of the software is quantified through a scale or an index.
One of the most popular evaluation tools is the System Usability Scale (SUS) [Brooke
et al., 1996, Lewis, 2018].

It is generally accepted that a positive User eXperience (UX) is essential to any
software acceptance [Wallach et al., 2020]. Despite existing a close relationship between
usability and UX concepts, there are some differences worth studying, primarily related
to the hedonic category [Bevan, 2009], i.e., how ‘pleasurable’ the users find to use the
software. In addition, UX also studies emotions, beliefs, preferences and perceptions.
These concepts directly impact the adoption of a CDSS, concretely, they are strictly
related to the previously mentioned socio-cultural barriers. Therefore, a UX study is
essential to assess and improve technology adoption.

Another crucial aspect while maximizing the probability of a successful imple-
mentation of a CDSS in clinical practice is their design from the initial stages. An
interdisciplinary team is highly recommended, including data scientists, programmers,
usability and UX experts, the HPs as potential users of the software and other stake-
holders such as representatives from hospital management to have a clear vision of the
requirements [Yu et al., 2018, Mahadevaiah et al., 2020]. Planning a pleasant inter-
face is also important since some studies reported users being more tolerant to minor
usability issues if they found the interface visually appealing, which is known as the
aesthetic-usability effect [Moran, 2017].

CDSS in palliative medicine are in a very early stage of development. The study
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of Tan et al. [Tan et al., 2020] presents an example of CDSS specifically developed in
PC designing and implementing a CDS tool aimed to identify patients at emergency
departments that could benefit from primary PC, which demonstrated a very posi-
tive usability value. In the context of PC there are several tools aimed to support
healthcare professionals in the detection of patients in need of PC (i.e., [Maas et al.,
2013]), but this is still one of the challenges that healthcare professionals have in their
clinical routine, especially when they are dealing with patients with non-malignant
conditions [Pocock et al., 2019, Llop-Medina et al., 2022]. In this research line, we de-
veloped a set of predictive models to assist the PC referral with hospital admission data
on older patients using mortality and frailty predictions as main criteria [Blanes-Selva
et al., 2022a]. The result of that study was a demonstrator for a complete CDSS called
The Aleph PC. Our study reported that these models accurately predicted which pa-
tients had a short survival time and were likely to become frail. Thus, our goal in this
work is to validate the Aleph PC using user-centred techniques [Cai et al., 2019] and
determine how different health professionals with PC experience envision the use of a
PC CDSS in the clinical practice. First, we evaluated The Aleph PC’s mortality and
frailty models against the HPs predictions to obtain a baseline, and second, we assess
the usability and UX of the system alongside the different insights of the HPs on how
to build a useful PC CDSS.

6.2 Materials and methods

6.2.1 The Aleph CDSS Platform
The Aleph PC is an open-access ML-based CDSS implemented as a web platform. The
application is divided into three main screens; in the first one, the user introduces the
different data required for the PC predictions, including administrative information,
Barthel [Mahoney et al., 1965] and Charlson [Charlson et al., 1994] indexes, laboratory
results and a few diagnosis variables (Figure 6.1a). After completing the form, the
results are calculated and displayed on another screen (Figure 6.1b); these results
include a numerical result for each model and a Machine Learning (ML) explainability
figure. We have used the Shapley Values (SHAP) [Lundberg and Lee, 2017] to display
a graph with the relation between the input and the prediction obtained. Finally, the
Files section (Figure 6.1c) allows the user to save the current case, load a different case
or test the application with predefined test cases. The version tested in this study can
be accessed here: https://demoiapc.upv.es/r.

6.2.2 Recruitment process
We recruited healthcare professionals used to treat patients with bad prognostic within
a wide variety of roles and possible end users of the CDSS. In concrete, we focused on:
nurses, primary care physicians, hospitalist physicians, PC consultants and specialists
like oncologists, neurologists or pulmonologists. This decision ensured the inclusion of
different approaches working with complex patients in need of PC. The authors drafted

rLast accessed November 26, 2022
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Figure 6.1: a) (left-top) Screen where the user inputs the data b) (right) Screen where the results are
shown c) (left-bottom) Screen to manage the files and the predetermined examples

a list of possible participants with no direct relationship with the development of The
Aleph PC, including clinical partners from the InAdvance project and other relevant
institutions that have participated actively in the research in of the PC field. This list
included 6 different countries: Italy, Brazil, Spain, Greece, Scotland and Portugal. The
authors used the the snowball sampling technique [Parker et al., 2019]: once identified
the first volunteers we asked them for other colleagues willing to participate until we
completed our target sample size. Invitations to participate in the study were sent by
email.

6.2.3 Study structure
Participation

The study was defined as an iterative user-centred validation. Participants were invited
to individual evaluation sessions where one of the team members acted as session
guide. On some occasions, a second member of the team spectated the evaluation
session and collaborated taking field notes. Evaluation sessions were performed by
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video-conference, where the participants shared their screens while interacting with
The Aleph PC. The think-aloud methodology [Li et al., 2012] was used during the
whole session. The duration of each evaluation session was around one hour and their
overall structure is displayed in Figure 6.2.

We defined two rounds of sessions, with a period of 15 days between them, where we
evaluated the comments received by participants during the sessions; then a consensus
on how to address each issue and how to adapt the software based on the feedback
was reached. We invited 16 participants to the first round. For the second round, we
invited 8 different participants. We aimed to perform a greater number of sessions
during the first round to detect as many usability problems as possible so we could
compare the number and the nature of the identified issues.

Figure 6.2: Overview structure of the sessions including three sections and the approximate time
spent in each one of them: 1) Brief introduction, 2) Model evaluation and 3) Usability and UX test.

Model validation

First, we implemented a model evaluation which was performed in an unlinked sections

of The Aleph PC. After introducing some basic information, the participants faced 6
vignettes: already filled, non-editable input forms containing real cases. Then, at the
bottom of the page they were asked to fill in their own predictions regarding one-year
mortality (yes/no), mortality regression (months interval) and one-year frailty. The
same vignettes, in the same order, were asked for all 21 participants across both rounds.

shttp://demoiapc.upv.es/validations/launch_validation Last accessed November 26, 2022
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No time limit was established, and participants were asked to use any information
resource (internet search, books...) they needed to make their own predictions.

We calculated the accuracy, sensitivity and specificity [Wong and Lim, 2011] for
the one-year mortality (1ym) and the one-year frailty (Frailty) models. Since we asked
the participants for their predictions in months to facilitate their response, we had
to transform the output of the regression model from days to months. Therefore, we
divided the number of days by 30, discarding the decimal part, and then transformed
it into an interval. The interval was determined to have a width of 4 months based on
the results of our previous study, so we used the prediction in months ± 2 months as
interval bounds. We then calculated the accuracy of the participants and the model by
checking if the real value of the cases in months belonged to the interval (lower bound
≤ real value ≤ higher value).

Usability and UX validation

In the usability and UX section, the participants answered a Google Form question-
nairet while they were testing the The Aleph PC. Participants were asked to do a
‘task test’: to perform four simple tasks using The Aleph PC and answer a series of
questions after each of them. The tasks covered all the implemented functionality for
the CDSS: 1) input a feasible case, 2) check the results and understand the graphics,
3) save the current case and, 4) load a case previously stored. The questions after each
task interrogated the participants about the difficulty, the perception of time spent,
the number of errors encountered by the participant (including unexpected behaviours
and elements they did not understand) and the satisfaction obtained by performing
the task. All questions were mandatory.

After the task test, we tested the usability and experience with the SUS question-
naire [Brooke et al., 1996, Lewis, 2018] and the User Experience Questionnaire (short
version) (UEQ-S) [Schrepp et al., 2017]. Both questionnaires were implemented into
the same Google Form page. The participants were asked to stop sharing their screens
during the completion of both tests.

6.3 Results

6.3.1 Participation
From the 16 initial participants invited, 15 agreed to participate (93.75%). While from
the initial 8 invitation to the second round, 6 of them responded positively (75%).
We settled on 6 respondents during the second round due to the difficulty of finding
participants and the fact that we already reached a number of participants that allow
us to detect most of the usability problems according to Jacob Nielsen [Nielsen, 2000].

The distributions between the participants in both rounds was the following: 15
of them were physicians with the following roles: 7 general practitioners, 5 hospital-
ists, 1 PC consultant, 1 oncologist and 1 neurologist. The other 6 participants were
nurses. The distribution between sex was: 13 males (61.9%) and 8 females (38.1%).

tshorturl.at/apV23 Last accessed November 26, 2022
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Distribution by country was Italy (5), Brazil (4), Spain (4), Greece (4), Scotland (2)
and Portugal (2).

6.3.2 Model evaluation
The ML models outperformed the healthcare professionals’ predictions in both mor-
tality and frailty (see Table 6.1). The mean width for the intervals provided by the
participants in the regression prediction was: 16.2 months CI 95% (13.5 to 18.9) against
the fixed 4 months for the models.

Task Predictions Accuracy Sensitivity Specificity

1ym Participants 0.5 (0.42 - 0.58) 0.54 (0.42 - 0.56) 0.46 (0.34 - 0.58)
The Aleph PC 0.83 0.75 1

Frailty Participants 0.78 (0.7 - 0.85) 0.8 (0.72 - 0.88) 0.67 (0.45 - 0.89)
The Aleph PC 1 1 1

Regression Participants 0.45 (0.36 - 0.55) - -
The Aleph PC 0.67 - -

Table 6.1: Summary of the metrics for the participants and the ML models in the three tasks for
the 6 cases evaluated. Mean and 95% confidence intervals are reported per participant. ML are
deterministic so no variability on the prediction was found.

6.3.3 Qualitative results
Regarding the qualitative results based on the think-aloud method and the authors’
notes on the participants’ behaviour, we created a list of improvements after each
round, the changes were focused on interface details: removal of the Diagnosis Re-
lated Group variable because it could be inferred from the ICD9 code, replacement
of the ICD9 codes by their name, improved tooltip descriptions, and added reference
values for the laboratory variables. Table 2 in supplementary materialsu contains the
complete log of changes introduced in both rounds. Most of the participants provided
feedback regarding the subset of variables, suggesting other variables they are more
familiar with or disregarding present variables as unimportant or unavailable in their
workflow (e.g., “Nurses in Portugal don’t use lab results, they understand it but they
don’t work with them”, nurse 1st round). The feeling towards the CDSS was primarily
positive, and the idea of the PC identification using ML technology was well received
(e.g., “I think that having a tool like this on the day-to-day work could help managing
the patients”, nurse 2nd round). Few of the participants felt confused with the first
interaction with the software but many of them affirmed they have learned to use it
after the tasks test (e.g., “I found the platform easy to use but it is still needed to
improve some inconsistencies”, Physician, 1st round). Participants from hospital set-
tings suggested picking automatically the diagnosis and laboratory results from the
EHR (e.g.,“Different labs may have different measure units, so it will be important

uhttps://www.medrxiv.org/content/medrxiv/early/2022/06/05/2022.06.03.22275904/DC1/
embed/media-1.xlsx?download=true
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to specify them. Also, it would be better if the application could read that informa-
tion from the EHR”, physician 1st round), whereas other participants did not care
about complete integration due to the lack of system integration in their respective
environments. We found a participant in each round who was sceptic about the use of
computers for decision making and did not believe in the benefits of the technology,
rating every aspect of the system very low and providing poor opinions about the sys-
tem through the think-aloud method (e.g., “I won’t use a tool like this in my practice.
These predictions are useless for me”, physician 2nd round).

6.3.4 Performance of tasks

Figure 6.3 shows the distribution of the answers for both rounds. Almost every mea-
sured feature increased their percentage of positive feedback during the second round.
The most significant improvement was on task four (load a case), where despite the
increased number of errors, the perceived difficulty, time spent, and satisfaction im-
proved.

Figure 6.3: Results for the different tasks during the task test. Bars represent the distribution of the
responses. A positive response means that the participant found the task: easy, short, with a low
number of errors or satisfactory.
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6.3.5 Usability
Responses to the 10 SUS items scores were recorded, all items were mandatory, so
no missing values were present. The first round of the evaluation sessions obtained a
mean of 62.7 ± 14.1, while the second round increased its score to 65 ± 26.2. The
distribution of the answers for the different items can be found in Figure 6.4. We
have used the adjusted scores instead of the raw scores for all items to help with
visualization. Round 2 has a greater proportion of positive responses in 6 out of 10
items: “I found this unnecessarily complex”, “I thought this was easy to use”, “I think
that I would need the support of a technician person to be able to use this”, “I would
imagine that most people would learn to use this very quickly”, “i found this very
cumbersome to use” and “I felt very confident using this”. Nonetheless the first round
has a lower score and lower standard deviation.

Figure 6.4: Responses to the SUS questionnaire. Bars represent the distribution of the responses
using the adjusted scores: raw scores minus 1 for items in the odd position; 5 minus raw scores for
items in an even position.

Previous studies have tried to map intervals of the score into categories such as
“Poor”, “OK” or “Good” or school grading scales [Bangor et al., 2009] in order to
provide a better usability reference. According to these frameworks, our results for
both rounds would be classified as D (lowest passing score), the first round as “OK -
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low marginal acceptance” and the second round as “OK - high marginal acceptance”.
However, if we recalculate the SUS average score excluding the sceptical participants,
the average rating would be 63.9 ± 13.8 and 74.5 ± 16.8 which are D “OK - High
marginal acceptance” and C “Good - Acceptable”.

6.3.6 User experience
Answers to the UEQ-S questionnaire were recorded, with all items being mandatory.
Figure 6.5 shows the distribution of the responses for each item in the questionnaire.
The median for the second round was always greater than the first round, and the
average scores were: 1.4 in the first round and 1.5 in the second one. The Pragmatic
score was slightly higher in the first round (1.3 vs 1.2) and the hedonic score improved
during the second round (1.5 vs 1.8).

Figure 6.5: Results for the UEQ questionnaire. Bars represent the distribution of the response. Posi-
tive responses mean that the participants agreed with the positive quality of the software (supportive,
easy...)

Authors of the UEQ-S provide a benchmark in order to compare the study results,
despite this benchmark being intended for the full-size UEQ, the results may be ac-
ceptable to estimate how good the user experience is. Figure 6.6 shows the results of
both rounds in the three categories and their benchmark score.

6.4 Discussion
In this study, we performed an iterative user-centred validation of a CDSS aimed to
support healthcare professionals in the identification of patients in need of palliative
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Figure 6.6: UEQ results by categories against the official benchmark. The grade assigned to each
category depends on the results from different studies used to create the benchmark.

care. This two-round validation process involved decision, usability and user experience
tests. During this study, the predictions provided by the models were more accurate
in both sensitivity and specificity metrics for both classification models than those
provided by the participants. The regression model accuracy result depends on the
width of the interval; we selected 4 months as an acceptable error based on the original
reported mean absolute error [Blanes-Selva et al., 2022a]. Other studies have described
the low accuracy of clinicians when predicting one-year mortality through mechanisms
like the Surprise Question (“Would I be surprised if this patient died in the next 12
months?”) [Downar et al., 2017]. However, our intention with this comparison was to
set a reasonable baseline for the predictive models. There are several factors that play
against the performance of clinicians in this evaluation 1) clinicians are not good at
taking decisions using only EHR data [Yang et al., 2019], 2) not having physical access
to the patients affect HP’s intuition [Melin-Johansson et al., 2017] and 3) the number
of cases to evaluate was low. However, these results indicate that The Aleph PC could
help improve the clinicians’ predictions with data.

The results of the task test indicate that the four tasks were not perceived as
difficult. Task 4 (load a file in the platform) presented the highest number of negative
responses regarding its difficulty during the first round, but it improved at the second
round after we relocated the load button from the input variables section to the files
section, as suggested by the participants. The tasks were also perceived as fast to
carry on, despite the need to input all the variables manually in the first task. Levels
of satisfaction were high, increasing in the last two tasks for the second round after
the interface improvement. It is worth mentioning that all participants in the second
round rated positively the option to store the data into a csv file so they would be able
to revisit the case later.

The different SUS dimensions were considered positive (scores 3 and 4) by at least
half of the participants in both rounds. The best scores were related to the perceived
difficulty: “I found the system unnecessarily complex”, “I thought the system was easy
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to use” and “I would imagine that most people would learn to use this system very
quickly”. Consistency was also rated among the best (“I thought there was too much
inconsistency in this system”). The worst scores were related to the confidence of the
participants (“I found the system very cumbersome to use”, “I felt very confident using
the system” and “I think that I would need the support of a technical person to be
able to use this system”). These results suggest that participants found The Aleph
PC easy to use but containing some elements that they were not familiar with and/or
needed further explanation. The average score was “passing” though there is room for
improvement according to participants’ feedback.

UEQ-S results reported in Figure 6.5 provide two main interpretations, first, the
median UX scores were higher in the second round after the introduction of improve-
ments. Second, most of the dimensions kept their values on neutral (0) and positive (1,
2, 3) values. Some outliers responses can be observed especially on the second round
corresponding with the sceptical participant, which means that their experience with
PC CDSS was positive, a deep look into the supportive category is needed to address
possible undetected issues.

After analysing the results from SUS, the UEQ-S and the comments obtained
from the think-aloud methodology we obtained a rich vision of the perception of the
application. It seems that most of the participants were predisposed to use a tool such
as The Aleph PC to obtain prognosis predictions that could influence PC action. Even
the two participants who expressed their dislike of the CDSS and showed scepticism
about the tests had their own vision about how the application should be: whereas
the first-round participant did not feel that the tool was useful for their service, the
second-round participant specified “The tool is boring. The end-of-life idea should
be obtained in 10-15 seconds”. Only a few participants had experience using CDSSs,
but all of them understood these kinds of applications as supporting tools instead of
as a threat to their autonomy [Liberati et al., 2017, Esmaeilzadeh et al., 2015, Laka
et al., 2021]. In addition, all of them understood the difficulty in identifying early PC
patients so they were prone to accept a tool that may help them.

Although, the usability results were not as positive as the hedonic quality. Some
hypotheses could be extracted from the sessions. Mainly, The Aleph PC did not show
a perfect fit in its current status to the different participant backgrounds. Participants
from non-hospital environments commented on how some of the variables required
by the models did not match with the information managed by their centres. Being
unfamiliar with some required input could have a detriment on the perceived ease of
use of the product. Four of the participants commented on the nature of the data
introduced, they considered that introducing historical data in the application instead
of a “snapshot” of a given moment could be better for the prediction. Also, a couple of
the hospital physicians made suggestions about automatising the input and the output
and their integration with the EHR following the schema of integrative CDSS [Yu et al.,
2018]. These findings are in line with the concept of unremarkable computing [Yang
et al., 2019, Tolmie et al., 2002], where the AI systems are meant to be integrated in
the current workflow and did not disturb or overwork the HPs.

As stated by other works on validation, usability is a key factor of the success
of the CDSS implementation. Usability tests based on the performance of tasks are
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sometimes described as “near-live” simulations, and the posterior usability assessment
is the standard to discover usability issues and improve the final product [Press et al.,
2015, Akhloufi et al., 2019]. Nonetheless, developing a perfectly usable application
does not guarantee its implementation success since there are a list of socio-cultural
barriers in the adoption of these technologies [Liberati et al., 2017] which are directly
related to the vision and opinions of the physicians and their organisations regarding
these products.

The inclusion of the UX test during the evaluation sessions allowed to detect par-
ticipants’ predisposition and feeling towards The Aleph and the general idea of using a
CDSS as a daily tool in clinical practice. Despite the diversity of backgrounds among
the participants, there was an agreement on the usefulness of the tool. Also, the whole
set of participants, with two exceptions, believed in the technology and the evidence
behind the predictive models. This is especially relevant since trust has been detected
as one of the main issues regarding the CDSS acceptance [Liberati et al., 2017]. We
could argue, based on our sample, that a CDSS able to deal with the decision of PC
inclusion will probably overcome the social barrier that is the interest in the technology
by the HPs. However, there are still crucial factors to solve such as the interest in the
CDSS by the organization and the trust of the HPs in the predictions by the system.

The inclusion of two rounds allowed us to test if the changes implemented after
the first set of sessions influenced the usability and UX during the second round. The
difference between SUS and UEQ-S overall scores were not significant using the T-Test
(p > 0.05). However, we observed an improvement in certain dimensions of the metrics.
We could not extract valid comparisons per role due to sample size restrictions since
most of the nurses were in the second round, and most of the physicians were in the
first round. At the same time, those groups were not homogeneous and contained HPs
working in hospitals, primary care centres, external services and rural environments.
Regarding the number of iterations, we could have set a bigger number in order to
ensure that the minimum number of issues is kept in the software. However, the changes
identified during the second round were either detail such as the use of abbreviations
and acronyms or barriers derived from the data source from which the models were
created. Therefore, we considered that most of the fixable issues were identified and
we didn’t need to perform any extra iterations.

The participation of professionals with different roles and backgrounds allowed
us to observe the diverse needs in the highly heterogeneous PC implementation and
workflows. There are significant differences between inpatient and outpatient set-
tings [Collingridge Moore et al., 2020], medicine specialities [Ferrell et al., 2020, Stei-
gleder et al., 2019, Fricker and Serper, 2019], and urban or rural environments [Finu-
cane et al., 2021]. In those different contexts, physicians and nurses play different roles
in the PC needs identification. For example, in the work by Zemplényi et al. [Zem-
plényi et al., 2020] the authors describe how the nurses are the first to detect the needs
and then the cases are discussed with the physicians. This may be different in other
settings, such as rural areas where physicians visit older patients. In our study, we
observed that participants working in non-hospital environments were more concerned
about the availability of the variables, especially the laboratory results. Despite the
possible barriers to use the tool in its current version, physicians and nurses thought
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they could benefit from PC CDSS like The Aleph for the identification of patients in
need of PC.

Another relevant detail in our implementation is the inclusion of ML explainability
in the system (Figure 6.1b). ML explainability could defined as the human quality
to understand the relation between the system input and their predictions [Reyes
et al., 2020] and has been proposed many times as a solution to one of the most
common CDSS adoption barriers, as stated by Shortliffe and Sepúlveda “black boxes
are unacceptable” [Shortliffe and Sepúlveda, 2018]. CDSSs should be transparent to the
user to allow them to accept or dismiss the prediction or recommendation. However,
recent studies have highlighted possible problems when trying to create explainability
mechanisms to single predictions. In its viewpoint, Ghassemi et al. [Ghassemi et al.,
2021] discourage their implementation as patient-level systems. Since we received
positive feedback from the participants on this feature, we decided to not remove the
explainability graphs after the second round. However, we acknowledge the need for
further study for these kinds of features and their impact on the clinical workflow.

Since the start of this work, our team has followed the design recommendations from
previous studies, focusing on two main aspects: team composition and interface design.
Our team included multiple roles: physicians, designers, usability and UX experts,
ML researchers and programmers. This is especially relevant since a multidisciplinary
team can get a better understanding of the real requisites of the project and mitigate
workflow disruption [Yu et al., 2018, Mahadevaiah et al., 2020]. The interface was
carefully designed, the layout was implemented focusing on usability and the colours
used were extracted from the PC logo that was created previously by an artist. As
described in [Moran, 2017], the aesthetic part of the application has a direct effect on
the perceived usability, therefore an effort to create a visually attractive application
must be set in place. The scores obtained in the UEQ-S hedonic category reflect the
acceptability of the aesthetics, however, none of the participants commented explicitly
on the visual aspect.

The main strength of out work was that our methodology assisted us to obtain the
insight of different pitfalls identified in previous works [Sutton et al., 2020, Khairat
et al., 2018, Liberati et al., 2017, Yu et al., 2018, Carroll et al., 2002, Press et al.,
2015] using HPs’ insights. Through the usability test we discovered that the system is
good enough for the participants. However, concrete changes are needed depending on
the context where the CDSS is deployed to maximise the usability aspect. With the
predictive models being evaluated in a previous publication [Blanes-Selva et al., 2022a]
and the evaluation of usability and UX in this work we followed an exhaustive user-
centred validation path. We created anecdotal evidence to support the UX dimension
within the standard usability tests. In addition to this, we managed to get a very
diverse sample of participants in terms of roles and countries, providing us with a
richer version of the health providers’ needs regarding PC in different countries.

Our work also presents some limitations. First, the model evaluation was performed
with a low number of participants, and since the ML models are deterministic once
trained, the evaluation on the machine side is only on the six different cases. However,
with respect to the accuracy of the predictions, this is not a problem since the models
were evaluated previously. Another limitation in our study is the requirement of man-
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ual input of hospital admission data because it is disconnected from the EHR. This
could present a perk in roles such as primary care physicians working in rural areas
but breaks the premise of automatizing the data collection as much as possible and
increases the possibility of human errors. The heterogeneity of roles among the partici-
pants has made more difficult the evaluation of the platform’s fit to specific conditions;
despite it allowing us to find errors to correct and improvements to the platform, it has
limited us to evaluate its possible usage in specific phases of the clinical workflow. In
addition, in this demo, we have not addressed some problems regarding the variability,
temporal and related to different medical centres, over data distributions [Sáez et al.,
2020].

As future work, we would like to adapt the tool to the different roles and clinical
workflows we have identified. A further study focused on the different PC roles and
their needs regarding The Aleph PC would be needed to provide a perfect fit and
improve usability. Further adaptations and validations of the ML models would be
needed to ensure the models keep their predictive power in other populations. In
order to go further with The Aleph PC, we would need to create a pilot for potential
users to incorporate the tools in their daily routine and gather long-term feedback.
Further research about the ML explainability and reportability in needed to create a
transparent and auditable system that could improve the acceptance of the technology
by helping avoid legal problems [Yu et al., 2018, Reyes et al., 2020]. In addition, a
study focused on the mortality and frailty prediction accuracy by HPs may be needed
to estimate a fair baseline for predictive models to improve.

6.5 Conclusions
Our main findings indicate that the predictive models have performed better than the
baseline composed of the HPs predictions. The system presents great UX hedonic
qualities, i.e., participants were excited to use the tool, and they rated positively
the fact of having helped to identify patients with bad prognosis. They did not feel
their independence threatened by the Aleph PC. Performance regarding usability was
modest but acceptable. Based on the notes taken during the think-aloud methodology,
the authors hypothesise that the usability scores for the current version are maximised
and would only improve if the tool was adapted for the different roles and contexts
represented in the participant’s sample. We have created anecdotal evidence that an
iterative user-centred validation, including UX, provides a broader vision to address
CDSS acceptance issues. The objective of The Aleph PC is to step further in the
objective PC criteria inclusion.
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Chapter 7

Concluding remarks and
recommendations

This chapter summarises the work carried on during the thesis, the results and the
knowledge obtained. In addition, guidelines for extending and further developing this
scientific research are provided.

7.1 Concluding remarks
Research on PC is relatively recent since its first standards were introduced by the
WHO in 1990 [Milligan and Potts, 2009], and their implementation on clinical practice
varies strongly between regions. Despite the existing agreement in which topics should
be addressed within the PC programs: symptoms and pain relief, psychological and
spiritual needs and assistance to familiars and caregivers as broad categories, there is
still a large number of questions to be answered. During this thesis, we have focused on
providing an answer to the question: “How can we identify patients that could benefit
from PC using clinical data?”. In order to answer this question, we proposed the
adoption of criteria based on mortality and frailty, which can be modelled as predictive
models. In addition, we have included these predictive models into a software stack
designed to impact clinical practice.

The research carried during this thesis contributed to the SoA in medical informat-
ics, PC and user-interaction fields. The results of this thesis have been endorsed by
publications in peer-review scientific journals specialised in these topics. Furthermore,
the technological results of this thesis derived into an open-access digital platform for
its use in the research community and its posterior industrialisation.

The specific Concluding Remarks (CR) of this thesis are listed as follows.

CR1 Supervised Machine Learning algorithms are adequate to predict accurately One-
Year Mortality using data collected from patients few hours after their admission
to the hospital, including basic demographics, administrative information, labo-
ratory results and the presence or absence of some medical conditions. Moreover,
the internal representation of these models offered the relative importance of the
variables. We concluded that administrative information such as the service
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where the patient is admitted and the number of previous stays, which indicate
the frequency of their health resources consumption and the blood results for
BUN, Leucocytes and CRP as well as their age, are the most significant factors
when predicting OYM on all-cause admitted adult patients.

This concluding remark responds to the research questions RQ1 and RQ3, covers
the objectives O1 and O2 and was derived from the work in publication P1.

CR2 Frailty indexes based on the accumulation of deficits can be used as part of the
criteria for PC program referral for older patients admitted to the hospital. The
frailty index on [Blanes-Selva et al., 2022a] using the recommendations from [Mit-
nitski et al., 2001] had a weak correlation with the mortality criteria, making it a
complementary criterion. Besides, our ML model to classify future frailty status
based on this index reported a great predictive power. And, as far as we know,
at the time of the publication, it was the only work predicting frailty without a
proxy. In addition to the frailty model, including a mortality regression model
was especially relevant to complement the information provided by the OYM,
significantly when this one predicted positive for mortality.

This concluding remark responds to the research questions RQ2 and RQ4, covers
the objectives O3, O4, O5 and O6 and was derived from publication P2.

CR3 We have confirmed the importance of some of the CDSS critical adoption factors:
answer a relevant question, provide confidence to the final user, being intuitive
and well integrated with the clinical workflow. We concluded that a software
evaluation including potential users is needed to detect usability problems and
possible design flaws. We have realised that one of the essential parts of the
validation is the unstructured feedback provided by the participants, in our case
following the think-aloud methodology. The feedback obtained during the valida-
tion process, specially the comments provided orally by the participants helped
to improve the current version of the platform. In our experience, the inclusion of
a UX evaluation allowed us to assess the participant’s perception of the systems
in terms of perceived value, trust and relevance of the problem.

This concluding remark responds to the research question RQ5, and RQ6, covers
the objectives O7 and O8 and was derived from publications P3 and P4.

7.2 Recommendations
PC is a growing clinical research topic due to its high impact on the patients’ QoL
and the expected growth in their demand. It is estimated that almost 75% of the
population would require some kind of PC intervention in 2040 [Etkind et al., 2017].
Despite this high demand forecast, the clinical decisions involving PC are often taken
using subjective our outdated criteria. As stated in this thesis, AI, especially data-
driven models, could help in some aspects of the PC clinical pathway. However, the
challenges do not end with constructing a good predictive model. Implementing a
CDSS or any other software device requires a careful design. Iterative cycles involving:
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implementation, evaluation and re-design are required in order to avoid the different
adoption barriers.

This methods and research findings of this thesis point to the incorporation of
data-driven PC referral tools and can serve as a starting point for further research. In
this sense, the following recommendations are suggested.

R1 The research carried out during this thesis has offered evidence that, when using
the OYM as PC referral criterion, predictive models using EHR data outperform
other subjective methods such as the SQ in standard evaluation metrics [Downar
et al., 2017]. Relevant variables for this problem are the service where the pa-
tient was admitted on, BUN, Leukocytes, CRP or Age. When focusing the OYM
prediction problem to older patients, some of the variables that gained impor-
tance were the Charlson Index [Charlson et al., 1994], the number of prescribed
medications and the Barthel Index [Mahoney et al., 1965].
In this sense, we recommend shifting traditional screening from ACP needs based
on subjective opinions to data-driven approaches feed by EHR data. Since CDSS
could predict multiple cases quickly, usually less than a second, depending on the
software implementation, we also recommend their adoption as an automatised
process to run upon admission and data availability.

R2 Frailty is a common clinical syndrome in older adults that carries an increased
risk for poor health outcomes [Xue, 2011]. Some approaches have defined frailty
as an accumulation of deficits and quantified it as an index [Mitnitski et al.,
2001]. Due to its nature, it can be relevant to PC teams to assess the current
frailty status of the patients. However, there are no clear criteria or thresholds
for initiating PC among this type of patient [Hamaker et al., 2020]. Including a
prediction of how frail the patient will become during the following year could
be helpful to decide if that patient is a good fit for PC. As part of the work
carried on in this thesis, we constructed a frailty index, used thresholds to create
categories and created ML classification models to predict one-year frailty status.
We encourage researchers to validate the use of frailty indexes as PC referral
criteria using prospective data from other centres.

R3 A one-year period until exitus has been used as a proxy for ‘bad outcome’ in
the PC prognosis field. We have demonstrated that a combination of relevant
variables and ML models can predict this event accurately. However, during
the development of this research, we found that estimating survival time was
very relevant from an organisational standpoint, especially in cases where it is
predicted an exitus within the year. A predicted survival time of two weeks is very
distinct from a nine months survival period when exploring the open pathways
and possibilities for an effective PC program. During this thesis, we developed
a survival regression model predicting days from admission to death. We have
checked that it is possible to obtain an approximate prediction and, that this
model could help complement the OYM criterion, especially when this last one
returns a positive result. Therefore, we recommend the use of both regression and
OYM to obtain a more informed prediction when using the mortality criterion.
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R4 Differences in the data distributions between centres are very likely to affect
predictive models performances. Multiple factors can produce different data dis-
tribution over the same variables on the EHRs, for instance, the demographic
differences between regions, changes in the population or the diseases over time or
modifications in clinical protocols that could affect the data acquisition. There-
fore, our recommendation in this point is two-fold: first, external validation is
required before implementing ML models trained with data from other centres;
and second, it is necessary to keep in place mechanisms that monitor the degra-
dation of the predictive model (increasing unfitness of the models due to dataset
shifts) and triggers a re-training and re-evaluation mechanism. This training
process can focus on newer data in order to adapt the models to the new distri-
bution. Another option is to use continual learning [Lee and Lee, 2020], and keep
the models updated with the latest data available. This set of practices usually
belongs to a methodology named Machine Learning Operations (MLOps) [John
et al., 2021].

R5 Designing and developing a CDSS is a complex task. During this thesis, we
implemented the Aleph, a multi-purpose clinical decision platform, in its first
version. During the design phase, we gathered a team including HPs, designers,
CDSS researchers and programmers. From there, we applied an iterative inter-
nal validation and designed an UX and usability evaluation with external HPs.
Despite this approach, which follows the recommendations in the literature, we
still identified usability issues and possible adoptions barriers.
Based on our experience building the Aleph PC, we recommend following the
previously mentioned steps. The inclusion on near-live situations and the feed-
back obtained using a methodology similar to the think-aloud provide insightful
data on how to improve the systems. In addition, incorporating UX elements
to the evaluation could help to assess some socio-cultural barriers, such as the
perceived importance of the problem. Therefore, we suggest paying particular
attention to the external validation design.

R6 The Aleph was the result of the research carried on during this thesis, the gen-
erated knowledge, and the different scientific outputs. The Aleph offers an envi-
ronment for different predictive services to be deployed with little effort, offering
common services to other researchers and developers like dynamic interface cre-
ation, user management and service versioning. Alongside the platform and two
predictive services for PC based on our scientific results, we provided a guidev on
implementing a service compatible with Aleph. We, therefore, encourage other
researchers of different medical fields to take advantage of The Aleph to minimise
their effort regarding software implementation and, at the same time, increase
Aleph’s services diversity.

vhttps://thealeph.upv.es/download_integration_guide - Accessed November 26, 2022
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Appendix A

Appendix: variables and
hyperparameters

Variable Description

Admission Diagnose Code ICD9 code representing the main reason for the admis-
sion.

Age Patient’s age.
Atrial Fibrillation ICD9 Diagnosis code: Atrial fibrillation (no/yes).
Barthel index Barthel Index is an ordinal scale used to measure per-

formance in activities of daily living (ADL). Ten vari-
ables describing ADL and mobility are scored, a higher
number being a reflection of greater ability to function
independently following hospital discharge.

Charlson index The Charlson comorbidity index predicts the one-year
mortality for a patient who may have a range of co-
morbid conditions, such as heart disease, AIDS, or can-
cer (a total of 17 conditions: Acute myocardial infarc-
tion, Congestive heart failure, Peripheral vascular dis-
ease, Cerebrovascular disease, Dementia, Chronic lung
disease, Mild liver disease, Mild to moderate diabetes,
Diabetes with chronic complications, Hemiparaplegia or
paraplegia, Kidney disease, Malignant tumours, Moder-
ate to serious liver disease, solid, metastatic tumour and
AIDS). Each condition is assigned a score of 1, 2, 3, or
6, depending on the risk of dying associated with each
one.

Creatine Lab result expressed mg/dL.
DRG Diagnosis-related group (DRG) is a system to classify

hospital cases into one of originally 467 groups.
Filtered Glomerular CKD Filtered Glomerular CKD lab result in ml/min/1,73 m2.
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Gastrointestinal or Liver
Disease

ICD9 Diagnosis code: Gastrointestinal or Liver Disease
(no/yes).

Glucose Lab result expressed in mg/dL.
Haematocrit Lab result expressed in %.
Hypertension ICD9 Diagnosis code: Hypertension (no/yes).
Leukocyte 103/microL.
Number Active groups Number of active groups (medications) in each episode.
Number of previous stays Number of previous hospital admissions.
Number Previous ER
365d

Number of previous Emergency Room visits (last 365
days).

Number Previous ER Number of previous Emergency Room visits.
Metastatic Tumour ICD9 Diagnosis code: Metastatic tumour (no/yes).
PCR C-Reactive protein lab result expressed in mg/L.
Potassium Lab result expressed in mEq/L.
Psychiatric Disease ICD9 Diagnosis code: Psychiatric disease (No/yes).
RDW-CV The red cell distribution width (RDW) blood test mea-

sures the amount of red blood cell variation in volume
and size. This values is the coefficient of variation of
RDW.

RDW-SD Standard deviation of RDW measure.
Service Last Service updated during the stay.
Sodium Lab result expressed in mEq/L.
Urea Lab result expressed in mg/dL.

Table A.1: Variables used in the predictive models and their descriptions

Task Model Parameter Value
OYM GBM Criterion Friedman MSE

Max depth 5
Max features Auto
n estimators 291

DNN Criterion MSE
Learning Rate 0.01732471628757128
Epochs 50
Activation Function(s) Leaky ReLU
Final function Softmax
Batch norm Yes, every layer
Layer 1 size 512
Layer 1 dropout 0.45
Layer 2 size 256
Layer 2 dropout 0.40
Layer 3 size 512
Layer 3 dropout 0.25
Layer 4 size 512

112



Layer 4 dropout 0.34
Layer 5 size 256
Layer 5 dropout 0.3

Regression GBM Criterion MSE
Max depth 5
Max features Auto
n estimators 286

DNN Criterion MSE
Learning Rate 0.01732471628757128
Epochs 30
Activation Function(s) Leaky ReLU
Final function ReLU
Batch norm Yes, every layer
Layer 1 size 256
Layer 1 dropout 0.23
Layer 2 size 64
Layer 2 dropout 0.35
Layer 3 size 256
Layer 3 dropout 0.29
Layer 4 size 64
Layer 4 dropout 0.44
Layer 5 size 128
Layer 5 dropout 0.49

Frailty GBM Criterion MSE
Max depth 4
Max features SQRT
n estimators 149

DNN Criterion MSE
Learning Rate 1.301440136399707e-05
Epochs 100
Activation Function(s) Leaky ReLU
Final function Softmax
Batch norm Yes, every layer
Layer 1 size 512
Layer 1 dropout 0.50
Layer 2 size 128
Layer 2 dropout 0.284
Layer 3 size 64
Layer 3 dropout 0.21
Layer 4 size 16
Layer 4 dropout 0.44

Table A.2: Hyperparameters selected by Optuna. The non-specified hyper-parameters have the de-
fault value defined in their libraries: scikit-learn v1.0 for the GBM and Pytorch v1.9.1 for the DNN
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