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Abstract: Sustainable development requires improvements in the use of natural resources. The
main objective of the present study was to optimize the use of materials in the construction of
reinforced concrete precast hinged frames. Proprietary software was developed in the Python
programming language. This allowed the structure’s calculation, verification and optimization
through the application of metaheuristic techniques. The final cost is a direct representation of
the use of materials. Thus, three algorithms were applied to solve the economic optimization of
the frame. By applying simulated annealing, threshold accepting and old bachelor’s acceptance
algorithms, sustainable, non-traditional designs were achieved. These make optimal use of natural
resources while maintaining a highly restricted final cost. In order to evaluate the environmental
impact improvement, the carbon-dioxide-associated emissions were studied and compared with a
reference cast-in-place reinforced concrete frame. The results showed designs with reduced upper
slab and lateral wall depth and dense passive reinforcement. These were able to reduce up to 24% of
the final cost of the structure as well as over 30% of the associated emissions.
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1. Introduction

The continuous improvement and widespread dissemination of knowledge about
environmental issues raise awareness in a global population that seeks more sustainable
development [1,2]. The growth and evolution of societies are directly related to their infras-
tructure. Thus, the construction, maintenance and demolition of the structures that support
a country’s economic and social practices are activities intrinsic to its development [3]. The
characteristic consumption of large quantities of materials places construction as one of the
industries that produce more greenhouse gas emissions, generating around 5% of the total
CO; emitted yearly [4]. Concrete is currently the most widely used material in construction.
Therefore, a significant portion of the emissions is derived from its use [5-7].

In this context, it is feasible to affirm that construction is an activity inherent to hu-
man development. However, the intrinsic need for these related activities should not
justify an inefficient use of natural resources. Hence, in the last decades, there has been a
clear trend towards reducing the use and improving the characteristics of the materials
necessary for constructing the structures surrounding us [8-10]. Using sustainable ma-
terials in conjunction with recycled materials allows direct reductions in the associated
CO;, emissions [11-13]. However, the real-world application of these ways of improve-
ment is limited by the need to develop comprehensive experimental studies that establish
conditions of use and appropriate practical recommendations [14]. Thus, the experimen-
tal nature of these studies means that the implementation period of these solutions is
considerably affected.

Considering the aforementioned limitations, several studies have focused on opti-
mizing the structural design process [15-18]. An improvement in the design can lead to
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immediate improvements in the social and environmental impact associated with its con-
struction [19]. Traditionally, the design process has been very much linked to the engineer’s
theoretical knowledge, technical skills and previous experience [20]. This methodology
starts with the complete definition of the different structural sections, which comprehends
materials selection and the establishment of passive reinforcement configurations. Once
defined, compliance with the limit states stipulated in the applicable code is verified. If
the current structure does not comply, the type or quantity of materials is modified for
further verification. This process is repeated on a trial-and-error basis until a final design is
selected. Although this practice allows for achieving structurally safe designs, it does not
comprehend the consideration of optimal material usage.

Interest in designing sustainable structures, together with the improvement of the
computational tools currently available, has led to the development of a series of new
design methodologies. Consisting of the application of metaheuristic techniques in the
design of structures, these methodologies result in new designs. These, in addition to
complying with the relevant limit states, manage to minimize or maximize a series of
previously established factors such as economic cost, associated CO, emissions or the
energy consumed in the construction of the designed structure [3]. These techniques
have been highly improved during the last decade, mainly due to the simplicity of the
algorithms and their high adaptability, in addition to the ability to avoid convergence
to a local optimum. Due to the importance of improving the design process and the
positive characteristics of the aforementioned methodologies, several studies have applied
heuristic and metaheuristic optimization to design concrete structures, such as prestressed
bridges [21], retaining walls [20,22,23], bridge piers [24] and building structures [25,26].
The results establish a direct relationship between the final cost of the structure and the
CO; emissions associated with its construction. The optimization of precast girder bridges
carried out by Yepes et al. [27] concludes that a reduction of EUR 1 in the final cost of the
bridge equals the avoidance of emitting 1.74 kg of CO,.

The use of the reinforced concrete precast hinged frames (RCPHF), considered in the
present study, is widely extended in transportation infrastructures. Mainly applied as a so-
lution for the crossing of traffic lanes with the main road, these prefabricated and reinforced
concrete cast-in-place frames (RCCPF) typically cover spans between 3 and 20 m [28]. The
RCPHF is a specific type of bridge structure that is particularly suitable when there is a
low-bearing strength terrain or when the location happens to be a flood zone, something
that could lead to a higher scour risk. The structure comprises three distinct parts, the top
slab, the lateral walls and the bottom slab. The traditional design establishes the top and
bottom slab depth between 1/10 and 1/15 of the span. In the case of the sidewalls, depth is
established between 1/12 of the span and the depth considered for the slabs. In practice,
the precast structural assembly is separated into two sets, allowing its transport from the
prefabrication plant to its final site. Thus, the design of this structural typology is mainly
determined by four factors: the horizontal span (L), the required height (H), the earth cover
(HE), and the height of the hinge (HH). Figure 1 shows a graphic representation of the
structural typology considered in this context.

The design optimization of RCCPF with similar characteristics obtains high-quality
results [29,30]. However, there happens to be a lack of further development in the study
of RCPHF applying current methodologies. The modular nature of precast structures, in
conjunction with the greater quality and continuity of the prefabricated products when
compared to cast-in-place structures, supports the relevance of studying the RCPHF as a
better solution for transportation infrastructures [31-33]. In this context, the present study
aims to optimize materials used to fabricate the RCPHF by applying three metaheuristic
algorithms. In addition, a comparison between the optimized RCPHF and a reference
RCCPF is carried out. The applied methodology consists of the initial development of
proprietary software for stress calculation, structural and limits compliance verification
and subsequent optimization through the application of heuristic algorithms. Once devel-
oped, the software is used to study the economic optimization of the RCPHF by applying
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simulated annealing, threshold accepting and old bachelor’s acceptance algorithms. By
doing so, the present study solves the lack of existing development, bettering the current
knowledge and obtaining a series of practical recommendations applicable to the design
of RCPHEF. By comparing the precast and cast-in-place options, the study provides a com-
prehensive overview of the characteristics of each typology and the environmental impact
associated with each. In addition, the software developed improves the application of
heuristic techniques, allowing the further study of other relevant typologies of the study
field while maintaining reasonable computational costs.
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Figure 1. Parameters of the RCPHF considered in the optimization problem.

2. Optimization Problem and Computational Model Definition

The combinatorial optimization problem developed in the present study consists of
the economic optimization of RCPHF. Generally, an optimization problem aims to minimize
the value of a specific objective function while satisfying a series of previously established
constraints [34]. In this context, the present optimization considers the final cost of the
frame, calculated according to Equation (1), as the objective function of the problem. The
evaluation consists of the direct calculation of the product of each material’s unit cost c;
multiplied by the quantity used of each of the materials m;. In addition, based on the
aforementioned need to design structures that incur lower environmental impact, the CO,
emissions associated with each design are evaluated by means of Equation (2). In this
equation, similarly to the final cost, total CO, emissions are calculated as the product of the
emissions associated with each material ¢; multiplied by the quantity used of each of those
materials m;. The values considered both in the evaluation of the objective function and the
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calculation of the associated CO, emissions are summarized in Table 1. These were obtained
from the Construction Technology Institute of Catalonia by the BEDEC database [35]. The
RCPHEF design is subject to compliance with the requirements established by the standard
regulations [36-38]. These, added to a series of technical considerations necessary for the
complete verification of the RCPHE, are expressed in general terms through Equation (3).

C(x) =) ci-mi(X) @
i=1

E(R) = Y e mi() @

R(¥) <0 3)

Table 1. Unit cost and associated CO, emissions values [35].

Unit Material Unit Cost (€) Associated CO, Emissions (kg)
m3 C25/30 Concrete 88.86 256.66

m3 C30/37 Concrete 97.80 277.72

m? C35/45 Concrete 101.83 278.04

m3 C40/50 Concrete 104.83 278.04

kg B 400 S 1.40 0.70

kg B 500 S 1.42 0.70

Once the general principles of the considered optimization problem have been de-
tailed, the next step is the complete definition of the problem. This consists of considering,
modelling and correctly defining the RCPHF parameters, variables and constraints. The
parameters are magnitudes whose values are fixed throughout the optimization process.
Constituted by known information, the value of the parameters is not subject to optimiza-
tion. In conjunction with the parameters, the variables allow the complete definition of the
considered structure. The set formed by the different values that the variables can adopt
throughout the optimization process is the so-called solution space of the problem. Finally,
the set of parameters and variables that define the design must comply with a series of
constraints. As stated previously, these must ensure that the optimal design represents
reality, meets the structural requirements and verifies the standard limit states [36,37].
The following sections are dedicated to the description and complete definition of each
component for the considered optimization problem.

2.1. Parameters

Starting with the parameters considered, it is relevant to reiterate that in conjunction
with the variables these must provide all the information required to define the designed
structure completely. Thus, the parameters considered in the present study must define the
geometric characteristics of the frame, the acting actions and safety coefficients, ambient
conditions and any other characteristic whose definition is necessary for the structural
calculation and verification process.

There are three main geometrical parameters, consisting of the horizontal free span
(L), the vertical free height (H), and the height at which the hinge is located (HH). In
addition, following the standard process, the calculation is made per linear meter. Thus,
all of the sections are one meter thick. In relation to the passive reinforcement of the
structure, a series of parameters must be defined in order to establish the arrangement of
the shear reinforcement (SR1-2), as well as the lengths of the corner reinforcement (CR1-4)
and the negative bending reinforcement in the upper slab of the RCPHF (BR1). Due to
the symmetrical nature of the structure, it is possible to completely define the passive
reinforcement design by parameterizing one of its halves. Then, the other half is defined
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by considering the equivalent values. The complete set of parameters mentioned above,
together with the designation established for each, is represented in Figure 1.

Additionally, it is necessary to establish various parameters related to the acting loads.
One of the most determining considerations in the design of the considered structural
typology is the depth of the earth cover above the RCPHF (HE). In this context, the first of
the following parameters to define corresponds to this magnitude, and the value considered
is 1.5 m. In addition, it is necessary to establish the specific weight of reinforced concrete
and earth backfill, a material for which it is also necessary to define the ballast coefficient
and the internal friction angle. Several parameters related to the standard regulations are
also necessary. In the present study, the standard forms the regulatory basis for the acting
loads, the environmental exposure directly related to the passive reinforcement cover and
the load combination factor and material partial safety coefficients [36-38]. The global set
of parameters and the values established for the optimization are presented in Table 2.

Table 2. Main parameters considered in the RCPHF optimization.

Geometrical parameters

Free height (m) H 5
Horizontal span (m) L 10
Hinge height (m) HH 3
Earth cover (m) HE 1.50
Lower corner reinforcement length (m) CR1 2
CR3 2
Upper corner reinforcement length (m) CR2 15
CR4 3
Upper slab shear reinforcement length (m) SR1 3
Lower slab shear reinforcement length (m) SR2 2
Upper slab flexural reinforcement length (m) BR1 5
Loading parameters
Earth specific weight (kN/m?) YE 20
Reinforced concrete specific weight (kN/m?3) Y 25
Earth internal friction angle (°) IF 30
Coefficient of active earth pressure Ka 0.33
Coefficient of resting earth pressure Kr 0.50
Heavy traffic vehicle load (kN/ m3) TL 150
Heavy traffic vehicle load length (m) TLL 1.20
Uniform overload (kN/m?3) uo 10
Ballast coefficient (MN/m?) Bg 10
Economic and CO; emissions parameters
Unit costs (€) Ci Table 1
Exposure-related parameters
Exposure class XC2
Legislative-related parameters
Standard regulations CEN [36,37]/MFOM [38]
Code considerations MFOM [28]

Adequately representing reality is complex. Thus, the mathematical modelling of the
design process of RCPHF is an intrinsically complicated task. In this context, it is relevant
to mention that during the modelling process of the problem it is necessary to make several
hypotheses regarding the described parameters. First, based on the prefabricated nature,
added to the consideration that sufficient expansion joints are present, it is possible to
disregard the rheological effects and thermal actions. Furthermore, the magnitude of the
foundation’s differential settlement is also disregarded. It is also considered that the frame’s
location is a non-seismic zone, so the possible effect of the seismic actions can be neglected
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within the scope of the present study. Finally, common-use Spanish recommendations are

considered to assess the overload associated with the Marston Effect and a heavy vehicle
load [28,38].

2.2. Variables

Once the parameters are detailed, this section focuses on defining the variables. A
total of 31 design variables are considered in the economic optimization of the RCPHE.
These include three geometrical variables that define the depth of the upper slab (Dyjs),
the bottom slab (Dpg) and the lateral walls (D). Two variables relate to the concrete and
passive reinforcement material grades, and a set composed of the remaining 26 variables
relates to the passive reinforcement configuration. This set, represented in Figure 2, allows
the complete definition of the passive reinforcement design corresponding to the diameter
and number of bars of the longitudinal reinforcement and the diameter and branch spacing
of the shear reinforcement of the structure.

J0 i

E

S
E
(i}
E
]

Drw

Drs
E
©

Rio
Figure 2. Set of variables considered in the RCPHF optimization problem.

It is relevant to note that each of the optimization variables is discretized. The variables
corresponding to the width of the slabs and lateral walls can adopt values every two
centimetres within the stipulated range. In addition, the shear reinforcement branches can
take spacing values every five centimetres within the limit values. The diameter of the
passive reinforcement can vary along the standard’s values between 10 and 35 mm, and
the number of bars can be any integer within the defined range. In this context, the set
of variables considered, together with the number of values they can adopt during the
optimization process of the frame and the limit values established, are listed in Table 3.
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Table 3. Variables cosidered in the optimization problem.

Geometrical Variables Num. Values Range Values
Upper slab depth (m) Dys 41 0.40 to 1.20
Lower slab depth (m) Drs 41 0.40 to 1.20
Lateral walls depth (m) Drw 41 0.40 to 1.20
Materials variables
Concrete grade (MPa) C 4 25 to 40
Steel grade (MPa) S 2 400 or 500
Passive reinforcement variables
Flexural reinforcement Ry (mm) PR, 6 10 to 32
(bars) 1R, 9 4t012
Flexural reinforcement R, (mm) PR, 6 10 to 32
(bars) 1R, 9 4to12
Flexural reinforcement Rj (mm) ®r, 6 10 to 32
(bars) MR, 9 4to12
Flexural reinforcement Ry (mm) PR, 6 10 to 32
(bars) nR, 9 4t012
Flexural reinforcement Rj (mm) PRs 6 10 to 32
(bars) 1R 9 4to012
Flexural reinforcement Ry (mm) PRg 6 10 to 32
(bars) 1Rg 10 3to12
Flexural reinforcement Ry (mm) PR, 6 10 to 32
(bars) ng, 9 4t012
Flexural reinforcement Rg (mm) Prg 6 10 to 32
(bars) MRy 9 4to12
Flexural reinforcement Rg (mm) PRy 6 10 to 32
(bars) 1Ry 9 4t012
Flexural reinforcement R (mm) PRyo 6 10 to 32
(bars) MRy, 10 3to12
Flexural reinforcement Rqq (mm) Ory, 6 10 to 32
(bars) nRy, 10 3to12
Shear reinforcement Rq, (mm) PRy, 7 8 to 32
(m) SRy 7 0.10 to 0.40
Shear reinforcement Rq3 (mm) PR3 7 8 to 32
(m) SRy3 7 0.10 to 0.40

2.3. Constraints

As mentioned in Section 2, the structure object of the optimization process must
comply with a series of constraints represented by Equation (3). In the case of the RCPHF,
the considerations to be taken into account are those established by the regulations [36,37].
In addition, the Spanish recommendations were considered [28,38]. The constraints can be
broadly classified into two separate groups. The first corresponds to the Ultimate Limit
States (ULS), and the second one to the Service Limit States (SLS). The ULS are constraints
that must ensure the structural resistance and integrity of the frame when it is under stress
incurred by the acting loads. The SLS are responsible for ensuring the correct serviceability
of the structure during its service life. A step prior to the verification of the ULS and SLS
compliance is the calculation of the RCPHF stress and displacements. A two-dimensional
model of the frame has been considered for the linear elastic analysis of the structure.

Employing the traditional design process, the passive reinforcement is initially defined
so that the flexural ULS are verified. Then, the cracking SLS compliance is checked, and
the shear reinforcement is sized to verify the shear ULS without modifying the defined
flexural reinforcement. This procedure leads to structural designs that comply with the
standard and are structurally sound. However, these do not make optimal use of the
required materials. In this context, the proposed combinatorial optimization does not
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contemplate the frame’s passive reinforcement design under traditional criteria. This
raises considerations such as eliminating or significantly reducing shear reinforcement
to be replaced by localized increases in flexural reinforcement. Such considerations can
lead to non-traditional designs with reduced costs and lower environmental impact in
terms of associated CO, emissions, something relevant to the sustainability considerations
presented in Section 1.

In the present study, the initial verification consists of the compliance of the shear ULS
by comparison with the compression and tensile exhaustion limit values. This process also
includes calculating the tensile stress increase in the flexural reinforcement derived from
the shear stress. This increase is then considered by applying the proportional offset to
the bending moment law, appropriately increasing the magnitude of the bending moment
in each affected section. The next step consists of the verification of the flexural ULS. In
order to do so, the calculation of the interaction diagram of each of the study sections is
carried out. After doing so, it is verified that the point defined by the acting axial force
and bending moment is located within this diagram. Once the flexural ULS is verified,
the cracking SLS is checked by calculating the crack opening and comparing it with the
maximum standard value for the environmental conditions. Next, the deformed state of
the structure is checked by limiting the maximum displacement in the central section of the
upper slab to 1/250 times the horizontal span. In addition, compliance with the minimum
amounts of longitudinal and shear reinforcement is verified, as well as the reinforcement
for cracking control. Due to the consideration of a two-dimensional analysis, which does
not allow the study of the transversal stresses, the transversal reinforcement is calculated
as a result of the longitudinal design, complying with the minimum standard values.

The verification process is carried out by means of the developed software, which
considers a model consisting of 40 members and nodes. The stresses of the RCPHF are
calculated, and then the geometric and constraints are checked. After the verification, the
software provides results regarding the material measurements, final cost, associated CO,
emissions and a series of structural verification coefficients. These represent the relation
between the stress associated with the acting loads (As) and the resistant limit of the
structure (R;), which corresponds to Equation (4).

S 59 )

If all the verification coefficients are greater or equal to one, the RCPHF verifies the
required ULS, SLS, minimum and maximum reinforcement amounts and the necessary
geometrical checks.

2.4. Computational Model

The developed software obtains the deflections and internal stresses of the structure
by applying the displacement method. This method consists of the solution of the matrix
Equation (5).

[F| = [K] - U] + [Fo 5)

The procedure starts with the complete definition of the structure’s stiffness matrix K.
This is obtained by assembling each member’s stiffness matrices according to their position
in the model, considering the member’s characteristics at both end nodes. The term Fy
represents the perfect embedding forces vector, while U corresponds to the structure’s
displacements vector. The product of the stiffness matrix and the displacement vector,
subsequently adding the perfect embedding forces vector, allows obtaining the structure’s
internal forces vector F.

The internal stress vector is calculated for each of the RCPHF load cases. After-
wards, based on the linear elastic hypothesis, it is possible to apply the superposition
principle. This way, the load stresses are combined to obtain the complete set of design
stress envelopes.
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3. Methodology

The three metaheuristic techniques applied to solve the optimization problem are sim-
ulated annealing, threshold accepting and old bachelor’s acceptance. These are algorithms
with relatively simplistic operating principles that allow the resolution of complex combi-
natorial optimization problems. While obtaining high-quality solutions, these techniques
cannot ensure convergence to the global optimum of the considered problem.

Based on the local search principle, the algorithms start from a randomly generated
initial solution to which a previously established movement is applied to generate a new
solution within the neighbourhood of the current one. The value of the objective function
is evaluated and compared with the current one. In case of improvement, when compared
to the current solution, the new solution is accepted directly. However, the interesting
feature of the three techniques applied in the present study is the ability to accept solutions
that worsen the current one. This is performed according to an established criterion
specific to each metaheuristic algorithm. This criterion can be probabilistic, as in the case
of simulated annealing, or deterministic, as in the case of threshold accepting and old
bachelor’s acceptance algorithms. This way, premature convergence to low-quality optima
can be avoided, allowing the algorithm to explore the solution space thoroughly.

In the present study, due to the number of design variables and the set of values that
each of them can adopt during the optimization process, the solution space has a dimension
of 2.1 x 10%. The magnitude of this solution space makes it feasible to state that a complete
exploration does not conform to a possible way to improve the design of the considered
structural typology. In this context, thanks to the aforementioned ability to converge to
high-quality optimums while maintaining adequate computational costs, metaheuristic
algorithms are an excellent tool for solving combinatorial optimization problems with
similar characteristics [15].

3.1. Simulated Annealing Algorithm

Turning to the details of the algorithms applied, the first is simulated annealing, SA
henceforth. First proposed by Kirkpatrick et al. [39], the SA algorithm operates based on
the physical modifications at a microstructural level that the materials undergo during
the thermal annealing process. In this process, the materials are subjected to a high initial
temperature and then cooled slowly at a cooling coefficient rate. In the beginning, the
material presents configurations with high internal energy. However, during the cooling,
the microstructure undergoes a series of modifications in search of the fundamental state,
a stable crystallization state with the lowest internal energy associated. Thus, during the
cooling, the material passes through crystallization states with decreasing internal energies.
This process is governed by the Boltzmann energetic Equation (6).

e~ (AE/T) (6)

In this equation, AE is the energy increment of the new configuration, and T is the tem-
perature at that time of the process. In this context, the SA algorithm resembles each of the
combinatorial optimization problem’s feasible solutions with the different crystallization
states of the material. Thus, the value of the objective function for each of these solutions is
equated to the internal energy associated with that particular crystallization state.

The algorithm’s operation, represented in the flowchart corresponding to Figure 3,
parts from a randomly generated initial feasible solution Sy for which the objective function,
f(So), is evaluated. A new solution, Sy, is then generated by applying a movement, and
its objective function value, f(S1), is then evaluated. This movement consists in varying
the magnitude of a certain number of the variables defining the current solution. Those
solutions that present a lower cost than the current one are accepted directly. In the case
of presenting a cost that involves a worsening of the current solutions, new solutions are
accepted when the Boltzmann equation presents a value greater than a randomly generated
value between 0 and 1. After this, the feasibility of the new solutions is evaluated by
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verifying compliance with the imposed constraints. If a feasible solution is found, the
new solution, S1, becomes the current solution, Sy. This process is repeated at a constant
temperature for a specific number of iterations, denoted as Markov’s chain. After the
completion of Markov’s chain, the temperature of the problem is geometrically reduced by
applying the cooling coefficient k.

RCPHF parameters assignement
Metaheuristic parameters assignement

'

Initial feasible solution Sy
Final cost evaluation f(Sp)
Temperature 7' = 0.05 - f(So)

|

Temperature establishment procedure Tj
Iterations i =1

i=1i+1

Movement Sy to Sy

{

New final cost evaluation f(S7)

‘

Boltzmann evaluation B = e~ (AE/T)
Random value generation R en U(0,1)

Y
<

i=0 ¢,

Constraints verification Sy

Yes

No

Stopping criterion

Figure 3. Flowchart of the simulated annealing (SA) process.
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The algorithm’s evolution and exploration of the solution space are highly conditioned
by the correct establishment of the complete set of parameters that define it. In the case of
the initial temperature, the approach proposed in Medina [40] is considered since it has
proved to function in a correct manner in previous studies of similar characteristics [20,23].
The optimization process finishes once the temperature of the problem is equivalent to a
small percentage of the initial temperature or when, during a certain number of consecutive
Markov chains, a new solution that improves the current one is not found.

The quality of the results obtained by applying the SA algorithm in the resolution of
the combinatorial optimization problems of similar characteristics to the one considered
in the present study directly depends on the correct calibration and definition of the
metaheuristic parameters [21]. Thus, in order to achieve adequate performance, nine
different metaheuristics are developed. These result from combining Markov chains
between 500 and 5000 iterations and cooling coefficients between 0.80 and 0.95. Based on
the results obtained in studies with similar characteristics, a maximum number of five
Markov chains in which the new solutions do not improve the current ones is established
as a stopping criterion. In addition, a minimum temperature equivalent to 5% of the initial
temperature of the problem is set as a termination criterion.

Figure 4 represents the RCPHF cost evolution for a generic execution of the developed
SA algorithm. It shows the process of setting the initial temperature, the exploration of
the solution space, as well as the intensification phase, where the algorithm studies the
high-quality optimum towards which it has converged.

— Cost (€) Temperature (°)

12,000 600

11,000

10,000 =00

9000 200 &
8000 o
@ =
= 7000 300 B
§ 2
© 6000 £

5000 200 &

4000 100

3000

2000 0

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000

Iterations
Figure 4. Simulated annealing trajectory for the cost and temperature as a function of iterations.

3.2. Threshold Accepting Algorithm

The threshold acceptance algorithm, TA henceforth, is the second of the metaheuristics
applied in resolving the problem. Developed by Dueck and Scheuer [41] as an alternative
to the SA, the TA presents a similar operation to the one described for SA. The TA algorithm
starts with a randomly generated initial feasible solution Sy for which the value of the
objective function is evaluated. After this, a new solution is generated by applying a move,
and the value of the objective function f(S;) is evaluated. If it presents a lower cost, it
is directly accepted. Otherwise, the new solution is accepted if the cost increase, when
compared to the current one, is smaller than a certain threshold. The feasibility of the
new solution is then evaluated and accepted as the current solution if the imposed set of
constraints is verified. This process is repeated for the same threshold for a given number
of iterations called chain, after which the threshold is geometrically reduced at a rate of
the threshold reduction coefficient [34,42]. It can be noted that the SA and TA algorithms
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operation is quite similar, differing in the fact that the acceptance criterion of the SA is
probabilistic, while the TA is deterministic. The detailed operation of the developed TA can
be seen in the flowchart presented in Figure 5.

TA start

RCPHF parameters assignement
Metaheuristic parameters assignement

|

Initial feasible solution Sy
Final cost evaluation f(Sp)
Threshold T = 0.005 - f(So)

|

Threshold establishment procedure T
Iterations i = 1

1=1i+1

|

Movement Sy to Sy

{

New final cost evaluation f(S7)

|

Difference evaluation A = f(S1) — f(So)
@ No

Yes
i=0 )

Constraints verification S

T=k-T —— No
A

Yes

v

So =51

= *
Yes

No

>

Stopping criterion

Yes

Figure 5. Flowchart of the threshold accepting (TA) process.
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Similar to the SA algorithm, nine different metaheuristics are created, combining
chain lengths between 500 and 5000 iterations and threshold reduction coefficients between
0.8 and 0.95. In addition, stop and termination criteria analogous to those detailed for the
SA algorithm are established. Figure 6 shows a generic cost evolution for the programmed
TA algorithm. This clearly distinguishes the initial threshold setting phase, followed by
the exploration phase, where the algorithm evaluates RCHPC designs with fundamentally
different characteristics thanks to the fact that its capacity to accept solutions that worsen
the current one is relatively high at that time. Finally, the intensification phase is initiated
towards a high-quality optimum.

— Cost (€) Threshold (€)
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S 400 8
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5000 300
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0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000
Iterations

Figure 6. Threshold accepting trajectory for the cost and temperature as a function of iterations.

3.3. Old Bachelor’s Acceptance Algorithm

The third and last of the metaheuristic techniques applied in the present study is the
so-called old bachelor’s acceptance algorithm, hereafter referred to as OBA. The OBA is
a modified version of the TA algorithm described in Section 3.2. Instead of starting with
a relatively high initial threshold that geometrically decreases over time, Hu et al. [43]
proposed a modified algorithm which starts with a null threshold that then decreases
or increases according to the acceptance or rejection of new solutions [44]. This quality
allows the OBA algorithm to interweave exploration and intensification phases, which
can be particularly interesting in problems of specific characteristics. In this context, the
operation of the programmed OBA can be seen in Figure 7. The algorithm starts with
a randomly generated initial feasible solution Sy for which the value of the objective
function is evaluated f(Sp). Then, a new solution is generated by applying a move, and
its objective function f(S7) is evaluated and compared with the current one. If the new
solution improves the current solution or worsens it by a magnitude below the threshold at
that time, the new solution is accepted and proceeds to be verified. It is accepted as the
current solution if it is a feasible solution. Otherwise, it is rejected. In case the new solution
is of better quality than the previous one, the OBA algorithm considers that the current
region of the solution space can contain a good quality optimum. Thus, it is interesting to
start an intensification phase, which is achieved by reducing the threshold at the rate of
a pre-set variation factor A(_). This factor is applied each time the new solution is better
than the previous one. On the other hand, if the new solution worsens the current one, the
OBA considers that the current region of the space solution does not present particularly
interesting qualities. Therefore, the algorithm must explore in order to find an optimum
solution. In order to initiate the exploration phase, the threshold is increased at the variation
factor rate A( ) Unlike the described SA and TA algorithms, the OBA does not have a
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control parameter that decreases over time. Thus, the stopping criterion limits the process’s
duration by setting a maximum number of iterations (M).

OBA start

v

RCPHF parameters assignement
Metaheuristic parameters assignement

v

Initial feasible solution Sy
Final cost evaluation f(Sp)
Null initial threshold Ty = 0

|

Tterations ¢ = 1

——

i=i+1 €

v

Movement Sy to S

¢ Yes

Constraints verification Sy

No —————_ s
No
A
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v

New final cost evaluation f(S1)

'

Difference evaluation

A = f(S1) — f(So)

OBA finish
A

Y

> T =T+ A T=T-A,
f f

@ No ——>| Discard S; So =51

Yes

Figure 7. Flowchart of the old bachelor’s acceptance (OBA) process.

4. Results

Section 2 provided a comprehensive overview of the combinatorial optimization
problem posed in the present study. This includes the complete definition of the parameters,
variables, constraints and objective function of the problem. In addition, Section 3 described
the operation of the three metaheuristic techniques applied in order to solve it. This section
presents the results obtained for the economic optimization of the RCPHEF. These are referred
to as the final cost of the frame, considered as the objective function of the optimization
problem, as well as the associated CO, emissions.

4.1. SA Results

The SA algorithm, described in the previous section, starts with an initial feasible
solution that it randomly generated. In addition, it requires the definition of the metaheuris-
tic parameters, such as initial temperature, length of Markov’s chain, cooling coefficient
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and stop or termination criterion. Following the process mentioned in Section 3.1 [40], an
arbitrary temperature equivalent to five per cent of the final cost of the initial solution is set.
Then, a Markov chain is run at that temperature, and the acceptance rate of worse solutions
using the Boltzmann function is evaluated. If the said rate is below a specific lower limit,
the algorithm is “cold”. It presents no exploration capability, which is solved by doubling
the temperature and repeating the process.

On the other hand, if the acceptance rate exceeds an upper limit, the SA algorithm is
too “hot”, which can lead to the loss of interesting solution qualities. To overcome this, the
temperature is halved, and another Markov chain is run. This initial temperature-setting
process is repeated until the acceptance rate is between 20% and 40%, at which point
the initial temperature of the problem is fixed. Nine heuristics are used with Markov
chain lengths of 500, 1000 and 5000 iterations and cooling coefficients of 0.80, 0.90 and
0.95. Two stopping criteria are established, the first is to terminate the process when the
temperature reaches 5% of the initial temperature. Furthermore, the second is to terminate
if, after five consecutive Markov chains, no solution of higher quality than the current one
has been generated.

Table 4 presents the costs and associated CO, emissions and average and minimum
values, obtained by each of the applied SA algorithms. In addition, the specific parameters
of each of the metaheuristics are detailed.

The minimum values obtained by each of the nine metaheuristics are represented in
Figure 8 as a function of the computation cost. The best result regarding the final cost of
the RCPHF was obtained by applying the metaheuristic SA9. With a Markov chain length
of 5000 iterations and a cooling coefficient of 0.95, this SA algorithm provides a feasible
optimal solution with a final cost of EUR 3863.84 per linear meter. Generally, it can be noted
that the SA algorithms with longer chain lengths manage to reach the best quality solutions.
However, it is interesting to assess to what extent the computational cost associated with
such lengths compensates for reductions in the final cost that may not be sufficiently large.

4500 6000
4400 ™® 5800
4300 5600 z
.2
200 * : 5400 5 | 2
g ¢ 2 . A < |8 g
4100 5200 ¢ O MK
) S |m m SAl
g 4000 5000 & |e & SA2
@) € A A SA3
3900 4800 (L; 0 0 SA4
3800 ™ 4600 O |© © SAS
. A<> A A SA6
3700 DA & g o A 4400  |g o A7
3600 4200 ¢ ¢ SAS
A A
3500 4000 SA9
0 50,000 100,000 150,000 200,000 250,000 300,000
Iterations

Figure 8. Minimum final cost and associated CO, emissions obtained by the SA algorithm.

Concerning the associated emissions, the optimal frame generates roughly 5.3 tons of
CO; that are emitted to the atmosphere as a result of its manufacture. With 5.24 tons of
CO,, the RCPHF design obtained with the SA7 algorithm presents slightly lower emissions.
Both this and the aforementioned design use C25/30 concrete and B 500 S steel. The main
difference is that the SA7 design presents denser reinforcement while using smaller concrete
amounts compared to the SA9 design with the lowest final cost. As stated in Section 1,
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this is somewhat to be expected since most of the associated CO, emissions originate in
cement fabrication.

Table 4. Algorithm parameters in addition to the minimum and mean final cost and associated CO,
emissions results obtained.

SA Algorithm  Markov’s Chain Tér;;};ie:il;aigl;e Iterations 1\/([:1(1)131:1:21)11 Mean Cost (€) l\élgzu?l:;? Mean CO, (kg)
SA1 500 0.80 8158 3821.57 4003.31 5831.25 6200.67
SA2 500 0.90 15,451 3755.27 3828.82 5274.81 5596.65
SA3 500 0.95 26,497 3713.99 3804.87 5463.01 5611.49
SA4 1000 0.80 15,338 3709.59 3837.97 5316.74 5667.25
SA5 1000 0.90 31,686 3761.14 3825.08 5320.67 5660.71
SA6 1000 0.95 46,246 3708.99 3810.27 5314.10 5725.23
SA7 5000 0.80 84,257 3691.30 3787.28 5241.13 5455.81
SA8 5000 0.90 138,728 3707.36 3769.21 5458.70 5585.77
SA9 5000 0.95 266,363 3683.84 3749.43 5311.64 5569.85

TA Algorithm Chain "Cl":erfefi};z;c: Iterations N?ollltn:;F Mean cost (€) l\glgzn?l:l; Mean CO; (kg)
TA1 500 0.80 7416 3805.03 3984.38 5663.23 6080.31
TA2 500 0.90 14,517 3675.73 3873.48 5268.30 5747.97
TA3 500 0.95 25,376 3719.86 3797.42 5366.11 5665.19
TA4 1000 0.80 17,857 3759.21 3854.84 5437.94 5776.78
TA5 1000 0.90 27,859 3766.73 3819.90 5476.89 5732.29
TA6 1000 0.95 27,913 3705.83 3771.47 5290.85 5672.44
TA7 5000 0.80 79,219 3682.57 3741.59 5290.80 5586.77
TA8 5000 0.90 146,111 3697.23 3762.97 529291 5648.35
TA9 5000 0.95 253,145 3678.59 3711.77 5372.34 5488.02

OBA Algorithm Iteration limit Iterations N?ol:tnzzr Mean cost (€) l\ggznﬁfg Mean CO; (kg)
OBA 500,000 48,195 3804.83 3855.26 5714.00 5637.64
OBAl 500,000 32,028 3909.94 - 5430.45 -
OBA2 500,000 48,195 3804.82 - 5714.00 -
OBA3 500,000 49,409 3808.72 - 5785.66 -
OBA4 500,000 41,295 3847.44 - 5472.21 -
OBA5 500,000 48,878 3819.64 - 5551.71 -
OBA6 500,000 15,698 3874.68 - 6000.80 -
OBA7 500,000 13,336 3830.57 - 5927.97 -
OBAS8 500,000 14,118 3866.86 - 5522.67 -
OBA9 500,000 47,809 3934.59 - 5333.26 -

4.2. TA Results

Moving on to the results obtained by applying the second metaheuristic technique,
the same procedure as the one described for the SA is considered in the definition of the
initial threshold of the TA algorithm. Using the method proposed in [40], an arbitrary
threshold equivalent to 0.5% of the final cost of the randomly generated initial feasible
solution Sy is set. Once the initial threshold is set, the TA runs a chain, and the acceptance
rate by threshold comparison is evaluated. If the rate is lower than 20%, the algorithm will
not be able to accept solutions that worsen the current one, which can lead to premature
convergence to a low-quality local optimum. In order to avoid this, the threshold is doubled
and the process restarted. On the other hand, in case the acceptance rate is above 40%, the
TA algorithm will accept solutions much worse than the current one.This is something that
could mean the loss of interesting qualities of a solution that conforms to a high-quality
optimum. To avoid this, the threshold is halved, and a new chain is run. As in the SA
algorithm, this process is repeated until the acceptance rate sits between 20% and 40%, the
moment at which the algorithm starts the optimization process. Nine different algorithms
are developed combining chain lengths of 500, 1000 and 5000 iterations and threshold
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reduction coefficients of 0.80, 0.90 and 0.95. A stopping criterion is set when the threshold
reaches 5% of the initial threshold. A termination criterion is set in case new solutions fail
to improve the current one in five consecutive chains.

Table 4 shows the minimum and average final cost and CO, associated emissions
values obtained by applying each of the TA algorithms in the economic optimization of
the RCPHE. In addition, each of the heuristic parameters that configure the algorithms is
detailed. The minimum cost values as a function of the computation cost are shown in
Figure 9.
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Figure 9. Minimum final cost and associated CO, emissions obtained by the TA algorithm.

The RCPHF with the lowest final cost was obtained by employing the TA2 algorithm.
This is particularly interesting as said TA algorithm presents a chain length of 500 iterations,
locating it in the lower bound of the chain length values. The optimum frame has a final
cost of EUR 3675.73 and results in the emission of 5268 kg of CO, into the atmosphere. In
this case, the RCPHF with the lowest final cost also happens to be the one that incurs the
most negligible CO, emissions. This shows that in most cases minimal cost matches with
the lowest CO, associated emission values.

It is of particular relevance to note that with an associated computational cost consid-
erably higher than the TA2 algorithm the TA9 metaheuristic manages to achieve a slightly
higher final cost design. This, together with other observations concerning the performance
of each of the designed algorithms and the particular characteristics of the optimal RCPHF
are detailed in the discussion of the results.

4.3. OBA Results

This section focuses on the results obtained through the third and last of the meta-
heuristic techniques applied in the economic optimization of the RCPHFE. As stated in
Section 3.3, the OBA algorithm starts with a randomly generated initial feasible solution
and an initial threshold equivalent to zero. After this, depending on the acceptance or rejec-
tion of new solutions, the threshold varies at the rate of the variation coefficients. In the case
of acceptance, the threshold is decreased by A(_), and in the case of rejection, the threshold
is increased by A (. The initial implementation of the OBA algorithm considered a single
magnitude equivalent to five monetary units for both of the variation coefficients. However,
initial runs of the OBA algorithm showed an apparent lack of convergence to good quality
optima. An initial study of the process noted that this was a direct consequence of the high
exploration capability of the algorithm since the threshold increased excessively when a
new solution was rejected. This negatively affected the OBA’s capability to initiate appro-
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priate intensification phases. In order to overcome this lack of convergence, differentiated
values for the variation coefficients A(_) and A ) were considered, maintaining the EUR 5
coefficient A(_) while limiting the A to one-fifth of its previous value. This modification
in the metaheuristic’s parameters manages to sufficiently limit the exploration capability
of the OBA algorithm, allowing it to enter prolonged intensification phases and study
high-quality solutions.

Once tuned, considering a termination criterion of 500,000 iterations, the OBA algo-
rithm is applied nine different times, obtaining the results presented in Table 4. These
results encompass the minimum and average final cost and associated CO, emission val-
ues obtained by applying each of the nine OBA algorithms. In this context, Figure 10
shows the evolution of the final cost obtained by each OBA algorithm as a function of the
computational cost associated with obtaining each of these optimal RCPHF designs.
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Figure 10. Minimum final cost and associated computational cost for each of the OBA algorithm runs.

The optimum RCPHEF presents a final cost of EUR 3804.83 per linear meter, incurring
5.7 tons of CO, emission into the atmosphere. The optimal design reached by the OBA
algorithm presents a slightly higher final cost than those obtained by the SA and TA
algorithms. Although the OBA design might indeed be able to improve traditional designs
used for the considered structural typology, it is interesting to evaluate which of the
metaheuristics applied achieves the best results. This, together with other considerations,
is detailed in the following section.

5. Discussion

This section discusses the results obtained by applying each of the three metaheuristic
techniques described in Section 3 to the combinatorial optimization problem detailed in
Section 2. Thus, Table 5 summarises the final costs and associated CO, emissions obtained
as a result of the RCPHF economic optimization developed in the present study. In addition,
some of the most relevant characteristics of the RCPHE, such as the upper slab and lateral
wall depths and the upper slab flexural reinforcement area are presented.

Considering the unit costs shown in Table 1, a reference RCCPF with the same hori-
zontal span, height and earth cover as the RCPHF considered in the present study presents
a final cost of EUR 4867 .4 per linear meter [30,35]. This means that the algorithms applied
in solving the economic optimization achieve reductions of 24.32% in the case of the SA,
24.49% in the TA algorithm and 21.75% by applying the OBA algorithm. In addition, the
cast-in-place frame would incur the emission of 7608.97 kg of CO, to the atmosphere, a
considerably higher value when compared with the proposed modular structure.
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Table 5. Summary of the reference and the SA, TA and OBA algorithms results.

Reference SA TA OBA
Final cost (€) 4867.64 3683.84  3675.73  3804.83
Associated CO, emissions (kg) 7608.97 5311.64  5268.30  5714.00
Upper slab depth (m) 0.75 0.82 0.82 0.86
Lateral walls depth (m) 0.44 0.40 0.40 0.46
Upper slab flexural reinforcement (mm?)  4785.50 2827.43  2827.43  2412.74
Final cost reduction (%) - 24.32 24.49 21.75
Associated CO, emissions reduction (%) - 30.19 30.76 24.90

As stated in Section 1, the main fundament behind the economic optimization of the
RCPHEF is the fact that the final cost is a direct representation of the use of materials. Thus,
it also provides a comprehensive representation of the associated CO, emissions. In this
context, reducing EUR 1 in the final cost of the RCPHF using the SA algorithm allows
for avoiding the emission of 1.94 kg of CO,. This corresponds with the avoidance of a
1.96 kg CO; per euro reduction for the TA and 1.72 CO, kg per euro in the case of the OBA
algorithm. This is in line with values presented in studies of similar characteristics [20].

Regarding the characteristics of the frames, the RCPHF designs present upper slabs of
slightly greater depth when compared to the reference RCCPF. This solves the localized
reduction of the flexural reinforcement of the upper slab, an area which is considerably
more significant in the traditional cast-in-place design. In the case of the designs obtained
by the TA and SA algorithms, the lateral walls are four centimetres slimmer than the
cast-in-place reference. However, in the case of the OBA algorithm, the lateral walls present
slightly greater depth, being two centimetres greater than the cast-in-place reference frame
and a notable six centimetres greater than the TA and SA results.

It is particularly relevant to evaluate the performance of the applied metaheuristic tech-
niques. In this context, it is especially interesting to understand that each of the algorithms
cannot be evaluated by considering only the final cost of the optimal framework achieved
via its application in the resolution of the economic optimization. Thus, given the nature
of the metaheuristic techniques, it is especially interesting to evaluate the computational
cost associated with obtaining each of these optimal solutions. As stated before, algorithms
with longer chains seem to achieve better solutions for the SA algorithm, something similar
happening with the TA, even though the minimum cost is achieved using the shorter chain
length. However, it is crucial to understand whether the increase in computational cost
associated with the higher bounds of such parameters is compensated by the difference in
cost compared to other optimal solutions with much lower computational costs. In this
context, Figure 11 represents the Pareto front of the combinatorial optimization problem.
This corresponds to the union of each of the algorithms that conform to a Pareto optimum
when considering the RCPHEF final cost and the associated computational cost. In order to
be considered so, the algorithm must provide a solution with a restrained final cost while
maintaining adequate computational cost. In this context, it can be noted that part of the SA
algorithms sit close to the front. However, it is highly conditioned by the TA2 algorithm due
to the fact that it obtains a high-quality solution with quite a low computational cost. On
the other hand, the OBA algorithm sits considerably far from the area of interest because,
considering the computational cost, it does not achieve optimums of sufficient quality that
justify its application when compared with the SA or TA algorithms.
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Figure 11. Pareto’s front of the results obtained by the three metaheuristic techniques.

The optimal RCPHF obtained by applying the metaheuristic algorithms present several
common characteristics. In this context, Table 6 contains the value of each of the different
design variables of the optimal frames. It can be noted that the set of optimal RCPHF is
characterized by slender sections of reduced depth with a dense passive reinforcement
distribution. With reinforcement densities of 91 kg/m? in the case of the SA algorithm
result, 89.12 kg/m3 for the TA and 86.01 kg/m? in the case of the OBA. Some optimal
designs present localized reductions in shear reinforcement, a lack solved by local increases
in flexural reinforcement. The passive reinforcement density of the OBA algorithm result is
slightly lower than those obtained by applying the rest of the considered metaheuristics.
This reduction in the general passive reinforcement of the RCPHEF is solved by increasing
the upper slab and lateral wall depth. This results in using 6.75% and 5.68% more concrete
when compared to the optimal RCPHF obtained by the SA and TA algorithms, respectively.

Table 6. Characteristics of the optimum RCPHF obtained by each metaheuristic technique.

Geometrical Variables SA TA OBA
Upper slab depth (m) Dirs 0.82 0.82 0.86
Lower slab depth (m) Dis 0.40 0.42 0.46
Lateral walls depth (m) Diw 0.40 0.40 0.46
Materials variables
Concrete grade (MPa) C 25 25 25
Steel grade (MPa) S 500 500 500
Passive reinforcement variables
Flexural reinforcement Ry (mm) ¢R, 16 12 16
(bars) nR, 7 12 6
Flexural reinforcement R, (mm) PR, 12 10 16
(bars) 1R, 7 10 4
Flexural reinforcement Rj3 (mm) PR, 10 10 12
(bars) NR, 8 8 7
Flexural reinforcement Ry (mm) PR, 16 16 20
(bars) nR, 7 7 4
Flexural reinforcement Rj (mm) PRs 20 20 25
(bars) 1R 9 9 6
Flexural reinforcement Rg (mm) PR, 20 20 16

(bars) NRg 9 9 12
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Table 6. Cont.

Geometrical Variables SA TA OBA
Flexural reinforcement Ry (mm) PR, 12 16 12
(bars) 1R, 11 6 7
Flexural reinforcement Rg (mm) Prq 20 20 16
(bars) NRg 5 5 8
Flexural reinforcement Rg (mm) PR, 10 10 10
(bars) 1R, 4 4 5
Flexural reinforcement Rqg (mm) Ry 12 12 12
(bars) MRy 8 8 7
Flexural reinforcement Rq; (mm) PRy, 10 10 12
(bars) nRy, 4 4 7
Shear reinforcement Rqp (mm) Ry, 32 20 32
(m) SRy, 0.35 0.15 0.40
Shear reinforcement Rq3 (mm) PR3 10 10 8
(m) SRy3 0.35 0.35 0.40

6. Conclusions

In the present study, three metaheuristic techniques were applied to solve the final

cost optimization of reinforced concrete hinged precast frames. The study’s main objective
is to improve and extend the current knowledge on this structural typology as a substitute
for the traditional cast-in-place reinforced concrete frames. This is achieved by evaluating
the CO, emissions associated with the optimal designs obtained under restrictive budgets.
In this context, the authors consider it appropriate to draw the following conclusions:

The TA and SA algorithms generate designs with very similar characteristics, achieving
the lowest costs and associated CO, emissions. Reductions of EUR 1 in the final cost
for a reference cast-in-place frame are equivalent to the avoidance of emitting 1.94,
1.96 and 1.72 kg of CO, in the case of SA, TA and OBA algorithms, respectively;
Optimizing the final cost of a precast structure conforms to a suitable methodology
aiming to reduce the use of materials. Thus, economic optimization allows the reduc-
tion of associated CO, emissions. Economic interest drives the industry, making this
an especially interesting approach to optimal design;

Optimal RCPHF designs present thin sections with reduced depths compared to
traditional designs. This is solved with particularly dense passive reinforcement
designs, which reach up to 91 kg/m?, 89.12 kg/m? and 86.01 kg/m? for the SA, TA
and OBA algorithms, respectively;

The optimal design with the lowest final cost obtained by the OBA algorithm presents
a slightly lower passive reinforcement density than those obtained by applying the SA
and TA. Upper slab and lateral wall sections with greater depths compensate for these
reductions. Consequently, the final cost of the frame and the associated CO, emissions
are higher than other optimal designs;

The reduction in the use of materials from restricting the RCPHF final cost results in
designs with lower self-weight. This also reduces the associated loads, limiting the
structural requirements, which allows optimal use of the concrete and steel;

The SA and TA algorithms found optimal design solutions where the values of the
lateral walls and bottom slab take the minimum bound of the established range
which may denote interest in slender designs. This is limited by the constructability
conditions imposed. However, the study of this event is an avenue for improvement
that will be considered in subsequent studies;

The prefabrication of the considered structural typology conforms to a way of improve-
ment in the use of natural resources when compared to the cast-in-place alternative. A
complete study of the Life Cycle Assessment (LCA) of both structures and a parametric
study conforms to a line of research under current development.
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Abbreviations

The following abbreviations are used in this manuscript:

RCPHF  Reinforced Concrete Precast Hinged Frame
RCCPF  Reinforced Concrete Cast in Place Frame

ULS Ultimate Limit State
SLS Service Limit State
LCA Life Cycle Assessment
SA Simulated Annealing
TA Threshold Accepting
OBA Old Bachelor’s Acceptance
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