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We present an explicit construction of a unitary representation of the commutator algebra satisfied
by position and momentum operators on the Moyal plane.

1. Introduction

There has been a lot of activity recently around physics on noncommutative spaces (for
reviews see, e.g., [1, 2] and references therein). Quite naturally, this has been accompanied
by research into the foundations of quantum mechanics on noncommutative spaces. As was
already the case in the early days of quantummechanics, one key question is how to represent
the symmetry algebra of the problem under consideration. The symmetry algebra encodes
the kinematics, regardless of the dynamics. Classically the kinematics is summarised by the
Poisson brackets {qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij , while quantum-mechanically the latter
become commutators for the operators Qi, Pj ,

[
Qi,Qj

]
= 0,

[
Pi, Pj

]
= 0,

[
Qi, Pj

]
= i�δij . (1.1)
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A celebrated theorem of Stone and von Neumann [3] establishes that all unitary rep-
resentations of the commutator algebra (1.1) are unitarily equivalent to that given by
(complex infinite-dimensional, separable) Hilbert space, with position operators Qi acting
multiplicatively on the wavefunctions and momentum operators Pj acting by differentiation
of the same wavefunctions.

When space becomes noncommutative, the commutators [Qi,Qj] = 0 develop nonzero
terms on their right-hand sides. For simplicity let us restrict our attention to the 2-dimensional
case. We will also assume the simplest form of noncommutativity, namely, that given by the
Moyal plane: [X, Y] = iθ1, with θ > 0. The corresponding symmetry algebra that replaces
(1.1) above is expressed in (2.1) below. Then a natural question to ask is what becomes of the
Stone-von Neumann theorem on the Moyal plane. Although this issue has been addressed in
the literature [4], here we offer an alternative viewpoint. Specifically, we provide an explicit
construction of a unitary representation of the symmetry algebra (2.1) on the Moyal plane, in
terms of noncommutative oscillator modes. This representation will be used in an approach
to quantum mechanics on the Moyal plane [5], an approach that has been demanded in
the literature [6] and developed to some extent [7–11]. The idea underlying this approach
is the following. Coordinates X, Y on the Moyal plane are actually self-adjoint operators
on Hilbert space. Now one expects quantum-mechanical wavefunctions to depend on the
space coordinates. If the latter are operators, then wavefunctions too must be operators. This
requires one to first identify a unitary representation on which X, Y , as selfadjoint operator-
valued coordinates, act and satisfy the symmetry algebra (2.1). In this paper we tackle
this problem, leaving the construction of operator-valued wavefunctions for a forthcoming
publication [5].

2. The Noncommutative Poisson-Heisenberg Algebra

2.1. The Commutator Algebra

The noncommutative plane �2
θ
is defined as the algebra of functions of two generators X,

Y satisfying the commutator [X, Y] = iθ1, with θ > 0.We regard�2
θ as a two-dimensional con-

figuration space endowed with noncommuting coordinatesX, Y . On the corresponding non-
commutative phase space �4

θ,�
we have the operators X, Y , PX , PY satisfying a commutator

algebra that we postulate to be

[X, Y] = iθ1, [X, PX] = [Y, PY ] = i�1, [PX, PY ] = [X, PY ] = [Y, PX] = 0. (2.1)

We will call the set of (2.1) the 2-dimensional, noncommutative Poisson-Heisenberg algebra. The
time variable t will be taken to commute with all generators X, Y , PX , PY . We would like
to observe that positing the above algebra amounts to positing the symplectic structure first
derived in [12]. One can then show that choosing the standard (quadratic in momentum)
Hamiltonian, the systemwill carry the so-called exoticGalilean symmetry (for a recent review
see [13]).

It has been known for long that the Bopp shift

Y �−→ Y − θ

�
PX (2.2)
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reduces the noncommutative Poisson-Heisenberg algebra (2.1) to the usual Poisson-
Heisenberg algebra in two commuting space dimensions.

2.2. Commutative Oscillator Modes

We will first construct a Hilbert-space representation for the commutator algebra (2.1), in
terms of commutative oscillator modes. This is of course trivial, but it will serve as a warmup
exercise for the construction in terms of noncommutative oscillator modes. Consider the usual
harmonic oscillator eigenstates φn in 1 dimension, where n ∈ �. The space spanned by
the φn is �2, the Hilbert space of complex, square-summable sequences. In two commuting
dimensions x, y we have the eigenstates φnm(x, y) = φn(x)φm(y). The latter form an
orthonormal basis for the Hilbert space �2 × �2. Position and momentum operators X′, Y ′,
P ′
X , P

′
Y can be defined on the space �2 × �2 as usual [14]: acting on the first index,

X′φnm :=

√
θ

2

(√
n + 1φn+1,m +

√
nφn−1,m

)
,

P ′
Xφnm :=

i�√
2θ

(√
n + 1φn+1,m −√

nφn−1,m
)
.

(2.3)

For the second index we define the action of Y ′, P ′
Y similarly, with the sole difference that the

(reverse) Bopp shift (2.2) must be taken into account:

Y ′φnm :=

√
θ

2

(√
m + 1φn,m+1 +

√
mφn,m−1

)
+
θ

�
P ′
Xφnm,

P ′
Yφnm :=

i�√
2θ

(√
m + 1φn,m+1 −

√
mφn,m−1

)
.

(2.4)

One verifies that the operators X′, Y ′, P ′
X, P

′
Y indeed satisfy the algebra (2.1). We have

denoted these operators with a prime because this representation is unsatisfactory for our
purposes. Indeed, there is nothing noncommutative about the eigenstates φnm: they are
simply those of the harmonic oscillator on the commutative plane �2 , noncommutativity
being implemented in the algebra by means of the (inverse) Bopp shift. Instead one would
like to have a representation space spanned by eigenstates ψnm of the harmonic oscillator on
the noncommutative plane �2

θ
. This will be done explicitly in Section 2.4.

2.3. Interlude

Before moving on to noncommutative oscillator modes we need to recall some elementary
facts [3]. Consider the space F of all entire functions f : � → � such that

f(z) =
∞∑

n=0

cn√
n!
zn,

∞∑

n=0
|cn|2 <∞. (2.5)
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This space is Hilbert with respect to the scalar product

〈
f | f̃

〉
:=

1
2πi

∫
dz∗ ∧ dz f∗(z)f̃(z)e−|z|

2
, (2.6)

where the asterisk denotes complex conjugation, and the integral extends over all �2 with
z = (x + iy)/

√
2. An orthonormal basis is given by the set of all complex monomials

fn(z) :=
zn√
n!
, n ∈ �. (2.7)

The space F is called Bargmann-Segal space. The fn are in 1-to-1 correspondence with the
harmonic oscillator eigenstates φn of Section 2.2.

Next consider the following variant of Bargmann-Segal space. Let us consider func-
tions g : � → � such that

g(x) =
∞∑

n=0

cn√
n!
xn,

∞∑

n=0
|cn|2 <∞, (2.8)

the cn being complex coefficients. Here our functions g are complex-valued analytic functions
of one real variable x. Call G the space of all functions satisfying (2.8). A basis for G is given
by the set of all real monomials

gn(x) :=
xn√
n!
, n ∈ �. (2.9)

We can define a scalar product on G by declaring these monomials to be orthonormal,

〈
gn | gm

〉
:= δnm, n,m ∈ �, (2.10)

and extending the above to all elements of G by complex linearity. This scalar product makes
G a complex Hilbert space. The difference with respect to Bargmann-Segal space F is that,
the functions g ∈ G depending on the real variable x instead of the complex variable z, the
scalar product on G is no longer given by (2.6), nor by its real analogue. Indeed, given any
two g, g̃ ∈ G, the analogue of (2.6) for G would be the integral

∫∞

−∞
dx g∗(x)g̃(x)e−x

2
. (2.11)

Although this integral does define a scalar product on G, this scalar product does not
make the basis (2.9) orthogonal, as one readily verifies. Therefore one, and only one, of the
following properties can be satisfied:

(i) the space G is Hilbert with respect to the scalar product (2.11), but the monomial
basis (2.9) is not orthogonal with respect to it;
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(ii) the space G is Hilbert with respect to the scalar product (2.10), and the monomial
basis (2.9) is indeed orthonormal with respect to it, but this scalar product is not
given by the integral (2.11).

This being the case, we settle in favour of condition (ii) above as our choice for the Hilbert
space G.

Finally, the construction given by (2.8)–(2.10) can be straightforwardly extended to
complex-valued, analytic functions of two real variables x, y. This will be used next.

2.4. Noncommutative Oscillator Modes

Next we construct a unitary, Hilbert-space representation for the algebra (2.1), in terms of
noncommutative oscillator modes. It will be based on the Hilbert space, just mentioned
in Section 2.3, of complex-valued, analytic functions of two real variables—but with
noncommuting, selfadjoint operators replacing the real variables.

Consider first an auxiliary copy H of the Heisenberg algebra, spanned by operators
V ,W , 1 satisfying [V,W] = iθ1, where both V andW have dimensions of length. The algebra
H is realised in the standard way: V acts on auxiliary wavefunctions h(v) by multiplication,
Vh(v) = vh(v), and W acts by differentiation,Wh(v) = −iθdh/dv. That the dimension of θ
is length squared, rather than that of an action, should not bother us, since H is an auxiliary
construct. The corresponding Hilbert space of the wavefunctions h(v), also termed auxiliary,
is L2(�,dv). This Hilbert space, however, is not the carrier space of the unitary representation
of the algebra (2.1) that we are looking for. To reiterate, the algebra [V,W] = iθ1 just
introduced, although isomorphic to the subalgebra [X, Y] = iθ1 contained in (2.1), acts on
the auxiliary space L2(�,dv) while the space on which the algebra [X, Y] = iθ1 will act is
about to be defined below.

Next let U(H) denote the universal enveloping algebra of H. By definition, U(H) is
the algebra of polynomials in the operators V , W , 1, of arbitrarily high degree, with V and
W satisfying [V,W] = iθ1. Some suitable completion of U(H), denoted U(H) and to be
constructed presently, is the space of convergent power series in V , W . We take an arbitrary
vector of U(H) to be an expression of the form

ψ(V,W) =
∞∑

n,m=0

cnm√
n!m! θn+m

V nWm, (2.12)

where the cnm are complex coefficients, such that the above series converges (in a sense to
be specified presently). The factor (θn+m)−1/2 ensures that all summands are dimensionless.
From now we will prescribe all vectors of U(H) to be normal-ordered, that is, V will always
be assumed to precedeW , if necessary by applying the commutator [V,W] = iθ1.

A basis forU(H) is given by the vectors

ψnm(V,W) =
1√

n!m! θn+m
V nWm, n,m ∈ �. (2.13)
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The simplest choice for a scalar product on U(H) is to declare the basis vectors (2.13) ortho-
normal,

〈
ψn1m1 | ψn2m2

〉
:= δn1n2δm1m2 , (2.14)

and to extend (2.14) to all ofU(H) by complex linearity. Then the squared norm of the vector
(2.12) equals

∑
nm|cnm|2:

∥
∥ψ(V,W)

∥
∥2 =

∞∑

n,m=0
|cnm|2. (2.15)

Since this norm must be finite, this identifiesU(H) as the Hilbert space of square-summable
complex sequences {cnm} in two indices n, m, the latter taken to be normal-ordered as in (2.13);
this defines the completion of U(H) referred to above. It is worthwhile to observe that,
although the vectors (2.12) are unbounded operators in their action on the auxiliary Hilbert
space L2(�,dv), the same vectors do have a finite norm as elements of theHilbert spaceU(H).
This is so because the norm of ψ(V, W) in (2.15) is being measured by means of the complex
coefficients cnm, not by means of the operator norms of V , W (themselves infinite). We will
henceforth call the ψnm of (2.13) noncommutative oscillator modes.

The Hilbert space U(H) just constructed will become the carrier space of a
representation of the algebra (2.1). For this we need to define the action of the operators
X, Y, PX, PY on the noncommutative oscillator modes (2.13). We set

Xψnm :=

√
θ

2

(√
n + 1ψn+1,m +

√
nψn−1,m

)
,

PXψnm :=
i�√
2θ

(√
n + 1ψn+1,m −√

nψn−1,m
)
.

(2.16)

For the second index we define the action of Y , PY similarly, with the sole difference that the
(reverse) Bopp shift (2.2) must be taken into account:

Yψnm :=

√
θ

2

(√
m + 1ψn,m+1 +

√
mψn,m−1

)
+
θ

�
PXψnm,

PYψnm :=
i�√
2θ

(√
m + 1ψn,m+1 −

√
mψn,m−1

)
.

(2.17)

Finally, the operators X, Y , PX , PY so defined are Hermitian and satisfy the algebra (2.1) as
desired. The above X, Y , PX , PY are distinguished notationally from the operators X′, Y ′, P ′

X ,
P ′
Y of (2.3)–(2.4) in order to stress the fact that they are actually different operators acting on

different spaces (all infinite-dimensional, complex, separable Hilbert spaces being unitarily
isomorphic, the above statement is to be understood as different realisations of Hilbert space),
even if the two sets of operators satisfy the same algebra (2.1).

It is worth pointing out that the oscillator representation given above bears a close
similarity with the one constructed in [15] from the nonrelativistic limit of anyons.
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3. Higher Dimensions

The previous results can be easily generalised to higher-dimensional Moyal spaces. Let us
outline the main results in dimension 3. Here the noncommutative Poisson-Heisenberg
algebra reads

[X, Y] = [Y,Z] = [Z,X] = iθ1, [X, PX] = [Y, PY ] = [Z, PZ] = i�1, (3.1)

all other commutators vanishing identically. For simplicity we have assumed the generators
so normalised that there is just one independent noncommutativity parameter θ. The Bopp
shift that reduces (3.1) to the standard Poisson-Heisenberg algebra is

Y �−→ Y − θ

�
PX, Z �−→ Z +

θ

�
PX − θ

�
PY . (3.2)

The algebra (3.1) contains three independent copies of the noncommutative plane. Therefore
we will need three auxiliary copies H1, H2, and H3 of the Heisenberg algebra of Section 2.4,
the jth copy having generators Vj ,Wj satisfying

[
Vj,Wj

]
= iθ1, j = 1, 2, 3. (3.3)

We convene to associate the index values j = 1, 2, 3 with the respective commutators [X, Y] =
iθ1, [Y,Z] = iθ1, and [Z,X] = iθ1, each one of which spans a copy of the Moyal plane.
Following (2.13), the noncommutative oscillator modes ψnjmj corresponding to the jth copy
of the Moyal plane are

ψnjmj :=
1

√
nj !mj !θnj+mj

V
nj
j W

my

j , nj ,mj ∈ �, j = 1, 2, 3. (3.4)

The above ψnjmj provide a complete orthonormal set for the space U(Hj). Position and
momentum operators X(1), Y (1), PX(1) , PY (1) can be defined on U(H1) as in Section 2.4; by
the same token we define the action of Y (2), Z(2), PY (2) , PZ(2) on U(H2), and the action of Z(3),
X(3), P (3)

Z , P (3)
X on U(H3).

Next consider the tensor product space

U(H1) ⊗U(H2) ⊗U(H3). (3.5)

A complete orthonormal set on this product space is given by the tensor product states

ψnm := ψn1m2 ⊗ ψn2m2 ⊗ ψn3m3 , n,m ∈ �
3 , (3.6)

where n = (n1, n2, n3) and m = (m1, m2, m3). We can extend the above position and mo-
mentum operators to act on all of U(H1) ⊗ U(H2) ⊗ U(H3) in the obvious way. Namely,
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X(1) on U(H1) is extended as X(1) �→ X(1) ⊗ 12 ⊗ 13, while Y (2) on U(H2) it is extended as
Y (2) �→ 11 ⊗ Y (2) ⊗ 13 and so forth. In this way all 3 sets of position and momentum operators

X(1), Y (1), P
(1)
X , P

(1)
Y , Y (2), Z(2), P

(2)
Y , P

(2)
Z , Z(3), X(3), P

(3)
Z , P

(3)
X , (3.7)

each one of them initially defined to act only on the correponding space U(Hj), is now
defined on the tensor product space (3.5). We will not distinguish notationally between the
operators (3.7) and their extensions to the tensor product space (3.5). On the latter we finally
define

X :=
1√
2

(
X(1) +X(3)

)
, PX :=

1√
2

(
P
(1)
X + P (3)

X

)
,

Y :=
1√
2

(
Y (1) + Y (2)

)
, PY :=

1√
2

(
P
(1)
Y + P (2)

Y

)
,

Z :=
1√
2

(
Z(2) + Z(3)

)
, PZ :=

1√
2

(
P
(2)
Z + P (3)

Z

)
.

(3.8)

One verifies that the operators (3.8), acting on the tensor product states (3.6), indeed satisfy
the algebra (3.1) as desired.

Wewould like to remark that the commutator relations (3.1) break rotation invariance.
However, the latter can be restored if the constant parameter θ is promoted to a vector-valued
function of the momentum, whenever this function is divergence-free in momentum space
[13, 16].

4. Discussion

In this paper we have constructed a unitary representation for the symmetry algebra (2.1).
This latter algebra encodes the kinematics of quantum mechanics on the Moyal plane,
regardless of whatever specific dynamics one wishes to consider. This representation has
noncommutative oscillator modes as its building blocks. Such oscillator modes are the
noncommutative analogues of ordinary harmonic oscillators on the commutative plane �2 .
We have also sketched how to generalise these noncommutative oscillator modes to higher
dimensions, provided that the space noncommutativity is always of the Heisenberg-algebra
type.

As stated in the introduction, the purpose of these noncommutative oscillator modes
is to use them in a novel approach to quantum mechanics on noncommutative spaces. This
approach does not make use of c-number valued wavefunctions that are multiplied together
by means of a star-product. Rather, one looks for operator-valued wavefunctions already
from the start [6]. Once space coordinates are operators, since wavefunctionswill be functions
of the coordinates, wavefunctions themselves will become operator-valued. The analysis
carried out here is a necessary first step towards that goal.

Looking beyond, a feature of emergent phenomena is that they arise as some
form of coarse-grained, or thermodynamical, description of some microscopic physics that
one does not have complete control of [17]. This much is true in general, and also of
quantum mechanics in particular [18–21], even before introducing noncommutativity. Now
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space noncommutativity also introduces a form of coarse graining, due to the existence
of the quantum of area θ—not on phase space, but on configuration space. In this sense,
noncommutative quantum mechanics also falls within the category of emergent physics.
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