
i
i

i
i

i
i

i
i

Streaming Automatic Speech
Recognition with Hybrid
Architectures and Deep
Neural Network Models

April 2022

Author: Javier Jorge Cano

Supervisors: D. Alfons Juan Ciscar
D. Jorge Civera Saiz

i
i

i
i

i
i

i
i

Agradecimientos
Lo primero, quiero remarcar que este texto solo refleja con meras palabras una
parte de la gratitud total que siento hacia todas esas personas que me han acom-
pañado durante este periodo de mi vida. Ellos y ellas saben mejor que nadie lo
que significa este viaje, las dificultades y las alegrías que implica, y lo necesario
que ha sido su apoyo en las distintas etapas del proceso. Enumeraré algunas de
estas personas, pero la lista va más allá de los aquí reflejados, extiendo mi gratitud
a ellos y ellas también, ya lo saben.

Querría agradecer a Alfons, Jorge y Albert en primer lugar por haberme dado
la oportunidad de entusiasmarme de nuevo con la investigación y el trabajo en
equipo, por creer en mi trabajo y darme la oportunidad de trabajar con las per-
sonas más brillantes que he conocido. Por otro lado, querría agradecer a los
miembros del EQUIPO MLLP, con mayúsculas intencionadas, ya que en con-
tadas ocasiones he encontrado un grupo de personas que den un significado tan
positivo a esta palabra. Gracias a Adrià Giménez, Adrià Martínez, Pau, Álex,
Javier Iranzo, Joan Albert y Gonçal, ha sido un placer trabajar codo con codo,
aprender y mejorar con vosotros. Querría reservar gratitud adicional para poder
compensar de alguna forma a Adrià Giménez todas las horas de conversaciones
sobre ideas locas que hemos tenido durante estos años, ya que me han ayudado
a ser mejor científico y profesional, y a alcanzar hitos que parecían inalcanzables.
Por otro lado, no quiero dejar fuera las horas de procrastinación, que aunque quizá
no tan instructivas, siempre son necesarias para sobrellevar el viaje. Querría ex-
tender también mi agradecimiento a personas cuyos caminos se separaron del mío
en algún momento pero que también me acompañaron en el ámbito académico:
Jesús, Emilio y Maite, gracias por nuestro tiempo juntos.

Quería agradecer también al Sen. Prof. Dr.-Ing. Hermann Ney y a todo su equipo
en el RWTH por acogerme y darme la oportunidad de vivir experiencias nuevas
y seguir creciendo fuera de mi zona de confort.

En el ámbito personal querría dar las gracias por todos esos momentos com-
partidos con mis amigos en la universidad, especialmente a Elías, Cristian, José
Alemany, Guillem y José Francisco. Sin vosotros esto habría sido totalmente
diferente, gracias.

iii

Gracias también para aquellos que, aún sin entender muy bien todo lo que impli-
caba esto del doctorado, me han dado el apoyo incondicional en todas las ocasiones
y todos los momentos de estos últimos años: mis padres Vicente y Amparo, mi
hermana Blanca y Pedro, mis tíos Andrés y Javi y en especial para mi abuela
Amparo, un ejemplo de resiliencia como no he visto en toda mi vida. Extiendo
también mi gratitud a Domingo y Carmen, y a todos los miembros que incorporé
a mi familia hace algunos años. Quiero también hacer una mención especial a
Alfredo por ayudarme a darle otra perspectiva a la vida y ser un ejemplo a seguir
en muchas ocasiones. Por último, gracias también a Neo y a Voga, por estar
siempre dispuestos a escuchar incondicionalmente y simplemente estar ahí :).

Finalmente, no se han inventado las palabras para reflejar el apoyo que he tenido
de la persona que ha compartido conmigo todos y cada uno de los momentos
(buenos y malos) de este viaje, se ha sacrificado tanto o más que yo mismo,
dándolo todo sin condiciones. Aïda, tú mejor que nadie sabes lo que ha sido esto
y lo que ha significado para nosotros, gracias por estar SIEMPRE ahí.

Y gracias a ti, que estás leyendo esto, por dedicar tu valioso tiempo a leer el
registro escrito de este periplo que supone el camino de la tesis doctoral, con
todos los altibajos, los momentos maravillosos y no tan maravillosos, que al final
se concretan en poner una diminuta piedra en la inconmensurable montaña del
conocimiento.

Gracias.

iv

i
i

i
i

i
i

i
i

Abstract
Over the last decade, the media have experienced a revolution, turning away
from the conventional TV in favor of on-demand platforms. In addition, this
media revolution not only changed the way entertainment is conceived but also
how learning is conducted. Indeed, on-demand educational platforms have also
proliferated and are now providing educational resources on diverse topics. These
new ways to distribute content have come along with requirements to improve
accessibility, particularly related to hearing difficulties and language barriers.

Here is the opportunity for automatic speech recognition (ASR) to comply with
these requirements by providing high-quality automatic captioning. Automatic
captioning provides a sound basis for diminishing the accessibility gap, especially
for live or streaming content. To this end, streaming ASR must work under
strict real-time conditions, providing captions as fast as possible, and working
with limited context. However, this limited context usually leads to a quality
degradation as compared to the pre-recorded or offline content.

This thesis is aimed at developing low-latency streaming ASR with a quality
similar to offline ASR. More precisely, it describes the path followed from an
initial hybrid offline system to an efficient streaming-adapted system. The first
step is to perform a single recognition pass using a state-of-the-art neural network-
based language model. In conventional multi-pass systems, this model is often
deferred to the second or later pass due to its computational complexity. As with
the language model, the neural-based acoustic model is also properly adapted to
work with limited context. The adaptation and integration of these models is
thoroughly described and assessed using fully-fledged streaming systems on well-
known academic and challenging real-world benchmarks. In brief, it is shown
that the proposed adaptation of the language and acoustic models allows the
streaming-adapted system to reach the accuracy of the initial offline system with
low latency.

v

i
i

i
i

i
i

i
i

Resumen
Durante la última década, los medios de comunicación han experimentado una
revolución, alejándose de la televisión convencional hacia las plataformas de con-
tenido bajo demanda. Además, esta revolución no ha cambiado solamente la
manera en la que nos entretenemos, si no también la manera en la que apren-
demos. En este sentido, las plataformas de contenido educativo bajo demanda
también han proliferado para proporcionar recursos educativos de diversos tipos.
Estas nuevas vías de distribución de contenido han llegado con nuevos requisitos
para mejorar la accesibilidad, en particular las relacionadas con las dificultades
de audición y las barreras lingüísticas.

Aquí radica la oportunidad para el reconocimiento automático del habla (RAH)
para cumplir estos requisitos, proporcionando subtitulado automático de alta cal-
idad. Este subtitulado proporciona una base sólida para reducir esta brecha de
accesibilidad, especialmente para contenido en directo o streaming. Estos sistemas
de streaming deben trabajar bajo estrictas condiciones de tiempo real, proporcio-
nando la subtitulación tan rápido como sea posible, trabajando con un contexto
limitado. Sin embargo, esta limitación puede conllevar una degradación de la
calidad cuando se compara con los sistemas para contenido en diferido u offline.

Esta tesis propone un sistema de RAH en streaming con baja latencia, con una
calidad similar a un sistema offline. Concretamente, este trabajo describe el
camino seguido desde el sistema offline híbrido inicial hasta el eficiente sistema
final de reconocimiento en streaming. El primer paso es la adaptación del sistema
para efectuar una sola iteración de reconocimiento haciendo uso de modelos de
lenguaje estado del arte basados en redes neuronales. En los sistemas basados
en múltiples iteraciones estos modelos son relegados a una segunda (o posterior)
iteración por su gran coste computacional. Tras adaptar el modelo de lenguaje,
el modelo acústico basado en redes neuronales también tiene que adaptarse para
trabajar con un contexto limitado. La integración y la adaptación de estos mod-
elos es ampliamente descrita en esta tesis, evaluando el sistema RAH resultante,
completamente adaptado para streaming, en conjuntos de datos académicos ex-
tensamente utilizados y desafiantes tareas basadas en contenidos audiovisuales
reales. Como resultado, el sistema proporciona bajas tasas de error con un re-
ducido tiempo de respuesta, comparables al sistema offline.

vii

i
i

i
i

i
i

i
i

Resum
Durant l’última dècada, els mitjans de comunicació han experimentat una revolu-
ció, allunyant-se de la televisió convencional cap a les plataformes de contingut
sota demanda. A més a més, aquesta revolució no ha canviat només la manera en
la que ens entretenim, si no també la manera en la que aprenem. En aquest sentit,
les plataformes de contingut educatiu sota demanda també han proliferat per a
proporcionar recursos educatius de diversos tipus. Aquestes noves vies de distribu-
ció de contingut han arribat amb nous requisits per a millorar l’accessibilitat, en
particular les relacionades amb les dificultats d’audició i les barreres lingüístiques.

Aquí radica l’oportunitat per al reconeixement automàtic de la parla (RAH)
per a complir aquests requisits, proporcionant subtitulat automàtic d’alta qual-
itat. Aquest subtitulat proporciona una base sòlida per a reduir aquesta bretxa
d’accessibilitat, especialment per a contingut en directe o streaming. Aquests sis-
temes han de treballar sota estrictes condicions de temps real, proporcionant la
subtitulació tan ràpid com sigui possible, treballant en un context limitat. Aque-
sta limitació, però, pot comportar una degradació de la qualitat quan es compara
amb els sistemes per a contingut en diferit o offline.

Aquesta tesi proposa un sistema de RAH en streaming amb baixa latència, amb
una qualitat similar a un sistema offline. Concretament, aquest treball descriu
el camí seguit des del sistema offline híbrid inicial fins l’eficient sistema final de
reconeixement en streaming. El primer pas és l’adaptació del sistema per a efec-
tuar una sola iteració de reconeixement fent servir els models de llenguatge de
l’estat de l’art basat en xarxes neuronals. En els sistemes basats en múltiples it-
eracions aquests models son relegades a una segona (o posterior) iteració pel seu
gran cost computacional. Un cop el model de llenguatge s’ha adaptat, el model
acústic basat en xarxes neuronals també s’ha d’adaptar per a treballar amb un
context limitat. La integració i l’adaptació d’aquests models és àmpliament de-
scrita en aquesta tesi, avaluant el sistema RAH resultant, completament adaptat
per streaming, en conjunts de dades acadèmiques àmpliament utilitzades i desafi-
ants tasques basades en continguts audiovisuals reals. Com a resultat, el sistema
proporciona baixes taxes d’error amb un reduït temps de resposta, comparables
al sistema offline.

ix

i
i

i
i

i
i

i
i

Contents

Agradecimientos iii

Abstract v

Resumen vii

Resum ix

Contents xi

1 Introduction 1
1 Motivation . 2
2 Scientific goals . 3
3 Preliminaries . 5

3.1 Automatic Speech Recognition 5
3.2 Feature extraction . 7
3.3 Acoustic Model . 7
3.4 Language Model . 10
3.5 Search . 11
3.6 Streaming Automatic Speech Recognition 13
3.7 Benchmarking . 16
3.8 Evaluation of ASR systems . 17

4 Framework . 18
5 List of publications . 20

5.1 Paper 1 . 20
5.2 Paper 2 . 21
5.3 Paper 3 . 21
5.4 Paper 4 . 22

xi

Contents

5.5 Paper 5 . 23
6 References . 24

2 Selected Papers 29
1 MLLP-UPV and RWTH Aachen Spanish ASR Systems for the IberSpeech-

RTVE 2018 Speech-to-Text Transcription Challenge 31
1.1 Introduction . 34
1.2 RTVE database . 34
1.3 Closed-condition system . 35
1.4 Open-condition system . 41
1.5 Conclusions . 42

References . 43
2 Real-time one-pass decoder for speech recognition using LSTM language

models . 45
2.1 Introduction . 47
2.2 One-pass decoder architecture 48
2.3 Experiments . 52
2.4 Conclusions and future work . 57

References . 57
3 LSTM-based one-pass decoder for low latency streaming 61

3.1 Introduction . 63
3.2 Streaming decoder . 65
3.3 Experiments . 66
3.4 Conclusions and future work . 70

References . 71
4 Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acous-

tic Models and Interpolated Language Models 73
4.1 Introduction . 75
4.2 Efficient One-pass Decoding using Interpolated Neural LMs 84
4.3 Experiments . 87
4.4 Conclusion and future work . 100

References . 101
5 MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-

To-Text Challenge . 105
5.1 Introduction . 108
5.2 Challenge description and databases 109
5.3 MLLP-VRAIN Systems . 109
5.4 Conclusions . 117

References . 118

3 General discussion of the results 121
References . 130

4 Conclusions and future work 131
References . 134

xii

i
i

i
i

i
i

i
i

List of Figures

1.1 From the acoustic signal in the time domain to the resulting [wN1]∗, the
ASR pipeline goes through the feature extraction process and searches for
the best sequence of words combining the input from the LM, the AM, and
the pronunciation dictionary. 6

2.1 Evaluation of the impact of the LMHR parameter in terms of WER [%] for
LibriSpeech and TED-LIUM. 54

2.2 Comparison of the impact of different values for the LM-histogram-pruning
(LMHP) parameter in terms of WER and RTF for LibriSpeech and TED-
LIUM. 55

2.3 Comparison of the one-pass HCS decoder and the two-pass HCS and WFST
decoders in terms of WER and RTF for LibriSpeech (left) and TED-LIUM
(right). 56

2.4 Frame sequence at the top and just below a sliding window of w = 4 frames
at all steps embracing frame t, ~xt. 79

2.5 Computing the acoustic scores for b = 3 consecutive frames starting at t,
~xt+b−1
t , within a sliding window of size w = 4 during two consecutive b-step

batches, Bj−1 and Bj . 80
2.6 WER vs. window size in seconds for all tasks. 91
2.7 WER vs. latency in seconds with or without AMLA enabled for each task. 92
2.8 FSN, DTN and WMA normalization (with different α values) schemes eval-

uated on WER for segment-based tasks. 94
2.9 FSN, DTN and WMA normalization (with different α values) schemes eval-

uated on WER for video-based tasks. 94
2.10 WER (left y-axis) and PPL (right y-axis) as a function of TLM history

limitation and different LMHR values for segment-based tasks. Solid curves
represent WER, while the dashed curve is PPL. 96

xiii

List of Figures

2.11 WER (left y-axis) and PPL (right y-axis) as a function of TLM history
limitation and different LMHR values for video-based tasks. Solid curves
represent WER, while the dashed curve is PPL. 96

2.12 WER vs. latency in seconds varying LMHP values for segment-based tasks. 97
2.13 WER vs. latency in seconds varying LMHP values for video-based tasks. . 98
2.14 WER vs. latency in seconds considering different interpolation schemes with

TLM for each segmented task. 99
2.15 WER vs. latency in seconds considering different interpolation schemes with

TLM for each video task. 99
2.16 WER as a function of context window size (in seconds) for the streaming

setup, computed over the dev1-dev set. 115
2.17 WER versus mean empirical latency (in seconds) on dev1-dev, measured with

different prunning parameters, and considering only interpolation schemes
that include TLM. 116

3.1 WER scores over project month for poliMedia Spanish/English (left) and
VideoLectures.Net Slovenian/English (right) transcriptions. 125

xiv

i
i

i
i

i
i

i
i

List of Tables

2.1 Number of raw, aligned raw, aligned speech, and filtered speech hours as
a result of applying the speech data filtering pipeline to the whole RTVE
database. 36

2.2 Corpus statistics of the text data used for LM training. 37
2.3 Perplexities of the different LM components. 39
2.4 Comparison of the CD-FFDNN-HMM and BLSTM-HMM acoustic models

using the general n-gram language model. Results in WER % and relative
WER % improvement. 39

2.5 Comparison of different language model combinations using the BLSTM-
HMM acoustic model in terms of perplexity, WER % and relative WER %
improvement. 40

2.6 Comparison of different audio segmentation/VAD techniques using the BLSTM-
HMM acoustic model and the combination of the RNN LM + adapted n-
gram LM. Results in WER % and relative WER % improvement and the
ratio of dropped audio. 41

2.7 Speed analysis in terms of RTF an its effect on the WER% over the dev2 set,
either with the submitted system and removing the pre-precognition step,
using LIUM VAD instead. 41

2.8 Statistics of the corpora. 52
2.9 Comparison of WER, relative improvement of WER w.r.t the baseline, and

perplexity results using different LM models on LibriSpeech and TED-LIUM
test partitions. 54

2.10 Comparison of WER, RTF and relative increase of RTF w.r.t to LMHP=100
on LibriSpeech and TED-LIUM test sets. 55

2.11 Comparison of WER for similar RTFs between one-pass HCS decoder and
the two-pass HCS and WFST decoders on LibriSpeech and TED-LIUM test
partitions. 57

2.12 Statistics of the corpora. 67

xv

List of Tables

2.13 Perplexity results on development partitions. 67
2.14 Impact of normalization context on WER, on LibriSpeech and TED-LIUM. 68
2.15 Impact of lookahead context on LibriSpeech and TED-LIUM on WER. . . 69
2.16 Impact of lookahead context on LibriSpeech and TED-LIUM on the latency

(nl = nlookahead, nn = nnorm). 70
2.17 WER results on test sets for LibriSpeech and TED-LIUM. 70
2.18 Basic statistics of dev and tests sets in the evaluation tasks: Duration in

hours, number of samples (segments or videos), average duration of samples
in seconds plus-minus standard deviation (dµ±σ), and running words (RW)
in thousands (K). 87

2.19 Statistics of Spanish text resources used for language modeling. S=Sentences,
RW=Running words, V=Vocabulary. Units are in thousands (K). 89

2.20 Perplexity (PPL) and weight (W) figures on development sets, consider-
ing single models and two-way and three-way interpolation of n-gram (N),
LSTM-RNN LM (L) and Transformer LM (T). Interpolation weights were
optimized by minimizing PPLs of the interpolated models. 90

2.21 WER and latency in seconds on the test sets using the optimized streaming
systems for all the evaluation tasks compared to previous works. 100

2.22 Transcribed Spanish speech resources for AM training. 110
2.23 Statistics of Spanish text resources for LM training. S=Sentences, RW=Running

words, V=Vocabulary. Units are in thousands (K). 112
2.24 Basic statistics of development and tests sets of RTVE databases, including

our internal dev1-dev set: total duration (in hours), number of files, average
duration of samples in seconds plus-minus standard deviation (dµ ± σ), and
running words (RW) in thousands (K). 113

2.25 Perplexity (PPL) and interpolation weights, computed over the dev1-dev set,
of all possible linear combinations of n-gram (ng), LSTM (ls) and Trans-
former (tf) LMs. 113

2.26 WER of the participant systems, including our open-condition system sub-
mitted to the 2018 challenge, computed over the dev2, test-2018 and test-
2020 sets. 117

3.1 WER of the participants of the closed-condition track from IberSpeech 2018
on test-2018. 123

3.2 WER scores provided by X5Gon ASR systems and Google Cloud Speech-
To-Text. 124

3.3 WER scores provided by offline and streaming-adapted M40 ASR systems. . 126
3.4 WER scores provided by MLLP and Google ASR systems on different con-

tent (es=Spanish, ca=Catalan, and en=English) and relative improvement. 126
3.5 WER, toolkit, decoder type and data in hours of the participant systems on

test-2020, including the closed-conditioned version from our MLLP-VRAIN
submission (str=streaming-ready). 128

xvi

i
i

i
i

i
i

i
i

Chapter 1

Introduction

1

Chapter 1. Introduction

1 Motivation

Natural Language Processing (NLP) technologies are focused on improving hu-
man interpersonal communications through learning and understanding of the
mechanisms of natural language. This field can be framed at the junction where
linguistics, computer science, and artificial intelligence intersect. One of its most
popular branches is Automatic Speech Recognition (ASR), a sub-field devoted to
converting the raw audio signal into a sequence of spoken words.

ASR has been widely studied over the last 60 years, starting from the 50s at
Bell laboratories with isolated spoken digits recognition systems through the 90s
with general-purpose continuous-speech systems (O’Shaughnessy 2008). Over the
2000s, ASR was well established in the industry of Interactive Voice Response
(IVR) tasks, such as call centers or help-desk support with limited task-oriented
capabilities. At the same time, research and academia lost interest in the field of
speech recognition. At the beginning of the 10s, in 2011, Google released Google
Voice Search, a feature that allows users to interact directly with their smart-
phones using their voice for querying its search engine without explicit limitations
for domain or vocabulary. This feature was the first step, after many years, ap-
proaching general-purpose ASR systems to the end-user. This same year, Apple
released Siri, its voice assistant, providing a game-changing experience of voice-
based human-computer interaction. After Siri, others came: Amazon’s Alexa,
Microsoft’s Cortana, and Google’s Assistant, to name a few. These latest de-
velopments and the deep learning revolution fueled ASR research, which is now
considered an interesting, exciting, and valuable research topic.

Along with the revitalized academia attention, there was a growing interest from
the media industry during the last years due to the explosion of new digital con-
tent. This content ranges from the Internet media to digital television. Environ-
ments such as video streaming services or massive online open courses (MOOCs)
are contexts where ASR can enrich the experience, for example, breaking barriers
to access to the content due to hearing difficulties or enabling more efficient lan-
guage processing and understanding (Yang 2020). In this regard, ASR systems
purpose is two-fold: they can provide good enough automatic transcriptions to
be used directly when content is provided (i.e.: lectures or conferences) and can
reduce professional captioners’ workload when supervision is required (i.e.: TV
broadcasting or official records). These two scenarios should work both for live
and recorded media. Furthermore, regarding the professional supervision, the
workload reduction when using ASR systems is directly related to the system’s
performance (Wald et al. 2007), being the speed a critical aspect also when deal-
ing with live broadcasts. This latter kind of content involves live captioning, the
most demanding and stressful task for professionals, as it requires noticing er-
rors, correcting them and continuing listening in a time-bounded manner (Wald
et al. 2007). This kind of live captioning systems are widely-known as stream-
ing systems, while the ASR systems working with recorded media are referred to

2

i
i

i
i

i
i

i
i

2 Scientific goals

as offline systems. Certainly, providing state-of-the-art streaming ASR systems,
with low error rates and low latency, performing live captioning of unconstrained
content (such as debates or morning shows) is still a challenging problem. Indeed,
this thesis is devoted to provide these high-quality streaming ASR systems that
can work on live environments. To do this, the main focus is to ensure that the
quality degradation is negligible with respect to the offline setup, allowing the
system to provide proper and useful live transcriptions with low-latency that can
be used directly (i.e.: live lectures and conferences) or with minor supervision
(i.e.: live TV broadcasting).

2 Scientific goals

Conventional ASR systems work with recorded audio, where the entire content
is available. This working regime allows the system to iterate over the content
several times (multi-pass approach). However, this iterative approach involves
several restrictions in terms of speed and quality, as the system should process
the whole audio to perform the next iteration, and errors can be propagated from
iteration to iteration.

To avoid this, the first challenge arising in this context is building a one-pass
system that integrates state-of-the-art neural network models, that have largely
demonstrated to be the best models for ASR (Mohamed, G. Dahl, Hinton, et
al. 2009; Mohamed, George E. Dahl, and Hinton 2012; Seide, Li, and Yu 2011;
Deng et al. 2013). In particular, neural language models (LMs) are commonly
deferred to the last steps of the multi-pass approach (Si et al. 2013; Xu et al.
2018; Ogawa et al. 2018) due to their computational complexity. Including them
appropriately in the first step will improve accuracy and reduce the number of
errors. It is also essential to perform this integration efficiently to minimize the
total recognition time while keeping accuracy as good as possible. On the other
hand, neural-based acoustic models (AMs) must also be integrated and adapted to
the streaming recognition process. Waiting for the whole utterance to be spoken
is not an option in the streaming setting, as the user expects the feedback from
the system as soon as possible. Therefore, partial outputs must be delivered after
processing a short part of the incoming acoustic signal. Thus, being limited to
performing only one-pass, the system must do its best to get the most out of the
input, using the best models. In addition, the speed and efficiency of the system
are critical as well, as time-constrained responses are expected. This requirement
involves that the AM, which had the entire sequence available to provide acoustic
scores in the offline setup, is now limited to a part of the utterance. The amount
of context we want to deliver to the AM will condition the latency of the system,
meaning that more context involves gathering more acoustic information, delaying
the output of the system. Again, following the neural-based trend for the AM, the
input pipeline and the whole sequence models need to be adapted to this limited
setup. This adaptation leads to a second challenge, where the input pipeline

3

Chapter 1. Introduction

and the neural-based AM have to be adjusted and thoroughly evaluated under
streaming conditions.

As mentioned above, this work is focused on a real requirement from the industry:
high-quality and low-latency live captioning. However, the dataset landscape is
not well-defined for this task, showing significant shortcomings in reflecting the
quality of the system when deployed in real-world environments. Under these
real-world conditions, the performance and accuracy of the system should be
thoroughly tested against long non-restricted audio signals such as TV shows.
This kind of task requires using long-span evaluation content that encourages the
extra effort put on efficiency and improving the quality against adverse conditions.
This task-oriented line of thought motivated the third and last scientific goal of
this thesis.

To summarize, during this thesis, the following research questions will be ad-
dressed:

• Is it possible to perform recognition in one-pass and real-time with
a quality similar to that of a multi-pass system?

• Is it possible to perform recognition in streaming with low latency
with a quality similar to that of an offline system?

• How this streaming ASR system can be integrated into production
environments? (i.e., OERs or live TV broadcasts)

These questions are materialized in the following scientific goals that will pursue
the final production-ready streaming ASR system:

• Provide a one-pass ASR system leveraging the neural LM in real-
time: This goal is the intermediate step to obtain a fully-operative stream-
ing system, performing just one iteration of recognition using neural-based
LM such as Long Short-Term Memory or Transformer architecture. Sec-
ondly, the decoding should not be only performed in one-pass but quick
enough to work under real-time constraints.

• Adapt the one-pass neural-based system to perform low-latency
streaming recognition: This goal aims to adapt the input pipeline (from
audio to the recognizer, through the AM) to the streaming setup, adjusting
the normalization and the computation of the acoustic features.

• Evaluate the streaming ASR system in production environments:
Commonly and well-known ASR benchmarks were conceived to evaluate
offline ASR pipelines, not reflecting well tasks or environments where a
streaming system will be deployed. For this reason, in this thesis, we foster
the evaluation of our proposals with real-world, unconstrained challenging
tasks to explore the limits of our approach.

4

i
i

i
i

i
i

i
i

3 Preliminaries

These challenges motivated the scientific interest in streaming ASR. For clarity
and understanding, the following section will introduce the required key concepts
that frame the scope of the scientific challenges in streaming ASR that were
tackled during this thesis.

3 Preliminaries

3.1 Automatic Speech Recognition

The purpose of ASR is to convert spoken language into text. Unlike conventional
classification or regression problems, the output of this process is structured and
grows exponentially, being sequential. Therefore, this process is modeled as find-
ing the best transcription, the word (string) sequence wN1 = {w1, ..., wN}, giving
the utterance, the sequence of acoustic observations xT1 = {x1,x2, ...,xT }, real-
valued vectors coming from a feature extraction process over the speech signal.
This process can be interpreted from a statistical point of view as getting the
word sequence ([wN1]∗) that maximizes the posterior probability given the acous-
tic information xT1 , as follows:

[wN1]∗ = arg max
wN

1

p(wN1 | xT1) (1.1)

To approach this problem, we can rewrite Eq. 1.1 using the Bayes’ theorem (Bayes
1763), obtaining the following:

[wN1]∗ = arg max
wN

1

p(xT1 , wN1)
p(xT1)

(1.2)

= arg max
wN

1

p(xT1 , wN1) (1.3)

= arg max
wN

1

p(wN1) p(xT1 |wN1) (1.4)

First, the term p(xT1) remains constant when searching for the best word se-
quence, meaning that the maximization can drop this part. After this, we nicely
decompose the joint probability into the prior of the sequence of words (p(wN1)),
provided by what is known as the language model (LM), and the posterior of the
sequence of acoustic observations given a word sequence (p(xT1 |wN1)), provided
by what is known as the acoustic model (AM). There is an additional model,
usually omitted and seen as part of the AM, known as the lexicon model, that
could be seen as a pronunciation dictionary translating words into their phonetic

5

Chapter 1. Introduction

representation. This modeling decomposition is commonly known as the gener-
ative approach, the baseline model that guided the development of this thesis.
On the other hand, during the last years, there has been much interest in the
discriminative approach (Chan et al. 2016), which tackles Eq. 1.1 directly, mainly
to leverage the powerful neural networks models coming from the deep learning
era, the so called Sequence-to-sequence models (seq2seq) (Chan et al. 2016).

The generative approach to modeling ends up with a search problem: finding the
best word sequence according to Eq. 1.4, combining the knowledge from both the
AM and the LM. This step is commonly known as decoding, a term coming from
the noisy channel theory (Claude Elwood Shannon 2001). A naive approach
could use a brute force algorithm enumerating all possible sentences that fit with
the acoustic signal, evaluating them and returning one with the highest score.
This approach becomes computationally infeasible for systems with the vocab-
ularies considered nowadays (around 100K words or more). Therefore, efficient
algorithmic techniques and data structures are required to allow us to benefit
from large-vocabulary continuous speech recognition (LVCSR) systems.

To summarize, Figure 1.1 shows the main components of the ASR pipeline. They
are described in the following sections: the feature extraction process, the AM
and the pronunciation dictionary, the LM, and the decoder that implements the
search algorithm.

Feature
Extraction

Search Acoustic Model

Language Model

Pronuntiation
dictionary

p(xT
1 |wN

1)

p(wN
1)

xT
1

argmaxwT
1

p(xT
1 |wT

1)p(wT
1)

[wN
1]∗

Figure 1.1: From the acoustic signal in the time domain to the resulting [wN1]∗, the ASR
pipeline goes through the feature extraction process and searches for the best sequence of
words combining the input from the LM, the AM, and the pronunciation dictionary.

6

i
i

i
i

i
i

i
i

3 Preliminaries

3.2 Feature extraction

The feature extraction process, designed based on our knowledge on the human
auditory system, aims to obtain a sequence of acoustic observations, real-valued
vectors, capturing relevant information from the raw audio signal. This process
involves various signal processing algorithms to emphasize, filter, and transform
the signal, computed locally using typically an overlapping analysis window of 25
ms with a 10ms stride over the audio signal. The standard pipeline performing
this transformation is well established nowadays, focusing on providing a com-
pact representation of the speech signal that can help the underlying nature of
the posterior AM. For example, for the models commonly used for the acoustic
modeling, the Mel-frequency cepstral coefficients (MFCCs) are the most common
features. These features are extracted applying the Mel scale in the frequency
domain, imitating the human filtering (Davis and Mermelstein 1980). Alterna-
tively, Gammatone features have demonstrated their effectiveness in noisy envi-
ronments (Schlüter et al. 2007). More recently, neural network acoustic models
leverage the direct use of the logarithmic Mel scale filter banks that ease data
augmentation techniques (Park et al. 2019). In all these transformations, once
the features are extracted from the raw audio, we end up with an appropriate
input vector representation xT1 for the AM module.

3.3 Acoustic Model

The acoustic model (AM) interacts directly with the acoustic observations, ex-
tracting knowledge from the transformed audio signal. This interaction involves
dealing with the variability coming from the audio representation, regarding vari-
ations intra/inter speakers, such as context (i.e., phonemes being modified by
its surrounded sounds) or style (i.e., variations in speaking rate or spontaneous
speech), and different environmental and technical conditions (i.e., studio vs. on-
device recordings). Due to this, the modeling task in this part of the ASR system
should take all these sources of variations into account.

Unlike the conventional classification problem, the temporal dimension must be
considered to model human speech properly. That is, the variability of the speech
(i.e., short/long pronunciations of the same phonemes depending on the speaker)
has to be extracted and modeled correctly to obtain accurate results. From Eq 1.4,
we see that the AM plays its role as the second factor of the search equation:
p(xT1 |wN1). Under the statistical framework, the AM module has to provide a
statistical model for the sequence of acoustic observations xT1 , conditioned on the
sequence of discrete words wN1 .

Providing the probability of the sequence of continuous vectors conditioned on the
discrete word sequence is not straightforward. During the last 50 years, Hidden
Markov Models (HMMs) (Baum and Eagon 1967; Baker 1990) have been widely
applied and refined, modeling this conditional probability. HMMs naturally inte-

7

Chapter 1. Introduction

grate the sequence modeling with well-known and efficient algorithms to train and
decode, along with continuous-density probability functions modeling real-valued
vectors.

HMMs are the underlying acoustic models used in almost all the ASR systems that
follow the generative framework. They come from the Markov chain theoretical
framework, where a stochastic process is modeled as a finite state machine, with
transitions and states. In addition, the probability of the random variable at a
given time depends only on the value at the previous time step. Unlike the baseline
Markov chain model, where the sequence of states followed by the stochastic
process is observable and deterministic, in the HMM, randomness is introduced
by associating an emission probability (density) function to each state. With
this extension, HMMs describe signals in real-world applications, such as speech
processing tasks, where the states of the system are not directly observed. For
example, the most likely sequence of spoken phonemes in speech recognition.
These Markov states provide the local stationary features combined globally to
approximate the non-stationary nature of human speech production.

In the HMM framework, the hidden state sequence provides indirect information
about the output sequence and helps us model the output probability distribution.
These hidden states reflect the set of different setups of the abstract finite state
machine that were visited during the generation of xT1 . To include this hidden
sequence, the conditional probability over the set of all possible state sequences
qT1 can be marginalized.

p(xT1 |wN1) =
∑
qT

1

p(xT1 , qT1 | wN1) (1.5)

=
∑
qT

1

T∏
t=1

p(xt, qt | xt−1
1 , qt−1

1 , wN1) (1.6)

=
∑
qT

1

T∏
t=1

p(xt | xt−1
1 , qt1, w

N
1)p(qt | xt−1

1 , qt−1
1 , wN1) (1.7)

This formulation accounts for all the possible dependencies in the model regarding
the sequence of acoustic observations, hidden states, and words. Typically, to
reduce the complexity of the model, the following assumptions, commonly known
as first-order Markov assumptions, are made:

• The probability of xt depends only on the current state qt.

• The transition probability depends only on the previous state qt−1.

8

i
i

i
i

i
i

i
i

3 Preliminaries

After these approximations, for each sequence wN1 , an implicitly conditioned
HMM, with parameters ΘwN

1
, is built to represent the conditioned probability

p(xT1 | wN1), denoted as pΘ
wN

1
(xT1). Hence, any sequence wN1 can be transformed

into a concatenation of these HMM states. Then, the formulation ends up as:

pΘ
wN

1
(xT1) =

∑
qT

1

T∏
t=1

p(xt | qt)p(qt | qt−1) (1.8)

In practice, the sum over all state sequences is approximated by the max function,
known as the Viterbi approximation (Viterbi 1967), as follows:

pΘ
wN

1
(xT1) ≈ max

qT
1

T∏
t=1

p(xt | qt)p(qt | qt−1) (1.9)

In both cases, p(xt | qt) models the emission probability and p(qt | qt−1) the tran-
sition probability. Regarding the emission probability, this is commonly modeled
by Gaussian Mixture Models (GMM), leading to the so-called GMM-based HMM
(GMM-HMM). In terms of the transition probability, this is directly modeled as
a lookup table. The resulting transition-emission process produces a sequence
that is not directly observed in the original data, in the form of the alignment
between the acoustic and word sequences, through a minimal pronunciation unit
at phoneme level. We have one HMM for each phoneme, concatenating them to
form word sequences by marginalization as in Eq. 1.5.

In practice, phonemes are replaced by context-dependent phonemes (or triphonemes)
considering not only an isolated phoneme but also its immediate neighboring
phonemes. For example, the word “dog”, with the phonemes “/d/ /a/ /g/”, is
transformed into the triphonemes “]-d-a d-a-g a-g-]”. This modeling accounts for
different co-articulation of phonemes, providing better recognition results. How-
ever, this makes the number of phonemes grow drastically. For example, consider
the 44 English phonemes, which will produce 443 possible triphoneme combina-
tions, up to more than 85 000 symbols. Moreover, many of these symbols are
never or rarely seen in the data, posing training difficulties. It is important to
note that the number of potentially different HMMs could be intractable using
this approach, so we resort to defining a limited set of shared HMM states, where
each state represents a sub-word unit. Hence, any sequence wN1 can be trans-
formed into a concatenation of these shared HMM states. The selection of these
shared HMM states is usually performed with Classification and Regression Trees
(CART) (Young, Odell, and Woodland 1994). This technique reduces the number
of distinct triphonemes, for example, in the current state-of-the-art systems, to
10-20K, thus reducing training complexity.

9

Chapter 1. Introduction

More recently, neural networks have been introduced to cope with the acoustic
modeling part after showing that Feed-Forward Networks (FFNs) can perform a
better job at estimating p(xt | qt) than GMMs (Bourlard and Wellekens 1990). To
this purpose, the emission probability is reformulated in a discriminative fashion
as follows:

p(xt | qt) = p(qt | xt)p(xt)
p(qt)

, (1.10)

where p(qt) is estimated as the number of times this state is visited, and the poste-
rior probability p(qt | xt) by a (deep) neural network (DNN). The term p(xt) is not
considered, as this remains constant during decoding. Over the last years, deeper
FFNs (Hinton et al. 2012), Convolutional Neural Networks (CNNs) (Sainath et al.
2015; Bozheniuk et al. 2020), and Recurrent Neural Networks (RNNs) (Schuster
and Paliwal 1997) have been used to approach the acoustic modeling. This refine-
ment results in the current hybrid systems, combining both HMMs and neural
networks.

3.4 Language Model

Language modeling aims to estimate p(wN1), a vital component in any ASR sys-
tem. This probability is typically factorized similarly to that of the AM, that
is,

p(wN1) =
N∏
n=1

p(wn | wn−1
1). (1.11)

Following this approach, the most popular technique is the n-gram model (C. E.
Shannon 1948). The n-gram model is based on the Markovian assumption where
only the last m words matter to predict the next word:

p(wn | wn−1
1) ≈ p(wn | wn−1

n−m). (1.12)

These probabilities can be easily estimated from normalized word counts in the
training corpora. In practice, sophisticated smoothing and discount techniques
are applied to account for n-grams that are not observed in training and efficiently
combine evidence from different n-gram orders (S. F. Chen and Goodman 1999).

Similar to what happened in the acoustic counterpart, neural networks were intro-
duced to the task of LM in the last years. In contrast to n-gram LMs, neural-based
LMs attempt to directly estimate p(wn | wn−1

1) via continuous word vector rep-

10

i
i

i
i

i
i

i
i

3 Preliminaries

resentations, known as word embeddings (Bengio et al. 2003). However, there
are fundamental differences regarding how the word history wn−1

1 is internally
represented in neural-based LMs. For example, FFNs were successfully used in
the aforementioned work (Bengio et al. 2003) using a window over the input that
captures the previous word embeddings.

In Mikolov et al. 2010, RNN-based LMs demonstrated better performance than
FFNs, leveraging the inner memory cells to learn sequences and patterns with
arbitrary lengths, far beyond than the widely used count-models (3 or 4-grams).
They were employed as LMs in ASR to compress the word history into a contin-
uous vector representation. RNN-based LMs are usually conceived to process the
sequence of word embeddings in a forward manner according to Eq. 1.11. Then,
the initial RNN layer is followed by a FFN with a softmax activation function that
defines a probability distribution over the vocabulary. Long Short-Term Memory
(LSTM) networks appeared to overcome some of the inherent drawbacks with
RNN modeling (Hochreiter and Schmidhuber 1997), and they became the stan-
dard neural recurrent model in ASR (Sundermeyer, Ralf Schlüter, and Hermann
Ney 2012).

More recently, the Transformer architecture (Vaswani et al. 2017), designed orig-
inally for machine translation, has revolutionized the field of language modeling
with impressive results using an attention mechanism (Baevski and Auli 2019; Dai
et al. 2019; Radford et al. 2019), and more precisely, in ASR (Irie et al. 2019). In
addition to this attention mechanism, and in contrast to LSTM, the architecture
of the Transformer model avoids the recurrence, enabling the parallelization and
speeding up the computation drastically.

3.5 Search

After AM and LM modeling, the problem is reduced to find the best word se-
quence (hypothesis) according to Eq. 1.4. For the sake of numerical stability,
computations are performed after applying the logarithm to probabilities. There-
fore the formulation ends up as follows:

[wN1]∗ = arg max
wN

1

{
log p(wN1) + max

qT
1

T∑
t=1

log p(xt | qt) + log p(qt | qt−1)
}

(1.13)

The decoding process follows the conventional beam-search Viterbi algorithm (Viterbi
1967; Hermann Ney 1984). This search algorithm involves several heuristics to
prune the search space in order to reduce the time complexity and to achieve
reasonable response times. For example, a small beam size or a limited number
of active hypotheses is used. Among them, the LM scale is one of the most im-
portant heuristics. It follows the formulation in 1.13 to properly combine the AM

11

Chapter 1. Introduction

and the LM. According to 1.13, the AM provides its scores at each time t, while
the LM score is computed when a new word is hypothesize during search. To
compensate for this, the LM scale is included just as a scale factor, to boost the
LM impact on the global decision. This scale factor is also known as the grammar
scale factor.

The way in which the recognition (or decoding) step is carried out depends very
much on its application setting. In the conventional ASR pipeline, referred to
as offline or batch recognition, the whole audio sequence is available, and then
we can inspect the complete utterance many times, limited only by the time
that we want to devote to perform the decoding. This multi-pass approach is
the most common, performing multiple iterations over the complete sequence
to obtain the best hypothesis for the output word sequence. Motivated by the
fact that, on each step, the set of hypotheses is refined, reducing their number,
hence reducing the search effort. This set of hypotheses for each step is directly
related to one of the previously introduced components, the LM. Indeed, to con-
sider valid word sequences, the LM is transformed into a search structure that
guides the decoding step. The transformation applied and how this model is
used in decoding defines the nature of the decoder, for which several approaches
have been proposed and studied (Nolden 2017). Nowadays, there are two domi-
nant approaches to cope with this purpose, those based on Weighted Finite-State
Transducer (WFST) (Mohri and Riley 1999; Mohri and Riley 2001; Povey et al.
2011), and those grounded on History Conditioned Search (HCS) (Hermann Ney
and Ortmanns 2000; Nolden 2017). The main differences between these two ap-
proaches are the data structures employed to represent each component of the
ASR system, either if they are statically precomputed or dynamically expanded
during decoding. Both methods convert the AM and LM into complex data
structures to perform a time-synchronous search. To alleviate the exponential
complexity of the resulting search space, several pruning techniques are applied
to reduce the number of paths or hypotheses to explore.

Indeed, while this multi-pass approach can reduce the computation and mem-
ory use dividing the recognition process into several stages, this also increases
the response time of the ASR system as a whole, as several iterations have to
be carried out. For this reason, several authors proposed one-pass decoding al-
gorithms based on WFST decoders composing the aforementioned structures to
perform a fast and memory-efficient decoding (Hori et al. 2007). However, the
use of neural LMs, which provide the best performance, along with these one-pass
search algorithms, poses additional problems. These problems are related to the
highly-demanding computational requirements to compute LM scores. Existing
one-pass decoders using neural-based LMs have been proposed in the literature,
for example, approximating the neural model with a count-based model (Arisoy
et al. 2014; Singh et al. 2017), or suggesting the use of lighter models, such as
Gated Recurrent Units (GRU) networks, caching strategies, and complex hybrid
parallelization methods (Lee et al. 2018). However, few of them have reached the
technology readiness level needed for a real production environment where real-

12

i
i

i
i

i
i

i
i

3 Preliminaries

time enabled decoders are required, and/or they do not integrate the LSTM LM
completely, considering only partial information through caching or quantization
strategies.

The discrete nature of the count-based LMs (n-gram models) is exploited to cre-
ate the search structure mentioned above before decoding. However, after being
reinterpreted as the search model, the complexity of the LM has a strong im-
pact on the size of the search space. The more complex and rich the LM is,
the larger the search structure becomes, thus involving much more memory and
time requirements. Suppose state-of-the-art neural-based LMs are considered. In
that case, we are changing the nature of the model from the traditional discrete
count-based models to continuous representations and involving much more com-
putation. Thus, integrating continuous neural LMs into the discrete search space
becomes a challenging task. Due to this, multi-pass decoders leverage neural-
based LMs performing additional recognition iterations. In this multi-pass ap-
proach, the underlying idea is, first, to use a lightweight LM, meaning an efficient
and memory-bounded model, to conveniently perform a fast first-step of recog-
nition. This step is followed by a second step over the resulting limited set of
hypotheses from the first step, with a better (more extensive and more complex)
LM, for example, a neural network-based LM. There are two main approaches to
obtaining the second set of hypotheses, namely, generating n-best candidates or
representing them in compact form using a word graph, or lattice, and then using
the LM to score the resulting sentences or graphs (Sundermeyer, Tüske, et al.
2014; X. Chen et al. 2017; Xu et al. 2018).

3.6 Streaming Automatic Speech Recognition

In contrast to offline or batch ASR, streaming ASR tries to provide a good trade-
off between latency (delay of receiving the input signal and providing the output
sequence) and accuracy (transcription quality). This is motivated by the fact that
our proposal of streaming ASR is focused on recognizing continuous audio streams
without segmentation. Indeed, providing a continuous transcription is required,
even if the shown transcription is not the final hypothesis, for the sake of response
time. This unsegmented recognition allows the system not having to deal with
segmentation algorithms that could impact the transcription quality (Rybach et
al. 2009).

Regarding the latency/accuracy trade-off, this involves two crucial aspects: the
speed of the system to keep the pace when processing the input signal, and a
limited view of this input signal that will define the baseline delay, as the system
cannot wait until the whole audio is provided. To address the first aspect, the
speed, the decoding process has to leverage the best models in the first step of
recognition. Indeed, as mentioned before in the offline ASR section, the multi-
pass approach increases the response time of ASR systems compared to those
based on one-pass decoders. In addition, search errors that cannot be fixed could

13

Chapter 1. Introduction

be propagated in posterior steps. To alleviate these cascaded errors, the neural
LM has to be an active part of the first recognition step. As mentioned before,
several approaches coped with this issue (Arisoy et al. 2014; Singh et al. 2017;
Lee et al. 2018). However, not all of them are prepared to work under real-time
conditions, meaning that moving to streaming conditions is not feasible.

On the other hand, along with using the best LM (the neural LM) during the
first pass to improve the quality of the recognition, the speed of the whole system
is a crucial aspect. For streaming decoding, the decoder has to work under real-
time constraints, meaning that the decoding process should take no longer than
the duration of the speech signal to be processed (or even less). For example,
consider an input stream and a system with a fixed delay of t seconds gathering
enough acoustic information. Thus, the decoder has to process these t seconds
of audio necessarily in less than t seconds; otherwise, the processing time of the
decoder will introduce more and more latency continuously, adding up to the fixed
latency of t seconds, reducing the time performance drastically. Alternatively, if
the decoder can work steadily under real-time conditions, the total latency will
equal the fixed latency t plus a fraction of t at maximum. In this work other
factors that will condition the global latency are not considered, such as the
network or communication delays, as they are very heterogeneous. Clearly, in
nowadays cloud-based environments, these factors have to be taken into account,
but they fall outside the scope of this thesis.

Another critical aspect to consider in the streaming setting, in addition to the
performance of the decoder itself, is how to deal with the partial acoustic input.
As mentioned before, in the streaming setup, the user expects the output from
the system as soon as possible (i.e., live captioning), involving that the system
has to provide partial hypotheses from the input stream as it comes. To this
purpose, it is required to include the aforementioned fixed latency, t, to gather
acoustic information to perform the feature extraction and the acoustic process-
ing. Traditionally, GMM did not require any additional context to provide the
acoustic scores, processing the input as it comes without any further modifica-
tion concerning the offline processing. However, with the neural-based models,
the acoustic context became more and more relevant (Hinton et al. 2012). That
is especially true with the recurrent models, i.e., bidirectional LSTM, where the
model itself stores contextual information from both past and future context in
their internal states (A. Graves and Schmidhuber 2005).

To alleviate the lack of full context on the streaming setup, there were several
proposals in the literature based on different windowed/chunking approaches to
adapt the bidirectional LSTMs to this environment. In (Mohamed, Seide, et al.
2015), it is compared the traditional windowed FFN mechanism with the same
BLSTM approach, obtaining the scores for the center frames grouping consecutive
frames, sharing the same underlying RNN state, outperforming the DNN also
with truncated inputs. After that, in (Zeyer, R. Schlüter, and H. Ney 2016) this
mechanism was extended to compute not only the center frames but all the frames

14

i
i

i
i

i
i

i
i

3 Preliminaries

from the window, along with several scoring averaging methods to compute the
scores from overlapping windows. The authors reported a similar recognition
performance to the traditional offline setup. This approach, unlike (Mohamed,
Seide, et al. 2015), does not require any specific training scheme, allowing the
adaptation of the offline models to the streaming setup. In addition, this latter
approach allowed the system to process the input with steps larger than one
frame, speeding up the acoustic model computations. In parallel, in (K. Chen
and Huo 2016) it is proposed another approach based on splitting the input
sequence into chunks with appended contextual observations, in what is called
context-sensitive chunks (CSCs). Differently from (Zeyer, R. Schlüter, and H.
Ney 2016), where training and recognition are inconsistent, here, the consistency
is enforced to speed up the training procedure as well, as the contextual frames
are not considered when computing the loss and when the backpropagation step
is performed. Another similar approach is presented in (Zhang et al. 2016), in this
case alleviating the truncated fixed context from CSC replacing it by carrying the
whole previous history with the hidden state, from the past context, during the
computation of the next frames, copying the states directly from previous chunks.
The future context remains as contextual information that generates no error
signal. Again, this approach involves a consistent training-recognition scheme,
and authors claimed that this proposal leads to faster training/recognition and,
often, better accuracy than CSC (Zhang et al. 2016; Xue and Yan 2017). In
general, these works illustrated that the gap in accuracy between the full and the
truncated context is manageable, encouraging the development of new techniques
to reduce this gap even more, to prepare the models for the streaming deployment
with minimal WER loss.

Notwithstanding the several proposals, mainly focused on improving the WER,
none of them are evaluated under real streaming conditions, these are, non-
segmented long audio signals where, for example, normalization should be ap-
propriately addressed. In addition, none of those approaches mentioned above
incorporate the LSTM LM during the first pass of recognition, using the count-
based model alone or following a two-steps approach. Finally, the latency of the
system, a key factor in live captioning, it is, in the case where it is provided, only
indicated in theoretical terms, and not measured under real conditions.

On the other hand, despite existing several proposals from the so-called end-to-end
models (Alex Graves 2012; Chiu and Raffel 2018) for the streaming task (Raffel
et al. 2017; Rao, Sak, and Prabhavalkar 2017), the performance of this kind of
models, at the time this thesis started, was still far from the hybrid approach
in complex tasks in terms of WER, conceivably due to not leveraging the vast
text-only resources available (Prabhavalkar et al. 2017; Lüscher et al. 2019). For
this reason, this work is mainly focused on the hybrid approach and how to adapt
the pipeline to the streaming task.

15

Chapter 1. Introduction

3.7 Benchmarking

The proliferation of ASR systems that provide good quality results comes with
the availability of open datasets and benchmarks with hundreds of hours to train
and evaluate new approaches. Among these sets, the most popular one is Lib-
riSpeech (Panayotov et al. 2015), due to its extension (∼1k training hours) and
the academic community acceptance of their curated resources. Based on read
speech, LibriSpeech provided a widely used benchmark to compare ASR mod-
els, being the basic workbench to validate new systems. However, LibriSpeech
does not reflect the complexity of many real-world tasks ultimately. The lack of
spontaneous speech poses some flaws in this dataset not reflecting, for example,
hesitations, incomplete discourse, etc.

Another popular benchmark is TED-LIUM (Rousseau, Deléglise, and Estève 2012;
Rousseau et al. 2014; Hernandez et al. 2018), an ASR corpus based on TED talks.
Initially built for the International Conference on Spoken Language Translation
(IWSLT) evaluation, this corpus has been evolving through different versions,
extending its content. The second (Rousseau et al. 2014),and third (Hernandez et
al. 2018) releases are the most widely used, providing around 200 and 450 hours,
respectively, sharing the evaluation sets. In this case, the content is oriented
to transcribe talks, where spontaneous speech is more common than in audio-
books, but it is still based on prepared discourse that does not cover all the
variations from real-world tasks. In addition to this, it is essential to remark that
the TED talks included in this dataset are pre-segmented, and all the published
evaluation metrics are computed on these segmented version. This segmentation
complicated the evaluation of streaming ASR systems, i.e.: truncating the context
that the streaming system can benefit from and simplifying the task removing
noisy segments. This segmentation encouraged us to reconsider the original corpus
evaluation sets to adapt them to the task of live captioning during this thesis.

In summary, the typical ASR pipeline is devoted to the offline setup, which is why
the majority of the benchmarks were thought to validate these approaches. These
benchmarks involve short-span pre-segmented utterances, lasting not more than
some seconds or minutes, at most. However, during this thesis, the main focus is
to provide a production-ready and high-performing streaming ASR system. For
this reason, there will be a particular focus on validating our approach under
natural streaming conditions, meaning that the recognition will be performed
not only on short utterances but long-span speeches or TV shows. This kind of
content spans from minutes to hours. Therefore, we are considering well-known
academic benchmarks and challenging real-world tasks with a wide variety of
speakers, noise conditions, and topics. Both challenges, the long-span and the
unconstrained conditions during the evaluation, are reflected as the third scientific
goal.

16

i
i

i
i

i
i

i
i

3 Preliminaries

3.8 Evaluation of ASR systems

To measure the improvements in ASR the most acknowledged and used metric is
the Word Error Rate (WER). This metric compares the accuracy of the system’s
output (hypothesis) and the reference text (the ground truth). To obtain this
WER value, previous to the evaluation step, the reference text is normalized;
that is, punctuation and casing are removed. The WER is evaluated using the
output of the system with the resulting normalized reference. For this evaluation,
the following formula is considered:

WER = S +D + I

Nr
(1.14)

Where Nr is the total number of words in the reference, S,D, I are the mini-
mum number of editing operations to perform in the reference text to obtain the
system’s output. In particular, the operations are: the number of substitutions
(S) (i.e., cat -> cut), the number of deletions (D)(i.e., cat -> (nothing)) and the
number of insertions (I)(i.e., (nothing) -> cat). The resulting value is an error
ratio that indicates how close the reference is to the output.

Typically, from the computer-assisted transcription point of view, a WER of close
to 15% involves a transcription effort in time equivalent to double the audio length
to be transcribed. In comparison, a 35% WER involves an effort close to tran-
scribing everything from scratch (Bain et al. 2005). Therefore, values around
15-20% are helpful for most of the ASR-related tasks, while values lower than
10-15% reflect an ASR system that can be used directly with almost no super-
vision (i.e., streaming of live events). From a practical point of view, automatic
transcriptions of WER equal or less than 25% convey enough correct information
to be useful (Munteanu et al. 2006), and professional stenographers prefer them
to manually transcribing from scratch (Akita, Mimura, and Kawahara 2009).

There are other speed related measures that will be used during this thesis, such
as the Real-Time Factor (RTF) or the latency, that measure the speed of the
system working offline and on streaming, respectively. The RTF provides a factor
to evaluate the time to transcribe the audio, computed with the time required to
be transcribed divided by the length of the audio. For example, if two hours of
audio are transcribed in one hour, the RTF is 0.5. Lower values indicate that the
system works faster than higher ones. The second time measure, latency, gives
an idea of the delay between the audio input and the provided output, commonly
measured in seconds.

It is also important to remark that in a streaming setup, in which it is crucial
to minimise the user-perceived system latency, the need of providing partial or
intermediate outputs may arise. Regarding this, there will be a potential mis-
match between those partial hypotheses providing a low latency feeling, and the

17

Chapter 1. Introduction

final output, with obviously a bit more delay. Empirically, we have checked that
the correctness of the partial hypotheses differs very little from the final output,
but measuring this mismatch falls outside of the scope of this work as this poses
several difficulties (i.e.: how to decide which partial hypothesis to select at each
time step).

To summarize, during this thesis, several approaches will be proposed, designed,
implemented, and evaluated in terms of WER and RTF, to finally obtain a com-
petitive streaming ASR system with low latency and high accuracy.

4 Framework

This work started with the Ph.D. program funded by the FPU (FPU14/03981)
scholarship, working on theoretical models for general machine learning problems
under streaming conditions, providing outputs for data input streams of diverse
nature. After publishing some of these contributions being part of the Pattern
Recognition and Human Language Technologies (PRHLT) group, there was a
change in the direction of this thesis to work on ASR, in particular, on streaming
ASR. To this end, the Ph.D. program continued as part of the Machine Learning
and Language Processing (MLLP) group. Over more than a decade, the MLLP
research group has achieved successful results on NLP technologies in research Eu-
ropean projects, transLectures (2011-2014), EMMA (2014-2016), X5Gon (2017-
2020); national projects, such as MORE (2016-2018) and Multisub (2019-2021);
and technology transfer agreements such as Apptek (2017-2019), Tyris Software
(2021); CERN (2020 and 2022-), À Punt (2020-), just to mention a few. Indeed,
this accumulated in-depth theoretical and technical experience also came with
broadened know-how to thoroughly accomplish technological transfer to meet
the industry requirements. This application-oriented perspective stimulated the
work developed on ASR during this thesis started in 2018, contributing to re-
search projects and technology transfer agreements that expanded the scope of
this work outside academia.

The main project that framed this thesis was the European project “X5Gon:
Cross-Modal, Cross-Cultural, Cross-Lingual, Cross-Domain and Cross Site Global
OER Network”. X5Gon aspired to provide this collective OER repository from
the worldwide sparse content available. The development of AI-based tools was a
key factor during the whole project to promote the learning experience through
the platform. Along with different sites collaborating through different modali-
ties, this learning platform encourages the cross-cultural and cross-lingual aspects.
The latter aspects are crucial to achieving the purpose of the project, and they are
the entry point to include NLP technologies, such as ASR. To this end, the con-
tributions to improving ASR systems were essential. More specifically, providing
high-quality ASR tools to transcribe live lectures or classroom sessions was one
of the motivations for the work done during this thesis. These systems were the

18

i
i

i
i

i
i

i
i

4 Framework

initial steps to include other tools such as recommendation or AI systems to guide
the user through well-curated learning paths. Indeed, as mentioned in previous
sections, live content is gaining traction in MOOC platforms. Due to this, pro-
viding systems with similar performance to the ones used for recorded content is
required to preserve the quality of the learning experience. For this purpose, the
work done for this thesis boosted the accessibility and cross-language education,
enabling high-quality automatic transcription of OERs both in recorded and live
content. In this project, two relevant repositories were selected as a case of study:
VideoLectures.NET, a free and open access web portal that has published more
than 20K educational videos, and PoliMedia, a high-quality multimedia educa-
tional repository developed by the UPV. It includes more than 15,000 Spanish
video lectures lasting up to 10 minutes each, created by more than 1800 lectur-
ers, summing up a total amount of about 3000 hours. In the context of X5Gon,
several ASR systems were developed for OER transcription with these sets (Vide-
oLectures.NET and PoliMedia) in 4 languages (En, Es, Sl, De). It is important
to remark that these automatic transcriptions provided a sound basis for other
advanced NLP tasks such as content translation and voice synthesis. All of these
tasks were also successfully addressed by other members of the MLLP group,
providing a fully developed speech-to-speech pipeline.

As referred above, two national projects also framed the context of this thesis
as well: MORE and MultiSub. On the one hand, MORE, standing for Multi-
lingual Open Resources for Education, was aimed to provide OER multilingual
access and enable multilingual online communication in MOOC platforms. On
the other hand, MultiSub targeted subtitling of classrooms and plenary sessions
to further improve state of the art in ASR and Machine Translation for OER.
Both projects included the results of the work of this thesis, developing ASR
systems to transcribe classroom content and parliamentary debates.

About the technology transfer agreements, it is essential to highlight some of
them that also framed the results obtained during this thesis. The most relevant
is the R&D collaboration agreement between the Corporació Valenciana de Mit-
jans de Comunicació (À Punt) and the Universitat Politècnica de València (UPV)
for real-time computer-assisted captioning/subtitling of audiovisual contents. As
mentioned before, these professionals will benefit from high-performance ASR
tools that help them to reduce the workload and stress, notably during broad-
casting live events. This agreement allowed us to refine our research developments
to convert them into products used intensively in a new real-world environment
such as a broadcast channel. This conversion came with exciting challenges that
were not considered previously and valuable end-user feedback to improve our
tools and techniques.

Additionally, other transfer agreements also leveraged the developments on stream-
ing ASR. Tyris Software, a technology company focused on applied AI solutions,
uses our streaming and offline ASR technology to provide automatic transcrip-
tion for its over-the-top (OTT) service, such as live football matches. Moreover,

19

Chapter 1. Introduction

the technology transfer contract to provide automatic speech transcription and
translation services by UPV to the European Organization for Nuclear Research
(CERN), using the latest ASR techniques to transcribe their formative content
shared across the multi-lingual organization.

The developments of this thesis have contributed to achieving the goals of the
preceding research projects by providing tools for building ASR systems and
proposing new competitive models. More precisely, during all these projects and
transfer agreements, there were developed ASR systems, both offline and stream-
ing, general-purpose or adapted, in widely-spoken languages such as English or
Spanish, as well as less widely-spoken languages, such as Slovenian or Catalan,
where advanced ASR tools are not commonly available.

5 List of publications

5.1 Paper 1

Title MLLP-UPV and RWTH Aachen Spanish ASR Systems for
the IberSpeech-RTVE 2018 Speech-to-Text Transcription Challenge

Authors Jorge, Javier ; Martínez-Villaronga, Adrià ;
Golik, Pavel ; Giménez, Adrià ; Silvestre-Cerdà, Joan Albert ;
Doetsch, Patrick ; Císcar, Vicent Andreu ;
Ney, Hermann ; Juan, Alfons ; Sanchis, Albert

Year 2018
Type Workshop
DOI 10.21437/IberSPEECH.2018-54
Name Proc. IberSPEECH 2018
Pages 257-261

This paper describes the Automatic Speech Recognition systems developed by
the MLLP research group of Universitat Politècnica de València and the HLTPR
research group of RWTH Aachen for the IberSpeech-RTVE 2018 Speech-to-Text
Transcription Challenge. Our systems participated in both the closed and the
open training conditions, with a closed dataset in the former and all the data that
the participants had in the latter. Our best system built for the closed condition
was our first version of the one-pass decoder, including neural network-based LMs,
such as LSTM LMs. This decoder allowed us to provide a fast (under real-time
speed) and accurate system, achieving a WER of 20.0% on the dev2 set, and a
22.0% WER in the test-2018 set, winning the competition in the closed track. For
the open condition, the system from RWTH Aachen used approx. 3800 hours of
training data from multiple sources and trained their RASR-RETURNN one-pass
hybrid BLSTM-HMM ASR system. This system scored 15.6% WER on the dev2
set, and 16.45% on test-2018, winning the open track. Finally, the highlights of

20

i
i

i
i

i
i

i
i

5 List of publications

these systems include robust speech data filtering for acoustic model training and
show-specific language modeling.

5.2 Paper 2

Title Real-time One-pass Decoder for Speech Recognition
Using LSTM Language Models

Authors Jorge, Javier; Giménez, Adrià; Iranzo-Sánchez, Javier;
Civera, Jorge; Sanchis, Albert; Juan, Alfons

Year 2019
Type International Conference - Core A - CGS A
DOI 10.21437/Interspeech.2019-2798
Name Proc. of the 20th Annual Conf. of the ISCA (Interspeech 2019)
Pages 3820-3824

This publication presented extensively the one-pass decoder with neural-based
LMs to improve the traditional multi-pass rescoring hypotheses approach. The
new architecture proposed in this work aimed to make the decoding efficient,
leveraging new pruning techniques to reduce the real-time factor of the system.
This architecture is based on the precomputation of static tables to compute
the LM look-ahead score. These tables allow the system to drastically reduce
the search effort and computation complexity. Along with these decoding im-
provements, several techniques were explored to alleviate the LSTM expensive
computations, such as Variance Regularization and lazy evaluation. This system
was evaluated in the well-known datasets LibriSpeech and TED-LIUM release 3.
The final ASR system obtained competitive WERs with ∼0.6 RTFs. Finally, the
one-pass decoder approach was compared with our decoupled two-pass decoder.

5.3 Paper 3

Title LSTM-Based One-Pass Decoder for Low-Latency Streaming
Authors Jorge, Javier; Giménez, Adrià; Iranzo-Sánchez, Javier;

Silvestre-Cerdà, Joan Albert; Civera, Jorge;
Sanchis, Albert; Juan, Alfons

Year 2020
Type International Conference - CGS A
DOI 10.1109/ICASSP40776.2020.9054267
Name Proc. of 45th ICASSP 2020
Pages 7814–7818

The main goal of this work was to extend the one-pass offline decoder proposed
in the previous paper to be used under streaming conditions. These conditions
involve several limitations, mainly for the acoustic signal processing, as the whole

21

Chapter 1. Introduction

utterance is unavailable in this scenario. Therefore, adapting the acoustic pro-
cessing involved two steps: adapting the AM to work with a limited context and
adapting the acoustic signal normalization scheme. For this purpose, starting
from our decoder working faster than real-time (RTF < 1.0) keeping accuracy
thanks to the neural LM integration, this paper covered these limitations that
were not considered in the offline case. To adapt the neural AM, in particular
a BLSTM model, instead of the whole input, the model processes the streaming
input through an overlapping sliding window that will be averaged to obtain the
acoustic scores. On the other hand, the normalization scheme was adapted to
retain initial frames to compute the initial statistics, and then it is performed on
the fly during recognition. Finally, this new version of our decoder was evaluated
under a pure streaming setup on the well-known datasets LibriSpeech and TED-
LIUM release 3, considering both WER and latency, obtaining competitive WER
figures with low-latency outputs.

5.4 Paper 4

Title Live Streaming Speech Recognition Using
Deep Bidirectional LSTM Acoustic Models
and Interpolated Language Models

Authors Javier Jorge Adrià Giménez, Joan Albert Silvestre-Cerdà,
Jorge Civera Albert Sanchis Alfons Juan

Year 2021
Type Journal
DOI 10.1109/TASLP.2021.3133216
Name IEEE/ACM Transactions on Audio, Speech,

and Language Processing.
Pages 148 - 161

In this paper, most of the developments of previous works are wrapped up and
extended to pose a production-ready streaming one-pass decoder using neural
models. In addition to the LSTM LM, the decoder now includes a third LM
based on the Transformer architecture, providing the possibility of a three-way
interpolation among the count-based and the two neural-based models. The over-
lapping sliding window BLSTM was widely explained and extended with a new
pruning approach named Acoustic Model Look-Ahead (AMLA) to reduce the
search effort to improve the system’s global speed. Additionally, the normaliza-
tion scheme was revisited, and a new proposal was provided, reducing the global
latency. In this case, along with the commonly used LibriSpeech and TED-LIUM
release 2, two new tasks were used: the TED-LIUM release 2 evaluation sets in
the original video format and the RTVE2018 sets. These two tasks enabled the
proper evaluation of our streaming-oriented system under challenging real-world
tasks without any previous manual or automatic segmentation. The final results

22

i
i

i
i

i
i

i
i

5 List of publications

on these four sets showed that our system is a production-ready tool providing
remarkable low WER with low-latency responses.

5.5 Paper 5

Title MLLP-VRAIN Spanish ASR Systems for the
Albayzin-RTVE 2020 Speech-To-Text Challenge

Authors Jorge, Javier; Giménez, Adrià; Baquero-Arnal, Pau;
Iranzo-Sánchez, Javier; Pérez-González-de-Martos, Alejandro;
Garcés Díaz-Munío, Gonçal V; Silvestre-Cerdà, Joan Albert;
Civera, Jorge; Sanchis, Albert; Juan, Alfons

Year 2021
Type Workshop
DOI 10.21437/IberSPEECH.2021-25
Name Proc. IberSPEECH 2021
Pages 118-122

In this last paper, our previous streaming decoder was evaluated against other de-
velopments from international research and industry teams on the open-condition
challenge IberSpeech2021. Our team submitted several hybrid ASR systems: two
streaming systems with 0.6 and 1.5 seconds of future context and one setup with
our traditional offline system. In the case of the streaming systems, the 1.5 used a
linear interpolation of the three LMs (n-gram, LSTM LM, and Transformer LM)
while the 0.6 setup, aimed to reduce the latency, used only the Transformer LM.
The offline system consisted of a fast pre-recognition and voice activity detection
step to detect speech/non-speech segments, followed by our real-time one-pass
decoding using all three interpolated LMs.

Results showed that our streaming pipeline performed better in these TV broad-
cast tasks. Our best system (streaming with 1.5 seconds) provided a competition-
winner WER of 16.0%, outperforming our offline system with an even outstanding
17.1% WER. Finally, in this challenging task, it is essential to remark that our
fast system provided a remarkable WER of 16.9%, with a noticeable latency of
∼0.8 seconds, consolidating the system as a production-ready valuable tool to use
directly in real-world environments.

23

Chapter 1. Introduction

6 References

Akita, Yuya, Masato Mimura, and Tatsuya Kawahara (Jan. 2009). “Automatic
transcription system for meetings of the Japanese National Congress”. In: Proc.
of InterSpeech 2009, pp. 84–87 (cit. on p. 17).

Arisoy, E. et al. (2014). “Converting neural network language models into back-
off language models for efficient decoding in automatic speech recognition”.
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.1,
pp. 184–192 (cit. on pp. 12, 14).

Baevski, Alexei and Michael Auli (2019). “Adaptive Input Representations for
Neural Language Modeling”. In: Proc. of ICLR 2019 (cit. on p. 11).

Bain, Keith et al. (Jan. 2005). “Accessibility, transcription, and access every-
where”. In: IBM Systems Journal 44, pp. 589–604 (cit. on p. 17).

Baker, James K (1990). “Stochastic modeling for automatic speech understand-
ing”. In: Readings in speech recognition, pp. 297–307 (cit. on p. 7).

Baum, Leonard E and John Alonzo Eagon (1967). “An inequality with applica-
tions to statistical estimation for probabilistic functions of Markov processes
and to a model for ecology”. In: Bulletin of the American Mathematical Society
73.3, pp. 360–363 (cit. on p. 7).

Bayes, Thomas (1763). “LII. An essay towards solving a problem in the doctrine
of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in
a letter to John Canton, AMFR S”. In: Philosophical transactions of the Royal
Society of London 53, pp. 370–418 (cit. on p. 5).

Bengio, Yoshua et al. (2003). “A Neural Probabilistic Language Model”. In: J.
Mach. Learn. Res. 3, pp. 1137–1155 (cit. on p. 11).

Bourlard, Herve and Christian JWellekens (1990). “Links between Markov models
and multilayer perceptrons”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 12.12, pp. 1167–1178 (cit. on p. 10).

Bozheniuk, Vitalii et al. (2020). “A comprehensive study of Residual CNNs for
acoustic modeling in ASR”. In: Proc. of ICASSP 2020 (cit. on p. 10).

Chan, William et al. (2016). “Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition”. In: Proc. of ICASSP 2016,
pp. 4960–4964 (cit. on p. 6).

Chen, Kai and Qiang Huo (2016). “Training deep bidirectional LSTM acous-
tic model for LVCSR by a Context-Sensitive-Chunk BPTT approach”. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.7,
pp. 1185–1193 (cit. on p. 15).

Chen, Stanley F. and Joshua Goodman (1999). “An empirical study of smoothing
techniques for language modeling”. In: Computer Speech and Language 13.4,
pp. 359–394 (cit. on p. 10).

Chen, Xie et al. (2017). “Future word contexts in neural network language mod-
els”. In: Proc. of ASRU 2017, pp. 97–103 (cit. on p. 13).

Chiu, Chung-Cheng and Colin Raffel (2018). “Monotonic Chunkwise Attention”.
In: Proc. of ICLR 2018 (cit. on p. 15).

24

i
i

i
i

i
i

i
i

6 References

Dai, Zihang et al. (2019). “Transformer-XL: Attentive Language Models beyond
a Fixed-Length Context”. In: Proc. of ACL 2019, pp. 2978–2988 (cit. on p. 11).

Davis, S. and P. Mermelstein (1980). “Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences”. In: IEEE
Transactions on Acoustics, Speech, and Signal Processing 28.4, pp. 357–366
(cit. on p. 7).

Deng, Li et al. (May 2013). “Recent Advances in Deep Learning for Speech Re-
search at Microsoft”. In: Proc. of ICASSP 2013 (cit. on p. 3).

Graves, A. and J. Schmidhuber (2005). “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures”. In: Neural net-
works 18.5-6, pp. 602–610 (cit. on p. 14).

Graves, Alex (2012). “Sequence transduction with recurrent neural networks”. In:
CoRR (cit. on p. 15).

Hernandez, François et al. (2018). “TED-LIUM 3: Twice as Much Data and Cor-
pus Repartition for Experiments on Speaker Adaptation”. In: Proc. of SPECOM
2018, p. 198 (cit. on p. 16).

Hinton, Geoffrey et al. (2012). “Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups”. In: IEEE Signal
processing magazine 29.6, pp. 82–97 (cit. on pp. 10, 14).

Hochreiter, S. and J. Schmidhuber (Nov. 1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780 (cit. on p. 11).

Hori, Takaaki et al. (2007). “Efficient WFST-based one-pass decoding with on-
the-fly hypothesis rescoring in extremely large vocabulary continuous speech
recognition”. In: IEEE Transactions on audio, speech, and language processing
15.4, pp. 1352–1365 (cit. on p. 12).

Irie, Kazuki et al. (2019). “Language Modeling with Deep Transformers”. In: Proc.
of InterSpeech 2019, pp. 3905–3909 (cit. on p. 11).

Lee, Kyungmin et al. (2018). “Accelerating recurrent neural network language
model based online speech recognition system”. In: Proc. of ICASSP 2018,
pp. 5904–5908 (cit. on pp. 12, 14).

Lüscher, Christoph et al. (2019). “RWTH ASR systems for LibriSpeech: Hybrid
vs Attention”. In: Proc. of InterSpeech 2019, pp. 231–235 (cit. on p. 15).

Mikolov, Tomas et al. (2010). “Recurrent neural network based language model.”
In: Proc. of InterSpeech 2010, pp. 1045–1048 (cit. on p. 11).

Mohamed, Abdel-rahman, George Dahl, Geoffrey Hinton, et al. (2009). “Deep
belief networks for phone recognition”. In: Proc. of NIPS 2009. Vol. 1. 9. Van-
couver, Canada, p. 39 (cit. on p. 3).

Mohamed, Abdel-rahman, George E. Dahl, and Geoffrey Hinton (2012). “Acous-
tic Modeling Using Deep Belief Networks”. In: IEEE Transactions on Audio,
Speech, and Language Processing 20.1, pp. 14–22 (cit. on p. 3).

Mohamed, Abdel-rahman, Frank Seide, et al. (2015). “Deep bi-directional recur-
rent networks over spectral windows”. In: Proc. of ASRU 2015, pp. 78–83 (cit.
on pp. 14, 15).

25

Chapter 1. Introduction

Mohri, Mehryar and Michael Riley (1999). “Integrated context-dependent net-
works in very large vocabulary speech recognition”. In: Proc. of ECSCT 1999
(cit. on p. 12).

– (2001). “A weight pushing algorithm for large vocabulary speech recognition”.
In: Proc. of ECSCT 2001 (cit. on p. 12).

Munteanu, Cosmin et al. (Apr. 2006). “The effect of speech recognition accuracy
rates on the usefulness and usability of webcast archives”. In: Proc. of Con-
ference on Human Factors in Computing Systems 2006. Vol. 1, pp. 493–502
(cit. on p. 17).

Ney, Hermann (1984). “The use of a one-stage dynamic programming algorithm
for connected word recognition”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 32.2, pp. 263–271 (cit. on p. 11).

Ney, Hermann and Stefan Ortmanns (2000). “Progress in dynamic programming
search for LVCSR”. In: Proc. of IEEE 2000 88.8, pp. 1224–1240 (cit. on p. 12).

Nolden, David (Apr. 2017). “Progress in Decoding for Large Vocabulary Contin-
uous Speech Recognition”. PhD thesis. Computer Science Department RWTH
Aachen University Aachen (Germany): RWTHAachen University (cit. on p. 12).

O’Shaughnessy, Douglas (2008). “Invited paper: Automatic speech recognition:
History, methods and challenges”. In: Pattern Recognition 41.10, pp. 2965–2979
(cit. on p. 2).

Ogawa, A. et al. (2018). “Rescoring N-Best speech recognition list based on
one-on-one hypothesis comparison using encoder-classifier model”. In: Proc. of
ICASSP 2018, pp. 6099–6103 (cit. on p. 3).

Panayotov, V. et al. (2015). “Librispeech: an ASR corpus based on public domain
audio books”. In: Proc. of ICASSP 2015, pp. 5206–5210 (cit. on p. 16).

Park, Daniel S. et al. (2019). “SpecAugment: A Simple Augmentation Method for
Automatic Speech Recognition”. In: Proc. of InterSpeech 2019 (cit. on p. 7).

Povey, Daniel et al. (2011). “The Kaldi Speech Recognition Toolkit”. In: Proc. of
ASRU 2011 (cit. on p. 12).

Prabhavalkar, Rohit et al. (2017). “A Comparison of Sequence-to-Sequence Mod-
els for Speech Recognition”. In: Proc. of InterSpeech 2017, pp. 939–943 (cit. on
p. 15).

Radford, Alec et al. (2019). Language Models are Unsupervised Multitask Learners
(cit. on p. 11).

Raffel, Colin et al. (2017). “Online and Linear-Time Attention by Enforcing Mono-
tonic Alignments”. In: Proc. of ICML 2017, pp. 2837–2846 (cit. on p. 15).

Rao, Kanishka, Haşim Sak, and Rohit Prabhavalkar (2017). “Exploring architec-
tures, data and units for streaming end-to-end speech recognition with RNN-
transducer”. In: Proc. of ASRU 2017, pp. 193–199 (cit. on p. 15).

Rousseau, Anthony et al. (2014). “Enhancing the TED-LIUM corpus with selected
data for language modeling and more TED talks.” In: Proc. of LREC 2014,
pp. 3935–3939 (cit. on p. 16).

Rousseau, Anthony, Paul Deléglise, and Yannick Estève (May 2012). “TED-LIUM:
an Automatic Speech Recognition dedicated corpus”. In: Proc. of LREC 2012.
Istanbul, Turkey, pp. 125–129 (cit. on p. 16).

26

i
i

i
i

i
i

i
i

6 References

Rybach, David et al. (Apr. 2009). “Audio segmentation for speech recognition
using segment features”. In: pp. 4197–4200. doi: 10.1109/ICASSP.2009.4960554
(cit. on p. 13).

Sainath, Tara N et al. (2015). “Deep convolutional neural networks for large-scale
speech tasks”. In: Neural Networks 64, pp. 39–48 (cit. on p. 10).

Schlüter, Ralf et al. (2007). “Gammatone Features and Feature Combination for
Large Vocabulary Speech Recognition.” In: Proc. of ICASSP 2007, pp. 649–652
(cit. on p. 7).

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural net-
works”. In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681 (cit.
on p. 10).

Seide, Frank, Gang Li, and Dong Yu (2011). “Conversational speech transcription
using context-dependent deep neural networks”. In: Twelfth annual conference
of the international speech communication association (cit. on p. 3).

Shannon, C. E. (1948). “A Mathematical Theory of Communication”. In: Bell
System Technical Journal 27.3, pp. 379–423 (cit. on p. 10).

Shannon, Claude Elwood (2001). “A mathematical theory of communication”. In:
ACM SIGMOBILE mobile computing and communications review 5.1, pp. 3–55
(cit. on p. 6).

Si, Yujing et al. (2013). “Prefix tree based n-best list re-scoring for recurrent
neural network language model used in speech recognition system.” In: Proc.
of InterSpeech 2013, pp. 3419–3423 (cit. on p. 3).

Singh, Mittul et al. (2017). “Approximated and domain-adapted LSTM language
models for first-pass decoding in speech recognition”. In: Proc. of InterSpeech
2017, pp. 2720–2724 (cit. on pp. 12, 14).

Sundermeyer, Martin, Ralf Schlüter, and Hermann Ney (2012). “LSTM neural
networks for language modeling”. In: Proc. of InterSpeech 2012 (cit. on p. 11).

Sundermeyer, Martin, Zoltán Tüske, et al. (2014). “Lattice decoding and rescoring
with long-span neural network language models”. In: Proc. of the InterSpeech
2014 (cit. on p. 13).

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Proc. of NIPS
2017, pp. 5998–6008 (cit. on p. 11).

Viterbi, A. (1967). “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm”. In: IEEE Transactions on Information Theory
13.2, pp. 260–269 (cit. on pp. 9, 11).

Wald, Mike et al. (2007). “Correcting automatic speech recognition captioning
errors in real time”. In: International Journal of Speech Technology 10.1, pp. 1–
15 (cit. on p. 2).

Xu, H. et al. (2018). “A Pruned RNNLM Lattice-Rescoring Algorithm for Auto-
matic Speech Recognition”. In: Proc. of ICASSP 2018, pp. 5929–5933 (cit. on
pp. 3, 13).

Xue, S. and Z. Yan (2017). “Improving latency-controlled BLSTM acoustic models
for online speech recognition”. In: Proc. of ICASSP, pp. 5340–5344 (cit. on
p. 15).

27

https://doi.org/10.1109/ICASSP.2009.4960554

Chapter 1. Introduction

Yang, Peter (2020). “The Cognitive and Psychological Effects of YouTube Video
Captions and Subtitles on Higher-Level German Language Learners”. In: Tech-
nology and the Psychology of Second Language Learners and Users, pp. 83–112
(cit. on p. 2).

Young, S. J., J. J. Odell, and P. C. Woodland (1994). “Tree-based State Tying for
High Accuracy Acoustic Modelling”. In: Proc. of Workshop on Human Language
Technology 1994, pp. 307–312 (cit. on p. 9).

Zeyer, A., R. Schlüter, and H. Ney (2016). “Towards Online-Recognition with
Deep Bidirectional LSTM Acoustic Models”. In: Proc. of InterSpeech 2016,
pp. 3424–3428 (cit. on pp. 14, 15).

Zhang, Yu et al. (2016). “Highway long short-term memory RNNs for distant
speech recognition”. In: Proc. of ICASSP 2016, pp. 5755–5759 (cit. on p. 15).

28

i
i

i
i

i
i

i
i

Chapter 2

Selected Papers

29

i
i

i
i

i
i

i
i

1 MLLP-UPV and RWTH Aachen Spanish ASR Systems for
the IberSpeech-RTVE 2018 Speech-to-Text Transcription
Challenge

Jorge, Javier; Martínez-Villaronga, Adrià; Golik, Pavel;
Giménez, Adrià; Silvestre-Cerdà, Joan Albert; Doetsch, Patrick;
Císcar, Vicent Andreu; Ney, Hermann; Juan, Alfons; San-
chis, Albert

Proc. of IberSPEECH 2018: 10th Jornadas en Tecnologías
del Habla and 6th Iberian SLTech Workshop, pp. 257–261

Barcelona (Spain)

DOI 10.21437/IberSPEECH.2018-54

21-23 November 2018

i
i

i
i

i
i

i
i

MLLP-UPV and RWTH Aachen Spanish ASR
Systems for the IberSpeech-RTVE 2018
Speech-to-Text Transcription Challenge

Jorge, Javier; Martínez-Villaronga, Adrià; Golik, Pavel;
Giménez, Adrià; Silvestre-Cerdà, Joan Albert; Doetsch, Patrick; Císcar, Vicent

Andreu; Ney, Hermann; Juan, Alfons; Sanchis, Albert

Abstract

This paper describes the Automatic Speech Recognition systems built
by the MLLP research group of Universitat Politècnica de València and
the HLTPR research group of RWTH Aachen for the IberSpeech-RTVE
2018 Speech-to-Text Transcription Challenge. We participated in both
the closed and the open training conditions.

The best system built for the closed condition was an hybrid BLSTM-
HMM ASR system using one-pass decoding with a combination of a
RNN LM and show-adapted n-gram LMs. It was trained on a set
of reliable speech data extracted from the train and dev1 sets using
MLLP’s transLectures-UPV toolkit (TLK) and TensorFlow. This sys-
tem achieved 20.0% WER on the dev2 set.

For the open condition we used approx. 3800 hours of out-of-domain
training data from multiple sources and trained a one-pass hybrid
BLSTM-HMM ASR system using open-source tools RASR and RE-
TURNN developed at RWTHAachen. This system scored 15.6%WER
on the dev2 set. The highlights of these systems include robust speech
data filtering for acoustic model training and show-specific language
modeling.

33

Chapter 2. MLLP-UPV and RWTH Systems for S2T IberSpeech-RTVE 2018

1.1 Introduction

This paper describes the joint collaboration between the Machine Learning and
Language Processing (MLLP) research group from the Universitat Politècnica de
València (UPV) and the Human Language Technology and Pattern Recognition
(HLTPR) research group from the RWTH Aachen University for the participa-
tion in the IberSpeech-RTVE 2018 Speech-to-Text transcription challenge, that
will be held during the IberSpeech 2018 conference in Barcelona, Spain. Our
participation consisted of the submission of three systems: one primary and one
contrastive for the closed system training condition, and one primary for the open
condition.

The rest of the paper is structured as follows. First, Section 1.2 describes the
RTVE database that was provided by the organizers of the challenge. Second, in
Section 1.3 we describe the ASR systems we developed under the closed training
conditions. Next, Section 1.4 details the ASR system that participated in the
open training conditions. Finally, Section 1.5 provides a summary of the work
and gives some concluding remarks.

1.2 RTVE database

The RTVE (Radio Televisión Española) database consists of a collection of 15
different TV shows broadcast by the Spanish public TV station between 2015 and
2018. It comprises 569 hours of audio data, from which 460 hours are provided
with subtitles, and 109 hours have been human-revised. In addition, the database
includes 3 million sentences extracted from the subtitles of 2017 broadcast news
at the RTVE 24H Channel.

The database is provided in five partitions: subs-C24H, the 3M text dataset from
the RTVE 24H channel; train, that comprises 463 hours of audio data with non-
verbatim subtitles from 16 TV shows; and dev1, dev2, test, consisting of 57, 15
and 40 hours from 5, 2 and 8 different TV shows, respectively. dev1 and dev2 sets
were provided with manual corrected transcripts, while the test set was used to
gauge the performance of the participant systems. It is important to note that
there is a certain overlap between dev1, dev2, test and the train set in terms of
TV-shows.

In order to have available as many training data as possible during the devel-
opment stage of the closed-condition system, we decided to split dev1 into two
subsets: dev1-train, comprising 43 hours of raw audio to be used for acoustic and
language model training; and dev1-dev, 15 hours to be used internally as devel-
opment data to optimize different components of the system. This split was done
at the file level, trying to satisfy that dev1-dev have similar size to dev2, and that
both dev1 subsets include files from the same TV shows. We used dev2 as a test
set to measure the performance of the system on unseen data.

34

i
i

i
i

i
i

i
i

1.3 Closed-condition system

Speech data filtering

Under the closed training conditions, it is extremely important to make the most
of the provided training data, specially when it is scarce and/or noisy. This is
the case of the RTVE database: on the one hand, the train set comprises only
463 hours of audio, which is not much compared with the amount of data used
to train current state-of-the-art systems (Chiu et al. 2018; Xiong et al. 2018).
On the other hand, training data is not provided with verbatim transcripts but
with approximate subtitles. This becomes a major concern when using recurrent
neural networks for acoustic modeling, as the accuracy drops significantly when
using noisy training data. Therefore, a robust speech data filtering procedure
becomes a key point to achieve high ASR performance.

After examining some random samples from train, dev1 and dev2 sets, we first-
hand checked that the provided subtitles are far from being verbatim transcripts,
but also noted the presence of 1) subtitle/transcription gaps, 2) subtitle files
with no timestamps, 3) audio files considerably larger than their corresponding
subtitle files, 4) subtitle files covering timestamps that exceed the length of their
corresponding audio file, or 5) human transcription errors in dev1, among others.

For all these reasons, we applied the following speech data filtering pipeline. As
subtitle timestamps 1) are not reliable in the train set, 2) are not given in dev1,
and 3) are given only at speaker-turn level in dev2, we first force-aligned each
audio file to its corresponding subtitle/transcript text. We did this using a preex-
isting hybrid CD-DNN-HMMASR (Hinton et al. 2012) system in which the search
space was constrained to recognize the exact text (no language model was involved
in this procedure), with the only freedom of exploring the different word pronun-
ciations given by the lexicon model and of using an optional silence phoneme at
the beginning of each word. In this way we computed the best alignment be-
tween the input frame sequence to the sequence of HMM states inferred from
the subtitle/transcript text. Then, we applied a heuristic post-filtering based on
state-level frame occupation and word-level alignment scores: if either an HMM
state is aligned to more frames than the observed average state frame occupation
+ two times the observed standard deviation, or a word whose average alignment
score is lower than a given threshold, then the corresponding word alignment is
considered noisy and the word is removed. Next, we completely discarded those
files in which more than two thirds of the words were filtered out in the previous
step. Finally, we built a clean training corpus by joining words into segments
whose boundaries were delimited by large-enough silences and deleted words.

Table 2.1 shows the result of applying this speech data filtering pipeline to the
train, dev1 and dev2 sets. The second column shows the raw audio length in
hours of each set. The third refers to the amount of raw hours that could be

35

Chapter 2. MLLP-UPV and RWTH Systems for S2T IberSpeech-RTVE 2018

Table 2.1: Number of raw, aligned raw, aligned speech, and filtered speech hours as a
result of applying the speech data filtering pipeline to the whole RTVE database.

Raw Aligned Filtered
Raw Speech Speech

train 463 438 252 187
dev1-train 43 31 24 18
dev1-dev 14 12 9 7
dev2 15 12 9 6
Overall 535 493 294 218

aligned to the corresponding subtitle/transcript text by our alignment system. It
must be noted that there were some audio files that the system was not capable
to align. This happens when none of the active hypotheses can reach the final
HMM state at the last time step, due to an excessive histogram pruning or due
to an non-matching transcript. For this reason, 42 hours of audio data could
not be aligned. The fourth column gives the total amount of aligned speech
data after removing non-speech events that were aligned to the silence phoneme.
Surprisingly, the original 438 raw hours from the train set were reduced to 252
hours of speech data, i.e. we detected 186 hours of non-speech events. After some
manual analysis of the alignments, we found that a significant portion of these
186 hours is explained by non-subtitled speech, whose corresponding audio frames
were in practice aligned to the silence phoneme. Finally, the fifth column shows
the number of hours of clean speech data after applying the described heuristic
post-filtering procedure and after discarding files that shown a high word rejection
rate. Starting with the original 535 hours of raw audio, we aligned 294 hours of
speech, from which we rejected 76 hours of noisy data, ending up with 218 hours
of speech suitable for acoustic training.

Acoustic modeling

The acoustic models (AM) used during the development of theMLLP-RWTH_c1-
dev_closed system were trained using filtered speech data from train and dev1-
train sets, that is, 205 hours of training speech data. We extracted 16-dim. MFCC
features augmented by the full first and second time derivatives, resuling in 48-
dim. features.

Our acoustic models were based on the hybrid approach (Bourlard and Wellekens
1989; Hochreiter and Schmidhuber 1997). We first trained a conventional context-
dependent Gaussian mixture model hidden Markov model (CD-GMM-HMM)
with three left-to-right states. The state-tying schema was estimated following
a phonetic decision tree approach (Young, Odell, and Woodland 1994), resulting
in 8.9K tied states. The GMM acoustic model was used to force align the train-
ing data. We then trained a context-dependent feed-forward DNN-HMM using a
context window of 11 frames, six hidden layers with ReLU activation functions

36

i
i

i
i

i
i

i
i

Table 2.2: Corpus statistics of the text data used for LM training.

Sentences Running words Vocabulary
train 340K 4.3M 80K
subs-C24H 3.1M 57M 160K
RNN-train 1.8M 35M 176K
dev1-dev 9.9K 160K 13K
dev2 7.7K 150K 12K

and 2048 units per layer. We used the transLectures-UPV toolkit (TLK) (M.
del-Agua et al. 2014) to train both GMM and DNN acoustic models.

Apart from the feed-forward model, we also trained a BLSTM-HMMmodel (Hochre-
iter and Schmidhuber 1997). The DNN was used to refine the alignment between
input acoustic features and HMM states. We then trained the BLSTM-HMM
model using the open source toolkit TensorFlow (Abadi, Agarwal, et al. 2015)
and TLK. The BLSTM network consisted of four bidirectional hidden layers with
512 LSTM cells per layer and per direction.

In order to increase the amount of training data, the final submitted system
(MLLP-RWTH_p-final_closed) was retrained on a total of about 218 hours from
sets train, dev1 and dev2.

Language modeling

Our language model (LM) for the closed condition consists of a combination
of several n-gram models and a recurrent neural network (RNN) model. Also,
since TV shows of each audio file are known in advance, we performed an LM
adaptation at the n-gram model level.

First, we extracted sentences from all .srt and .trn files. Then we applied a
common text processing pipeline to normalize capitalization, remove punctuation
marks, expand contractions (i.e. sr. → señor) and transliterate numbers. As
already mentioned, we split dev1 into two subsets, dev1-train and dev1-dev, in
order to include dev1-train in training.

Thus, in this section, we will refer to the combination of train and dev1-train sim-
ply as train. For LSTM LM training, we concatenated the train and subs-C24H
sets into a single training file and removed redundancy by discarding repeated
sentences. Also, sentences were shuffled after each epoch to allow better gen-
eralization. To carry out TV-show LM adaptation experiments, we randomly
extracted 500 sentences of each TV show from the train set to be used as vali-
dation data in the adaptation process. Table 2.2 provides corpus statistics after
normalization.

37

Chapter 2. MLLP-UPV and RWTH Systems for S2T IberSpeech-RTVE 2018

Second, to define our closed-condition system’s vocabulary, we first computed the
vocabulary of both train and subs-C24H sets, and then removed singletons, so that
language models can properly model unknown word probabilities. After applying
these two steps, the resulting vocabulary had 132K words. The out-of-vocabulary
ratios of dev1-dev and dev2 sets were 0.36% and 0.53%, respectively.

Third, we trained two standard Kneser-Ney smoothed 4-gram LMs on the train
and subs-C24H sets using the SRILM toolkit (Stolcke 2002). Rows (a) and (b) of
Table 2.3 show the perplexities obtained with these models on the dev1-dev and
dev2 sets. In addition to these two general n-gram LMs, we trained one n-gram
LM for each TV show. Row (c) of Table 2.3 shows the averaged perplexity of the
corresponding TV-show-specific LM for each file.

Next, we trained a RNN LM using the Variance Regularization (VR) criterion (X.
Chen et al. 2015). This criterion reduces the computational cost during the
test phase. Our models were trained on GPU devices using the CUED-RNNLM
toolkit (Xie Chen, Liu, et al. 2016). The network setup was optimized to minimize
perplexity on the dev1-dev set. It consisted of a 1024-unit embedding layer and
a hidden LSTM layer of 1024 units. The output layer is a 132K-unit softmax,
whose size corresponds to the vocabulary size. The perplexities obtained with
this network are depicted in Row (f) of Table 2.3.

Then, the combination of the LMs was done in two steps. Firstly, we performed a
linear interpolation of n-gram models. For the general, non-adapted models, we
interpolated the LMs estimated on the train and the subs-C24H sets by minimiz-
ing the perplexity on dev1-dev (Jelinek and Mercer 1980). Row (d) of Table 2.3
shows the perplexities for this particular LM combination. For each show-specific
LM, we performed a three-way interpolation: the individual show-specific LM,
the train LM and the subs-C24H LM. In this case, interpolation weights were
optimized individually for each TV show so that the perplexity was minimized on
the corresponding 500-sentence show-specific validation set, similarly to the ap-
proach followed in (Martínez-Villaronga, Agua, et al. 2013; Martínez-Villaronga,
M. A. del-Agua, et al. 2014). Secondly, we combined the interpolated n-gram
LMs with the RNN LM. Other than the static interpolation of n-gram LMs, the
result of this step is not a new monolithic model, but a set of interpolation weights
to be used on-the-go by the ASR decoder during search. Perplexities for the com-
bination of the RNN LM with the general and the adapted n-gram LMs can be
found in Rows (g) and (h) of Table 2.3.

Finally, to take the most of the provided data, the final submitted system (MLLP-
RWTH_p-final_closed) was trained using the same hyper-parameters values es-
timated during the development stage, but using also dev1-dev and dev2 sets as
part of the training data.

38

i
i

i
i

i
i

i
i

Table 2.3: Perplexities of the different LM components.
dev1-dev dev2

(a) N -gram train 139.6 183.0
(b) N -gram subs-C24H 161.2 193.4
(c) N -gram show-specific 184.0 294.3
(d) N -gram general (a+b) 107.0 147.5
(e) N -gram adapt (a+b+c) 99.5 139.1
(f) RNN 92.3 110.7
(g) RNN+N -gram general (d+f) 78.2 101.8
(h) RNN+N -gram adapt (e+f) 68.9 99.2

Experiments and results

In this section we describe the experiments carried out to determine the best
closed training condition system. Our experiments were devoted to assess three
components of the system: acoustic models, language models and voice activity
detection (VAD) modules. In all cases we used the TLK toolkit decoder (M.
del-Agua et al. 2014) for recognizing test data using a one-pass decoding setup.

First, we compared the performance of the CD-FFDNN-HMMs and BLSTM-
HMMs acoustic models described in Section 1.3. In both cases we used the general
n-gram language model described in Section 1.3. Grammar scale factor and search
pruning parameters were optimized on the dev1-dev set. Table 2.4 shows the
results on both dev1-dev and dev2 sets. As expected, the BLSTM acoustic model
outperformed the feed-forward model by 12.2% relative.

Table 2.4: Comparison of the CD-FFDNN-HMM and BLSTM-HMM acoustic models using
the general n-gram language model. Results in WER % and relative WER % improvement.

dev1-dev dev2
WER WER ∆WER

FFDNN 29.7 27.1 -
BLSTM 26.5 23.8 12.2

Next, we analyzed the contribution of different LM combinations during search,
leaving fixed the acoustic model to the best BLSTM neural network. Specifically,
we carried out recognition experiments using (1) the general n-gram LM, (2) the
RNN LM, (3) the interpolation of the RNN LM with the general n-gram LM,
and (4) the interpolation of the RNN LM with the adapted, show-specific n-gram
LMs. Table 2.5 shows perplexities and WERs for the dev1-dev and dev2 sets over
these four different LM setups.

The best results were obtained with the combination of RNN and n-gram mod-
els, showing a consistent 6% relative improvement in both sets over the baseline
general n-gram LM. It is worth noting that in terms of WER, the improvement
from using adapted models does not translate to dev2. As dev1-dev and dev2

39

Chapter 2. MLLP-UPV and RWTH Systems for S2T IberSpeech-RTVE 2018

Table 2.5: Comparison of different language model combinations using the BLSTM-HMM
acoustic model in terms of perplexity, WER % and relative WER % improvement.

dev1-dev dev2
PPL WER PPL WER ∆WER

n-gram general 107 26.5 148 23.8 -
RNN 92 26.2 111 23.0 3.4
RNN + n-gram general 78 25.3 102 22.4 5.9
RNN + n-gram adapt 69 24.8 99 22.4 5.9

contain different shows with strongly varying amounts of show-specific text data
available for training, not all shows benefit from adaptation equally. Anyway,
since the adaption does not degrade the system performance, and given the good
improvement seen on dev1-dev, we decided to use the combination of RNN LMs
plus adapted n-gram LMs for the final system.

Looking at the system outputs, after carrying out error analysis, we realized that
our VAD module (Silvestre-Cerdà et al. 2012) was discarding a significant amount
of speech regions in the audio files. This significantly affected the WER by in-
creasing the number of deletions. For this reason, we decided to explore other
audio segmentation approaches and compare its performance in terms of WER.
Concretely, we compared the following approaches: (1) our baseline MLLP-UPV
VAD system, based on a speech/non-speech GMM-HMM classifier that ranked
second in the Albayzin-2012 audio segmentation challenge (Silvestre-Cerdà et al.
2012); (2) The LIUM Speaker Diarization Tools, a VAD system based on General-
ized Likelihood Ratio between speech/non-speech Gaussian models (Meignier and
Merlin 2010); (3) The well-known CMUseg audio segmentation system using the
standard configuration (Siegler et al. 1997); (4) Apply a fast pre-recognition step
to segment the audio file by the recognized silences, using the best CD-FFDNN-
HMM acoustic model and a pruned version of the general n-gram LM; and (5)
Use the segments generated in (4), and apply VAD the system (1) to classify those
segments into speech/non-speech. It is important to note that (3) and (4) are not
VAD systems but just audio segmenters, so all detected segments are considered
speech, i.e. all audio is passed through to the ASR. Table 2.6 shows the WER
for each of the five audio segmentation/VAD techniques, including the ratio of
discarded audio that is dropped by the VAD prior to decoding.

As we expected, the baseline VAD system (1) was discarding too much segments,
as it was too aggressive compared to other techniques. With either (2) or (3) we
obtained a consistent improvement. It was further increased up to 8% by using (4).
We decided then to combine this segmentation with our baseline VAD system (1),
which led us to achieve an 11% relative WER improvement. In absolute terms, we
got a 2.4 WER points gain in dev2, with a final WER of 20.0%. This setup con-
stituted our contrastive closed-condition system (MLLP-RWTH_c1-dev_closed),
whilst our primary system (MLLP-RWTH_p-final_closed) was the result of re-

40

i
i

i
i

i
i

i
i

Table 2.6: Comparison of different audio segmentation/VAD techniques using the BLSTM-
HMM acoustic model and the combination of the RNN LM + adapted n-gram LM. Results
in WER % and relative WER % improvement and the ratio of dropped audio.

dev1-dev dev2
% drop. WER % drop. WER ∆WER

MLLP-UPV (1) 10.9 24.8 5.9 22.4 -
LIUM (2) 7.1 23.7 3.9 20.8 7.1
CMUseg (3) 0 23.2 0 20.9 6.7
Pre-Recognition (4) 0 22.9 0 20.6 8.0
+ MLLP-UPV (5) 3.2 22.3 3.3 20.0 10.7

training the same acoustic and language models with all available data, as stated
in Sections 1.3 and 1.3.

Finally we analyzed the speed of submitted system in terms of Real Time Factor
(RTF). We studied how tightening the pruning parameters affects the RTF and
the WER. Also, to assess the speed of a fast pre-recognition step to segment the
audio signal, we also did this comparison using the LIUM VAD system. Results
of this analysis are shown in Table 2.7.
Table 2.7: Speed analysis in terms of RTF an its effect on the WER% over the dev2 set,
either with the submitted system and removing the pre-precognition step, using LIUM VAD
instead.

RTF WER
Submitted system (1) 1.5 20.0
+ inc. prune 0.8 20.3

(1) with LIUM VAD 1.0 20.9
+ inc. prune 0.4 21.3

First, a more aggressive pruning resulted in a system 1.88 times faster while
degrading the WER by 0.3% absolute. Next, if we replace the pre-recognition
step on the submitted system by the LIUM VAD module, we get a speed-up of
50% at the cost of 0.9 points WER. Finally, we could afford a system 3.75 times
faster if we tighten the prune parameters when using LIUM VAD, with a WER
loss of 1.3 absolute points, although it would still be a competitive system, scoring
21.3% WER points on dev2.

1.4 Open-condition system

The main motivation for participating in the open-condition track was the desire
to evaluate a system developed in the recent months for a different purpose, not
related to the IberSpeech challenge. In order to achieve this goal, we decided to
keep the amount of parameter optimization as low as possible. This system is
based on the software developed at RWTH Aachen University: RASR (Rybach
et al. 2011; Wiesler et al. 2014) and RETURNN (Doetsch et al. 2017; Zeyer,
Alkhouli, and Ney 2018).

41

Chapter 2. MLLP-UPV and RWTH Systems for S2T IberSpeech-RTVE 2018

The ASR system is based on a hybrid LSTM-HMM acoustic model. It was trained
on a total of approx. 3800 hours of transcribed speech from several sources, cov-
ering a variety of domains and acoustic conditions. The collection consists of
subtitled videos crawled from Spanish and Latin American websites.

We used a pronunciation lexicon with a vocabulary size of 325k with one or more
pronunciation variants. The acoustic model takes 80-dim. MFCC features as in-
put and estimates state posterior probabilities for 5000 tied triphone states. The
state tying was obtained by estimating a classification and regression tree (CART)
on all available training data. Acoustic modeling was done using a bi-directional
LSTM network with four layers and 512 LSTM units in each layer. About 30% of
activations are dropped in each layer for regularization purpose (Srivastava et al.
2014). During training we minimized the cross-entropy of a network generated
distribution in the softmax output layer at aligned label positions using a Viterbi
alignment defined over the 5000 tied triphone states of the CART. We used the
Adam learning rate schedule (Kingma and Ba 2015) with integrated Nesterov
momentum and further reduced the learning rate following a variant of the New-
bob scheme. We split input utterances into overlapping chunks of roughly 10
seconds and perform an L2 normalization of the gradients for each chunk. With
the normalized gradients the network is updated in a stochastic gradient descent
manner where batches containing up to 50 chunks are distributed over eight GPU
devices and recombined into a common network after roughly 500 chunks have
been processed by all devices.

The language model for the single-pass HMM decoding is a 5-gram count model
trained with Kneser-Ney smoothing on a large body of text data collected from
multiple publicly available sources. Its perplexity on dev1-dev and dev2 is 173.5
and 173.2 respectively. This open-track system has reached a WER of 18.3% and
15.6% on dev1-dev and dev2 without any speaker or domain adaptation or model
tuning.

1.5 Conclusions

In this paper we have presented the description of the three systems that par-
ticipated in the IberSpeech-RTVE 2018 Speech-to-Text transcription challenge.
Two of them, one primary (MLLP-RWTH_p-final_closed) and one contrastive
(MLLP-RWTH_c1-dev_closed), were submitted to the closed training conditions,
while the other one (MLLP-RWTH_p-prod_open) participated in the open train-
ing track. On the one hand, our best development closed-condition ASR system
(MLLP-RWTH_c1-dev_closed), consisting of a BLSTM-HMM acoustic model
trained on a reliable set of 205 hours of training speech data, and a combina-
tion of both RNN and TV-show adapted n-gram language models, achieved a
competitive mark of 20.0% WER on the dev2 set. Our final, primary closed-
condition ASR system (MLLP-RWTH_p-final_closed) should offer a similar or
even better performance as it followed the same system design setup but trained

42

i
i

i
i

i
i

i
i

References

with all available data, including both development sets. On the other hand,
our general-purpose open-condition ASR system (MLLP-RWTH_p-prod_open),
without carrying out any speaker, domain nor model adaptation of any kind,
scored 15.6% WER on the dev2 set.

References

Abadi, Martín, Ashish Agarwal, et al. (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems (cit. on p. 37).

Bourlard, H. and C. J. Wellekens (1989). “Links between Markov Models and
Multilayer Perceptrons”. In: Advances in Neural Information Processing Sys-
tems I, pp. 502–510 (cit. on p. 36).

Chen, X. et al. (2015). “Improving the training and evaluation efficiency of recur-
rent neural network language models”. In: Proc. of ICASSP 2015, pp. 5401–
5405 (cit. on p. 38).

Chen, Xie, Xunying Liu, et al. (2016). “CUED-RNNLM – An open-source toolkit
for efficient training and evaluation of recurrent neural network language mod-
els”. In: Proc. of ICASSP 2016. Shanghai, China, pp. 6000–6004 (cit. on p. 38).

Chiu, Chung-Cheng et al. (Apr. 2018). “State-of-the-art Speech Recognition With
Sequence-to-Sequence Models”. In: Proc. of ICASSP 2018. Calgary, Canada,
pp. 4774–4778 (cit. on p. 35).

del-Agua, M.A. et al. (Nov. 2014). “The translectures-UPV toolkit”. In: Proc.
of Advances in Speech and Language Technologies for Iberian Languages 2014,
pp. 269–278 (cit. on pp. 37, 39).

Doetsch, Patrick et al. (Mar. 2017). “RETURNN: The RWTH extensible training
framework for universal recurrent neural networks”. In: Proc. of ICASSP 2017.
New Orleans, LA, USA, pp. 5345–5349 (cit. on p. 41).

Hinton, G. et al. (Nov. 2012). “Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research Groups”. In: IEEE
Signal Processing Magazine 29.6, pp. 82–97 (cit. on p. 35).

Hochreiter, S. and J. Schmidhuber (Nov. 1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780 (cit. on pp. 36, 37).

Jelinek, Frederick and Robert L. Mercer (Apr. 1980). “Interpolated estimation of
Markov source parameters from sparse data”. In: Proc. Workshop on Pattern
Recognition in Practice 1980. Amsterdam, Netherlands, pp. 381–397 (cit. on
p. 38).

Kingma, Diederik P. and Jimmy Ba (May 2015). “Adam: A Method for Stochastic
Optimization”. In: Proc. of the Int. Conf. on Machine Learning. San Diego, CA,
USA (cit. on p. 42).

Martínez-Villaronga, A., M. A. del Agua, et al. (May 2013). “Language Model
Adaptation for Video Lectures Transcription”. In: Proc. of ICASSP 2013. Van-
couver, Canada, pp. 8450–8454 (cit. on p. 38).

43

Chapter 2. MLLP-UPV and RWTH Systems for S2T IberSpeech-RTVE 2018

Martínez-Villaronga, A., M. A. del-Agua, et al. (Nov. 2014). “Language model
adaptation for lecture transcription by document retrieval”. In: Proc. of Iber-
Speech 2014 (cit. on p. 38).

Meignier, Sylvain and Teva Merlin (Mar. 2010). “LIUM SpkDiarization: an open
source toolkit for diarization”. In: Proc. of CMU SPUD Workshop 2010. Dallas,
TX, USA (cit. on p. 40).

Rybach, David et al. (Dec. 2011). “RASR - The RWTH Aachen University Open
Source Speech Recognition Toolkit”. In: Proc. of ASRU 2011. Honolulu, HI,
USA (cit. on p. 41).

Siegler, Matthew A. et al. (1997). “Automatic Segmentation, Classification and
Clustering of Broadcast News Audio”. In: Proc. of DARPA Speech Recognition
Workshop 1997, pp. 97–99 (cit. on p. 40).

Silvestre-Cerdà, Joan Albert et al. (Nov. 2012). “Albayzin Evaluation: The PRHLT-
UPV Audio Segmentation System”. In: Proc. of IberSpeech 2012. Madrid, Spain,
pp. 596–600 (cit. on p. 40).

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks
from overfitting”. In: Journal of Machine Learning Research 15.1, pp. 1929–1958
(cit. on p. 42).

Stolcke, Andreas (2002). “SRILM - an extensible language modeling toolkit.” In:
Proc. of Interspeech 2002, pp. 901–904 (cit. on p. 38).

Wiesler, Simon et al. (May 2014). “RASR/NN: The RWTH neural network toolkit
for speech recognition”. In: Proc. of ICASSP 2014. Florence, Italy, pp. 3313–
3317 (cit. on p. 41).

Xiong, Wayne et al. (Apr. 2018). “The Microsoft 2017 Conversational Speech
Recognition System”. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing. Calgary, Canada, pp. 5934–5938 (cit. on p. 35).

Young, S. J., J. J. Odell, and P. C. Woodland (1994). “Tree-based State Tying for
High Accuracy Acoustic Modelling”. In: Proc. of Workshop on Human Language
Technology 1994, pp. 307–312 (cit. on p. 36).

Zeyer, Albert, Tamer Alkhouli, and Hermann Ney (July 2018). “RETURNN as
a Generic Flexible Neural Toolkit with Application to Translation and Speech
Recognition”. In: Proc. of ACL. Melbourne, Australia (cit. on p. 41).

44

i
i

i
i

i
i

i
i

2 Real-time one-pass decoder for speech recognition using
LSTM language models

Jorge, Javier; Giménez, Adrià; Iranzo-Sánchez, Javier; Civera,
Jorge; Sanchis, Albert; Juan, Alfons

Proc. of the 20th Annual Conf. of the ISCA (Interspeech
2019), pp. 3820–3824

Graz (Austria)

DOI 10.21437/Interspeech.2019-2798

Core A - GGS A

15-19 September 2019

i
i

i
i

i
i

i
i

Real-time one-pass decoder for speech recognition
using LSTM language models

Jorge, Javier; Giménez, Adrià; Iranzo-Sánchez, Javier; Civera, Jorge; Sanchis,
Albert; Juan, Alfons

Abstract

Recurrent Neural Networks, in particular Long Short-Term Memory
(LSTM) networks, are widely used in Automatic Speech Recognition
for language modelling during decoding, usually as a mechanism for
rescoring hypothesis. This paper proposes a new architecture to per-
form real-time one-pass decoding using LSTM language models. To
make decoding efficient, the estimation of look-ahead scores was accel-
erated by precomputing static look-ahead tables. These static tables
were precomputed from a pruned n-gram model, reducing drastically
the computational cost during decoding. Additionally, the LSTM lan-
guage model evaluation was efficiently performed using Variance Reg-
ularization along with a strategy of lazy evaluation. The proposed one-
pass decoder architecture was evaluated on the well-known LibriSpeech
and TED-LIUMv3 datasets. Results showed that the proposed algo-
rithm obtains very competitive WERs with ∼0.6 RTFs. Finally, our
one-pass decoder is compared with a decoupled two-pass decoder.

2.1 Introduction

Recurrent Neural Networks (RNNs) and particularly Long Short-Term Memory
(LSTM) networks are widely used to build Language Models (LMs) for Large-
Vocabulary Continuous Speech Recognition (LVCSR) (Hochreiter and Schmidhu-
ber 1997; Mikolov et al. 2010; Jozefowicz et al. 2016). An initial recognition step
is first applied on the basis of an n-gram LM, from which a set of best hypotheses
is produced (e.g. an N-best list or a lattice). Then, a second recognition step is
carried out in which an LSTM-based LM is used for hypothesis rescoring (Kom-
brink et al. 2011; Si et al. 2013; Sundermeyer et al. 2014; Chen, Liu, et al. 2017;
Xu et al. 2018; Ogawa et al. 2018). The use of this two-steps approach instead of
a more direct, one-pass decoding, is needed to overcome the high computational
cost associated with the LSTM-LM. That is, by applying an LSTM-LM to a lim-
ited set of best hypotheses, we take advantage of its high accuracy while keeping
the decoding time under reasonable levels.

47

Chapter 2. Real-time one-pass decoder for speech recognition using LSTM language models

Although the above two-step approach is still the preferred way to develop fast yet
accurate ASR systems, we think that it will be soon replaced by one-pass decoding
alone, not only to avoid cascade errors but, more importantly, to leverage the full
potential of state-of-the-art ASR at real-time. To our knowledge, the direct use of
Neural LMs during decoding was first explored in (Shi et al. 2014), where the au-
thors proposed the use of a Variance Regularization (VR) term along with caching
strategies to speed-up this process. Despite using (feed-forward) Neural LMs in
decoding early was seen as a big challenge at that time, empirical results showed
significant relative improvements both in speed and accuracy. Other relevant con-
tributions addressing this challenge have focused on applying heuristics to reduce
model’s queries and caching the network’s states (Huang et al. 2014), proposing
alternative one-pass decoding strategies such as on-the-fly rescoring (Hori, Kubo,
and Nakamura 2014), improving CPU-GPU communications (K. Lee et al. 2015)
and, more recently, combining Gated Recurrent Units with more efficient objec-
tive functions, such as Noise Contrastive Estimation (Kyungmin Lee et al. 2018).
On the other hand, and certainly different from these contributions, other au-
thors have explored the idea of converting Neural LMs, either recurrent or not,
into n-gram models that can thus be smoothly integrated into the conventional
recognition pipeline (Arisoy et al. 2014; Singh et al. 2017).

This work follows the idea of directly using Neural LMs in decoding and, as in the
pioneering work by Shi et al. (Shi et al. 2014), we advocate the use of the one-pass
decoding strategy instead of the conventional two-step approach. It is worth not-
ing, however, that significant progress has been made in ASR since the publication
of this pioneering work, and thus the work reported here, based on current ASR
technology, differs greatly from it. Generally speaking, we propose the direct
use of LSTM-based LMs during one-pass decoding based on a History Condi-
tioned Search (HCS) strategy (Nolden 2017). To alleviate the computational cost
entailed by the use of LSTM-LMs, three main ideas are exploited: static look-
ahead tables; accelerated LSTM-LM computation by variance regularization and
lazy evaluation; and two new pruning techniques. Results are reported on two
standard tasks showing that these ideas are really useful for real-time one-pass
decoding using LSTM-LMs.

2.2 One-pass decoder architecture

As previously mentioned, we propose the direct use of LSTM-LMs in one-pass
HCS-based decoding. This proposal derives from the large capacity LSTM-LMs
have, in contrast to n-gram LMs, to deal with histories of unlimited length (Kom-
brink et al. 2011). This makes HCS-based decoding perfectly suited for its use
with LSTM-LMs, as HCS decoders group hypotheses by history, and thus large
decoding sub-networks can be safely removed during search, thereby lowering
memory requirements.

48

i
i

i
i

i
i

i
i

Although the HCS approach allows us to deal with potentially infinite LM his-
tories during decoding, LSTM-LMs present other challenges which need to be
overcome in order to get a real-time decoder. The most important one is the high
computational cost required by these models. In particular, the calculation of the
Softmax layer is very expensive for large vocabularies. In what follows we describe
the solutions we implemented in our decoder to the problems we encountered.

Static look-ahead tables

LM look-ahead is a well-known and widespread pruning technique. Basically,
this technique consists of adjusting the LM score for each hypothesis h and time
t by also taking into account every possible word w to follow (Nolden 2017). In
terms of computational cost, it requires a separate set of look-ahead scores, often
referred to as the look-ahead table, for each new history h; that is, it requires
the computation of p(w | h) for each history h and word w. Moreover, the cost
of this computation, which is already high for conventional n-gram LMs, is even
exacerbated when LSTM-LMs are used instead.

A common technique for HCS decoders to keep the look-ahead complexity at a
reasonable level is to build look-ahead tables from simplified LMs; that is, if an
n-gram LM is being used as the “big” reference LM, look-ahead tables are built
from m-gram LMs with m < n. The only exception is that, whenever a word-end
node is reached, the look-ahead score is replaced by the probability given by the
big LM. This way, the number of different look-ahead tables and queries to the
big LM are greatly reduced, which is particularly convenient for our LSTM-based
one-pass decoder. That is, for fast computation of look-ahead tables, we propose
the use of n-gram LMs.

Although the above trick for fast computation of look-ahead tables is really ef-
fective, it is worth noting that it can be refined even further, in a straightforward
manner. To this end, consider, as we do here, the use of a small n-gram LM such
as a pruned 4-gram LM. Then, all look-ahead tables can be precalculated before
the actual recognition process begins, and thus the look-ahead complexity during
decoding becomes negligible. This is done here, and in order to fit all look-ahead
tables in memory, we use an approach similar to the Sparse LM Look-Ahead
strategy described in (Nolden 2017).

49

Chapter 2. Real-time one-pass decoder for speech recognition using LSTM language models

Variance regularization and lazy evaluation

As commented before, one of the main drawbacks of using LSTM-LMs is the
high computational cost of the Softmax layer. This high cost is mainly due to
the estimation of the normalization term. Following the idea posed in (Shi et
al. 2014), including a Variance Regularization (VR) term reduces drastically this
computation. In this technique the normalization term is approximated by a
constant. Therefore, the probability of a word can be approximated as

p(w | h) = exp(vL(h)T · aw)
Z(h) ≈ exp(vL(h)T · aw)

D
, (2.1)

where h denotes the current history, L is the number of hidden layers, vL(h) and
Z(h) are respectively the input vector to the Softmax layer and the normalization
term related to h, aw is the weight vector for word w, and D is a constant.

In order to speed up the evaluation of the LSTM-LM during decoding, the models
were trained based on the VR technique in conjunction with a lazy evaluation
strategy in the decoding process. The basic idea behind the VR technique is to
avoid computing the full Softmax, while the lazy strategy delays the evaluation
of LSTM-LM as much as possible. More precisely, during decoding each LSTM
history h is represented as a tuple h = (w, h′, V), where w is the last word
of h, h′ = (w′, h′′, V ′) is the state of the previous history (implemented as a
pointer), and V is either ∅ (empty) or vL1 (h). The term vL1 (h) refers to the LSTM
hidden state for h and can be calculated as vL1 (h) = RNN(w, vL1 (h′)). Therefore,
during decoding each time a word-end node (w) is reached for a given history
h′ = (w′, h′′, V ′) the following steps are executed:

1. If V ′ = ∅ then V ′ = RNN(w′, vL1 (h′′))

2. Estimate p(w | h′) = exp(vL(h′)T ·aw)
D

3. Create new state as h = (w, h′, ∅)

Using this approach new histories are created at negligible cost, since the forward
step in the model is carried out only when a word-end node is reached for the first
time. Once the hidden state is calculated, it is cached in the current state. In
practice most of these new histories will be pruned before any hypothesis reaches
a word-end node, saving a significant amount of computations. In addition, each
time p(w | h′) is required, it is approximated using Eq. 2.1 that replaces the full
Softmax calculation.

50

i
i

i
i

i
i

i
i

Novel pruning techniques

Apart from the conventional pruning methods, two new pruning techniques were
implemented for the one-pass decoder. On the one hand, in some situations the
lack of LM history recombination in conjunction with the histogram pruning (up-
per bound for the maximum number of active hypothesis at each time frame)
resulted in a decrease of performance. More precisely, for some long sentences,
most part of the active hypotheses were similar, except for some long term dif-
ferences in the LM history. Thus, in this case, the decoder behaves similarly to
a greedy decoder. In order to avoid this behaviour a LM history recombination
(LMHR) parameter was introduced. More precisely, for a given N two different
LM histories wM1 and ŵL1 are recombined if wMM−N+1 = ŵLL−N+1. This recombi-
nation forces the decoder to consolidate word prefixes, and thus, it focuses on the
current time frame. It is worth noting that the history length for the LSTM-LM
is not limited. Each hypothesis still keeps a reference to the real LSTM state. A
similar technique was introduced in (Huang et al. 2014), although the motivation
was different.

Furthermore, the maximum number of new LM histories that can be created
at each time frame is limited according to a parameter that we refer to as LM
histogram pruning (LMHP).

Additional remarks

Although our approach is based on an HCS decoder, note that it could be rein-
terpreted as an on-the-fly composition as other authors have proposed in the
past (Hori et al. 2007; Sak et al. 2010). Indeed, static look-ahead tables resem-
bles the WFST approach, since the information stored in the set of look-ahead
tables is similar to that represented in a WFST. Thus, the memory requirements
are alike and the most important difference is that in the look-ahead tables the
information is organized according to the LM histories.

Regarding this interpretation, this could be seen as performing the composition
of a WFST (look-ahead tables) with a LSTM-LM. Nevertheless, it is important to
remark that we are still using an HCS decoder. Thus, the structure of the small
LM used for look-ahead is not introducing any kind of hypothesis recombination
during the search. Its impact is limited to the look-ahead score computation.

Since our approach can be referred to as an on-the-fly composition of a small
n-gram model and a big LM, it is possible to use other types of LMs rather
than LSTMs. Indeed, an on-the-fly interpolation of n-gram and LSTM-LMs was
implemented.

51

Chapter 2. Real-time one-pass decoder for speech recognition using LSTM language models

2.3 Experiments

Experimental settings

The proposed approach has been evaluated on the LibriSpeech ASR corpus (Panay-
otov et al. 2015), and the third version of the TED-LIUM corpus (Hernandez et al.
2018). Statistics for these datasets are shown in Table 2.8. The provided vocab-
ulary for LibriSpeech includes 200K words, while TED-LIUM’s vocabulary com-
prises 153K. Regarding the partitions, we have used the *-other for LibriSpeech
and the *-legacy ones for TED-LIUM.

Table 2.8: Statistics of the corpora.
LibriSpeech TED-LIUM

Dur.(h) Words Dur.(h) Words
Train 961 884M 452 258M
Dev 5.3 50K 1.59 17K
Test 5.1 52K 2.61 27K

Our acoustic models were based on the hybrid approach (Bourlard and Wellekens
1989). First, we trained a context-dependent feed-forward DNN-HMM with
three left-to-right states. State-tying schema follows a phonetic decision tree
approach (S. J. Young, J. J. Odell, and Woodland 1994), resulting in 8.3K and
10.8K tied states for LibriSpeech and TED-LIUM respectively. We used the
transLectures-UPV toolkit (TLK) to train both acoustic models (del-Agua et al.
2014).

The DNN-HMM model was then used to bootstrap a Bidirectional LSTM-HMM
model (Zeyer et al. 2017), using TLK and TensorFlow (Abadi, Agarwal, et al.
2015). The BLSTM network was composed of eight bidirectional hidden layers
with 512 LSTM cells per layer and per direction. We limited the previous history
to perform back propagation through time to a window size of 50 frames.

Regarding language modelling, we used n-gram and LSTM-LMs separately and
in combination through linear interpolation. For LibriSpeech, we used the 4-gram
ARPA LM (fglarge) that is provided with the dataset, while for TED-LIUM we
trained a standard Kneser-Ney smoothed 4-gram LM model with the same data
as it is indicated in (Hernandez et al. 2018) using SRILM (Stolcke 2002). The
OOV ratio on dev sets was 0.57% and 0.17%, while was 0.54% and 0.09% on test
sets, for LibriSpeech and TED-LIUM respectively. A pruned version for both
models was used to estimate the static look-ahead tables.

LSTM-LMs were trained using Noise Contrastive Estimation (NCE) (Mnih and
Teh 2012) and VR (Shi et al. 2014) criterion, in order to reduce the computational
cost during both, training and test phases. Training was performed on GPU using
the CUED-RNNLM toolkit (Chen, Liu, et al. 2016). We selected those models

52

i
i

i
i

i
i

i
i

that provided the lowest perplexity on the dev sets: dev-other and dev-legacy
for LibriSpeech and TED-LIUM, respectively. Both models consisted of a 256-
unit embedding layer and a hidden LSTM layer of 1024 units. The output layer
is a 200K units Softmax layer in the case of LibriSpeech, while in TED-LIUM
the intersection between the provided vocabulary and words in the training set
resulted in an output layer of 144K units. As our decoder can combine any number
of models during decoding, an offline evaluation of the best linear interpolation of
both n-gram and LSTMs using SRILM was performed. The interpolation weights
were wngram = 0.15, wlstm = 0.85 for LibriSpeech and wngram = 0.22, wlstm =
0.78 for TED-LIUM.

Regarding the hardware setup, experiments were conducted on an Intel Xeon(R)
CPU E5-1620@3.50GHz, and a GPU GTX1080Ti with 12GB. The estimation of
the acoustic model scores was performed on GPU, while the estimation of the LM
score and the rest of the decoding was carried out on CPU.

Experimental results

In this section, the impact of the LMHR parameter presented in Section 2.2 is
evaluated. After this, a comparative experiment is shown using different LM
during decoding. Then, the LMHP parameter is studied to assess the trade-
off between Word Error Rate (WER) and Real-Time Factor (RTF). Finally, a
comparison between one-pass and two-pass decoders is performed.

Figure 2.1 shows WER curves as a function of the LMHR parameter for the dev
sets of LibriSpeech and TED-LIUM. As mentioned before, the LMHR controls
the number of words that were kept during the decoding to perform hypothesis
recombination. The LM employed in these figures is a linear interpolation between
a large 4-gram LM and a VR-trained LSTM-LM described in Section 2.3.

As observed in both datasets, there is an optimum WER at around a history
length of 10. This means a decrease of 0.5 and 0.3 WER points in LibriSpeech
and TED-LIUM, respectively, w.r.t. a history length of 2. History lengths above
20 did not provide further improvements. In what remains, we have determined
the optimal LMHR value for each dataset of 10.

Regarding the impact of using different LMs, Table 2.9 shows WER figures, rela-
tive improvement of WER (∆%) and perplexity (PPL) for LibriSpeech and TED-
LIUM test sets on systems that differ in their LM. From top to bottom, the base-
line LM is the pruned (small) 4-gram LM used to perform look-ahead, then the
large 4-gram LM, next the VR-trained LSTM-LM and finally the interpolated
LM mentioned above. Decoding hyperparameters were tuned on the dev set.

As shown in Table 2.9, one-pass decoding systems including LSTM-LM present
relative improvements of ∼17% for LibriSpeech and ∼13% for TED-LIUM, com-
pared with large 4-gram-based systems. In addition, interpolated LM systems

53

Chapter 2. Real-time one-pass decoder for speech recognition using LSTM language models

10.0

10.1

10.2

10.3

10.4

10.5

 2 5 10 20 50 100

WER

LMHR

LibriSpeech

7.5

7.6

7.7

7.8

7.9

8.0

 2 5 10 20 50 100

WER

LMHR

TED-LIUM

Figure 2.1: Evaluation of the impact of the LMHR parameter in terms of WER [%] for
LibriSpeech and TED-LIUM.

provide an additional ∼1% improvement over only-LSTM LM systems. In terms
of perplexity w.r.t. large 4-gram LMs, interpolated LMs offer a significant reduc-
tion of ∼40% across datasets, stressing the consistent relation between perplexity
and WER. This interpolated LM was the default model for posterior experiments.

Table 2.9: Comparison of WER, relative improvement of WER w.r.t the baseline, and
perplexity results using different LM models on LibriSpeech and TED-LIUM test partitions.

LibriSpeech TED-LIUM
WER ∆% PPL WER ∆% PPL

small 4-gram 14.4 - 222.1 10.4 - 176.4
+ 4-gram 12.3 14.6 146.2 9.6 7.7 148.7
+ LSTM 10.2 29.2 89.2 8.3 20.2 91.1
+ interp. 10.1 29.9 86.4 8.2 21.1 88.0

Figure 2.2 shows WER/RTF curves for LibriSpeech and TED-LIUM dev sets as a
function of several selected values for the LMHP parameter (LMHP = 30, 60, 100,
unlimited), varying the beam width. As remarked in Section 2.2, LMHP allows
us to control the number of new LM histories that will be expanded, reducing the
queries to the LSTM-LM.

54

i
i

i
i

i
i

i
i

10.0

11.0

12.0

13.0

14.0

15.0

16.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

LibriSpeechWER

RTF

LMHP=30
LMHP=60
LMHP=100
LMHP=unlim.

7.5

8.0

8.5

9.0

9.5

10.0

10.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

TED-LIUMWER

RTF

LMHP=30
LMHP=60
LMHP=100
LMHP=unlim.

Figure 2.2: Comparison of the impact of different values for the LM-histogram-pruning
(LMHP) parameter in terms of WER and RTF for LibriSpeech and TED-LIUM.

As shown in Figure 2.2, the LMHP parameter has a strong impact in RTF,
allowing us to adjust the WER/RTF trade-off on demand. To this purpose, real-
time performance (RTF∼1) can be reached at almost no cost in terms of WER,
as differences among LMHP values show. In particular, limiting LMHP to 100
allows us to obtain RTF results below 1 without WER reduction in both datasets.

Table 2.10 shows WER figures, RTF and relative decrease of RTF (∆%) on Lib-
riSpeech and TED-LIUM test sets comparing the best performing LMHP value
and unlimited using the same pruning parameters. As observed, RTF was dras-
tically reduced while maintaining similar WER figures.

Table 2.10: Comparison of WER, RTF and relative increase of RTF w.r.t to LMHP=100
on LibriSpeech and TED-LIUM test sets.

LibriSpeech TED-LIUM
LMHP WER RTF ∆% WER RTF ∆%
unlimited 10.12 1.56 - 8.18 1.38 -
100 10.20 0.88 43.6 8.19 0.87 37.0

As mentioned in Section 2.2, our decoder can be considered as an on-the-fly com-
position of the pruned LM and the LSTM/n-gram interpolation. This motivates
another set of experiments that assesses the impact of performing this on-the-fly
composition in contrast to the decoupled approach. For the decoupled approach,
the standard two-pass decoding strategy was adopted based on generating lat-

55

Chapter 2. Real-time one-pass decoder for speech recognition using LSTM language models

10.0

11.0

12.0

13.0

14.0

15.0

16.0

0.2 0.6 1.0 1.4 1.8

LibriSpeechWER

RTF

One-Pass
Two-Pass (HCS)
Two-Pass (WFST)

7.5

8.0

8.5

9.0

9.5

10.0

10.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

TED-LIUMWER

RTF

One-Pass
Two-Pass (HCS)
Two-Pass (WFST)

Figure 2.3: Comparison of the one-pass HCS decoder and the two-pass HCS and WFST
decoders in terms of WER and RTF for LibriSpeech (left) and TED-LIUM (right).

tices and then rescoring them with the LSTM/n-gram interpolated LM. For lat-
tice generation two options were considered: using the pruned (small) n-gram
model, already used for static look-ahead tables estimation, and the large LM. In
the case of the small n-gram, a WFST decoder was used. In the second option,
the large LM was used in our HCS decoder replacing the LSTM-LM to generate
lattices. The posterior lattice rescoring was carried out in both cases using the
CUED-RNNLM toolkit, which imports this function from HTK (S. Young et al.
2002). It is important to remark that this software was extended to include the
VR normalization. The same acoustic and language models were used in both
cases.

Figure 2.3 compares the WER/RTF curves for one-pass using LMHR=10 and
LMHP=100 versus both two-pass approaches on LibriSpeech (left) and TED-
LIUM (right) datasets.

Results show that the one-pass decoder produces significant improvements in
WER compared to WFST, especially when RTF is greater than 0.4. Consider-
ing a very similar RTF performance, the one-pass decoding approach achieves
relative improvements in WER ∼12% and ∼6% in LibriSpeech and TED-LIUM,
respectively. Comparing HCS decoders, one-pass shows a consistent improvement
in RTF, reducing WER (∼6%) in the case of LibriSpeech and obtaining a similar
accuracy in TED-LIUM.

Table 2.11 shows WER figures for similar RTFs on test partitions, considering the
aforementioned decoders, one-pass and two-pass HCS, and the two-pass WFST

56

i
i

i
i

i
i

i
i

References

decoder. As shown in development sets, the one-pass HCS significantly improves
over the WFST approach. Finally. the one-pass HCS obtains a better WER/RTF
trade-off than the two-pass HCS.

Table 2.11: Comparison of WER for similar RTFs between one-pass HCS decoder and the
two-pass HCS and WFST decoders on LibriSpeech and TED-LIUM test partitions.

LibriSpeech TED-LIUM
WER RTF WER RTF

one-pass HCS 10.20 0.88 8.19 0.87
two-pass HCS 10.95 0.90 8.46 0.88
two-pass WFST 11.39 1.16 8.70 1.06

2.4 Conclusions and future work

A novel one-pass decoder that seamlessly combines the use of static look-ahead
tables and LSTM-LMs has been presented. This decoder has been evaluated on
reference ASR datasets, such as LibriSpeech and TED-LIUM, obtaining compet-
itive WER/RTF results. Indeed, RTF figures are reported well below one that
makes this decoder specially suitable for a real-time streaming setup.

Moreover, two new pruning parameters, LMHR and LMHP, were introduced al-
lowing us to adjust the trade-off between WER and RTF according to our require-
ments. In addition, the one-pass and two-pass decoders were directly compared
to demonstrate how the one-pass decoder clearly benefits from the integration of
all LMs in the first stage of the decoding process.

As future work, the current decoder will be evaluated on a real streaming scenario
providing recognition hypothesis as the audio signal data is ingested. In addition,
the current LSTM-LM evaluation will be moved from CPU to GPU in order to
further alleviate the computational cost.

References

Abadi, Martín, Ashish Agarwal, et al. (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems (cit. on p. 52).

Arisoy, E. et al. (2014). “Converting neural network language models into back-
off language models for efficient decoding in automatic speech recognition”.
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.1,
pp. 184–192 (cit. on p. 48).

Bourlard, H. and C. J. Wellekens (1989). “Links between Markov Models and
Multilayer Perceptrons”. In: Advances in Neural Information Processing Sys-
tems I, pp. 502–510 (cit. on p. 52).

57

Chapter 2. Real-time one-pass decoder for speech recognition using LSTM language models

Chen, Xie, Xunying Liu, et al. (2016). “CUED-RNNLM – An open-source toolkit
for efficient training and evaluation of recurrent neural network language mod-
els”. In: Proc. of ICASSP 2016. Shanghai, China, pp. 6000–6004 (cit. on p. 52).

Chen, Xie, Xunying Liu, et al. (2017). “Future word contexts in neural network
language models”. In: Proc. of ASRU 2017, pp. 97–103 (cit. on p. 47).

del-Agua, M.A. et al. (Nov. 2014). “The translectures-UPV toolkit”. In: Proc.
of Advances in Speech and Language Technologies for Iberian Languages 2014,
pp. 269–278 (cit. on p. 52).

Hernandez, François et al. (2018). “TED-LIUM 3: Twice as Much Data and Cor-
pus Repartition for Experiments on Speaker Adaptation”. In: Proc. of SPECOM
2018, p. 198 (cit. on p. 52).

Hochreiter, S. and J. Schmidhuber (Nov. 1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780 (cit. on p. 47).

Hori, Takaaki et al. (2007). “Efficient WFST-based one-pass decoding with on-
the-fly hypothesis rescoring in extremely large vocabulary continuous speech
recognition”. In: IEEE Transactions on audio, speech, and language processing
15.4, pp. 1352–1365 (cit. on p. 51).

Hori, Takaaki, Yotaro Kubo, and Atsushi Nakamura (2014). “Real-time one-pass
decoding with recurrent neural network language model for speech recognition”.
In: Proc. of ICASSP 2014. IEEE, pp. 6364–6368 (cit. on p. 48).

Huang, Z. et al. (2014). “Cache based recurrent neural network language model
inference for first pass speech recognition”. In: Proc. of ICASSP 2014, pp. 6354–
6358 (cit. on pp. 48, 51).

Jozefowicz, R. et al. (2016). “Exploring the limits of language modeling”. In: arXiv
preprint arXiv:1602.02410 (cit. on p. 47).

Kombrink, Stefan et al. (2011). “Recurrent Neural Network based language mod-
eling in meeting recognition”. In: Proc. of Interspeech 2011, pp. 2877–2880 (cit.
on pp. 47, 48).

Lee, K. et al. (2015). “Applying GPGPU to recurrent neural network language
model based fast network search in the real-time LVCSR”. In: Proc. of Inter-
Speech 2015, pp. 2102–2106 (cit. on p. 48).

Lee, Kyungmin et al. (2018). “Accelerating recurrent neural network language
model based online speech recognition system”. In: Proc. of ICASSP 2018,
pp. 5904–5908 (cit. on p. 48).

Mikolov, Tomáš et al. (2010). “Recurrent neural network based language model”.
In: Proc. of InterSpeech 2010. ISCA, pp. 1045–1048 (cit. on p. 47).

Mnih, Andriy and Yee Whye Teh (2012). “A fast and simple algorithm for training
neural probabilistic language models”. In: Proc. of ICML (cit. on p. 52).

Nolden, David (Apr. 2017). “Progress in Decoding for Large Vocabulary Contin-
uous Speech Recognition”. PhD thesis. Computer Science Department RWTH
Aachen University Aachen (Germany): RWTHAachen University (cit. on pp. 48,
49).

Ogawa, A. et al. (2018). “Rescoring N-Best speech recognition list based on
one-on-one hypothesis comparison using encoder-classifier model”. In: Proc. of
ICASSP 2018, pp. 6099–6103 (cit. on p. 47).

58

i
i

i
i

i
i

i
i

References

Panayotov, V. et al. (2015). “Librispeech: an ASR corpus based on public domain
audio books”. In: Proc. of ICASSP 2015, pp. 5206–5210 (cit. on p. 52).

Sak, Haşim et al. (2010). “On-the-fly lattice rescoring for real-time automatic
speech recognition”. In: Proc. of the international speech communication asso-
ciation 2010 (cit. on p. 51).

Shi, Yongzhe et al. (2014). “Efficient One-Pass Decoding with NNLM for Speech
Recognition”. In: IEEE Signal Processing Letters 21.4, pp. 377–381 (cit. on
pp. 48, 50, 52).

Si, Yujing et al. (2013). “Prefix tree based n-best list re-scoring for recurrent
neural network language model used in speech recognition system.” In: Proc.
of InterSpeech 2013, pp. 3419–3423 (cit. on p. 47).

Singh, Mittul et al. (2017). “Approximated and domain-adapted LSTM language
models for first-pass decoding in speech recognition”. In: Proc. of InterSpeech
2017, pp. 2720–2724 (cit. on p. 48).

Stolcke, Andreas (2002). “SRILM - an extensible language modeling toolkit.” In:
Proc. of Interspeech 2002, pp. 901–904 (cit. on p. 52).

Sundermeyer, Martin et al. (2014). “Lattice decoding and rescoring with long-
span neural network language models”. In: Proc. of the InterSpeech 2014 (cit.
on p. 47).

Xu, H. et al. (2018). “A Pruned RNNLM Lattice-Rescoring Algorithm for Auto-
matic Speech Recognition”. In: Proc. of ICASSP 2018, pp. 5929–5933 (cit. on
p. 47).

Young, S. J., J. J. Odell, and P. C. Woodland (1994). “Tree-based State Tying for
High Accuracy Acoustic Modelling”. In: Proc. of Workshop on Human Language
Technology 1994, pp. 307–312 (cit. on p. 52).

Young, Steve et al. (2002). “The HTK book”. In: Cambridge university engineer-
ing department 3, p. 175 (cit. on p. 56).

Zeyer, Albert et al. (2017). “A comprehensive study of deep bidirectional LSTM
RNNs for acoustic modeling in speech recognition”. In: Proc. of ICASSP 2017.
IEEE, pp. 2462–2466 (cit. on p. 52).

59

i
i

i
i

i
i

i
i

3 LSTM-based one-pass decoder for low latency streaming

Jorge, Javier; Giménez, Adrià; Iranzo-Sánchez, Javier; Silvestre-
Cerdà, Joan Albert; Civera, Jorge; Sanchis, Albert; Juan,
Alfons

Proc. of 45th Intl. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP 2020), pp. 7814–7818

Barcelona (Spain)

DOI 10.1109/ICASSP40776.2020.9054267

GGS A

4-8 May 2020

i
i

i
i

i
i

i
i

LSTM-based one-pass decoder for low latency
streaming

Jorge, Javier; Giménez, Adrià; Iranzo-Sánchez, Javier; Silvestre-Cerdà, Joan
Albert; Civera, Jorge; Sanchis, Albert; Juan, Alfons

Abstract

Current state-of-the-art models based on Long Short-Term Memory
(LSTM) networks have been extensively used in ASR to improve per-
formance. However, using LSTMs under a streaming setup is not
straightforward due to real-time constraints. In this paper we present
a novel streaming decoder that includes a bidirectional LSTM acoustic
model as well as an unidirectional LSTM language model to perform
the decoding efficiently while keeping the performance comparable to
that of an off-line setup. We perform a one-pass decoding using a
sliding window scheme for a bidirectional LSTM acoustic model and
an LSTM language model. This has been implemented and assessed
under a pure streaming setup, and deployed into our production sys-
tems. We report WER and latency figures for the well-known Lib-
riSpeech and TED-LIUM tasks, obtaining competitive WER results
with low-latency responses.

3.1 Introduction

On-line or streaming automatic speech recognition (ASR) poses additional chal-
lenges to the off-line setup when state-of-the-art neural-based models are involved.
The main practical challenge is that speech recognition must be performed under
real-time constraints as the audio stream becomes available. This implies that
the complete audio stream is not fully available when decoding is performed up
to a certain point in time. This constraint, combined with the essential require-
ment of low latencies, is especially demanding when state-of-the-art, neural-based
acoustic and language models are used.

On the one hand, acoustic modeling based on Bidirectional Long Short-Term
Memory (BLSTM) networks has shown to be the current state-of-the-art in off-
line ASR systems (Graves and Schmidhuber 2005). However, BLSTM network
training requires to consider some future (right) context with respect to the cur-
rent frame to compute its acoustic score. This means that the output of the ASR

63

Chapter 2. LSTM-based one-pass decoder for low latency streaming

system must be delayed up to the point in which enough frames from the future
have become available for decoding. In this sense, to facilitate streaming ASR, an
in-depth study of using a sliding window that captures the left (past) and right
(future) context with respect to the current frame was carried out in (Mohamed
et al. 2015). models outperform deep neural network (DNN) approaches in the
streaming setup. This work was extended in (A. Zeyer, Schlüter, and Ney 2016)
with a definition of a theoretical framework for the sliding window approach and
a weighting scheme for overlapping frames.

On the other hand, language modeling based on LSTMs networks has become the
dominant approach, providing the best results so far in many ASR tasks (Joze-
fowicz et al. 2016). While these models are commonly used as part of the rescor-
ing process using the n-best hypothesis or lattices (Xie Chen, Liu, et al. 2017;
Ogawa et al. 2018; Kombrink et al. 2011), there is an increasing interest in pro-
viding an efficient way to integrate LSTM-based language models (LMs) into the
decoding process, thus enabling their use in streaming ASR. Indeed, many ap-
proaches have been proposed in this regard, such as converting recurrent models
into n-grams (Arisoy et al. 2014), using cache strategies (Huang et al. 2014),
and reducing the computational complexity of the Softmax function (Shi et al.
2014). It is worth noting, however, that these approaches were only focused on
language modeling, that is, the decoding problem was not considered as a whole
for (low-latency) streaming.

Recently, we proposed the use of LSTM-based LMs in the first pass of the decod-
ing process, without any approximation or transformation in (Jorge et al. 2019).
This is achieved by keeping the state of the LSTM LM network as part of the
search structure, along with the Variance Regularization term (Shi et al. 2014)
used to reduce the Softmax computational complexity. This allowed us to achieve
a competitive performance while keeping the real time factor (RTF) below one.
In this way, we paved the way to the use of LSTM LMs in a streaming setup,
in which tight real-time constraints and low latency are critical. This is done in
this work, that is, we extend the one-pass decoding approach described in (Jorge
et al. 2019) by using LSTM LMs in a streaming setup. As in (A. Zeyer, Schlüter,
and Ney 2016), acoustic modeling is based on BLSTMs, though in this work
important requirements for streaming ASR are also considered, such as the nor-
malization of the input features or the system architecture. More generally, this
work can be seen as a thorough study of the effect that moving from an off-line to
a streaming setup has on WER. It is shown that it highly depends on the feature
normalization context and the availability of future acoustic context. In addition,
given the tight real-time constraints of the streaming setup, detailed results on
time latency are reported on reference tasks widely used in the literature such as
LibriSpeech (Panayotov et al. 2015) and TED-LIUM (Hernandez et al. 2018).

64

i
i

i
i

i
i

i
i

3.2 Streaming decoder

One-pass decoder review

We followed the decoder structure proposed in (Jorge et al. 2019). The main
aspects of this decoder will be commented briefly in this section. In this decoder,
hypotheses are organized by their history, in a similar way as it is done in (Nolden
2017).

Therefore, the computation of the lookahead score should be carried out dynami-
cally during decoding, involving several queries to the language model. To reduce
the impact of that, in this approach it is proposed the use of the static lookahead
tables, a structure that is precomputed in advance, providing the lookahead score
efficiently during decoding. This structure is obtained from a pruned n-gram
model, enabling the use of less memory during recognition.

On the other hand, when a word-end node is reached, we replaced the score that
we got so far by the score from the LSTM LM. In order to compute this efficiently,
we used the Variance Regularization term as a self-normalized function, avoiding
the computation of the whole Softmax (Shi et al. 2014). Along with this function,
we followed a lazy strategy, when a language model node is created, to postpone
the computation of the LM score as much as possible. A more detailed description
of these steps can be found in (Jorge et al. 2019).

We included two additional parameters in this one-pass decoder to control the
WER/RTF trade-off: the Language Model Histogram Recombination (LMHR)
and the Language Model Histogram Pruning (LMHP). The LMHR controls the
size of the previous history considered to combine two hypotheses. The LMHP
limits the number of new LM histories to be expanded, and thus the number of
queries to the LSTM LM. As shown in (Jorge et al. 2019), these parameters are
really effective to reduce the RTF while keeping a good WER performance.

Streaming adaptation

Under streaming conditions, we cannot see the complete context for a given frame.
Therefore, when using BLSTM networks for acoustic modeling, we have to assume
a delay between the input and the output, that allows us to consider this temporal
gap as a short-term context in order to obtain the acoustic score. In order to work
with this acoustic lookahead, we have followed a similar strategy to (A. Zeyer,
Schlüter, and Ney 2016). It is based on the use of a sliding window over the
sequence, where for each frame, we have a context of the nlookahead following
seconds. These seconds, or equivalently, frames, were used in order to compute
the forward and the backward steps over the sequence, obtaining a score for each
frame within the window, using a BLSTM network as in (Mohamed et al. 2015).
We have done this frame by frame, meaning that there will be an overlap equal

65

Chapter 2. LSTM-based one-pass decoder for low latency streaming

to the size of the window. Regarding the overlapping frames, we used a uniform
weighted average of the acoustic scores to obtain the final score that will be
provided to the decoder. In the extreme cases where the utterance is shorter than
the window or the window goes beyond the sequence, we introduced zero padding
up to the length of the window.

Regarding normalization of the features, we have included an initial delay that
will be used to gather statistics to initialize the mean and the variance. We have
a parameter, nnorm, that indicates the number of seconds that will be used to
compute the statistics. Once these nnorm seconds have been accumulated, the
normalization will be applied from the first frame to the last delayed frame, and
then the recognition starts updating mean and variance frame by frame without
including any additional delay. There is, indeed, an initial latency to obtain the
first result from the decoder of nnorm seconds. However, in a real streaming setup,
if this initial delay is small, it will not harm the global latency nor the performance
of the system.

Our streaming setup follows a client-server architecture, where the server can
process different requests at the same time.

In order to manage that, in the server side, we have a pool of recognizers that will
be paired with clients, serving requests in a separated way, while the recognizers
share the same models, reducing the required CPU and GPU memory. This
allowed us to accommodate different systems at the same time. This architecture
is used in our TTP platform1, currently available under registration, in English,
Spanish and Catalan, and in the PoliSubs service2 provided by the Universitat
Politècnica de València.

3.3 Experiments

Experimental setup

Table 2.12 provides some basic statistics of the corpora used to assess our ap-
proach: corpus (Panayotov et al. 2015), TED-LIUM corpus (Hernandez et al.
2018). we have used the provided 200K words for LibriSpeech, and for TED-
LIUM’s we have selected 153K words. Regarding the partitions, we have used the
*-other for LibriSpeech and the *-legacy ones for TED-LIUM.

Following the hybrid approach (Bourlard and Wellekens 1989), we trained a
context-dependent feed-forward DNN-HMM with three left-to-right states. We
have obtained 8.3K and 10.8K tied states (senones) for LibriSpeech and TED-
LIUM respectively after applying a phonetic decision tree (Young, Odell, and

1https://ttp.mllp.upv.es/
2https://apps.upv.es/ - https://polisubs.upv.es/

66

https://ttp.mllp.upv.es/
https://apps.upv.es/
https://polisubs.upv.es/

i
i

i
i

i
i

i
i

Table 2.12: Statistics of the corpora.

LibriSpeech TED-LIUM
Dur.(h) Words Dur.(h) Words

Train 961 884M 452 258M
Dev 5.3 50K 1.59 17K
Test 5.1 52K 2.61 27K

Woodland 1994), following a subphonetic modeling. To train our systems we
have used the transLectures-UPV toolkit (TLK) (del-Agua et al. 2014).

We bootstrapped a bidirectional LSTM-HMM model using the previous DNN-
HMM, as in (Albert Zeyer et al. 2017). For the BLSTM model, we used both
TLK and TensorFlow (Abadi, Agarwal, et al. 2015), and an architecture of eight
bidirectional hidden layers with 512 LSTM cells per layer and direction. Fol-
lowing (Albert Zeyer et al. 2017), we performed chunking during training by
considering a context to perform back propagation through time to a window size
of 50 frames.

On the language modeling side, we used n-grams and LSTM LMs, combining
them through linear interpolation. Apart from the 4-gram model provided for
LibriSpeech, we trained a 4-gram Kneser-Ney smoothed LM for TED-LIUM, us-
ing the same data as in (Hernandez et al. 2018) and SRILM (Stolcke 2002). We
obtained OOV ratios of 0.57% and 0.12% for LibriSpeech and TED-LIUM, re-
spectively, on the dev sets. To compute the static lookahead tables, a pruned
version of these n-gram models was computed.

The CUED-RNNLM toolkit (Xie Chen, Liu, et al. 2016) was used to train LSTM
LMs. Noise Contrastive Estimation (NCE) criterion (Mnih and Teh 2012) was
used to train faster, and the normalization constant learnt from training was used
during recognition (X. Chen et al. 2015). Based on the lowest perplexity models
on dev, we selected the final models with 256-unit embedding layer and a hidden
LSTM layer of 1024 units. Finally, the interpolation weights to combine the n-
gram and the LSTM LM were wngram = 0.15, wlstm = 0.85 for LibriSpeech and
wngram = 0.22, wlstm = 0.78 for TED-LIUM. Table 2.13 shows the perplexity on
the dev partitions of these LM.

Table 2.13: Perplexity results on development partitions.

LibriSpeech TED-LIUM
4-gram 140.6 125.8

LSTM LM 86.2 88.0
LSTM LM + 4-gram int. 83.7 78.7

It is worth noting that we used the same models and pruning parameters for both
the off-line and the streaming approach, in order to perform a fair comparison

67

Chapter 2. LSTM-based one-pass decoder for low latency streaming

between the two setups. Following the experimental analysis in (Jorge et al. 2019),
we used the values of LMHR = 10 and LMHP = 100 for the one-pass decoder
to provide best results in the development sets for both datasets. We carried out
the computations related to both acoustic and language models in GPU, whereas
the decoder was run in CPU, using a Intel Xeon(R) CPU E5-1620@3.50GHz with
a GTX1080Ti with 12GB.

Assessment of normalization and lookahead contexts

This section is to assess the impact of the context for normalization (nnorm) and
the impact of the lookahead context (nlookahead) in terms of WER.

Table 2.14 shows the WER on the dev partition, for LibriSpeech and TED-LIUM,
as a function of nnorm (in secs.). As discussed in Section 3.2, nnorm indicates the
number of seconds that the system is allowed to compute statistics for feature
normalization. For the results in this Table, we considered a value nlookahead = 0.5
seconds, which is the value we used for chunking during training.

Table 2.14: Impact of normalization context on WER, on LibriSpeech and TED-LIUM.

nnorm (sec) LibriSpeech TED-LIUM
0 15.6 9.7
1 11.0 8.2
2 10.0 8.1
4 9.6 7.9
8 9.4 7.7
∞ 9.4 7.6

From the results in Table 2.14, it is clear that normalization helps in improving
performance. As expected, the best WER is achieved when the whole utterance
is considered. Indeed, broadly speaking, with more information, the mean and
variance are better estimated. However, it goes without saying an optimal value
for nnorm should be in between extreme values. On our experience, an appropriate
value for this parameter could be around 2 seconds. To us, this value is a sort
of minimum for the system to collect meaningful statistics and respond after a
reasonable waiting time.

Once this initial delay for the normalization is fixed to 2 seconds, we have per-
formed an analysis of the impact on the WER of the parameter nlookahead, which
indicates the number of seconds of acoustic lookahead. Table 2.15 summarizes the
results for these experiments, with the WER obtained for each corpus considering
{0.125, 0.25, 0.5, 1, 2} seconds of nlookahead.

Results shown that the best WER is obtained with a 1 second and 2 seconds win-
dow length for LibriSpeech and TED-LIUM, respectively. While for TED-LIUM

68

i
i

i
i

i
i

i
i

Table 2.15: Impact of lookahead context on LibriSpeech and TED-LIUM on WER.

nlookahead (sec) LibriSpeech TED-LIUM
0.125 17.1 10.5
0.250 11.6 8.8
0.500 10.0 8.1
1.000 9.9 7.9
2.000 10.2 7.8

using the biggest considered size helped the performance, there is a degradation
on WER for LibriSpeech, which could be due to the additional padding that we
had to introduce for the small segments, very common in this dataset. In ad-
dition, results shown that there is an important gap in performance when using
more than 0.250 seconds to compute the acoustic score, as a WER improvement
of ∼ 14% and ∼ 8% could be achieved using 0.5 seconds to compute the sliding
window, for LibriSpeech and TED-LIUM, respectively.

Latency assessment

Table 2.16 shows the average latency for LibriSpeech and TED-LIUM, as a func-
tion of nlookahead and nnorm. Here, latency refers to time elapsed between the end
of the current hypothesis and the point in time at which it is actually delivered.
So, for instance, if a hypothesis is delivered 2 seconds after its (acoustic) end,
then the latency is 2 seconds. In contrast to Table 2.15, where WER is studied
as a function of nlookahead, here we focus on the average latency as a function of
nlookahead and two values for nnorm, 2 and 0 seconds, with 0 seconds meaning that
no time is devoted to gather statistics before recognition starts. While the setup
with nnorm = 2′′ was the one that we used to compute the WER in the previous
Section, the results with nnorm = 0′′ reflects the case in which sequences are long
enough for normalization not to harm the global latency. Clearly, this gives an
idea of how the decoder behaves in a real streaming setup.

It is worth noting that these measurements were taken in the server side, not
considering the network latency.

As can be seen in Table 2.16, the results for TED-LIUM are really good. In the
TED-LIUM task, we get small latencies for both nnorm = 0′′ and nnorm = 2′′, up to
nlookahead = 0.5, from which we get reasonable WER figures. In the LibriSpeech
task, however, a slight degradation of the average latency is observed, especially
for nnorm = 2′′. This is to the relative shorter in LibriSpeech (∼6.5 seconds),
as compared to TED-LIUM (∼11.3 seconds), which results in the decoder not
being able to fully recover from the initial delay. If we restrict ourselves to the
realistic case of nnorm = 0′′ , then we can conclude that a good value for nlookahead

69

Chapter 2. LSTM-based one-pass decoder for low latency streaming

Table 2.16: Impact of lookahead context on LibriSpeech and TED-LIUM on the latency
(nl = nlookahead, nn = nnorm).

LibriSpeech TED-LIUM
nl (sec) nn = 2′′ nn = 0′′ nn = 2′′ nn = 0′′
0.125 1.8 ± 0.5 0.6 ± 0.3 0.7 ± 0.5 0.3 ± 0.1
0.250 1.7 ± 0.5 0.6 ± 0.2 0.8 ± 0.4 0.5 ± 0.1
0.500 1.6 ± 0.5 0.8 ± 0.2 0.9 ± 0.3 0.8 ± 0.1
1.000 2.2 ± 0.5 1.4 ± 0.2 1.4 ± 0.2 1.3 ± 0.1
2.000 2.6 ± 0.6 2.9 ± 0.7 2.4 ± 0.3 2.3 ± 0.3

is 0.5 seconds, which leads to a latency ∼ 1 second and a competitive WER in
LibriSpeech and TED-LIUM.

Off-line/Streaming comparison

With the values set for nnorm = 2 seconds and nlookahead = 0.5 seconds, that in-
volves a latency of ∼0.8 seconds, we have performed a final comparison between
the off-line and the streaming systems, considering the test partitions. It is im-
portant to remark that, for the off-line setup, we have used the whole normalized
sequence, while the streaming setup has just a limited context for both the acous-
tic features and normalization. Table 2.17 shows these results, reflecting how we
can provide an streaming decoder with a similar performance in terms of WER,
working with a low-latency setup.

Table 2.17: WER results on test sets for LibriSpeech and TED-LIUM.

LibriSpeech TED-LIUM
Off-line setup 10.2 8.2

Streaming setup 10.7 8.7

3.4 Conclusions and future work

In this work we materialized the streaming decoder that was proposed in (Jorge
et al. 2019), using LSTM-based models for the acoustic and language modeling.
We studied the impact of the normalization during the on-line decoding, as well
as the impact of the acoustic future context in the WER and the latency. We
obtained a system that provides a similar performance in terms of WER but
working in a full streaming setup, with a latency of ∼1 second. We evaluated our
approach in LibriSpeech and TED-LIUM, obtaining a competitive WER under a
streaming regime.

As future work, we want to study the impact of using the same nlookahead win-
dow for training and decoding. Additionally, we want to consider alternative

70

i
i

i
i

i
i

i
i

References

approaches for dealing with the limited future context, for example, considering
all the past context or using faster models such as feed forward neural networks
for the future context.

References

Abadi, Martín, Ashish Agarwal, et al. (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems (cit. on p. 67).

Arisoy, E. et al. (2014). “Converting neural network language models into back-
off language models for efficient decoding in automatic speech recognition”.
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.1,
pp. 184–192 (cit. on p. 64).

Bourlard, H. and C. J. Wellekens (1989). “Links between Markov Models and
Multilayer Perceptrons”. In: Advances in Neural Information Processing Sys-
tems I, pp. 502–510 (cit. on p. 66).

Chen, X. et al. (2015). “Improving the training and evaluation efficiency of recur-
rent neural network language models”. In: Proc. of ICASSP 2015, pp. 5401–
5405 (cit. on p. 67).

Chen, Xie, Xunying Liu, et al. (2016). “CUED-RNNLM – An open-source toolkit
for efficient training and evaluation of recurrent neural network language mod-
els”. In: Proc. of ICASSP 2016. Shanghai, China, pp. 6000–6004 (cit. on p. 67).

Chen, Xie, Xunying Liu, et al. (2017). “Future word contexts in neural network
language models”. In: Proc. of ASRU 2017, pp. 97–103 (cit. on p. 64).

del-Agua, M.A. et al. (Nov. 2014). “The translectures-UPV toolkit”. In: Proc.
of Advances in Speech and Language Technologies for Iberian Languages 2014,
pp. 269–278 (cit. on p. 67).

Graves, A. and J. Schmidhuber (2005). “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures”. In: Neural net-
works 18.5-6, pp. 602–610 (cit. on p. 63).

Hernandez, François et al. (2018). “TED-LIUM 3: Twice as Much Data and Cor-
pus Repartition for Experiments on Speaker Adaptation”. In: Proc. of SPECOM
2018, p. 198 (cit. on pp. 64, 66, 67).

Huang, Z. et al. (2014). “Cache based recurrent neural network language model
inference for first pass speech recognition”. In: Proc. of ICASSP 2014, pp. 6354–
6358 (cit. on p. 64).

Jorge, Javier et al. (2019). “Real-time One-pass Decoder for Speech Recognition
Using LSTM Language Models”. In: Proc. of InterSpeech 2019, pp. 3820–3824
(cit. on pp. 64, 65, 68, 70).

Jozefowicz, R. et al. (2016). “Exploring the limits of language modeling”. In: arXiv
preprint arXiv:1602.02410 (cit. on p. 64).

Kombrink, Stefan et al. (2011). “Recurrent Neural Network based language mod-
eling in meeting recognition”. In: Proc. of Interspeech 2011, pp. 2877–2880 (cit.
on p. 64).

71

Chapter 2. LSTM-based one-pass decoder for low latency streaming

Mnih, Andriy and Yee Whye Teh (2012). “A fast and simple algorithm for training
neural probabilistic language models”. In: Proc. of ICML (cit. on p. 67).

Mohamed, A. et al. (2015). “Deep bi-directional recurrent networks over spectral
windows”. In: Proc. of ASRU 2015, pp. 78–83 (cit. on pp. 64, 65).

Nolden, David (Apr. 2017). “Progress in Decoding for Large Vocabulary Contin-
uous Speech Recognition”. PhD thesis. Computer Science Department RWTH
Aachen University Aachen (Germany): RWTHAachen University (cit. on p. 65).

Ogawa, A. et al. (2018). “Rescoring N-Best speech recognition list based on
one-on-one hypothesis comparison using encoder-classifier model”. In: Proc. of
ICASSP 2018, pp. 6099–6103 (cit. on p. 64).

Panayotov, V. et al. (2015). “Librispeech: an ASR corpus based on public domain
audio books”. In: Proc. of ICASSP 2015, pp. 5206–5210 (cit. on pp. 64, 66).

Shi, Yongzhe et al. (2014). “Efficient One-Pass Decoding with NNLM for Speech
Recognition”. In: IEEE Signal Processing Letters 21.4, pp. 377–381 (cit. on
pp. 64, 65).

Stolcke, Andreas (2002). “SRILM - an extensible language modeling toolkit.” In:
Proc. of Interspeech 2002, pp. 901–904 (cit. on p. 67).

Young, S. J., J. J. Odell, and P. C. Woodland (1994). “Tree-based State Tying for
High Accuracy Acoustic Modelling”. In: Proc. of Workshop on Human Language
Technology 1994, pp. 307–312 (cit. on p. 66).

Zeyer, A., R. Schlüter, and H. Ney (2016). “Towards Online-Recognition with
Deep Bidirectional LSTM Acoustic Models”. In: Proc. of InterSpeech 2016,
pp. 3424–3428 (cit. on pp. 64, 65).

Zeyer, Albert et al. (2017). “A comprehensive study of deep bidirectional LSTM
RNNs for acoustic modeling in speech recognition”. In: Proc. of ICASSP 2017.
IEEE, pp. 2462–2466 (cit. on p. 67).

72

i
i

i
i

i
i

i
i

4 Live Streaming Speech Recognition Using Deep
Bidirectional LSTM Acoustic Models and Interpolated
Language Models

Jorge, Javier; Giménez, Adrià; Silvestre-Cerdà, Joan Albert;
Civera, Jorge; Sanchis, Albert; Juan, Alfons

IEEE/ACM Transactions on Audio, Speech, and Language
Processing, VOL. 30, 2022

DOI 10.1109/TASLP.2021.3133216

IF 3.919 - Ranking 4/31 Acoustics (Q1)

2021

i
i

i
i

i
i

i
i

Live Streaming Speech Recognition Using Deep
Bidirectional LSTM Acoustic Models and

Interpolated Language Models

Jorge, Javier; Giménez, Adrià; Silvestre-Cerdà, Joan Albert; Civera, Jorge;
Sanchis, Albert; Juan, Alfons

Abstract

Although Long Short-TermMemory (LSTM) networks and deep Trans-
formers are now extensively used in offline ASR, it is unclear how best
offline systems can be adapted to work with them under the streaming
setup. After gaining considerable experience on this regard in recent
years, in this paper we show how an optimized, low-latency stream-
ing decoder can be built in which bidirectional LSTM acoustic models,
together with general interpolated language models, can be nicely inte-
grated with minimal perfomance degradation. In brief, our streaming
decoder consists of a one-pass, real-time search engine relying on a
limited-duration window sliding over time and a number of ad hoc
acoustic and language model pruning techniques. Extensive empirical
assessment is provided on truly streaming tasks derived from the well-
known LibriSpeech and TED talks datasets, as well as from TV shows
on a main Spanish broadcasting station.

4.1 Introduction

Live video streaming services over the Internet have increased dramatically in
recent years because of higher user demand and bandwidth speeds. This has
resulted in a growing need by live video streaming platforms to provide high-
quality automatic speech transcriptions. However, the application of state-of-the-
art neural-based Automatic Speech Recognition (ASR) models to video streaming
is a highly complex and challenging task due to real-time and low-latency decoding
constraints.

At this time, state-of-the-art ASR systems are based on the hybrid Hidden Markov
Model (HMM) and neural network approach (Yu and Deng 2014). In particular,
deep Bidirectional Long Short-Term Memory (BLSTM) networks have proven
to be a powerful architecture for acoustic modeling in a wide range of ASR
tasks (Graves and Schmidhuber 2005; K. Chen and Huo 2016; Albert Zeyer

75

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

et al. 2017). In the same way, Transformer-based architectures have recently
reached very promising results for language modeling (Irie et al. 2019), though
LSTM recurrent neural networks (LSTM-RNN) are still broadly used (Jozefow-
icz et al. 2016). It goes without saying that end-to-end systems are attracting
great attention, and this includes a number of proposals for operation under low-
latency streaming decoding (Moritz et al. 2020; Miao et al. 2020; Nguyen et al.
2020). However, despite their simplicity and promising prospects, it is still unclear
whether or not they will soon surpass state-of-the-art hybrid systems combining
independent models trained from vast amounts of data.

Two main challenges need to be addressed so as to properly adapt hybrid ASR
systems to the streaming setup. The first one is due to the fact that BLSTM
acoustic models can no longer be applied in their full extent, over the whole input
signal. Instead, they need to be time-limited within a window sliding over time in
which only a small fraction of non-decoded signal (right context) can be captured
for the system to respond quickly after the incoming audio stream. This adapta-
tion of BLSTM acoustic models to deal properly with the incoming audio stream
also implies to dynamically carry out acoustic mean normalization as opposed to
full normalization over the whole signal. An additional issue to be considered is
to adapt well-known pruning techniques as acoustic look-ahead (David Nolden
2017; Berlin Chen et al. 2004) to work with BLSTM acoustic models to speed
up the decoding process. The second one is that Transformer and LSTM-RNN
language models (LMs) cannot likewise be applied as they use to be, by rescoring
n-best hypotheses or lattices in a two-pass decoding approach (Xie Chen, Liu,
et al. 2017; Ogawa et al. 2018; Kombrink et al. 2011). In all these cases, efficient
techniques are required for on-the-fly scoring under a real-time one-pass decoding
scheme.

The use of BLSTM acoustic models under streaming conditions has been explored
in several recent works. In (Mohamed et al. 2015), a finite sliding window was
applied to approximate the acoustic posterior probability of the center frame.
This approach was improved in (A. Zeyer, Schlüter, and H. Ney 2016) by us-
ing a more accurate weighting scheme of overlapping windows. Under this ap-
proach, BLSTM-based models outperformed deep neural networks (DNNs) under
the streaming setup, also showing that a right context of limited duration suffices
to reach a performance similar to that of the offline setup. In contrast to using a
sliding window over the incoming signal, a different approach consists in splitting
it into overlapping chunks with appended (past and future) contextual observa-
tions. This approach was followed in (K. Chen and Huo 2016), where the so-called
Context-Sensitive-Chunk (CSC) method was proposed to speed up BLSTM train-
ing for low-latency decoding by just adding some delay in between consecutive
chunks. This method can be accelerated by simply avoiding computations on the
left context, as done with the Latency-Controlled BLSTMs proposed in (Zhang et
al. 2016), which in turn can be further improved as shown in (Xue and Yan 2017).
However, in all these previous works, empirical evaluations were not performed
under genuine streaming conditions, that is, dealing with the speech signal as

76

i
i

i
i

i
i

i
i

an incoming audio stream and, therefore, on-the-fly mean normalization was not
considered at all. Moreover, basic n-grams LMs were used in experiments which
greatly helped to improve the responsiveness of the system in the evaluation of
system latencies as were reported only in the case of the CSC approach.

Regarding the use of neural LMs, to our knowledge, the direct use of this technique
during decoding was first explored in (Shi et al. 2014), where the authors proposed
the use of a Variance Regularization term together with caching strategies for fast
decoding. Despite using feed-forward neural LMs in decoding, empirical results
showed significant relative improvements both in speed and accuracy. Other rel-
evant contributions addressing one-pass decoding with neural LMs have focused
on heuristics to reduce the number of queries to the model and catching net-
work states (Z. Huang et al. 2014), alternative one-pass decoding strategies such
as on-the-fly rescoring (Hori, Kubo, and Nakamura 2014), improving CPU-GPU
communications (K. Lee et al. 2015) and, more recently, combining Gated Re-
current Units with more efficient objective functions, such as Noise Contrastive
Estimation (Kyungmin Lee et al. 2018). Certainly different from these contri-
butions, other authors have explored the idea of converting neural LMs, either
recurrent or not, into n-gram models that can thus be smoothly integrated into
a conventional decoder (Arisoy et al. 2014; Singh et al. 2017). It is worth noting,
however, that these approaches were only focused on language modeling and not
on the low-latency streaming decoding problem.

This work takes as a starting point a novel architecture for real-time one-pass
decoding with LSTM-RNN LMs proposed in (Jorge, Giménez, Iranzo-Sánchez,
Civera, et al. 2019). In it, one-pass decoding was accelerated by estimating look-
ahead scores using precomputed static look-ahead tables. Moreover, LSTM-RNN
LM probabilities were efficiently computed using Variance Regularization and lazy
evaluation. Later on, in (Jorge, Giménez, Iranzo-Sánchez, Silvestre-Cerdà, et al.
2020), this architecture for real-time one-pass decoding was extended to include
BLSTM acoustic models within a time sliding window, also used as a window
for time-constrained, on-the-fly acoustic feature normalization. Not surprisingly,
empirical assessment of this extended architecture under strict streaming condi-
tions proved it was really effective, indeed keeping the pace with non-streaming
(offline) systems. The most recent refinement in connection to this research line
has consisted in replacing streaming-adapted LSTM-RNN LMs with Transformer
LMs (Baquero-Arnal et al. 2020). In doing so, empirical results on the well-known
LibriSpeech (Panayotov et al. 2015) and TED-LIUM (Rousseau et al. 2014) tasks
have shown that this refinement leads to top, state-of-the-art recognition rates
and latencies under streaming conditions. In short, it has been shown that hy-
brid one-pass ASR systems built in this way can work under both, offline and
streaming conditions with no significant differences in quality.

This work is intended to provide a complete, detailed reference of the main contri-
butions made along the research line described above, also including a number of
new additional enhancements and a new and extensive empirical evaluation un-

77

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

der streaming conditions. In particular, the following important novel algorithmic
enhancements are provided:

• The sliding window framework proposed in (A. Zeyer, Schlüter, and H.
Ney 2016) is revisited to include and adapt necessary concepts for proper
streaming decoding.

• Also for proper streaming decoding, novel methods for acoustic feature nor-
malization are explored.

• Along with these two streaming-oriented enhancements, and to improve the
general performance of the decoder, new pruning techniques for fast decod-
ing are also considered. More precisely, a new approach for the acoustic
look-ahead is provided, together with a more efficient pruning to speed up
the use of interpolated neural LMs.

Only after including these enhancements, a fully-fledged streaming ASR system
can be effectively deployed into production. For empirical evaluation, apart from
the conventional LibriSpeech and TED-LIUM tasks considered in previous work,
two genuine streaming tasks also posed for streaming benchmarking: a video-
based version of TED-LIUM with unsegmented talks, and a set of full-length
videos from a Spanish TV broadcaster.

The paper is organized describing separately the two main components which
generally speaking deserve special attention in the deployment of a streaming
decoder. In particular, the use of deep BLSTM acoustic models for streaming is
described in Section 4.1. On the other hand, the efficient pruning technique for
fast one-pass decoding using interpolated neural LMs is presented in Section 4.2.
All these components are empirically assessed in Section 4.3 with emphasis on the
key adaptation parameters required for finding an appropriate (task-dependent)
trade-off between accuracy and latency. Finally, the main conclusions drawn from
on this research line are summarized in Section 4.4.

Deep Bidirectional LSTM Acoustic Models for Streaming

In this section, all the issues concerning the use of deep BLSTM acoustic mod-
els for streaming are described. Firstly, the sliding window framework proposed
in (A. Zeyer, Schlüter, and H. Ney 2016) is revisited in Section 4.1 to include and
adapt necessary concepts for proper streaming decoding using BLSTM acous-
tic models. Secondly, a novel approximation for computing acoustic look-ahead
scores is proposed in Section 4.1. Lastly, several acoustic mean normalization
methods for streaming are proposed in Section 4.1.

78

i
i

i
i

i
i

i
i

Xt−2

Xt−1

Xt

w

Xt−(w−1)

xt−(w−1) xt xt+w−1

Figure 2.4: Frame sequence at the top and just below a sliding window of w = 4 frames
at all steps embracing frame t, ~xt.

Streaming decoding using BLSTM acoustic models

Let ~x∞1 be an unbounded sequence of frames computed from the incoming audio
stream, which is being processed by application of a sliding window of w frames
shifting one frame to the right at each step (though a step size of more than one
frame can be also used if convenient). Thus, frames t to t+w− 1 are covered by
the sliding window at step t, Xt = ~xt+w−1

t . This is illustrated in Figure 2.4, where
the sliding window is also depicted at all the w − 1 preceding steps embracing
frame t. Xt−1

t−(w−1).

For each acoustic state a, we assume that a BLSTM acoustic model is available
to compute the posterior probability of the n-th frame within the sliding window
at step t, pn(a | Xt). As frame t falls into position w− i+ 1 of the sliding window
at step t−(w− i), 1 ≤ i ≤ w, it gets w different posteriors from which its acoustic
score is computed by just (weighted) averaging:

q(~xt, a) = 1
w

w∑
i=1

pw−i+1(a | Xt−(w−i)) (2.2)

For this score to be efficiently computed, we assume that the recurrent state of
each BLSTM does not depend on its previous states, and hence the posterior
it provides for frame t only depends on (its position in) the window context
considered. This assumption enables fast computation of posteriors, not only by
running independent BLSTM queries in parallel, but also by avoiding repeated
posterior computations during consecutive step batches. Figure 2.5 shows how
this looks like in a simple example where the acoustic scores for b = 3 consecutive

79

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

Xt

Xt+1

Bj−1

Bj

Xt−(w−1)

w

Xt+b−1

b

Xt−1

Xt−2

xt−(w−1) xt xt+b−1+(w−1)

Figure 2.5: Computing the acoustic scores for b = 3 consecutive frames starting at t,
~xt+b−1
t , within a sliding window of size w = 4 during two consecutive b-step batches, Bj−1

and Bj .

frames starting at t, ~xt+b−1
t , are computed within a sliding window of size w = 4

during two consecutive b-step batches, Bj−1 and Bj .

As shown in Figure 2.5, scoring the frame subsequence ~xt+b−1
t can be efficiently

done by keeping all precomputed posteriors for it and just running b independent
BLSTM parallel queries in Bj to get the posteriors still required. In the example
given, for each position i (i = 1, 2, 3), we have w − i posteriors available and i
posteriors to be computed. In general, for any b ≥ 1, a carousel may be used
at each position i, 1 ≤ i ≤ min(b, w − 1), to keep track of w − i precomputed
posteriors and fill in the remaining i from the b parallel BLSTM calls in batch
Bj . Clearly, if b ≥ w, no precomputed posteriors are involved from position w to
b.

It is obvious that the window size w is a key adaptation parameter for streaming
as it controls the duration of the acoustic context, both in the past (~xt−1

t−(w−1)) and
the future (~xt+w−1

t+1), that is used when scoring the current frame ~xt. Needless
to say, we are assuming that the most relevant acoustic context at each frame
occurs within a time window of a handful tenths of second. Also, as we need
the complete future context to be available for (exact) scoring, time windows
longer than that may prevent the system to respond after a reasonable latency
of, say, one second. This is of course a topic to be explored empirically. In this
regard, note that we are limiting ourselves to symmetrical time windows of fixed

80

i
i

i
i

i
i

i
i

duration (w) and exact scoring, as defined in Eq. (2.2). However, if convenient,
more general schemes for acoustic context management and scoring can be also
devised, such as asymmetrical time windows of variable duration and approximate
scoring.

As w, the batch size b is also a key adaptation parameter for streaming though,
in contrast to w, its effect is only computational. In principle, we may want
b as large as possible, for maximum parallelism, but also small enough for the
additional future context (of b−1 frames) it requires not to become the dominant
factor in the observed system latency. This is easily understood from Figures 2.4
and 2.5. In Figure 2.4, we have b = 1 and thus, apart from the future w−1 frames
required to complete the sliding window at t, Xt, no additional frame is needed
to score ~xt. Instead, in Figure 2.5, we have b = 3, and hence 2 additional frames
are needed before running a 3-step batch of parallel BLSTM calls. There are also
other hardware-dependent factors such as (GPU) memory bandwidth that may
add up significantly to the observed latency as the batch size increases. Therefore,
as with w, this is best studied empirically.

Acoustic Model Look-ahead

The acoustic look-ahead refers to the best acoustic score (emission and transition
probabilities) that can be reached from a given frame ~xt and an acoustic state
a. More precisely, following a similar notation to (David Nolden 2017), the exact
acoustic look-ahead l(t, a) is defined as

l(t, a) = max
aL

0 :a0=a

L∑
τ=1

q(~xt+τ , aτ) + q(aτ , aτ−1) , (2.3)

being L the number of remaining frames until the end of the speech signal, and
q(~xt, at) = log p(at|~xt)

p(at) and q(at, at−1) = log p(at | at−1) the emission and transi-
tion probabilities, respectively.

During decoding, for a given partial hypothesis at1, an upper bound of the acoustic
score q̂(at1) is computed by adding the acoustic look-ahead score as

q̂(at1) = q(at1) + l(t, at) (2.4)

where

q(at1) =
t∑

τ=1
q(~xτ , aτ) + q(aτ , aτ−1) (2.5)

81

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

It is worth noting that q̂(at1) is an optimistic estimation of the acoustic score,
since it is not only considering the score until instant t, but also the score of the
best future path that could be reached from that instant according to the acoustic
model. This estimated score leads to a more guided beam search, which in turn,
could lead to speed up the decoding process.

Therefore, the challenge resides in efficiently computing the acoustic look-ahead
score l(t, a) and how to speed up the search of the best future path (see Eq. (2.3)).
In fact, let us to refer previous works in which exact look-ahead scores were
approximated by limiting the future context to a few frames and/or simplifying
the emission models used for look-ahead calculation (David Nolden 2017; Berlin
Chen et al. 2004). A major issue when acoustic look-ahead was applied over
Gaussian HMMs lied in the cost of estimating the emission scores. However, in
current hybrid systems based on neural networks this is not a problem anymore
since, for each frame, the neural network estimates the scores for all HMM states,
and usually this is performed in batch mode using GPUs. In current state-of-the-
art hybrid system based on triphonemes the number of different states that must
be considered during the search of an acoustic alignment (without considering
the LM) may vary between half a million and several millions, depending on the
total number of HMMs and the vocabulary size. This makes unfeasible to directly
apply exact acoustic look-ahead estimation.

As alternative to circumvent all these drawbacks, we propose to approximate the
search space by a bigram model using HMM states as tokens. In the bigram model
we only consider those transitions that are allowed in the original search space.
Additionally, all transitions scores are set to zero, i.e., we only focus on emission
scores. Using this approach the acoustic look-ahead can be estimated at low cost
using dynamic programming, and without the need of limiting the number of
future frames or simplifying emission models. More precisely, for a given frame
~xt and state a, the proposed acoustic look-ahead approximation l̂(t, a) is estimated
as

l̂(t, a)=
{

0 t = T

max
a′∈A

q̂(a, a′)+q(~xt+1, a
′)+ l̂(t+ 1, a′) t < T (2.6)

where T is the total number of frames, A is the set of HMM acoustic states,
and q̂(a, a′) is a function that returns 0 if (a, a′) is a non-zero probability bigram
transition or −∞ otherwise. During decoding, the look-ahead based acoustic
score for a hypothesis can be incrementally updated as

q̂(at1) = q̂(at−1
1)− l(t− 1, at−1)+

+ q(at, at−1) + q(~xt, at) + l(t, at). (2.7)

82

i
i

i
i

i
i

i
i

In an offline setup the proposed acoustic look-ahead scores could be precomputed
before decoding without limitation on the number of future frames. However, the
streaming setup requires an on-the-fly estimation of acoustic look-ahead scores.
More precisely, as described before and was illustrated in Figure 2.5, every b
frames the BLSTM is queried with b + w − 1 frames, and outputs the emission
score for the first b frames. In this setup, every time the BLSTM is queried the
acoustic look-ahead scores are estimated for the first b frames of the query. In
order to take full advantage of the available data, when querying the BLSTM we
also retrieve partially averaged emission scores for the frames of the future context,
therefore, the acoustic look-ahead score for the first frame of the batch will be
estimated considering b+w−2 future frames, while in the last frame of the batch
only w − 1 frames will be considered. It is worth noting, that in every BLSTM
query a computational overhead of w is introduced when compared with an offline
scenario. Consequently, the larger the batch size, the smaller the computational
overhead and the future context limitation. However, a large batch size also means
higher latencies. Therefore, this is a trade-off that must be taken into account
when applying the proposed technique for streaming as will be appropriately
evaluated in Section 4.3.

Acoustic Feature Normalization for Streaming

Under the offline scenario, Full Sequence Normalization (FSN) is usually per-
formed beforehand applying mean normalization to the whole speech utterance.
However, since FSN is not feasible under streaming conditions, we propose differ-
ent alternatives to carry out on-the-fly sequence normalization.

The first alternative, called Dynamic Threshold Normalization (DTN), consists
on the initialization of the mean by considering an initial delay of nnorm frames.
Afterwards, the mean is dynamically updated for every new frame. In previous
works, we proved that two seconds of initial delay should be enough to achieve
similar performance to FSN (Jorge, Giménez, Iranzo-Sánchez, Silvestre-Cerdà,
et al. 2020; Baquero-Arnal et al. 2020). Although, two seconds of delay could be
reasonable in a continuous streaming setup, it could be not so suitable for short
utterances such as voice commands.

To overcome this limitation and taking advantage of the sliding window technique
introduced in Section 4.1, we propose in this work a novel normalization scheme
called Weighted Moving Average (WMA), in which mean normalization is per-
formed using the frames of the sliding window. In this way, WMA is applied over
a batch Bj of frames as

B̂j = Bj − µ̂j (2.8)

where

83

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

µ̂j =
~fj−1 +

∑b+w
t=1 Bj,t

nj−1 + b+ w
(2.9)

being fj−1 the accumulated values of previous frames until batch Bj−1, Bj,t the
t-th frame in batch Bj , nj−1 the number of frames until batch Bj−1, and b and
w the batch and window sizes, respectively.

The accumulated values fj and nj are updated by weighting the contribution of
previous batches using a parameter α as

fj = α · fj−1 +
b∑
t=1

Bj,t (2.10)

nj = α · nj−1 + b (2.11)

Unlike FSN, WMA dynamically adapts the normalization of the speech signal
to local changes, and differently from DTN, without introducing an initial delay.
Therefore, it can be used without affecting the global latency even from the
beginning of the utterance. Although an initial mean could be precomputed from
the training set, WMA has been evaluated in this work starting from scratch on
each sample and using only the information that comes from the audio stream
as expected in streaming conditions. Similarly to the acoustic look-ahead, the
batch size has also an impact regarding the amount of frames used to compute
the mean. This impact will be evaluated during the experimental section.

4.2 Efficient One-pass Decoding using Interpolated Neural LMs

The direct use of neural LMs in one-pass decoding takes full advantage of its abil-
ity to deal with histories of unlimited length in contrast to n-gram LMs (Kombrink
et al. 2011). This makes History Conditioned Search (HCS) decoders perfectly
suited for its use with neural LMs, as HCS technique group hypotheses by its his-
tory allowing potentially an unlimited representation of continuous contexts (Her-
mann Ney and Ortmanns 2000). However, in practice, the integration of neural
LMs in one-pass HCS decoders for streaming presents some relevant difficulties
which need to be solved. For instance, the very efficient computation of LM look-
ahead scores and word neural LM probabilities or the use of specific LM pruning
parameters to reduce the search space. In the following, all these decoding issues
are discussed and how they have been efficiently addressed in this proposal.

84

i
i

i
i

i
i

i
i

Language Model Look-ahead

There are many techniques to deal with look-ahead LM scores as the use of cache
strategies, perfect hashing and precomputation of scores (Cardenal-López et al.
2002), computing look-ahead scores bottom-up from back-off LM (Langzhou Chen
and Chin 2008) or leveraging the LM sparseness to partially compute look-ahead
tables (D. Nolden et al. 2011). Some of these approaches use a lower order n-
gram to obtain look-ahead scores, as higher n-gram orders are not feasible due to
memory and computation requirements. In the case of (D. Nolden et al. 2011),
3-grams and 4-grams are also evaluated, but in this case look-ahead scores are
dynamically computed.

In HCS-based decoders, LM look-ahead scores are dynamically computed every
time a word-end node is reached during decoding. In order to do this efficiently
for streaming, we propose to compute beforehand all these look-ahead scores in
static look-ahead tables. With this purpose, a heavily pruned version of the n-
gram model can be used to represent this model in a compact structure that can
be used during decoding efficiently. This is a critical part of the search when it
comes to speed, as this score is queried many times during search to fill the search
network structure. Therefore, reducing the n-gram model to this static structure
and following a cascade structure of look-ahead tables similar to that proposed
in (D. Nolden et al. 2011), we apply an efficient technique to compute the look-
ahead scores during decoding. It is worth noting that this pruned n-gram does
not constrain the search space in any way, as this is only used to compute the
look-ahead scores. This allows the decoder to consider very long word contexts
in search hypotheses leveraging the benefits of using neural LMs.

Neural LM integration

During decoding, when word-end nodes are reached, look-ahead table scores are
replaced with those computed from the real LM (i.e. n-grams or neural LMs).
In the case of neural LM probabilities, this is an important drawback since it
involves computational issues, reducing the speed of the decoder as they are usu-
ally more complex models than count-based ones. For this reason, neural LMs
are typically applied in a second step of recognition using n-best or lattice rescor-
ing. To alleviate this drawback we propose to apply the Variance Regularization
technique (Shi et al. 2014) reducing the complexity of the computation of the
output layer where the softmax function is computed. This technique involves a
regularization term during training that aims to reduce the variance of the de-
nominator of the softmax adjusting it to a constant. This constant is kept and
then used during decoding when computing neural LM probabilities, instead of
computing the denominator. As opposed to LSTM-RNN LMs which store the
previous context in an internal vector, Transformer LMs need to compute all the
previous history when a new word comes in for the attention to work properly.
To deal with long audio streams (possibly hours of continuous speech) we should

85

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

limit the history to the n previous words, where n is a parameter provided in de-
coding. It is important to remark that the Transformer LM training enforced no
history restriction, indeed there could be a training-decoding mismatch regarding
history length that may harm the performance, as sentences of different lengths
are devoted to training and the history length is not adjusted beforehand.

LM pruning parameters

In order to further speed up the decoding process, specific LM pruning parameters
had to be incorporated to the one-pass decoder, to reduce the search space or the
number of queries in the computation of neural LM probabilities (Jorge, Giménez,
Iranzo-Sánchez, Civera, et al. 2019). One of these parameters is the Language
Model History Recombination (LMHR) which defines the number of words to be
considered before performing hypothesis recombination during decoding. LMHR
parameter is needed to control the length of histories since, in HCS decoders,
hypotheses are grouped according to their history, meaning that without enforcing
any back-off recombination previous histories of active hypotheses tend to grow
without any limitation. However, this effect that could be considered a feature
turned to be a problem when long histories are considered, as active hypotheses
cluster over similar contexts that differ only in words far from the current frame.
This parameter aims to reduce the uncertainty of having these long and very
similar hypotheses making pruning less effective. This is achieved by combining
them when they share a given number of words, and that is indeed what this
parameter defines, the number of previous words evaluated to combine active
hypotheses. The second pruning parameter, named Language Model Histogram
Pruning (LMHP), limits the number of hypotheses that will query the neural LM
after reaching new word-end nodes during decoding. This is particularly effective
in reducing the costly neural LMs computation, as active hypotheses are pruned
before performing any computation. Unlike global histogram pruning applied to
thousands of hypotheses after each decoding step, LMHP affects tens or hundreds
of hypotheses.

LM interpolation

It is worth stressing that the proposed one-pass HCS-based decoder enables the
use of linearly interpolated count-based and/or neural LMs which to our knowl-
edge is unprecedented in streaming ASR.

86

i
i

i
i

i
i

i
i

Table 2.18: Basic statistics of dev and tests sets in the evaluation tasks: Duration in hours,
number of samples (segments or videos), average duration of samples in seconds plus-minus
standard deviation (dµ ± σ), and running words (RW) in thousands (K).

Task Set Hours #Samples dµ ± σ RW(K)
LS
(Panayotov et al. 2015)

dev-other 5.3 2864 6.4 ± 4.3 51
test-other 5.1 2939 6.5 ± 4.4 52

TDs
(Rousseau et al. 2014)

dev-legacy 1.6 507 11.3 ± 5.6 18
test-legacy 2.6 1155 8.1 ± 4.3 28

TDv dev 1.7 8 771 ± 401 18
test 3.1 11 1004 ± 404 28

RTVE
(Lleida et al. 2018)

dev1-dev 11.9 10 4267 ±1549 120
test 39.3 59 2395 ±1673 377

4.3 Experiments

Evaluation Datasets

The proposed ASR system for streaming was evaluated on LibriSpeech (LS) and
TED-LIUM release 2 speech corpus. In the case of the TED-LIUM corpus, we de-
fined a new evaluation task referred to as TDv, in which complete video talks were
transcribed without any previous segmentation in order to simulate a streaming
scenario. This is, to the best of our knowledge, the first time that the TED-LIUM
corpus is considered at the talk level and it could be useful to assess streaming
ASR systems in future works. In order to do that, we used the complete audio
track for each talk along with the STM files provided in the dataset to evalu-
ate the WER. The conventional segment-based TED-LIUM task is referred to as
TDs in this work. Additionally, we used the RTVE2018 dataset which comprises
a collection of complete TV shows drawn from diverse genres and broadcasted
by the public Spanish national television from 2015 to 2018 (Lleida et al. 2018).
Table 2.18 summarizes the basic statistics for the dev and test sets of the tasks
mentioned above. In the case of RTVE2018, an internal partition of the provided
dev1 set (dev1-dev) was created for development purposes, reserving the test set
for evaluation.

Training setup

In order to build the English and Spanish hybrid ASR systems, a context-dependent
feed-forward DNN-HMM with three left-to-right states using MFCC 16 plus first
and second derivatives (48-dim) was initially trained with our own transLectures-
UPV ASR toolkit (TLK) (del-Agua et al. 2014). Then, a BLSTM-HMM acoustic
model was trained following the procedure described in (Albert Zeyer et al. 2017)
using filter bank 85-dimensional features and the previous DNN-HMM alignments.

87

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

The architecture of the BLSTM model has eight bidirectional hidden layers with
512 LSTM cells per layer and direction trained using both, TLK and Tensor-
Flow (Abadi, Agarwal, et al. 2015). Following (Albert Zeyer et al. 2017), we
performed chunking during training by considering a context to perform back
propagation through time to a window size of 50 frames. Additionally, SpecAug-
mentation was applied by means of time and frequency distortions (Park et al.
2019). Finally, a final step of sequence discriminative training was performed
using our in-house implementation of lattice-based MMI to adjust the transition
scores and the weights of the softmax layer (Giménez et al. 2014).

English acoustic models were trained on 961 and 207 hours of training speech
corpus for LibriSpeech and TED-LIUM release 2, respectively. After applying a
phonetic decision tree (Young, Odell, and Woodland 1994), 8.3K and 10.8K tied-
states (or senones) were obtained for LibriSpeech and TED-LIUM, respectively.
On the other hand, Spanish acoustic models were trained using the 208 hours
provided in the RTVE2018 dataset plus about 3.7k hours of internal resources.
The Spanish ASR system comprises 10K tied-states.

Regarding the LM training, we used the approximately 800M words of text pro-
vided for LibriSpeech to train neural LMs, as the ngram model is provided with
the corpus (fglarge), whereas for TED-LIUM we trained the LMs with the six
provided subsets plus the TED-LIUM training audio transcriptions with up to
230M running words. Vocabularies were restricted to 200K and 153K words for
LibriSpeech and TED-LIUM, respectively. In the case of the Spanish system,
text resources were obtained from internal sources and other public repositories
shown in Table 2.19. The vocabulary size was over 254K words and a 1-gigaword
random subset of the LM data was selected to train the Spanish neural LMs. To
train neural LMs when the vocabulary is defined in advance, we decided to obtain
the vocabulary as the intersection between the provided vocabulary and that of
the training data. In this way, the model avoids having null-word probabilities
for words that are in the vocabulary but not in the training set. We take this into
account when computing perplexities by renormalizing the unknown-word score
accordingly.

As LMs, we used n-grams, LSTM-RNN LMs and Transformer LM (TLM), com-
bining them through a linear interpolation. Count-based models were trained
using SRILM (Stolcke 2002). Apart from the 4-gram model provided for Lib-
riSpeech, we trained a 4-gram Kneser-Ney smoothed LM for TED-LIUM using
the same data as (Rousseau et al. 2014). To compute the static look-ahead ta-
bles, a pruned version of these n-gram models was computed for each task. We
obtained OOV ratios of less than 0.6% in all tasks.

The CUED-RNNLM toolkit (Xie Chen, Liu, et al. 2016) was used to train LSTM-
RNN LMs with Noise Contrastive Estimation (NCE) criterion (Mnih and Teh
2012), and the normalization constant learned from training was used during
decoding (X. Chen et al. 2015). Based on the lowest perplexity on the dev sets,

88

i
i

i
i

i
i

i
i

Table 2.19: Statistics of Spanish text resources used for language modeling. S=Sentences,
RW=Running words, V=Vocabulary. Units are in thousands (K).

Corpus S(K) RW(K) V(K)
Internal: TV, entertainment 4799 59235 307
Internal: education 87 1526 35
Internal: politics 1361 35170 126
Opensubtitles
(Lison and Tiedemann 2016) 212635 1146861 1576
UFAL
(UFAL Medical Corpus 2017) 92873 910728 2179
Wikipedia
(Wikipedia 2020) 32686 586068 3373
UN
(Callison-Burch et al. 2012) 11196 343594 381
News Crawl
(News Crawl corpus (WMT workshop) 2015) 7532 198545 648
eldiario.es
(Eldiario.es 2020) 1665 47542 247
El Periódico
(ElPeriodico.com 2020) 2677 46637 291
Common Crawl
(CommonCrawl 2014) 1719 41792 486
News Commentary
(News Crawl corpus (WMT workshop) 2015) 207 5448 83
TOTAL 369434 3423146 5785

we selected as final models those with 256-unit embedding layer and two hidden
LSTM-RNN layer of 2048 units.

The training of TLMs was carried out using our own customized version of the
FairSeq toolkit (Ott, Edunov, Baevski, et al. 2019) using a 24-layer network with
768 units per layer, 4096-unit FFN, 12 attention heads, and an embedding of 768
dimensions. These models were trained until convergence with batches limited
to 512 tokens, 512 sentences, and 512 words per sentence. Parameters of these
models were updated every 32 batches. During inference, Variance Regularization
was also applied to speed up the computation of the TLM score.

Table 2.20 shows the perplexity of LMs on the development sets for all tasks.
When comparing single LM performance, neural models outperformed count-
based models on every task, with enough margin, almost halving the perplexity
for LS and RTVE in the case of the LSTM-RNN. These results were further im-
proved with TLM, reducing the perplexity in approximately 25% for LS, 15% for
TDs, 32% for TDv, and 35% for RTVE, with respect to the LSTM-RNN LM.
Model interpolation had diverse impact depending on the combination, but in

89

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

Table 2.20: Perplexity (PPL) and weight (W) figures on development sets, considering
single models and two-way and three-way interpolation of n-gram (N), LSTM-RNN LM (L)
and Transformer LM (T). Interpolation weights were optimized by minimizing PPLs of the
interpolated models.

LS TDs TDv RTVE
PPL W(%) PPL W(%) PPL W(%) PPL W(%)

N 140.6 117.5 126.1 179.5
L 72.5 84.0 94.2 98.4
T 54.2 71.0 64.0 63.3
L+N 71.6 91+ 9 71.4 73+27 77.1 70+30 93.2 85+15
T+N 53.9 96+ 4 60.5 74+26 55.6 78+22 61.6 94+ 6
T+L 53.5 86+13 64.1 62+38 61.0 78+22 60.7 87+13
T+L+N 53.4 86+12+ 2 58.1 56+25+18 54.8 70+12+18 59.5 85+10+ 5

general using all three models provided the best perplexity for each task. Con-
sistently with the single performance, the TLM obtains the highest weights in
the different LM combinations for LS and RTVE (∼85-95%), while LSTM-RNN
and ngram models still have an important weight for TED-LIUM tasks, ranging
from 22% to 38% when are combined with TLM. When considering the three-way
interpolation, again LS and RTVE perplexities show a similar behavior to that
of the two-way interpolation with high weights for the TLM, while TLM reduces
its weight in favor of LSTM-RNN and ngram in TED-LIUM tasks. TLM history
limitation was optimized for best perplexity in each case using the same history
size when TLM was interpolated with other LMs.

Experiments on acoustic modeling for streaming

The use of BLSTM acoustic models under streaming conditions was evaluated in
the following way. First, we studied the effect of the window size presented in
Section 4.1 in the performance of the decoder considering that Full Sequence Nor-
malization (FSN) is performed beforehand. In this way, the optimal window size
was fixed for each task in order to be used in the following experiments. Then,
the impact of the acoustic look-ahead was gauged to prove its pruning effective-
ness, and the different methods for acoustic feature normalization proposed in
Section 4.1 were also assessed. In all these experiments, only count-based LMs
were used in order to isolate the effect of the proposed acoustic-related techniques
on the decoding.

Figure 2.6 shows Word Error Rate (WER) as a function of the window size (w)
in seconds from 0.1 (or 10 frames) to 1 second (or 100 frames) for each task. It
is worth noting that in this experiment the acoustic models were the same and
only the window size was varied during decoding. In LibriSpeech and the TED-
LIUM tasks, more context means better performance up to the point at which

90

i
i

i
i

i
i

i
i

10.0

15.0

20.0

25.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TDs
TDv

LS

RTVE

WER(%)

Win(s)

Figure 2.6: WER vs. window size in seconds for all tasks.

the windows size is equal to the chunk size used during acoustic training. Beyond
this point there is no improvement by increasing the future context leading to
more fixed latency without any decrease in WER. Differently from these tasks,
RTVE obtains slight improvements after increasing the window size up to about
1 second of future context. This different behavior can be explained because of
RTVE is composed of real TV shows with heterogeneous conditions and, therefore,
further improvements can be expected considering larger contexts to better deal
with changing audio conditions. Based on these empirical results, the optimal
window sizes were fixed to 0.5 seconds for LibriSpeech and TED-LIUM tasks
and, considering that 0.6 for RTVE pays off in WER, we selected this value to
include similar fixed delays between all tasks.

In the following experiments, the trade-off between WER and latency is evaluated
as it is a critical factor in streaming systems. In all these experiments, latency
is measured as the time elapsed between the instant at which an acoustic frame
is generated and it is fully processed by the decoder. The final latency for a
sample (segment or video) is estimated as the average of the latencies at frame
level. These measurements were run on an Intel i7-3820 CPU @ 3.60GHz, with
64GB of RAM and a RTX 2080 Ti GPU card. For simplicity, the time required
to transform raw audio into filter bank was not included in our measures since
this time is negligible and complicates the procedure used to estimate latencies.

91

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

7.5

8

8.5

9.0

9.5

10.0

10.5

11.0

...

16.4

16.5

16.6

16.7

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

w/o AMLA
w AMLA

TDs

TDv

LS

RTVE

WER(%)

Lat(s)

Figure 2.7: WER vs. latency in seconds with or without AMLA enabled for each task.

Figure 2.7 shows WER as a function of latency with or without Acoustic Model
Look-Ahead (AMLA) enabled, using b = 20. As observed, AMLA is effective to
decrease the search effort by exploring more promising paths and, consequently,
better performance can be achieved at the same level of latency. This is mainly
observed for LibriSpeech and TED-LIUM tasks, but not in RTVE. In RTVE, the
number of active hypotheses is less than in LibriSpeech or TED-LIUM, meaning
that the reduction in the number of active hypotheses does not compensate for
the computational overhead of AMLA.

As stated in Section 4.1, the batch size directly impacts on both, latency and
WER when AMLA is enabled, as the set of windows in the batch will be used
to compute not only the acoustic scores, but also the acoustic look-ahead with
partial acoustic scores. Regarding this impact, we explored batch sizes of 20 and
40 with AMLA enabled, observing that more context to compute AMLA scores
lead to similar accuracy for segment-based tasks, such as LibriSpeech and the
conventional TED-LIUM, but slightly better WERs in video-based tasks, such as
TED-LIUM videos and RTVE. This is explained by the limited context of short
segments of the former tasks compared to the latter tasks. In the case of RTVE, as
very similar performance is achieved with or without AMLA enabled, the effect
of batch size seems to be negligible. Finally, as expected, higher latencies are
obtained with larger batch sizes in all tasks, as longer delays are introduced to
gather enough frames to complete the batch. According to these results, in the

92

i
i

i
i

i
i

i
i

remaining experiments, AMLA was enabled for LibriSpeech and both TED-LIUM
tasks, but not for RTVE.

Figures 2.8 and 2.9 depict for segment-based and video-based tasks, respectively,
the effect in WER for the acoustic feature normalization schemes described in
Section 4.1. In the case of the WMA scheme, WER is also shown as a function of
the batch size (b) and the parameter α used to weight the importance of frames
in previous batches. As observed, FSN and DTN provided similar WER in all
tasks with the exception of LibriSpeech where higher improvements were achieved
when FSN is applied.

Nevertheless, WMA clearly outperforms FSN and DTN when decoding long se-
quences, as shown in Figure 2.9 for TED-LIUM videos and RTVE tasks. The ca-
pacity of WMA to partially forget the previous context and adapt to new acoustic
conditions seems to improve the performance of the recognition as more acoustic
variations are likely to appear in long sequences. This is not the case of segment-
based tasks shown in Figure 2.8, in which WMA did not outperform FSN, since
sequences are shorter and acoustic conditions more stable (i.e. usually one sen-
tence with a single speaker). When looking into the parameter α of WMA, it
is observed that values close to 1.0 (equally weighting the previous and current
batches) benefit segment-based tasks, as this is close to consider the complete se-
quence for normalization. However, values of α close to 0.9 provide better results
in video-based tasks.

Additionally, we assessed the impact of the batch size in the normalization con-
text. In this regard for normalization, unlike AMLA, using a batch size of 40
instead of 20 provided consistently better results along all tasks. Despite of this,
taking the WER-latency trade-off into consideration, a batch size of 20 was se-
lected in the following experiments to keep the latency as low as possible.

Experiments on language modeling for streaming

As shown in Table 2.20, the TLM provided the best performance measured in
terms of PPL for all tasks. This is in line with previous results reported in (Irie
et al. 2019). For this reason, the following experiments are focused on performing
a comprehensive evaluation of the TLM behavior in streaming conditions.

As introduced in Section 4.2, the previous history of word sequences should be
limited in order to keep the performance of the streaming decoder. This enforces
a limitation in the number of words to consider when computing the LM proba-
bilities that matches the history limitation of the TLM. In addition, the LMHR
parameter controls the LM previous context to decide whether hypothesis recom-
bination is performed. Both parameters are interrelated in streaming decoding
as shown in the following experiments.

93

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

9.2

9.4

9.6

9.8

10.0

10.2

10.4

10.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WER(%)

Alpha

LS
WMA b=20

WMA b=40

DTN

FSN 7.8

7.9

8.0

8.1

8.2

8.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WER(%)

Alpha

TDs
WMA b=20

WMA b=40

FSN/DTN

Figure 2.8: FSN, DTN and WMA normalization (with different α values) schemes evalu-
ated on WER for segment-based tasks.

7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WER(%)

Alpha

TDv
WMA b=20

WMA b=40

DTN

FSN

16.3

16.4

16.5

16.6

16.7

16.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WER(%)

Alpha

RTVE

WMA b=20

WMA b=40

DTN

FSN

Figure 2.9: FSN, DTN and WMA normalization (with different α values) schemes evalu-
ated on WER for video-based tasks.

94

i
i

i
i

i
i

i
i

Figures 2.10 and 2.11 plot WER as solid curves (left y-axis) and PPL as a dashed
curve (right y-axis), as a function of the TLM history limitation in number of
words using different LMHR values for all tasks. To better understand the values
of the LMHR parameter, for instance, a LMHR of 3 would indicate that hypothesis
recombination is performed at 4-gram level.

Similarly to previous experiments related to acoustic modeling, segment-based
tasks in Figure 2.10 show a different trend compared to video-based tasks in Fig-
ure 2.11. Figure 2.10 shows that LMHR curves behaved similarly when increasing
the TLM history limitation. This limit reached the best operating point in 60
words for LibriSpeech and TED-LIUM matching up with the lowest perplexity in
both cases. The best performance was achieved with LMHR values of 12 and 9 for
LibriSpeech and TED-LIUM, respectively, while higher values provided slightly
higher WERs. This would indicate that for these segment-based tasks, longer
histories have very similar contexts that make pruning less effective.

In the case of the video-based tasks, Figure 2.11 shows that PPL and WER figures
increase beyond a TLM history of about 40 words. It is worth noting that in both
TED-LIUM tasks the trained TLM was the same, that is, it was trained from
full sentences not complete videos. This would explain why the PPL increased on
video-based tasks when more than 60 words were considered for the TLM history.
This fact was also reflected in WER, since the best results were consistently
achieved using a LMHR value of 9 for both TED-LIUM tasks. The aforementioned
optimum operating point of 60 words became on 40 words in video-based tasks as
the speech input now is not as structured as in the segment-based tasks, and the
beginning and end of sentences can be mixed during decoding, a situation that
was not considered when training the TLM.

Regarding the RTVE task, a more stable behavior was observed in performance
using a broader range of the TLM history. In this case, the performance only
degraded when very high values of TLM history of about 140 words were con-
sidered. This might be explained by the fact that this LM was trained with a
huge variety of text resources with very different sentence lengths and contexts.
However, the performance degradation as a result of longer histories highlights
the need of training specific models that take into account intra and inter sentence
contexts considering complete videos or documents. Finally, the LM seemed not
to play a crucial role in the RTVE task as can be interpreted by the very similar
performance achieved by different LMHR values with a slight improvement when
using a LMHR value of 9 and a TLM history of 40 words.

As introduced in Section 4.2, the LMHP parameter limits the number of active
hypotheses that can query the neural LM to obtain its probability score reducing
in this way the computational cost. However, the LMHP has a direct impact on
WER as it limits the number of hypotheses to be considered during the rescoring
step in decoding.

95

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

5.8

5.9

6.0

 20 40 60 80 100

 54

 55

 56

 57

 58
LMHR= 9
LMHR=12
LMHR=15
LMHR=18

WER(%) PPL

Hist(#words)

LS

6.1

6.2

6.3

6.4

 20 40 60 80 100

 72

 74

 76

 78

 80

 82

 84
LMHR= 6
LMHR= 9
LMHR=12
LMHR=15

WER(%) PPL

Hist(#words)

TDs

Figure 2.10: WER (left y-axis) and PPL (right y-axis) as a function of TLM history
limitation and different LMHR values for segment-based tasks. Solid curves represent WER,
while the dashed curve is PPL.

6.0

6.1

6.2

6.3

6.4

6.5

6.6

 20 40 60 80 100

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84LMHR= 3
LMHR= 6
LMHR= 9
LMHR=12
LMHR=15

WER(%) PPL

Hist(#words)

TDv

 14.2

 14.3

 14.4

 14.5

 14.6

 14.7

 14.8

 20 60 100 140 180
 60

 65

 70

 75

 80

 85

 90
LMHR= 6
LMHR= 9
LMHR=12
LMHR=15
LMHR=18

WER (%) PPL

RTVE

Hist(#words)

Figure 2.11: WER (left y-axis) and PPL (right y-axis) as a function of TLM history
limitation and different LMHR values for video-based tasks. Solid curves represent WER,
while the dashed curve is PPL.

96

i
i

i
i

i
i

i
i

6.0

6.5

7.0

7.5

8.0

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

LMHP=20
LMHP=40
LMHP=60
LMHP=80
LMHP=Inf

WER(%)

Lat(s)

LS

6.2

6.3

6.4

6.5

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

LMHP=20
LMHP=40
LMHP=60
LMHP=80
LMHP=Inf

WER(%)

Lat(s)

TDs

Figure 2.12: WER vs. latency in seconds varying LMHP values for segment-based tasks.

Figures 2.12 and 2.13 depict WER as a function of latency for segment-based and
video-based tasks, respectively. The values of the parameter LMHP represent the
number of active hypotheses, being LMHP=Inf an unlimited number of active
hypotheses. As shown, the use of the LMHP pruning technique achieved an
overall reduction in the system latency as can be observed by the left-shifting of
the LMHP curves in almost all the LMHP values with respect to an unlimited
number of active hypotheses. On the other hand, higher LMHP values translate
into better WERs.

Nonetheless, the trade-off between WER and latency is very task dependent. In
LibriSpeech, a LMHP value of 20 allows low latencies (about 0.7 seconds) but
this limits the best WER to about 6.0%. However, allowing more LM queries
(e.g. 40) leads to latencies about 0.9 seconds and WERs of about 5.8%. This
behavior is different for TED-LIUM in both versions, where a LMHP value of 20
means an important increase in WER and not so much improvement in latency.
This would mean that more queries in this case seems to help the decoder during
the search to find best paths. Beyond this LMHP value, competitive WERs were
obtained for low latencies getting better results when coming closer to latencies
of about one second. In the RTVE task, a LMHP value of 20 provided a very
good operating point when latency is closed to 0.8 seconds. Again, in this task
the LM did not provide much information so limiting the number of queries only
helped the performance of the system in terms of speed. This is specially helpful
in this kind of long-recognition tasks where using conservative parameters allows
us to discard a high number of active hypotheses during the search speeding up
the decoding. These results show how the streaming decoder can be adapted very
easily to our needs just adjusting the LMHP parameter in order to obtain the
desired trade-off between WER and latency.

97

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

5.9

6.0

6.1

6.2

6.3

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

LMHP=20
LMHP=40
LMHP=60
LMHP=80
LMHP=Inf

WER(%)

Lat(s)

TDv

14.5

15.0

15.5

16.0

16.5

0.75 0.80 0.85 0.90 0.95 1.00

LMHP=20
LMHP=40
LMHP=60
LMHP=80
LMHP=Inf

WER(%)

Lat(s)

RTVE

Figure 2.13: WER vs. latency in seconds varying LMHP values for video-based tasks.

As described in Section 4.2, a relevant feature of the proposed streaming decoder
is its capability to interpolate on-the-fly count-based and neural LMs. Exten-
sive experiments were carried out with the aim of evaluating the performance of
different LM interpolations combining n-grams, LSTM-RNN LMs and TLMs.

Figures 2.14 and 2.15 show WER as a function of latency applying different
combination of LMs for all tasks. Similarly to previous experiments, different
behaviors depending on the task can be observed in these figures. In LibriSpeech,
the single use of the TLM provided the best result when considering the trade-
off between WER and latency. This could be the expected behavior based on
the interpolation weights reported in Table 2.20 for the TLM (86-96%). The
slight improvements in PPL achieved by the interpolation seemed not to have
an influence on WER within the considered range of latencies. In the case of
TED-LIUM, the weights were distributed in a different way, since n-gram and
LSTM-RNN LMs weights were from about 22% to 38% when combined one-
on-one with TLM and 30-40% when all the LMs were combined. In this case,
while the combination of TLM with n-gram or with LSTM-RNN provided similar
performance, the combination of the three LMs consistently provided the best
WERs for all the considered range of latencies and for both, segment-based and
video-based tasks. In RTVE, no significant differences were found in performance
across different LM combinations. As in LibriSpeech, the TLM weight in the
interpolation was between 85-94% for RTVE and this seemed to be the reason
why the LM interpolation did not have a significant effect on WER.

As a final experiment, the performance of the streaming decoder was evaluated on
the test set of all tasks using the hyperparameters optimized on the development
sets in the previous experiments. Hyperparameters were optimized aiming at
minimizing WER while the average latency was close to 1 second. Table 2.21
reports WER and latency figures on the test sets comparing them with the best

98

i
i

i
i

i
i

i
i

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

0.60 0.80 1.00 1.20 1.40 1.60

TLM
NGRAM+TLM
LSTM+TLM

NGR+LSTM+TLM

WER(%)

Lat(s)

LS

5.7

5.8

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.0

0.60 0.80 1.00 1.20 1.40 1.60

TLM
NGRAM+TLM
LSTM+TLM

NGR+LSTM+TLM

WER(%)

Lat(s)

TDs

Figure 2.14: WER vs. latency in seconds considering different interpolation schemes with
TLM for each segmented task.

5.7

5.8

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

0.70 0.75 0.80 0.85 0.90 0.95 1.00

TLM
NGRAM+TLM
LSTM+TLM

NGR+LSTM+TLM

WER(%)

Lat(s)

TDv

14.5

15.0

15.5

16.0

16.5

0.75 0.80 0.85 0.90 0.95 1.00

TLM
NGRAM+TLM
LSTM+TLM

NGR+LSTM+TLM

WER(%)

Lat(s)

RTVE

Figure 2.15: WER vs. latency in seconds considering different interpolation schemes with
TLM for each video task.

99

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

Table 2.21: WER and latency in seconds on the test sets using the optimized streaming
systems for all the evaluation tasks compared to previous works.

Task Set WER Latency
LibriSpeech

test-other
This work 6.3 0.93±0.62
CSC 6.8 1.37±0.63
LC 6.7 0.98±0.35
Moritz et al. (Moritz et al. 2020) 7.3–7.6 1.47–2.19
Moritz et al. (Moritz et al. 2020) (offline) 6.1 -
TDNN-F (Han, Pan, et al. 2021) (offline) 8.9 -
TED-LIUM segments (TDs)

test-legacyThis work 6.4 0.94±0.45
Zhou et al. (Zhou et al. 2020) (offline) 5.6 -
TDNN-F (Han, J. Huang, et al. 2019) (offline) 8.7 -
TED-LIUM videos (TDv)

test-legacyThis work 6.2 0.70±0.08
CSC 7.6 0.91±0.11
LC 7.6 0.72±0.12
RTVE

testThis work 12.4 0.81±0.09
Jorge et al. (Jorge et al. 2018) 16.4 -

WER reported in previous works. In the case of CSC (K. Chen and Huo 2016)
and LC (Zhang et al. 2016), the setup recommended by the authors was properly
adapted to our framework. As observed, our streaming decoder offers competitive
WERs even compared with offline decoders, demonstrating its applicability to
real-world streaming applications.

Regarding latency figures, segment-based tasks, such as LS and TDs, showed a
greater variability. This is explained by the fact that pruning was not so aggressive
in these tasks in order to minimize WER, leading to latency peaks in some samples
in which the decoder could not catch up before the sample ends. However, pruning
was easier to adjust to stabilize latency in video-based tasks, as observed in TDv
and RTVE.

4.4 Conclusion and future work

In this work an improved decoder based on the conventional hybrid ASR approach
was proposed by adapting state-of-the-art models to the streaming setup. In par-
ticular, deep BLSTM acoustic models were adapted to the streaming conditions
by using a sliding window of future context. Other techniques such as on-the-fly
normalization of acoustic features and the improvement of pruning techniques
related to acoustic and language models were also addressed.

100

i
i

i
i

i
i

i
i

References

The proposed decoder was evaluated by carrying out a comprehensive exper-
imentation on well-known academic datasets and real-world challenging tasks.
As reported, this decoder presented a very competitive performance being easily
adapted to the task by tuning the desired trade-off between WER and latency.

Even so, the streaming setup opens some interesting challenges to be further
investigated. For instance, in our experiments the same acoustic models were
used independently from the window size employed at decoding time in order to
alleviate the computational cost of training acoustic models. In order to address
this mismatch between training and decoding conditions, the same window size
in both training and decoding is desirable to better capture the nature of the task
(i.e., segment-based or video-based). Moreover, according to the requirements
of the latency, the window size could be dynamically adjusted in the decoding
phase. On the other hand, real streaming tasks involve the recognition of long
recordings across sentences, in this sense it would be very interesting to evaluate
the performance of TLMs taking into account larger contexts.

References

Abadi, Martín, Ashish Agarwal, et al. (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems (cit. on p. 88).

Arisoy, E. et al. (2014). “Converting neural network language models into back-
off language models for efficient decoding in automatic speech recognition”.
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.1,
pp. 184–192 (cit. on p. 77).

Baquero-Arnal, Pau et al. (2020). “Improved Hybrid Streaming ASR with Trans-
former Language Models”. In: Proc. of InterSpeech 2020, pp. 2127–2131 (cit. on
pp. 77, 83).

Berlin Chen et al. (2004). “Lightly supervised and data-driven approaches to
Mandarin broadcast news transcription”. In: Proc .of ICASSP. Vol. 1, pp. I–
777 (cit. on pp. 76, 82).

Callison-Burch, Chris et al. (2012). “Findings of the 2012 Workshop on Statistical
Machine Translation”. In: Proc. of WMT, pp. 10–51 (cit. on p. 89).

Cardenal-López, A. et al. (2002). “Fast LM look-ahead for large vocabulary con-
tinuous speech recognition using perfect hashing”. In: Proc. of ICASSP. Vol. 1,
pp. I-705–I-708 (cit. on p. 85).

Chen, Kai and Qiang Huo (2016). “Training deep bidirectional LSTM acous-
tic model for LVCSR by a Context-Sensitive-Chunk BPTT approach”. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.7,
pp. 1185–1193 (cit. on pp. 75, 76, 100).

Chen, X. et al. (2015). “Improving the training and evaluation efficiency of recur-
rent neural network language models”. In: Proc. of ICASSP 2015, pp. 5401–
5405 (cit. on p. 88).

101

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

Chen, Xie, Xunying Liu, et al. (2016). “CUED-RNNLM – An open-source toolkit
for efficient training and evaluation of recurrent neural network language mod-
els”. In: Proc. of ICASSP 2016. Shanghai, China, pp. 6000–6004 (cit. on p. 88).

Chen, Xie, Xunying Liu, et al. (2017). “Future word contexts in neural network
language models”. In: Proc. of ASRU 2017, pp. 97–103 (cit. on p. 76).

CommonCrawl (2014). http://commoncrawl.org/ (cit. on p. 89).
del-Agua, M.A. et al. (Nov. 2014). “The translectures-UPV toolkit”. In: Proc.
of Advances in Speech and Language Technologies for Iberian Languages 2014,
pp. 269–278 (cit. on p. 87).

Eldiario.es (2020). https://www.eldiario.es/ (cit. on p. 89).
ElPeriodico.com (2020). https://www.elperiodico.com/ (cit. on p. 89).
Giménez, Adrià et al. (2014). “Discriminative Bernoulli HMMs for isolated hand-
written word recognition”. In: Pattern Recognition Letters 35, pp. 157–168.
published (cit. on p. 88).

Graves, A. and J. Schmidhuber (2005). “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures”. In: Neural net-
works 18.5-6, pp. 602–610 (cit. on p. 75).

Han, Kyu J, Jing Huang, et al. (2019). “Multi-Stride Self-Attention for Speech
Recognition.” In: Proc. of InterSpeech 2019, pp. 2788–2792 (cit. on p. 100).

Han, Kyu J, Jing Pan, et al. (2021). “Multistream CNN for robust acoustic mod-
eling”. In: Proc. of ICASSP 2021. IEEE, pp. 6873–6877 (cit. on p. 100).

Hori, Takaaki, Yotaro Kubo, and Atsushi Nakamura (2014). “Real-time one-pass
decoding with recurrent neural network language model for speech recognition”.
In: Proc. of ICASSP 2014. IEEE, pp. 6364–6368 (cit. on p. 77).

Huang, Z. et al. (2014). “Cache based recurrent neural network language model
inference for first pass speech recognition”. In: Proc. of ICASSP 2014, pp. 6354–
6358 (cit. on p. 77).

Irie, Kazuki et al. (2019). “Language Modeling with Deep Transformers”. In: Proc.
of InterSpeech 2019, pp. 3905–3909 (cit. on pp. 76, 93).

Jorge, Javier et al. (2018). “MLLP-UPV and RWTH Aachen Spanish ASR sys-
tems for the IberSpeech-RTVE 2018 speech-to-text transcription challenge”. In:
Proc of IberSpeech 2018, pp. 257–261 (cit. on p. 100).

Jorge, Javier, Adrià Giménez, Javier Iranzo-Sánchez, Jorge Civera, et al. (2019).
“Real-time One-pass Decoder for Speech Recognition Using LSTM Language
Models”. In: Proc. of InterSpeech 2019, pp. 3820–3824 (cit. on pp. 77, 86).

Jorge, Javier, Adrià Giménez, Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà,
et al. (2020). “LSTM-Based One-Pass Decoder for Low-Latency Streaming”. In:
Proc. of ICASSP 2020, pp. 7814–7818 (cit. on pp. 77, 83).

Jozefowicz, R. et al. (2016). “Exploring the limits of language modeling”. In: arXiv
preprint arXiv:1602.02410 (cit. on p. 76).

Kombrink, Stefan et al. (2011). “Recurrent Neural Network based language mod-
eling in meeting recognition”. In: Proc. of Interspeech 2011, pp. 2877–2880 (cit.
on pp. 76, 84).

102

http://commoncrawl.org/
https://www.eldiario.es/
https://www.elperiodico.com/

i
i

i
i

i
i

i
i

References

Langzhou Chen and K. K. Chin (2008). “Efficient language model look-ahead
probabilities generation using lower order LM look-ahead information”. In:
Proc. of ICASSP, pp. 4925–4928 (cit. on p. 85).

Lee, K. et al. (2015). “Applying GPGPU to recurrent neural network language
model based fast network search in the real-time LVCSR”. In: Proc. of Inter-
Speech 2015, pp. 2102–2106 (cit. on p. 77).

Lee, Kyungmin et al. (2018). “Accelerating recurrent neural network language
model based online speech recognition system”. In: Proc. of ICASSP 2018,
pp. 5904–5908 (cit. on p. 77).

Lison, Pierre and Jörg Tiedemann (May 2016). “OpenSubtitles2016: Extracting
Large Parallel Corpora from Movie and TV Subtitles”. In: Proc. of LREC 2016,
pp. 923–929 (cit. on p. 89).

Lleida, Eduardo et al. (2018). RTVE2018 database description. http://catedrartve.
unizar.es/reto2018/RTVE2018DB.pdf (cit. on p. 87).

Miao, Haoran et al. (2020). “Transformer-based online CTC/attention end-to-end
speech recognition architecture”. In: Proc. of ICASSP 2020. IEEE, pp. 6084–
6088 (cit. on p. 76).

Mnih, Andriy and Yee Whye Teh (2012). “A fast and simple algorithm for training
neural probabilistic language models”. In: Proc. of ICML (cit. on p. 88).

Mohamed, A. et al. (2015). “Deep bi-directional recurrent networks over spectral
windows”. In: Proc. of ASRU 2015, pp. 78–83 (cit. on p. 76).

Moritz, N. et al. (2020). “Streaming automatic speech recognition with the trans-
former Model”. In: Proc. of ICASSP 2020, pp. 6074–6078 (cit. on pp. 76, 100).

News Crawl corpus (WMT workshop) (2015). http : / / www . statmt . org / wmt15 /
translation-task.html (cit. on p. 89).

Ney, Hermann and Stefan Ortmanns (2000). “Progress in dynamic programming
search for LVCSR”. In: Proc. of IEEE 2000 88.8, pp. 1224–1240 (cit. on p. 84).

Nguyen, Thai-Son et al. (2020). “High Performance Sequence-to-Sequence Model
for Streaming Speech Recognition”. In: Proc. of InterSpeech 2020 (cit. on p. 76).

Nolden, D. et al. (2011). “Exploiting sparseness of backing-off language models
for efficient look-ahead in LVCSR”. In: Proc. of ICASSP, pp. 4684–4687 (cit. on
p. 85).

Nolden, David (Apr. 2017). “Progress in Decoding for Large Vocabulary Contin-
uous Speech Recognition”. PhD thesis. Computer Science Department RWTH
Aachen University Aachen (Germany): RWTHAachen University (cit. on pp. 76,
81, 82).

Ogawa, A. et al. (2018). “Rescoring N-Best speech recognition list based on
one-on-one hypothesis comparison using encoder-classifier model”. In: Proc. of
ICASSP 2018, pp. 6099–6103 (cit. on p. 76).

Ott, Myle, Sergey Edunov, Alexei Baevski, et al. (2019). “fairseq: A Fast, Extensi-
ble Toolkit for Sequence Modeling”. In: Proc. of NAACL-HLT 2019, pp. 48–53
(cit. on p. 89).

Panayotov, V. et al. (2015). “Librispeech: an ASR corpus based on public domain
audio books”. In: Proc. of ICASSP 2015, pp. 5206–5210 (cit. on pp. 77, 87).

103

http://catedrartve.unizar.es/reto2018/RTVE2018DB.pdf
http://catedrartve.unizar.es/reto2018/RTVE2018DB.pdf
http://www.statmt.org/wmt15/translation-task.html
http://www.statmt.org/wmt15/translation-task.html

Chapter 2. Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models

and Interpolated Language Models

Park, Daniel S. et al. (2019). “SpecAugment: A Simple Data Augmentation Method
for Automatic Speech Recognition”. In: Proc. of InterSpeech 2019, pp. 2613–
2617 (cit. on p. 88).

Rousseau, Anthony et al. (2014). “Enhancing the TED-LIUM corpus with selected
data for language modeling and more TED talks.” In: Proc. of LREC 2014,
pp. 3935–3939 (cit. on pp. 77, 87, 88).

Shi, Yongzhe et al. (2014). “Efficient One-Pass Decoding with NNLM for Speech
Recognition”. In: IEEE Signal Processing Letters 21.4, pp. 377–381 (cit. on
pp. 77, 85).

Singh, Mittul et al. (2017). “Approximated and domain-adapted LSTM language
models for first-pass decoding in speech recognition”. In: Proc. of InterSpeech
2017, pp. 2720–2724 (cit. on p. 77).

Stolcke, Andreas (2002). “SRILM - an extensible language modeling toolkit.” In:
Proc. of Interspeech 2002, pp. 901–904 (cit. on p. 88).

UFAL Medical Corpus (2017). http://ufal.mff.cuni.cz/ufal_medical_corpus (cit.
on p. 89).

Wikipedia (2020). https://www.wikipedia.org/ (cit. on p. 89).
Xue, S. and Z. Yan (2017). “Improving latency-controlled BLSTM acoustic models
for online speech recognition”. In: Proc. of ICASSP, pp. 5340–5344 (cit. on
p. 76).

Young, S. J., J. J. Odell, and P. C. Woodland (1994). “Tree-based State Tying for
High Accuracy Acoustic Modelling”. In: Proc. of Workshop on Human Language
Technology 1994, pp. 307–312 (cit. on p. 88).

Yu, Dong and Li Deng (2014). Automatic speech recognition: A deep learning
approach. Springer Publishing Company, Incorporated. isbn: 1447157788 (cit.
on p. 75).

Zeyer, A., R. Schlüter, and H. Ney (2016). “Towards Online-Recognition with
Deep Bidirectional LSTM Acoustic Models”. In: Proc. of InterSpeech 2016,
pp. 3424–3428 (cit. on pp. 76, 78).

Zeyer, Albert et al. (2017). “A comprehensive study of deep bidirectional LSTM
RNNs for acoustic modeling in speech recognition”. In: Proc. of ICASSP 2017.
IEEE, pp. 2462–2466 (cit. on pp. 75, 87, 88).

Zhang, Yu et al. (2016). “Highway long short-term memory RNNs for distant
speech recognition”. In: Proc. of ICASSP 2016, pp. 5755–5759 (cit. on pp. 76,
100).

Zhou, W. et al. (2020). “The RWTH ASR system for Ted-Lium Release 2: Im-
proving hybrid HMM with specAugment”. In: Proc. of ICASSP, pp. 7839–7843
(cit. on p. 100).

104

http://ufal.mff.cuni.cz/ufal_medical_corpus
https://www.wikipedia.org/

i
i

i
i

i
i

i
i

5 MLLP-VRAIN Spanish ASR Systems for the
Albayzin-RTVE 2020 Speech-To-Text Challenge

Jorge, Javier; Giménez, Adrià; Baquero-Arnal, Pau; Iranzo-
Sánchez, Javier; Pérez-González-de-Martos, Alejandro; Gar-
cés Díaz-Munío, Gonçal V; Silvestre-Cerdà, Joan Albert; Civera,
Jorge; Sanchis, Albert; Juan, Alfons

Proc. of IberSPEECH 2020, pp. 118–122

Valladolid (Spain)

DOI 10.21437/IberSPEECH.2021-25

24-25 March 2021

i
i

i
i

i
i

i
i

MLLP-VRAIN Spanish ASR Systems for the
Albayzin-RTVE 2020 Speech-To-Text Challenge

Jorge, Javier; Giménez, Adrià; Baquero-Arnal, Pau; Iranzo-Sánchez, Javier;
Pérez-González-de-Martos, Alejandro; Garcés Díaz-Munío, Gonçal V;

Silvestre-Cerdà, Joan Albert; Civera, Jorge; Sanchis, Albert; Juan, Alfons

Abstract

This paper describes the automatic speech recognition (ASR) systems
built by the MLLP-VRAIN research group of Universitat Politècnica
de València for the Albayzin-RTVE 2020 Speech-to-Text Challenge.

The primary system (p-streaming_1500ms_nlt) was a hybrid BLSTM-
HMM ASR system using streaming one-pass decoding with a context
window of 1.5 seconds and a linear combination of an n-gram, a LSTM,
and a Transformer language model (LM). The acoustic model was
trained on nearly 4,000 hours of speech data from different sources,
using the MLLP’s transLectures-UPV toolkit (TLK) and TensorFlow;
whilst LMs were trained using SRILM (n-gram), CUED-RNNLM (LSTM),
and Fairseq (Transformer), with up to 102G tokens. This system
achieved 11.6% and 16.0% WER on the test-2018 and test-2020 sets,
respectively. As it is streaming-enabled, it could be put into produc-
tion environments for automatic captioning of live media streams, with
a theoretical delay of 1.5 seconds.

Along with the primary system, we submitted three contrastive
systems. From these, we highlight the system c2-streaming_600ms_t
that, following the same configuration of the primary one, but using a
smaller context window of 0.6 seconds and a Transformer LM, scored
12.3% and 16.9%WER points respectively on the same test sets, with a
measured empirical latency of 0.81±0.09 seconds (mean±stdev). This
is, we obtained state-of-the-art latencies for high-quality automatic live
captioning with a small WER degradation of 6% relative.

107

Chapter 2. MLLP-UPV Systems for S2T IberSpeech-RTVE 2020

5.1 Introduction

This paper describes the participation of the Machine Learning and Language
Processing (MLLP) research group from the Valencian Research Institute for Ar-
tificial Intelligence (VRAIN), hosted at the Universitat Politècnica de València
(UPV), in the Albayzin-RTVE 2020 Speech-to-Text (S2T) Challenge.

Live audio and video streams such as TV broadcasts, conferences, lectures, as
well as general-public video streaming services (e.g. Youtube) over the Internet
have increased dramatically in recent years because of the advances in networking
with high speed connections and proper bandwidth. Also, due to the COVID-19
pandemic, video meeting/conferencing platforms have experienced an exponential
growth of usage, as public and private companies have leveraged teleworking for
their employees to comply with the social distancing measures recommended by
health authorities.

Automatic transcription and translation of such audio streams is a key feature
in a globalized and interconnected world, in order to reach wider audiences or to
ensure proper understanding between native and non-native speakers, depending
on the use-case. Also, public governments are enforcing TV broadcasters by law
to provide accessibility options to people with hearing disabilities, with a yearly
increasing amount of contents to be captioned at a minimum (RD 1494/2007, del
12 de noviembre 2007; Llei 1/2006, de 19 d’abril, GVA 2006).

Some TV broadcasters and other live streaming services have assumed manual
transcription from scratch of live audio or video streams, as an initial solution to
comply with the current legislation, and/or to satisfy user expectations. How-
ever, it is a really hard task for professional linguists that, under very stressful
conditions, are very prone to generate captioning errors. Besides, it is difficult to
scale up such a service, as in these organizations, the amount of human resources
devoted to this particular task is typically scarce.

Due to these reasons, the need and demand for high-quality real-time streaming
Automatic Speech Recognition (ASR) has increased drastically in the last years.
Automatic live audio stream subtitling enables professional linguists to correct
live transcripts provided by these ASR systems, if they are not publishable as
they come. This would dramatically expedite their productivity and significantly
reduce the probability of producing transcription errors. However, the application
of state-of-the-art ASR technology to video streaming is a highly complex and
challenging task due to real-time and low-latency recognition constraints.

The MLLP-VRAIN, being aware of these demands from the society, have focused
its research efforts in the past two years on streaming ASR. This work aims to
disseminate our latest developments in this area, showing how our hybrid ASR
technology can be successfully applied under streaming conditions, by providing
high-quality transcriptions and state-of-the-art system latencies on real-life tasks
such as the RTVE (Radio Televisión Española) database. Therefore, our partic-

108

i
i

i
i

i
i

i
i

ipation in the Albayzin-RTVE 2020 S2T Challenge consisted on the submission
of a primary, performance-focused streaming ASR system, plus three contrastive
systems: two latency-focused streaming ASR systems, and one conventional off-
line ASR system.

The rest of the paper is structured as follows. First, Section 5.2 briefly describes
the Albayzin-RTVE 2020 S2T Challenge and the RTVE databases provided by
the organizers. Next, Section 5.3 provides a detailed description of our partici-
pant ASR systems. Finally, Section 5.4 gives a summary of the work plus some
concluding remarks.

5.2 Challenge description and databases

The Albayzin-RTVE 2020 Speech-To-Text Challenge consists of automatically
transcribing different types of TV shows from the RTVE Spanish public TV
station, and the assessment of ASR system performance in terms of Word Error
Rate (WER) by comparing those automatic transcriptions with correct reference
transcriptions (Lleida et al. 2020a).

The MLLP-VRAIN participated in the 2018 edition of the challenge (Jorge et al.
2018) in a joint collaboration with the Human Language Technology and Pattern
Recognition (HLTPR) research group from the RWTH Aachen University. The
evaluation was carried out on the RTVE2018 database (Lleida et al. 2018), that
includes 575 hours of audio from 15 different TV shows broadcasted between 2015
and 2018. This database is allocated into four sets: train, dev1, dev2 and test
(test-2018). Our systems won in both the open-condition and closed-condition
tracks (al. 2019), scoring 16.5% and 22.0% WER points respectively in the test-
2018 set.

For the 2020 edition of the challenge, the participation has been limited to a single
open-condition track, and system evaluations have been carried out over the test
(test-2020) set from the RTVE2020 database, which includes 78.4 hours from 15
different TV shows broadcasted between 2018 and 2019 (Lleida et al. 2020b).

5.3 MLLP-VRAIN Systems

In this section we describe the hybrid ASR systems developed by the MLLP-
VRAIN that participated in the Albayzin-RTVE 2020 S2T Challenge.

109

Chapter 2. MLLP-UPV Systems for S2T IberSpeech-RTVE 2020

Acoustic Modelling

Our acoustic models (AM) were trained using 205 filtered speech hours from the
train set (187h) and our internal dev1-train set (18h), as in (Jorge et al. 2018),
plus about 3.7K hours of other resources crawled from the Internet. Table 2.22
summarises all training datasets along with their total duration (in hours).

Table 2.22: Transcribed Spanish speech resources for AM training.

Resource Duration (h)
Internal: entertainment 2932
Internal: educational 406
Internal: user-generated content 202
Internal: parliamentary data 158
Voxforge (Voxforge 2018) 21
RTVE2018: train 187
RTVE2018: dev1-train 18
TOTAL 3924

From this data, first, we extracted 16-dimensional MFCC features plus first and
second derivatives (48-dimensional feature vectors) every 10ms to train a context-
dependent feed-forward DNN-HMM with three left-to-right tied states using the
transLectures-UPV toolkit (TLK) (del-Agua et al. 2014). The state-tying schema
followed a phonetic decision tree approach (Young, Odell, and Woodland 1994)
that produced 10K tied states. Then, feed-forward models were used to bootstrap
a BLSTM-HMM AM, trained with 85-dimensional filterbank features, following
the procedure described in (Zeyer et al. 2017). The BLSTM network was trained
using both TLK and TensorFlow (Abadi, Agarwal, et al. 2015), and had 8 bidirec-
tional hidden layers with 512 LSTM cells per layer and direction. As in (Zeyer et
al. 2017), we performed chunking during training by considering a context to per-
form back-propagation through time to a window size of 50 frames. Additionally,
SpecAugmentation was applied by means of time and frequency distortions (Park
et al. 2019).

Language Modelling

Regarding language modelling, we trained count-based (n-gram) and neural-based
(LSTM, Transformer) Language Models (LMs) to perform one-pass decoding with
different linear combinations of them (Jorge, Giménez, Iranzo-Sánchez, Civera,
et al. 2019), using the text data sources and corpora described in Table 2.23.

On the one hand, we trained 4-gram LMs using SRILM (Stolcke 2002) with all
text resources plus the Google-counts v2 corpus (Lin et al. 2012), accounting for
102G running words. The vocabulary size was limited to 254K words, with an
OOV ratio of 0.6% computed over our internal development set.

110

i
i

i
i

i
i

i
i

On the other hand, regarding neural LMs, we considered the LSTM and Trans-
former architectures. In both cases, LMs were trained using a 1-gigaword subset
randomly extracted from all available text resources, except Google-counts. Their
vocabulary was defined as the intersection between the n-gram vocabulary (254K
words) and that derived from the aforementioned training subset. We did this to
avoid having zero probabilities for words that are present in the system vocabu-
lary but not in the training subset. This is taken into account when computing
perplexities by renormalizing the unknown-word score accordingly.

Specific training details for each neural LM architecture are as follows. Firstly,
LSTM LMs were trained using the CUED-RNNLM toolkit (Xie Chen, Liu, et al.
2016). Noise Contrastive Estimation (NCE) criterion (Mnih and Teh 2012) was
used to speed up model training, and the normalization constant learned from
training was used during decoding (X. Chen et al. 2015). Based on the lowest
perplexity observed on our internal development set, we selected as final model
that with a 256-unit embedding layer and two hidden LSTM layers of 2048 units.
Secondly, Transformer LMs (TLMs) were trained using a customized version of
the FairSeq toolkit (Ott, Edunov, Baevski, et al. 2019), selecting the following
configuration that minimized perplexity in our internal development set: 24-layer
network with 768 units per layer, 4096-unit FFN, 12 attention heads, and an
embedding of 768 dimensions. These models were trained until convergence with
batches limited to 512 tokens, 512 sentences, and 512 words per sentence. Param-
eters were updated every 32 batches. During inference, Variance Regularization
(VR) was applied to speed up the computation of the TLM score (Baquero-Arnal
et al. 2020).

Decoding strategy

Our hybrid ASR systems follow a real-time one-pass decoding by means of a
History Conditioned Search (HCS) strategy, as described in (Jorge, Giménez,
Iranzo-Sánchez, Civera, et al. 2019). This approach allows us to benefit from
the direct usage of additional LMs during decoding while satisfying real-time
constraints. This decoding strategy introduces two additional and relevant pa-
rameters to control the trade-off between Real Time Factor (RTF) and WER:
LM history recombination (LMHR), and LM histogram prunning (LMHP). The
static look-ahead table, needed by the decoder to use pre-computed look-ahead
LM scores, was generated from a prunned version of the n-gram LM.

For streaming ASR, as the full sequence (context) is not available during de-
coding, BLSTM AMs are queried with a sliding, overlapping context window
of limited size over the input sequence, averaging outputs of all windows for
each frame to obtain the corresponding acoustic score (Jorge, Giménez, Iranzo-
Sánchez, Silvestre-Cerdà, et al. 2020). The size of the context window (in frames
or seconds) is set in decoding, and defines the theoretical latency of the system.
This limitation of the context prevents us to perform a Full Sequence Normaliza-

111

Chapter 2. MLLP-UPV Systems for S2T IberSpeech-RTVE 2020

Table 2.23: Statistics of Spanish text resources for LM training. S=Sentences,
RW=Running words, V=Vocabulary. Units are in thousands (K).

Corpus S(K) RW(K) V(K)
Opensubtitles
(Lison and Tiedemann 2016) 212635 1146861 1576
UFAL
(UFAL Medical Corpus 2017) 92873 910728 2179
Wikipedia
(Wikipedia 2020) 32686 586068 3373
UN
(Callison-Burch et al. 2012) 11196 343594 381
News Crawl
(News Crawl corpus (WMT workshop) 2015) 7532 198545 648
Internal: entertainment 4799 59235 307
eldiario.es
(Eldiario.es 2020) 1665 47542 247
El Periódico
(ElPeriodico.com 2020) 2677 46637 291
Common Crawl
(CommonCrawl 2014) 1719 41792 486
Internal: parliamentary data 1361 35170 126
News Commentary
(News Crawl corpus (WMT workshop) 2015) 207 5448 83
Internal: educational 87 1526 35
TOTAL 369434 3423146 5785
Google-counts v2 (Lin et al. 2012) - 97447282 3693

tion (FSN), that is typically applied under the off-line setting. Instead, we applied
the Weighted Moving Average (WMA) technique, that uses the content of the
current context window to update normalization statistics on-the-fly, weighted
by previous context from past windows with an α parameter (Jorge, Giménez,
Silvestre-Cerdà, et al. 2022). Finally, as Transformer LMs have the inherent ca-
pacity of attending to potentially infinite word sequences, history is limited to
a given maximum number of words, in order to meet the strict computational
time constraints imposed by the streaming scenario (Baquero-Arnal et al. 2020).
By applying all these modifications, our decoder acquires the capacity to deliver
live transcriptions for incoming audio streams of potentially infinite length, with
latencies lower-bounded by the context window size.

112

i
i

i
i

i
i

i
i

Experiments and results

To carry out our experiments, we used the development and test sets from the
RTVE2018 database. More precisely, we devoted our internal dev1-dev set (Jorge
et al. 2018) for development purposes, whilst dev2 and test-2018 were dedicated
to test ASR performance. Finally, test-2020 was the blind test used by the
organisation to rank the participant systems. Table 2.24 provides basic statistics
of these sets.

Table 2.24: Basic statistics of development and tests sets of RTVE databases, including our
internal dev1-dev set: total duration (in hours), number of files, average duration of samples
in seconds plus-minus standard deviation (dµ ± σ), and running words (RW) in thousands
(K).

Set Duration(h) Files dµ ± σ RW(K)
dev1-dev 11.9 10 4267 ± 1549 120

dev2 15.2 12 4564 ± 1557 149
test-2018 39.3 59 2395 ± 1673 377
test-2020 78.4 87 2314 ± 1576 519

First, we studied the perplexity (PPL) on the dev1-dev set of all possible linear
combinations for the three types of LMs considered in this work. Table 2.25
shows the PPLs of these interpolations, along with the optimum LM weights that
minimized PPL in the dev1-dev set. The Transformer LM provides significant
lower perplexities in all cases, and accordingly, takes very high weight values
when combined with other LMs. Indeed, the TLM in isolation already delivers a
strong perplexity baseline value of 63.3, while the maximum PPL improvement
is of just 6% relative when all three LMs are combined.

Table 2.25: Perplexity (PPL) and interpolation weights, computed over the dev1-dev set,
of all possible linear combinations of n-gram (ng), LSTM (ls) and Transformer (tf) LMs.

LM comb. PPL Weights(%)
ng 179.5 -
ls 98.4 -
tf 63.3 -
ng + ls 93.2 15 + 85
ng + tf 61.6 6 + 94
ls + tf 60.7 13 + 87
ng + ls + tf 59.5 5 + 10 + 85

Second, we tuned decoding parameters to provide a good WER-RTF tradeoff on
dev1-dev, with the hard constraint of RTF<1 to ensure a real-time processing
of the input. From these hyperparameters, we highlight, due to their relevance,
LMHR=12, LMHP=20, and TLM history limited to 40 words.

113

Chapter 2. MLLP-UPV Systems for S2T IberSpeech-RTVE 2020

At this point, we defined our participant off-line hybrid ASR system identified as
c3-offline (contrastive system no. 3), consisting of a fast pre-recognition + Voice
Activity Detection (VAD) step to detect speech/no-speech segments as in (Jorge
et al. 2018), followed by a real-time one-pass decoding with our BLSTM-HMM
AM, using a FSN normalization scheme and a linear combination of the three
types of LMs: n-gram, LSTM and Transformer. This system scored 12.3 and
17.1 WER points on test-2018 and test-2020, respectively.

Next, as our focus was to develop the best-performing streaming-capable hybrid
ASR system for this competition, we explored streaming-related decoding param-
eters to optimize WER on dev1-dev, using the BLSTM-HMM AM and a linear
combination of all three LMs. This resulted on using a context window size of
1.5 seconds and α=0.95 for the WMA normalization technique. This configu-
ration defined our primary system, identified as p-streaming_1500ms_nlt, that
showed WER rates of 11.6 and 16.0 in test-2018 and test-2020, respectively. It
is important to note that this system does not integrate any VAD module. This
task is implicitly carried out by the decoder via the non-speech model of the
BLSTM-HMM AM.

A small change on the configuration of the primary system, consisting on the
removal of the LSTM LM from the linear interpolation, defined the contrastive
system no. 1, identified as c1-streaming_1500ms_nt. The motivation behind
this change is that the computation of LSTM LM scores is quite expensive in
computational terms, and its contribution to PPL is negligible with respect to
the n-gram LM + TLM combination (3% relative improvement). Hence, for the
sake of system latency stability, we obtained nearly no degradation in terms of
WER: 11.6 and 16.1 points in test-2018 and test-2020, respectively.

Both streaming ASR systems, p-streaming_1500ms_nlt and c1-streaming_1500ms_nt,
share the same theoretical latency of 1.5 seconds, as it is determined by the context
window size. As stated in Section 5.3, this parameter can be adjusted in decoding
time. This allows us to configure the decoder for lower latency responses or better
transcription quality. Hence, our last commitment for this challenge was to find
a proper system configuration that could provide state-of-the-art, stable latencies
with minimal WER degradation. Figure 2.16 illustrates the evolution of WER
on dev1-dev as a function of the context window size, limited to one second at
maximum. As we focused on gauging AM performance, we used the n-gram LM
in isolation for efficiency reasons. At the light of the results, we chose a window
size of 0.6 seconds, as it brings a good balance between transcription quality and
theoretical latency.

The last step to set up our latency-focused streaming system was to measure
WER and empirical latencies as a function of different prunning parameters and
LM combinations. In our experiments, latency is measured as the time elapsed
between the instant at which an acoustic frame is generated, and the instant at it
is fully processed by the decoder. We provide latency figures at the dataset level,

114

i
i

i
i

i
i

i
i

16.0

18.0

20.0

22.0

24.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WER(%)

window(s)

Figure 2.16: WER as a function of context window size (in seconds) for the streaming
setup, computed over the dev1-dev set.

computed as the average of the latencies observed at the frame level on the whole
dataset. Figure 2.17 shows WER vs mean empirical latency figures, computed
over dev1-dev, with different prunning parameter values, and comparing the LM
combinations that include the Transformer LM. These measurements were run on
an Intel i7-3820 CPU @ 3.60GHz, with 64GB of RAM and a RTX 2080 Ti GPU
card. On the one hand, we can see how combinations involving LSTM LMs are
systematically shifted rightwards w.r.t. other combinations. This means that the
LSTM LM has a clear negative impact on system latency, with little to no effect on
system quality. This evidence corroborates our decision of removing the LSTM
LM to define our contrastive system c1-streaming_1500ms_nt. On the other
hand, TLM alone generally provides a good baseline that is slightly improved in
terms of WER if we include the other LMs. However, this comes with the cost
of increasing latency. Hence, we selected the Transformer LM in isolation for our
final latency-focused streaming system. This system was our contrastive system
no. 2, identified as c2-streaming_600ms_t. Its empirical latency on dev1-dev was
0.81±0.09 seconds (mean±stdev), and its performance was 12.3 and 16.9 WER
points in test-2018 and test-2020, respectively. This is, with just a very small
relative WER degradation of 6% w.r.t. the primary system, we got state-of-the-
art (mean=0.81s) and very stable (stdev=0.09s) empirical latencies. This system
has a baseline consumption (when idle) of 9GB RAM and 3.5GB GPU memory
(on a single GPU card), adding 256MB RAM and one CPU thread per each
decoding (audio stream). For instance, the decoding of four simultaneous audio
streams in a single machine would use four CPU threads, 10GB RAM and 3.5GB
GPU memory.

115

Chapter 2. MLLP-UPV Systems for S2T IberSpeech-RTVE 2020

14.5

15.0

15.5

16.0

16.5

0.75 0.80 0.85 0.90 0.95 1.00

tf
ng+tf
ls+tf

ng+ls+tf

WER(%)

Latency(s)

Figure 2.17: WER versus mean empirical latency (in seconds) on dev1-dev, measured
with different prunning parameters, and considering only interpolation schemes that include
TLM.

Table 2.26 summarises the results obtained with all the four participant ASR sys-
tems in the dev2, test-2018 and test-2020 sets, and adds the results obtained with
our 2018 open-condition system for comparison. On the one hand, surprisingly,
the off-line system is surpassed by the three streaming ones in test-2020, by up
to 1.1 absolute WER points (6% relative). We believe that this is caused, first,
by an improvable VAD module, based on Gaussian Mixture HMMs, that, in our
experience, suffers from false negatives (speech segments labelled as non-speech).
As the non-speech model was trained with music and noise audio segments, and
given the inherent limitations of GMMs, it is likely to misclassify speech passages
with loud background music and noise (often present in TV programmes) as non-
speech. Second, the FSN technique might not be appropriate for some types of
TV shows, as local acoustic condition changes become diluted in the full-sequence
normalization, and acoustic scores computed for those frames may present some
perturbations that can degrade system performance at that point. On the other
hand, it is remarkable that our primary 2020 system significantly outperforms the
2018 winning system by 28% relative WER points on both dev2 and test-2018
(25% in the case of our latency-focused system c2-streaming_600ms_t), while
adding the novel streaming capability at the same time.

All these streaming ASR systems can be easily put into production environments
using our custom gRPC-based server-client infrastructure3. Indeed, ASR systems
comparable to c2-streaming_600ms_t and c1-streaming_1500ms_nt are already

3https://mllp.upv.es/git-pub/jjorge/MLLP_Streaming_API

116

i
i

i
i

i
i

i
i

Table 2.26: WER of the participant systems, including our open-condition system submit-
ted to the 2018 challenge, computed over the dev2, test-2018 and test-2020 sets.

System dev2 test-2018 test-2020
p-streaming_1500ms_nlt 11.2 11.6 16.0
c1-streaming_1500ms_nt - 11.6 16.1
c2-streaming_600ms_t 12.0 12.3 16.9
c3-offline - 12.0 17.1
2018 open-cond. winner (Jorge et al. 2018) 15.6 16.5 -

in production at our Transcription and Translation Plarform (TTP)4 for stream-
ing and off-line processing, respectively. Both can be freely tested using our public
APIs, accessible via TTP.

5.4 Conclusions

In this paper we have described our four ASR systems that participated in the
Albayzin-RTVE 2020 Speech-to-Text Challenge. The primary one, a streaming-
enabled performance-focused hybrid ASR system (p-streaming_1500ms_nlt) pro-
vided a good score of 16.0 WER points in the test-2020 set, and a remarkable
28% relative WER improvement over the 2018 winning ASR system on test-
2018, with a theoretical latency of 1.5 seconds. Nearly the same performance
was delivered by our first contrastive system (c1-streaming_1500ms_nt): 16.1
WER points on test-2020, at a significant lower computational cost. In pur-
suit of low, state-of-the-art system latencies, our second contrastive system (c2-
streaming_600ms_t) provided a groundbreaking WER-latency balance, with a
solid performance of 16.9 WER points on test-2020 at an empirical latency of
0.81±0.09 seconds (mean±stdev). Finally, our contrastive off-line ASR system
with VAD (c3-offline) provides the highest, yet still competitive, WER mark of
17.1 points, attributable to an improvable VAD module and to the limitations of
FSN when dealing with local acoustic condition changes.

With a configurable system latency in decoding time, our ASR technology offers
the flexibility to produce fast system responses for streaming applications, or to
generate maximum quality transcriptions whenever hard time constraints do not
apply. Also, results demonstrate that our streaming ASR technology is mature
enough to be systematically put into production environments for high-quality au-
tomatic live captioning in TV stations, distance learning, conferencing platforms,
or general-purpose video/audio streaming services, among others.

4https://ttp.mllp.upv.es/

117

Chapter 2. MLLP-UPV Systems for S2T IberSpeech-RTVE 2020

References

Abadi, Martín, Ashish Agarwal, et al. (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems (cit. on p. 110).

al., Eduardo Lleida et (2019). “Albayzin 2018 Evaluation: The IberSpeech-RTVE
Challenge on Speech Technologies for Spanish Broadcast Media”. In: Applied
Sciences 9.24, p. 5412 (cit. on p. 109).

Baquero-Arnal, Pau et al. (2020). “Improved Hybrid Streaming ASR with Trans-
former Language Models”. In: Proc. of InterSpeech 2020, pp. 2127–2131 (cit. on
pp. 111, 112).

Callison-Burch, Chris et al. (2012). “Findings of the 2012 Workshop on Statistical
Machine Translation”. In: Proc. of WMT, pp. 10–51 (cit. on p. 112).

Chen, X. et al. (2015). “Improving the training and evaluation efficiency of recur-
rent neural network language models”. In: Proc. of ICASSP 2015, pp. 5401–
5405 (cit. on p. 111).

Chen, Xie, Xunying Liu, et al. (2016). “CUED-RNNLM – An open-source toolkit
for efficient training and evaluation of recurrent neural network language mod-
els”. In: Proc. of ICASSP 2016. Shanghai, China, pp. 6000–6004 (cit. on p. 111).

CommonCrawl (2014). http://commoncrawl.org/ (cit. on p. 112).
del-Agua, M.A. et al. (Nov. 2014). “The translectures-UPV toolkit”. In: Proc.
of Advances in Speech and Language Technologies for Iberian Languages 2014,
pp. 269–278 (cit. on p. 110).

Eldiario.es (2020). https://www.eldiario.es/ (cit. on p. 112).
ElPeriodico.com (2020). https://www.elperiodico.com/ (cit. on p. 112).
Jorge, Javier et al. (2018). “MLLP-UPV and RWTH Aachen Spanish ASR Sys-
tems for the IberSpeech-RTVE 2018 Speech-to-Text Transcription Challenge”.
In: Proc. of IberSPEECH 2018, pp. 257–261 (cit. on pp. 109, 110, 113, 114,
117).

Jorge, Javier, Adrià Giménez, Javier Iranzo-Sánchez, Jorge Civera, et al. (2019).
“Real-time One-pass Decoder for Speech Recognition Using LSTM Language
Models”. In: Proc. of InterSpeech 2019, pp. 3820–3824 (cit. on pp. 110, 111).

Jorge, Javier, Adrià Giménez, Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà,
et al. (2020). “LSTM-Based One-Pass Decoder for Low-Latency Streaming”. In:
Proc. of ICASSP 2020, pp. 7814–7818 (cit. on p. 111).

Jorge, Javier, Adrià Giménez, Joan Albert Silvestre-Cerdà, et al. (2022). “Live
Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Mod-
els and Interpolated Language Models”. In: IEEE/ACM Transactions on Audio,
Speech, and Language Processing 30, pp. 148–161 (cit. on p. 112).

Lin, Yuri et al. (2012). “Syntactic annotations for the Google Books Ngram Cor-
pus”. In: Proceedings of the ACL 2012 System Demonstrations. Association for
Computational Linguistics (cit. on pp. 110, 112).

Lison, Pierre and Jörg Tiedemann (May 2016). “OpenSubtitles2016: Extracting
Large Parallel Corpora from Movie and TV Subtitles”. In: Proc. of LREC 2016,
pp. 923–929 (cit. on p. 112).

Llei 1/2006, de 19 d’abril, GVA (2006) (cit. on p. 108).

118

http://commoncrawl.org/
https://www.eldiario.es/
https://www.elperiodico.com/

i
i

i
i

i
i

i
i

References

Lleida, Eduardo et al. (2018). RTVE2018 database description. http://catedrartve.
unizar.es/reto2018/RTVE2018DB.pdf (cit. on p. 109).

– (2020a). IberSPEECH-RTVE 2020 Speech to Text Transcription Challenge.
http : / / catedrartve . unizar . es / reto2020 / EvalPlan - S2T - 2020 - v1 . pdf (cit. on
p. 109).

– (2020b). RTVE2020 database description. http://catedrartve.unizar.es/reto2020/
RTVE2020DB.pdf (cit. on p. 109).

Mnih, Andriy and Yee Whye Teh (2012). “A fast and simple algorithm for training
neural probabilistic language models”. In: Proc. of ICML (cit. on p. 111).

News Crawl corpus (WMT workshop) (2015). http : / / www . statmt . org / wmt15 /
translation-task.html (cit. on p. 112).

Ott, Myle, Sergey Edunov, Alexei Baevski, et al. (2019). “fairseq: A Fast, Extensi-
ble Toolkit for Sequence Modeling”. In: Proc. of NAACL-HLT 2019, pp. 48–53
(cit. on p. 111).

Park, Daniel S. et al. (2019). “SpecAugment: A Simple Data Augmentation Method
for Automatic Speech Recognition”. In: Proc. of InterSpeech 2019, pp. 2613–
2617 (cit. on p. 110).

RD 1494/2007, del 12 de noviembre (2007) (cit. on p. 108).
Stolcke, Andreas (2002). “SRILM - an extensible language modeling toolkit.” In:
Proc. of Interspeech 2002, pp. 901–904 (cit. on p. 110).

UFAL Medical Corpus (2017). http://ufal.mff.cuni.cz/ufal_medical_corpus (cit.
on p. 112).

Voxforge (2018). http://www.voxforge.org (cit. on p. 110).
Wikipedia (2020). https://www.wikipedia.org/ (cit. on p. 112).
Young, S. J., J. J. Odell, and P. C. Woodland (1994). “Tree-based State Tying for
High Accuracy Acoustic Modelling”. In: Proc. of Workshop on Human Language
Technology 1994, pp. 307–312 (cit. on p. 110).

Zeyer, Albert et al. (2017). “A comprehensive study of deep bidirectional LSTM
RNNs for acoustic modeling in speech recognition”. In: Proc. of ICASSP 2017.
IEEE, pp. 2462–2466 (cit. on p. 110).

119

http://catedrartve.unizar.es/reto2018/RTVE2018DB.pdf
http://catedrartve.unizar.es/reto2018/RTVE2018DB.pdf
http://catedrartve.unizar.es/reto2020/EvalPlan-S2T-2020-v1.pdf
http://catedrartve.unizar.es/reto2020/RTVE2020DB.pdf
http://catedrartve.unizar.es/reto2020/RTVE2020DB.pdf
http://www.statmt.org/wmt15/translation-task.html
http://www.statmt.org/wmt15/translation-task.html
http://ufal.mff.cuni.cz/ufal_medical_corpus
http://www.voxforge.org
https://www.wikipedia.org/

i
i

i
i

i
i

i
i

Chapter 3

General discussion of the
results

121

Chapter 3. General discussion of the results

This chapter will gather the main results to cover the goals established for this
thesis and their outreach and impact over the last years during the development
of several research projects. The goals for this work were introduced in the first
chapter and summarized here for convenience:

• Provide a one-pass ASR system leveraging the neural LM with low RTF.

• Adapt the one-pass neural based system to perform streaming recognition.

• Evaluate the streaming ASR system in production environments.

To address the first goal, an initial version of our one-pass decoder integrating
the LSTM LM was submitted to the international competition IberSpeech 2018
in the Speech-to-text track, as it is described in Paper 1. This competition was
an excellent opportunity to test the features and pipelines included in our system:
the data filtering, the model training (both AM and LM, with the new LSTM
LM), and the decoding, including our one-pass algorithm. In the past, our internal
toolkit TLK has been used to participate in other international challenges with
good results (Miguel Ángel Del-Agua et al. 2015; Miguel Ángel Del-Agua et al.
2016) and we wanted to measure its performance in comparison with the last
versions of the commonly used Kaldi ASR toolkit.

Considering this challenge an opportunity to benchmark our decoder, our system
was submitted to the closed-condition track, where the data was limited to the
RTVE2018 set provided by the organization, as described in (Lleida et al. 2018).
The results for this competition and all the details from the participants were
reported in (Lleida et al. 2019). This closed-condition track proposed an addi-
tional challenge related to the data provided by the organization. The RTVE2018
dataset comprises only 460 hours, with very noisy audio and transcriptions. Thus,
aligning and filtering the data, making the most out of it, became the critical
factor in obtaining good results in this track. For this reason, while for the
open-condition there were seven teams, where participants are not limited in the
amount of data to use, only three of them participated in the closed-condition
track.

Table 3.1 includes the results in WER for the blind test 2018 obtained by the
participants in this closed track plus the open track’s winner for comparison. It
is important to remark that the SIGMA team used additional human supervision
to increase the amount of data correctly transcribed. Due to this, the team was
disqualified from the competition, but their results are included here to reflect all
three submissions.

As results show, our one-pass decoder using the LSTM LM directly obtained the
best WER when considering fully automatic pipelines, as the competition re-
quired. Even considering the team that used up to 350 hours of supervised data
(vs. our 205 hours of automatic aligned and filtered data), our system showed
very competitive results. In fact, the difference was around 10% of WER reduc-

122

i
i

i
i

i
i

i
i

Table 3.1: WER of the participants of the closed-condition track from IberSpeech 2018 on
test-2018.

Team WER
MLLP-RWTH 21.96
VICOMTECH-PRHLT
(Arzelus et al. 2018) 22.22
SIGMA
(Perero-Codosero et al. 2018) 19.57
MLLP-RWTH (OPEN WINNER) 16.45

tion with an increase of the manually transcribed data of around 37%. Regarding
the technique and tools, VICOMTECH-PRHLT and SIGMA followed the tradi-
tional WFST with the Kaldi toolkit, performing a second pass based on a lattice
rescoring approach using count-based models. Finally, the RTF of the MLLP sys-
tem was also analyzed as the speed was one of the main motivations to migrate
from two-pass to one-pass decoding strategy. As reported in Paper 1, the primary
system (WER-oriented) provided an excellent RTF of 1.5, but by increasing the
pruning can be improved easily to get 0.8. This speed improvement comes with
a slight increase of WER only of 1.5% relative.

After this public evaluation competing with other NLP teams, obtaining such
good and competitive results working below real-time encouraged us to continue
developing our ASR system. In Paper 2, this development and in-depth study
continued. In this paper, a comprehensive experimental analysis was carried out
to compare the aforementioned one-pass decoder with our two-pass version. In
this second paper, the one-pass system is described thoroughly, proposing the
final version that allowed us to perform real-time one-pass decoding using the
LSTM LM and defining the architecture that is currently used in our decoder
so far. Paper 2 defines the decoder architecture that changed from a traditional
WFST to an HCS that leverages several advanced LM-related techniques. On
the other hand, this new architecture enabled the integration of the LSTM LM,
achieved thanks to the improvements in the decoding process, including static pre-
computation of the look-ahead scores, together with the efficient computation of
the LM scores with the neural model using the GPU and the self-normalized
scores. Finally, advanced pruning techniques helped the system work below real-
time, paving the way to our final purpose: providing a competitive streaming
system.

The results and conclusions from Paper 1 and Paper 2 were, indeed, that a system
based on only one-pass of recognition that benefits from the neural LM can provide
competitive results. These results are very similar or even better than a two-pass
strategy, with lower RTF, making the whole system a good fit for deployment in
a streaming setup. This conclusion leads us to the second goal from this thesis,
related to changing the current offline one-pass decoder to work on streaming.

123

Chapter 3. General discussion of the results

In addition to these academic results, participating in several research projects
offered the opportunity to evaluate the system and its behavior in real-life scenar-
ios. In the context of X5Gon project described in the introduction, several ASR
systems were developed for Open Educational Resources (OER) transcription in
4 languages (En, Es, Sl, De). Moreover, throughout the X5Gon project, the pro-
posed architecture evolved, making significant progress in offline and streaming
ASR. A brief description of the developments will be included in this section,
but several reports are publicly available to the reader to extend this informa-
tion (Jorge et al. 2020; Pérez et al. 2020). In particular, three systems were trained
and systematically improved and evaluated on these sets: the English system
(evaluated on VideoLectures.NET and poliMedia), the Spanish system (evalu-
ated on poliMedia) and the Slovenian system (evaluated on VideoLectures.Net).

During M30 (February 2020) there was carried out a comparative study between
Google Cloud Speech-to-text API and our proposed approach in terms of WER
with these evaluation sets. Table 3.2 shows the results obtained for these ex-
periments. In general, our ASR systems provide a relative error reduction of
∼54% with respect to the quality offered by the commercial provider Google
Cloud Speech-To-Text web service. Moreover, this figure is even higher in the in-
domain tasks for Spanish (54% for pM) and Slovenian (56% for VL). It is worth
mentioning that our system can be biased to educational content because of the
datasets used for training, but this could also harm the performance in sets such
as RTVE. However, our system provided the best performance also for this task.

Table 3.2: WER scores provided by X5Gon ASR systems and Google Cloud Speech-To-
Text, on different in-domain and out-domain tasks in English, Spanish, and Slovenian.

VL pM RTVE VL TED
ASR En Es Es Sl Sl
Google Cloud API 28.6 19.9 49.3 50.0 38.1
X5gon systems 18.8 9.1 13.0 22.0 18.3
∆% -34.3 -54.3 -73.6 -56.0 -52.0

The second goal of this thesis is addressed in Paper 3, where a production-ready
streaming ASR system is introduced following the base architecture from the of-
fline decoder posed in Paper 2. The main achievement developed during this work
was the adaptation of the acoustic input, first modifying the whole-sequence nor-
malization to a limited one. Second, this limited context also involves the AM
process, and the input for this model should be appropriately adapted. These
are the main contributions of Paper 3, providing the initial adaptation of our
offline system to the streaming processing. These improvements were validated
with the commonly used benchmarks LibriSpeech and TED-LIUM release 3, in
terms of WER, latency and the trade-off between these two measures. The main
conclusion drawn from this work was that the proposed system could be adapted
to the streaming setup with minimal degradation in WER when compared with
the offline system. This degradation comes mainly from the limited context pro-

124

i
i

i
i

i
i

i
i

8

 10

 15

 20

 25

M0 M12 M24 M30 M40

WER

En

Es
 10

 15

 20

 25

 30

 35

M0 M12 M24 M30 M40

month

WER

En

Sl

Figure 3.1: WER scores over project month for poliMedia Spanish/English (left) and
VideoLectures.Net Slovenian/English (right) transcriptions.

vided to perform the acoustic processing (i.e., normalize the input and process it
through the windows-based BLSTM). The proposed streaming ASR system of-
fered competitive WER on these two benchmarks with around ∼1-second latency.

Revising the impact on the projects that coexisted with this thesis, to illustrate
the evolution of the system, results and evolution from the X5Gon project are
shown in Figure 3.1, reflecting WER in the y-axis along the 40 months of the
project in the x-axis. The work described in this thesis contributed to develop-
ing; first the systems used during months 24-30, as reported in (Jorge et al. 2020)
(Papers 1 and 2), and second from month 30 to the end of the project (Paper
3), as described in (Pérez et al. 2020). As the Figure 3.1 reflects, with the im-
provements presented in Papers 1 and 2 and the incorporation of new data, the
WER improved significantly during the first period for Spanish and Slovenian
(M24-M30), even where WER values were already reduced (pM-Es from M24 to
M30) and approaching values below 20% for Slovenian, a crucial language in the
project. On the other hand, the work done in Paper 3 helped lower these figures,
reducing the error rates for English and, even more, for the other two languages,
ending up with WER numbers close to 15% or below.

Regarding the streaming systems, Table 3.3 shows comparative results between
the offline systems and the streaming low-latency systems prepared for these
tasks of the project. It is important to remark that these systems, with a very
low latency of 0.8 seconds, only degraded the WER in ranges between 3 to 12%
in the worst case. These figures enabled the direct use of these streaming systems
to transcribe OER live content in the X5Gon platform, as described in (Pérez
et al. 2020).

125

Chapter 3. General discussion of the results

Table 3.3: WER scores provided by offline and streaming-adapted M40 ASR systems on
VideoLectures.NET (in English and Slovene) and poliMedia (in Spanish and English).

VideoLectures.Net poliMedia
ASR system En Sl En Es
M40 Offline 14.8 15.3 12.0 8.3
M40 Streaming 15.4 15.8 13.4 8.7
∆% 4.1 3.3 11.7 4.8

Regarding the R&D collaboration and technology transfer agreements related to
the development of this thesis, the impressive results with these streaming ASR
developments fueled an important landmark with the agreement between UPV
and the Corporació Valenciana de Mitjans de Comunicació, with its visible head
À Punt, the local TV channel from Valencian Community. This agreement was
focused on providing the computer-aided closed-captioning and subtitling of au-
diovisual content in real-time based on the outcomes of this thesis, among other
works done in the MLLP research group. At the beginning of this agreement,
several comparative experiments using our general-purpose systems on internal
datasets were carried out to illustrate the quality of the Catalan, Spanish and En-
glish systems, languages demanded in the agreement mentioned above. Table 3.4
shows these results in terms of WER, providing additionally analogous figures for
general-purpose systems commercially available from Google Cloud Speech-To-
Text, in its two versions, standard and enhanced (if available) and their relative
value with respect to those built at the MLLP with the technological develop-
ments proposed up to the work done in Paper 3. The general-purpose MLLP
system for Catalan and Spanish provided impressive WER figures with respect
to the commercial API from Google, while keeping a similar performance to the
enhanced system in English, the Google’s more advanced language.

Table 3.4: WER scores provided by MLLP and Google ASR systems on different content
(es=Spanish, ca=Catalan, and en=English) and relative improvement.

ASR system À Punt (ca) RTVE (es) PoliMedia (en)
MLLP 20.0 13.1 15.8
Google - standard 45.0 49.0 36.1
Google - enhanced n/a n/a 13.3
∆% 125 274 -15.8

The last goal is addressed in the last part of this thesis, aimed to integrate and
evaluate the streaming ASR system in production environments with challenging
real-world tasks. Regarding this goal, Papers 4 and 5 mainly cover the work
done to achieve it. Paper 4 summarizes all the development carried out during
previous papers, as well as proposing new techniques and methods to improve the
quality and the speed of the system, as well as using a neural LM based on the
Transformer architecture, as follows:

126

i
i

i
i

i
i

i
i

• The windows-based BLSTM AM is widely covered to illustrate the proper
adaptation of the model to the streaming setup.

• Another feature normalization technique is proposed to improve the quality
and latency of the system, as previous methods required an initial delay,
increasing the global latency.

• A new pruning technique for the AM is posed, called Acoustic Model Look-
ahead (AMLA), following a similar approach to the look-ahead from the
LM.

All these improvements were evaluated on the reference benchmarks LibriSpeech
and TED-LIUM and the challenging set RTVE2018. In addition, another task was
proposed based on using the TED-LIUM dev/test sets, but instead of using them
at the segment level, working at the video level, making the task better suited for
evaluating streaming systems. This stream-based version of TED-LIUM allows
us to assess the system performance under real conditions, that is, a continuous
audio stream. Thus, the speech recognizer provides the output in real-time with
low latency with respect to the input stream.

The final remarks from this Paper 4 were that the proposed streaming hybrid ASR
system produced a very competitive WER with adjustable latency, with several
options to tune the trade-off between these two measures. As it was evaluated
on real-world and complex tasks such as RTVE, with many different TV shows
offering excellent performance, it can be concluded that the system is ready to be
used in production under this scenario. This conclusion is directly aligned with
the goals posed for this thesis.

The last paper included in this thesis, Paper 5, closes the loop that started with
the IberSpeech2018 challenge, with the participation in the 2021 edition of this
international contest. Hence, our last systems and the evolution of technology is
contrasted with our initial one-pass architecture. In this regard, the final system
proposed in Paper 4 was tuned to this task to obtain several setups: the streaming
setup both with the best WER with reasonable latency and the best WER/latency
trade-off, and the previous offline pipeline with pre-segmented utterances.

This IberSpeech2020 gave the system another opportunity to be tested against
an even more challenging test set (compared with the test from 2018), with more
diverse and demanding TV shows. This time, there was only an open-condition
track where seven teams participated with their submissions, but only five sub-
mitted a system paper with the details of their submission. Table 3.5 shows the
best results per team along with our submissions, indicating the ASR toolkit, the
training data, and WER on the blind test set (test2020).

In addition to these results, there are also included results from our recent pub-
lication (Baquero-Arnal et al. 2022). In this work there were carried out a com-
parison against the others submissions in a closed-condition fashion. This results

127

Chapter 3. General discussion of the results

of this comparison highlighted the quality of our toolkit and decoder isolating the
training data differences. For this comparison, only the data from the RTVE2018
edition was used. Additionally, there are included results with this closed system
plus the open LM with all the data available. This comparison illustrates how the
system can be improved easily with this kind of text data, as it is easily obtained
from open resources, unlike properly transcribed audio data.

Table 3.5: WER, toolkit, decoder type and data in hours of the participant systems
on test-2020, including the closed-conditioned version from our MLLP-VRAIN submission
(str=streaming-ready).

Participant Toolkit Decoder Data (h) WER
MLLP-VRAIN TLK One-pass (str) 3.924 16.04
BIOMETRICVOX
(Font and Grau 2021)

Kaldi Multi-pass
1.030 30.26

BCN2BRNO
(Kocour et al. 2021) 780 23.33
VICOMTECH
(Alvarez et al. 2021) 743 19.28
SIGMA
(Perero-Codosero et al. 2021) 615 27.68
MLLP-VRAIN (closed) 205 23.10
+ open LM
(Baquero-Arnal et al. 2022) 19.90

The results showed that our streaming one-pass decoder could achieve a very
competitive WER without any additional step or module (i.e., VAD or lattice-
rescoring). It is important to remark that this decoder works at low latency,
adjustable with minor WER degradation, ranging from 0.8 to 1.5 seconds, as
reported in Papers 3,4, and 5. The relative difference between the results with
our whole dataset (3.9K hour) vs. the internal closed-condition task (205 hours)
is worth noting. Surprisingly, reducing the acoustic data by almost 95% involved
a WER increase of 7 absolute points in the closed-condition alone and only 3.9
absolute when including the open LM. This clearly illustrates the direct impact
of including the neural LM on the streaming one-pass decoder, providing similar
WER figures compared to having much more acoustic data (a factor of 19 times
more data). These figures reflect the accuracy and speed achieved through the
improvements related to the goals of this thesis, reinforcing the overall quality of
the whole system since the 2018 edition.

Despite the fact that all the work was made in collaboration with other members
of the MLLP group, the theoretical framework, developments, experimentation
and evaluations presented along this thesis have been carried out primarily or as
co-author by the author of this work. Additionally, there were other scientific
contributions that were not included in this thesis where the author contributed
as main author or co-author, listed below:

128

i
i

i
i

i
i

i
i

• Passive-Aggressive online learning with nonlinear embeddings, Jorge, Javier;
Paredes, Roberto;, Pattern Recognition, Elsevier, 2018, Journal Q1

• Empirical Evaluation of Variational Autoencoders for Data Augmentation,
Jorge, Javier; Vieco, Jesús; Paredes, Roberto;Sánchez, Joan Andreu; Benedí,
José Miguel; VISIGRAPP 2018, Conference Core B

• Europarl-ST: A Multilingual Corpus for Speech Translation of Parliamen-
tary Debates; Iranzo-Sánchez, Javier; Silvestre-Cerdà, Joan Albert; Jorge,
Javier; Roselló, Nahuel; Giménez, Adrià; Sanchis, Albert; Civera, Jorge;
Juan, Alfons; ICASSP, 2020, Conference Class A

• Improved Hybrid Streaming ASR with Transformer Language Models; Baquero-
Arnal, Pau ; Jorge, Javier; Giménez, Adrià ; Silvestre-Cerdà, Joan Albert
; Iranzo-Sánchez, Javier ; Sanchis, Albert ; Civera, Jorge ; Juan, Alfons;
InterSpeech 2020, Conference Core A

• Streaming cascade-based speech translation leveraged by a direct segmen-
tation model; Iranzo-Sánchez, Javier; Jorge, Javier; Baquero-Arnal, Pau;
Silvestre-Cerdà, Joan Albert ; Giménez, Adrià; Civera, Jorge; Sanchis, Al-
bert; Juan, Alfons; Neural Networks, Elsevier, 2020, Journal Q1

• Europarl-ASR: A Large Corpus of Parliamentary Debates for Streaming
ASR Benchmarking and Speech Data Filtering/Verbatimization; Garcés
Díaz-Munío, Gonçal V; Silvestre-Cerdà, Joan Albert ; Jorge, Javier; Giménez,
Adrià; Iranzo-Sánchez, Javier; Baquero-Arnal, Pau; Roselló, Nahuel; Pérez-
González-de-Martos, Alejandro; Civera, Jorge; Sanchis, Albert; Juan, Al-
fons; InterSpeech 2021, Conference Core A

• Towards simultaneous machine interpretation; Pérez-González-de-Martos,
Alejandro; Iranzo-Sánchez, Javier; Giménez Pastor, Adrià ; Jorge, Javier;
Silvestre-Cerdà, Joan-Albert; Civera, Jorge; Sanchis, Albert; Juan, Alfons;
InterSpeech 2021, Conference Core A

• MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-
To-Text Challenge: Extension; Baquero-Arnal, Pau; Jorge, Javier; Giménez,
Adrià; Iranzo-Sánchez, Javier; Pérez-González-de-Martos, Alejandro; Gar-
cés Díaz-Munío, Gonçal V; Silvestre-Cerdà, Joan Albert; Civera, Jorge; San-
chis, Albert; Juan, Alfons; Applied Sciences, MDPI; 2022; Journal Q2.

129

Chapter 3. General discussion of the results

References

Alvarez, Aitor et al. (2021). “The Vicomtech Speech Transcription Systems for
the Albayzın-RTVE 2020 Speech to Text Transcription Challenge”. In: Proc.
IberSPEECH 2021, pp. 104–107 (cit. on p. 128).

Arzelus, Haritz et al. (2018). “The Vicomtech-PRHLT Speech Transcription Sys-
tems for the IberSPEECH-RTVE 2018 Speech to Text Transcription Chal-
lenge.” In: Proc. of IberSPEECH 2018, pp. 267–271 (cit. on p. 123).

Baquero-Arnal, Pau et al. (2022). “MLLP-VRAIN Spanish ASR Systems for the
Albayzin-RTVE 2020 Speech-to-Text Challenge: Extension”. In: Applied Sci-
ences 12.2 (cit. on pp. 127, 128).

Del-Agua, Miguel Ángel et al. (Dec. 2015). “The MLLP ASR systems for IWSLT
2015”. In: Proc. of IWSLT 2015. Da Nang, Vietnam, pp. 39–44 (cit. on p. 122).

Del-Agua, Miguel Ángel et al. (2016). “The MLLP system for the 4th CHiME
challenge”. In: Proc. of the International Workshop on Speech Processing in
Everyday Environments 2016. CHiME, pp. 57–59 (cit. on p. 122).

Font, Roberto and Teresa Grau (2021). “The Biometric Vox System for the
Albayzin-RTVE 2020 Speech-to-Text Challenge”. In: Proc. IberSPEECH 2021,
pp. 99–103 (cit. on p. 128).

Jorge, Javier et al. (Feb. 2020). X5gon deliverable 3.5: Final support for Cross-
lingual OER. Tech. rep. www.x5gon.org/science/deliverables. Universitat Politèc-
nica de València (cit. on pp. 124, 125).

Kocour, Martin et al. (2021). “BCN2BRNO: ASR System Fusion for Albayzin
2020 Speech to Text Challenge”. In: Proc. of IberSPEECH 2021 (cit. on p. 128).

Lleida, Eduardo et al. (2018). RTVE2018 database description. http://catedrartve.
unizar.es/reto2018/RTVE2018DB.pdf (cit. on p. 122).

– (2019). “Albayzin 2018 evaluation: the iberspeech-RTVE challenge on speech
technologies for spanish broadcast media”. In: Applied Sciences 9.24, p. 5412
(cit. on p. 122).

Perero-Codosero, Juan M et al. (2018). “Exploring Open-Source Deep Learning
ASR for Speech-to-Text TV program transcription.” In: Proc. of IberSPEECH
2018, pp. 262–266 (cit. on p. 123).

– (2021). “Sigma-UPM ASR Systems for the IberSpeech-RTVE 2020 Speech-to-
Text Transcription Challenge”. In: Proc. IberSPEECH 2021, pp. 108–112 (cit.
on p. 128).

Pérez, Alex et al. (Dec. 2020). X5gon deliverable 5.3: Final report on piloting.
Tech. rep. www . x5gon . org / science / deliverables. Universitat Politècnica de
València (cit. on pp. 124, 125).

130

www.x5gon.org/science/deliverables
http://catedrartve.unizar.es/reto2018/RTVE2018DB.pdf
http://catedrartve.unizar.es/reto2018/RTVE2018DB.pdf
www.x5gon.org/science/deliverables

i
i

i
i

i
i

i
i

Chapter 4

Conclusions and future work

131

Chapter 4. Conclusions and future work

To conclude this thesis, this chapter provides some final remarks and open re-
search lines to continue working as future contributions. First, the work of this
thesis resulted in a fully-fledged streaming neural-based ASR system that has
been defined, developed, evaluated, and deployed for almost three years, starting
from an offline multi-pass system. These developments have been included as
features of the internal ASR toolkit TLK, which is used intensively in production
environments to transcribe recorded and live content. Examples of this content
range from lectures, talks, or seminars to challenging TV content such as news,
TV series, or morning shows. Moreover, the ASR systems developed during this
thesis participated in the last two editions of the international ASR challenge
IberSpeech, winning the competition in both editions.

In summary, the main contributions of this thesis are:

• The adaptation of the multi-pass decoder to the one-pass version leveraging
neural-based language models, such as LSTM LM, obtaining a fast and
accurate system.

• The adaptation of the acoustic modeling required to use the one-pass de-
coder with the neural LM in the streaming setup, providing high-quality
transcription with low-latency outputs.

• The evaluation of the WER, RTF, and latency of the resulting system un-
der real-world conditions, deploying these tools in production environments
where it is used intensively.

These contributions lead to a successful hybrid streaming ASR system, demon-
strating state-of-the-art results in publicly available datasets such as LibriSpeech,
TED-LIUM and challenging real-world tasks such as RTVE2018 and RTVE2020.
The scientific and technical success of the proposed tools fueled several research
projects, R&D, and technology transfer agreements that are paving the way to
continue working on this line of research with other advanced NLP-related tasks,
such as machine translation or speech synthesis.

The contributions presented can be further extended in several directions re-
garding future work. In fact, new neural models providing better results appear
constantly, based on new architectures (Gulati et al. 2020; Zeineldeen et al. 2022)
or improvements such as self-supervised training (Baevski and Mohamed 2020;
Sadhu et al. 2021). The improvements developed for our internal toolkit TLK
enable the use of new models quickly, but they may require additional training/e-
valuation pipelines to get the most out of them. For example, there are different
proposals to efficiently exploit the previous/future context in the streaming setup
for the latest neural architecture, the Transformer model, for both the LM and
AM (Hori et al. 2020; Shenoy et al. 2021; Ma et al. 2021; C. Wu et al. 2020).
Exploring the best methods for both models is still an open research question. On
the other hand, posing new ASR challenges focused on streaming processing will
be very interesting for the ASR community, such as streaming-oriented datasets

132

i
i

i
i

i
i

i
i

with well-defined and widely used latency metrics. From our group we proposed
tasks following this idea, but there is still more work to do (Iranzo-Sánchez et al.
2020; Díaz-Munío et al. 2021). This kind of datasets will frame the research and
boost the interest from academia to work on real-world streaming conditions, and
not only on academic tasks.

133

Chapter 4. Conclusions and future work

References

Baevski, Alexei and AbdelrahmanMohamed (2020). “Effectiveness of Self-Supervised
Pre-Training for ASR”. In: Proc. of ICASSP 2020, pp. 7694–7698 (cit. on
p. 132).

Díaz-Munío, Gonçal V. Garcés et al. (Aug. 2021). “Europarl-ASR: A Large Corpus
of Parliamentary Debates for Streaming ASR Benchmarking and Speech Data
Filtering/Verbatimization”. In: Proc. of InterSpeech 2021 (cit. on p. 133).

Gulati, Anmol et al. (2020). “Conformer: Convolution-augmented Transformer
for Speech Recognition”. In: (cit. on p. 132).

Hori, Takaaki et al. (2020). “Transformer-Based Long-Context End-to-End Speech
Recognition”. In: Proc. of InterSpeech 2020 (cit. on p. 132).

Iranzo-Sánchez, Javier et al. (2020). “Europarl-ST: A Multilingual Corpus For
Speech Translation Of Parliamentary Debates”. In: Proc. of ICASSP 2020,
pp. 8229–8233 (cit. on p. 133).

Ma, Xutai et al. (2021). “Streaming Simultaneous Speech Translation with Aug-
mented Memory Transformer”. In: Proc. of ICASSP 2021, pp. 7523–7527 (cit.
on p. 132).

Sadhu, Samik et al. (Aug. 2021). “wav2vec-C: A Self-Supervised Model for Speech
Representation Learning”. In: Proc. of InterSpeech 2021, pp. 711–715 (cit. on
p. 132).

Shenoy, Ashish et al. (Aug. 2021). “Adapting Long Context NLM for ASR Rescor-
ing in Conversational Agents”. In: Proc. of InterSpeech 2021, pp. 3246–3250 (cit.
on p. 132).

Wu, Chunyang et al. (Oct. 2020). “Streaming Transformer-Based Acoustic Models
Using Self-Attention with Augmented Memory”. In: Proc. of InterSpeech 2020,
pp. 2132–2136 (cit. on p. 132).

Zeineldeen, Mohammad et al. (May 2022). “Conformer-based Hybrid ASR System
for Switchboard Dataset”. In: Proc. of ICASSP. To Appear. Singapore (cit. on
p. 132).

134

	Agradecimientos
	Abstract
	Resumen
	Resum
	Contents
	1 Introduction
	1 Motivation
	2 Scientific goals
	3 Preliminaries
	3.1 Automatic Speech Recognition
	3.2 Feature extraction
	3.3 Acoustic Model
	3.4 Language Model
	3.5 Search
	3.6 Streaming Automatic Speech Recognition
	3.7 Benchmarking
	3.8 Evaluation of ASR systems

	4 Framework
	5 List of publications
	5.1 Paper 1
	5.2 Paper 2
	5.3 Paper 3
	5.4 Paper 4
	5.5 Paper 5

	6 References

	2 Selected Papers
	1 MLLP-UPV and RWTH Aachen Spanish ASR Systems for the IberSpeech-RTVE 2018 Speech-to-Text Transcription Challenge
	1.1 Introduction
	1.2 RTVE database
	1.3 Closed-condition system
	1.4 Open-condition system
	1.5 Conclusions

	References
	2 Real-time one-pass decoder for speech recognition using LSTM language models
	2.1 Introduction
	2.2 One-pass decoder architecture
	2.3 Experiments
	2.4 Conclusions and future work

	References
	3 LSTM-based one-pass decoder for low latency streaming
	3.1 Introduction
	3.2 Streaming decoder
	3.3 Experiments
	3.4 Conclusions and future work

	References
	4 Live Streaming Speech Recognition Using Deep Bidirectional LSTM Acoustic Models and Interpolated Language Models
	4.1 Introduction
	4.2 Efficient One-pass Decoding using Interpolated Neural LMs
	4.3 Experiments
	4.4 Conclusion and future work

	References
	5 MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-To-Text Challenge
	5.1 Introduction
	5.2 Challenge description and databases
	5.3 MLLP-VRAIN Systems
	5.4 Conclusions

	References

	3 General discussion of the results
	References

	4 Conclusions and future work
	References

