Document downloaded from:

http://hdl.handle.net/10251/191294
This paper must be cited as:

Tuzov, |.; Andreu, P.; Medina, L.; Picornell-Sanjuan, T.; Robles Martinez, A.; L6pez

Rodriguez, PJ.; Flich Cardo, J.... (2021). Improving the Robustness of Redundant Execution
with Register File Randomization. IEEE. 1-9.

https://doi.org/10.1109/ICCAD51958.2021.9643466

The final publication is available at

https://doi.org/10.1109/ICCAD51958.2021.9643466

Copyright |EgE

Additional Information

Improving the Robustness of Redundant Execution
with Register File Randomization

Ilya Tuzov, Pablo Andreu, Laura Medina, Tomas Picornell,
Antonio Robles, Pedro Lopez, Jose Flich and Carles Hernandez
DISCA, Universitat Politécnica de Valencia, Campus de Vera s/n, 46022, Spain
tuil@disca.upv.es, pabance@upv.es, laumecha@upv.es, tompic @ gap.upv.es,
arobles@disca.upv.es, plopez@disca.upv.es, jflich@disca.upv.es, carherlu@upv.es

Abstract—Staggered Redundant execution (SRE) is a fault-
tolerance mechanism that has been widely deployed in the context
of safety-critical applications. SRE not only protects the system in
the presence of faults but also helps relaxing safety requirements
of individual elements. However, in this paper, we show that
SRE does not effectively protect the system against a wide range
of faults and thus, new mechanisms to increase the diversity of
homogeneous cores are needed. In this paper, we propose Register
File Randomization (RFR), a low-cost diversity mechanism that
significantly increases the robustness of homogeneous multicores
in front of common-cause faults (CCFs) and register file wearout.
Our results show that RFR completely removes the failure rate
for register file CCFs for certain workloads and reduces by a
factor of 5X the impact of stress related register file aging for
the workloads analysed. Our implementation requires less than
50 RTL lines of code and the area (FPGA logic) overhead of RFR
is less than 0.2% of a 64-bit RISC-V core FPGA implementation.

Keywords—RISC-V, common cause failures, staggering, aging

I. INTRODUCTION

Multicore platforms are usually the primary option to
cope with the huge computational power demands of fully
autonomous safety-critical systems. However, these high-
complexity computing platforms find difficulties to achieve
the most stringent certification requirements imposed by func-
tional safety standards [1]. Achieving safety certification re-
quires ensuring functional and temporal correctness in the
most stringent yet plausible situations.

Redundant execution (RE) is a fault-tolerant mechanism
that has been widely deployed in the context of safety-
critical applications. RE not only protects the system in the
presence of faults but also helps relaxing safety requirements
of individual elements. For the latter, some form of diversity
has to be implemented in the multicore to meet independence
requirements. Staggered Redundant execution (SRE) is the
most common approach to achieve diversity. SRE can be
implemented by hardware or software means. In hardware,
staggering is usually implemented using lockstep execution.
Examples of lockstep processors are the ST microelectronics
SPC56XL70 [2] and the Tricore [3] chips. In COTS multi-
cores, SRE can be regarded as inherent property in systems of
very high-complexity [4] or can be achieved by appropriately
delaying and monitoring the execution of redundant tasks [5].

Unfortunately, as we show in this paper, SRE does not
protect the system in front of common-cause faults (CCFs)

that do not have a transient nature. For instance, faults that are
a consequence of manufacturing defects that escape the diag-
nostic coverage of in place safety mechanisms or faults that
originate due to the wearout of the devices are not effectively
protected with SRE. Thus, new means are required to increase
the diversity in homogeneously designed computing devices.
In this context, we propose a new safety mechanisms that
improves the robustness of redundant execution in multicore
platforms. The proposed mechanism performs a Register File
Randomization (RFR) that increases the robustness of homo-
geneous multicores by improving the protection against CCFs
affecting the register-file. In particular, we make the following
contributions:

« We design the RFR mechanism and define how to design
efficient randomizer circuits.

o We tailor the RFR mechanism to a particular processor
design and implement it in a RTL description of this 64-
bit RISC-V core CPU.

« We analyse the effectiveness of SRE in front of CCFs
originated in the register file of a 64-bit RISC-V core
pipeline in a triple-modular redundancy (TMR) setup.

o We evaluate the effectiveness of RFR to protect the
system from CCFs affecting the register file, the benefits
provide by RFR in the wearout of the register file, and
the overheads incurred by the proposed implementation.

The rest of the paper is organized as follows. Section II
introduces the necessary background on safety critical systems
and relevant fault models. Section III describes our RFR
proposal. RFR is evaluated in Section IV. Finally, Section V
surveys the related research and conclusions are drawn in
Section VI

II. BACKGROUND

A. Functional Safety Certification Challenges

Safety-critical systems have to go through a certification
process to show they adhere to the requirements imposed
by functional safety standards. Functional safety standards
exist for different domain applications and impose different
constraints to the development of electronic equipment. In
the context of autonomous applications, the more relevant
safety standards are the Road vehicles — Functional safety

(IS026262 [6]) and the Functional Safety of Electrical/Elec-
tronic/Programmable Electronic Safety-related Systems (IEC-
61508) [7].

Both ISO26262 and IEC-61508 define safety integrity levels
(SILs or Automotive SILs for ISO26262) representing the
risk that can be associated to a specific system functionality.
The higher the SIL the more measures have to be taken to
avoid the possibility of hazardous situations. Enabling safety-
relevant systems to operate autonomously requires the core
functionalities of those systems to achieve the highest SIL [§]
because autonomy, at least in transportation systems, generally
defeats the possibility of transitioning to a safe state. The
implications of this in the design of autonomous systems is
huge, since complexity has been usually avoided in critical
applications [9].

B. SIL Decomposition

Achieving ASIL-D -assuming ISO26262 nomenclature—
requires reaching diagnostic coverage values and failure rates
that are generally beyond of what can be achieved for complex
CPU cores with state of the practice tools and methodolo-
gies [10]. Thus, to achieve the highest ASILs (e.g., ASIL-
D or ASIL-C), practitioners rely on the properties of SIL
decomposition [10]. SIL decomposition is a mechanism that
allows to split the functionalities of a system and attribute each
of them a given criticality level. To apply SIL decomposition
functionalities with a given SIL must be independent. With
SIL decomposition, one can relax criticality requirements of
individual CPU cores employing redundancy if these cores are
shown to operate on an independent manner. In practical terms,
independent functioning translates into the ability to exhibit
different behaviour (a.k.a diversity) in presence of common-
cause faults (CCFs). CCFs are those faults that can affect
replicas of a system similarly and have the potential to cause
erroneous outputs of a circuit replica to get undetected.

C. Diverse Redundancy

Truly diverse CPU cores can only be achieved when these
elements are designed on an independent manner. For instance,
cores are diverse when using different ISAs or completely
different microarchitectural implementations. However, in the
majority of systems, the cost of developing, verifying, and
validating such electronics equipment devices is not negligible.
The cost of implementing a fully diverse CPU core roughly
multiplies by N the development costs of a N-modular redun-
dancy system. Therefore, designing fully diverse CPU cores
becomes unpractical.

The most common approach to implement diversity is
lockstep execution. Dual-core lockstep (DCLS) processors
are widely deployed in automotive applications and have
been shown compatible with ASIL-D requirements in certain
applications [3], [2]. In DCLS sytems, the leading and trailing
cores will, by construction, never execute the same instructions
at the same time. Thus, transient common-cause faults (e.g.,
voltage drops) affecting the system will not produce the same
erroneous behaviour in each of the replicas. Additionally,

in the physical implementation process, the layout of these
functionally identical cores can be slightly modified (e.g.,
implementing rotation) to increase the coverage of faults
related to the physical implementation.

D. Fault Models

As explained above, DCLS provides diversity for transient
faults and has the potential to tolerate certain types of manu-
facturing defects when implementing diversity at the physical
implementation level too [11]. However, for the latter it is not
clear to what extent the current diversity techniques will be
effective in future manufacturing processes targeting smaller
technology nodes. Note that for complex systems incorporat-
ing small technology nodes, the lack of defect models data,
the coverage limits of testing [12], and the amplified impact of
aging [13] pose serious difficulties to the reliability modeling
of such systems.

In general, as the complexity of cores increases and node
technology shrink down, the effectiveness of the diversity
means provided by DCLS systems might not suffice [14].
Thus, new techniques increasing the diversity of the CPU cores
are required. These new techniques must consider not only
random transient fault effects but also systematic effects that
appear repeatedly in the same device structures [15] and the
correlation effects occurring in neighbouring cells [16].

CCFs affecting register file structures are especially critical
for the robustness of multi-core systems, as it is evinced
in [17]. Despite register files occupy relatively small area in
modern processors, they have very high access rate, and their
faults are rapidly propagated across the whole system [18].

III. REGISTER FILE RANDOMIZATION

In this section we describe the Register File Randomization
(RFR) mechanism proposed in this paper, its implementation
in a RTL RISC-V core description, and the increased robust-
ness properties it provides.

A. Architectural Modifications

RFR is a low-cost technique that increases the robustness of
SRE. The goal of this technique is to dynamically modify the
physical register file access pattern by using a randomization
mechanism. We distinguish the architectural (or logical) from
the physical register file entry. This randomization mechanism
allows us to have different register file mappings (i.e modify-
ing the binding from the logical register to the the particular
physical register entry) so that systematic faults affecting the
register file structures can be detected with SRE. In particular,
RFR combines the index bits required to access the register file
with the core ID and a random value to generate a randomized
index to access register file contents.

RFR modifies the access to the register file by keeping the
remaining parts of the core unaltered. These modifications are
needed in each of the SoC cores. The architectural view of the
RFR mechanism is depicted in Figure 1. As shown in the plot,
RFR does only require the introduction of a hashing circuit
at the register file input to randomize the indexes to access

(r) randkey[4:0] (c) core_id[2:0]

(x) Hashing circuit (r)

(H) physical
RF index [4:0]

Core
pipeline

logical .
RF ind%ex [4:0] Register file

00000=>11011
00001=>01010
00010=>11000

Fig. 1. Architectural modifications needed to implement RFR

the register file. Additionally, RFR needs to have access to
the core ID bits, which are usually available at several core
structures, and requires having a random number generator
able to provide a new key value every time the system is
reset. The rest of the core remains unaltered. Random number
generators are already included in several SoC designs [19]
or can be added to the SoC at a very low cost [20]. Another
possibility is to compute the random value as part of the boot
up process. Note that, in our case, a pseudo random number
generator is sufficient to achieve the randomization properties
needed by RFR.

B. Randomizer Design

The hashing function to randomize the register index must
fullfill the following requirements:

o (R1) The resulting register mapping (randomization) must
be different at each core in the SoC (i.e. the same
architectural register is mapped to a different physical
register at each core).

« (R2) Every physical register is assigned to one and only
one architectural register (i.e. there are no collisions in
the mapping).

« (R3) At a given core, each physical register can be chosen
for mapping with equal probability.

R1 is required to ensure diversity and it is fullfilled if the
hash function takes into account not only the architectural
register index but also a different key at each core. This can
be easily accomplished with a key computed as a function of
core ID.

R2 is mandatory, as mapping several architectural registers
to the same physical register is obviously incorrect. It is
fullfilled if the hash function maps each element of the output
set to exactly one element of the input set (i.e, the hash
function is injective). As the cardinal of the input and output
set is the same (i.e. the register index has the same number of
bits), the hash function should be bijective.

R3 guarantees that the utilization of the registers is as
uniform as possible during the lifetime of the device. It is
fulfilled if the hash function considers a random key as an
input.

Formally, the hashing function H obtains the physical
register p from three inputs: the index of the architectural
register z, a random key value r, and the core ID c.

Different valid hashing functions could be used. For the
sake of implementation simplicity, we propose using a hashing
function based on the bitwise XOR function. Bitwise XOR

has been widely used for hashing, reducing conflict misses in
caches [21] , branch predictors [22] and routing algorithms
[23]. In particular, the hashing function obtains the physical
register p by bitwise xoring the index of the architectural
register x with a key value k:

p=H(z,k)=x2dk

The key value k depends on a random key value r and the
core ID ¢, and is computed by using also a bitwise XOR, as
follows:

k=7® D(c)

where D is a function that computes a hash key as function
of core ID. This function could be as simple as the identity.
However, we propose using a function that tries to maximize
the Hamming distance among computed keys. This enforces
diversity and randomization. By using this approach, we min-
imize the possibility of not capturing systematic error patterns
in neighbouring or adjacent registers [16]. It is noteworthy to
mention that, as the number of cores in the system increases,
the effect of randomization decreases (due to the reduced
Hamming distance among the keys). However, this can be
easily solved by clustering groups of cores in a manycore,
and reusing IDs between them, since redundancy is usually
employed between a limited number of cores (e.g., three
modular redundant system).

The random key 7 is computed every time the system is reset
and is the same for all cores in the SoC. Using a different key
value after each reset guarantees R3. On the other hand, the
key value k = r® D(c) leads to a different value at each core,
as r is the same for all cores but D(c) is obviously different
at each core, thus fulfilling R1. Finally, the physical register
is computed by using a bitwise XOR function (p = = @ k),
which is bijective, thus fulfilling R2.

Notice that the number of bits of the register index p and
x, the random key value r and the result of D(c) (c is the
core ID) should be the same. In practice, this means that the
number of architectural registers will determine the number of
bits to use. With the 32 typical register file size, 5 bits will
be used. Therefore, a 5-bit random key is required and, most
important, D(c) range is limited to 32. This limit should not
be a problem, since, as explained above, the amount of cores
used to implement redundancy is limited. For large SoCs, cores
can be clustered into smaller groups, and IDs reused using the
least significant bits of the actual core ID.

Figure 2 shows a detailed view of the randomizer circuit.
As shown in the plot, the implementation is very simple. The
random key value r is computed once per system reset and
the D(c) function is fixed. Therefore, the key & could be
precomputed and stored in a system special purpose register.
In addition, this key is bitwise xored with the logical register
index x to obtain the physical register index p. At the end,
only a two-input XOR gate is required at the address input of
the register file. Although this may lead to a slight increase
(a 2-input XOR gate delay) in the register file access time, it

(r): randkey[4:0] (c): core_id[2:0]

4
0=>"10101" 4=>"01111" |5
1=>"01011" 5=>"10000" g
2=>"10110" 6=>"11011" 2
3=>"01101" 7=>"00100" | 8
| -
D(c): hashkey[4:0] Register File
(K): key[4:0] 32x64 bit
/.
—(x): read_index_1[4:0] ——— %p[‘kﬂ]—v@l
Dual-issue —(x): read_index_2[4:0] ———— p[4:0]—>@|
NOEL-V .
pipeline —(x): read_index_3[4:0] 7j>—17[4-0]—'@|
() read_index_4[4:0] ———————) -0/~ read port 4]
—(x): write_index_1[4:0] ji>—p[4:0]_’@l
—(x): write_index_2[4:0] PI#0F @I

Fig. 2. Hash circuit design. Inputs are architectural register
Index, core ID and a random key

should not be a problem unless it is in the critical path, which
is not usually the case. Notice, though, that the implementation
shown corresponds to a 6-port register file (see below).

The RFR (randomizer) circuit itself can be protected against
faults by means of the common TMR scheme. Nevertheless,
given that RFR is deployed in a system that already imple-
ments a diverse redundancy (SRE), such additional protection
of RFR circuit would be usually unnecessary.

C. Robustness Improvement

RFR improves the robustness in two main aspects. First, it
allows to correct or detect common-cause faults originated in
the register file by modifying the effective physical location of
registers in the different core replicas. Notice that common-
cause faults are more likely to affect the same physical
register since core replicas are implemented using the same
SRAM macrocells and usually have the same layout structure.
Additionally, in the absence of RFR, the same register entries
are stressed with very similar activity patterns. Specially, when
they are devoted to implement SRE.

Second, RFR also mitigates the effect of wearout in the
layout due to stress by uniformizing the utilization of regis-
ter file cells. Generally, Application Binary Interface (ABI)
and programs impose specific usages to registers that make
them to be unevenly utilized. Additionally, in the context
of critical systems, workloads are usually repetitive, which
exacerbates more this uneven distribution effect. By using the
RFR technique proposed in this paper, all registers are used
uniformly, which reduces the impact of aging effects that have
a direct dependency on the utilization, such as the hot carrier
injection (HCI) [24] or time-dependent dielectric breakdown
(TDDB) [25].

D. RFR implementation in the NOEL-V SoC

We have implemented RFR in the NOEL-V RV64 core
to validate the mechanism properties and the possibility to
bring it to a real design. NOEL-V is a processor designed
by Cobham Gaisler. The RTL description of the NOEL-V
core is open-source (GPLv2) and can be downloaded from the

Cobham Gaisler website [26]. The 64-bit RISC-V ISA defines
32 integer and general purpose 64-bit registers and 32 64-bit
floating point registers. Thus, 5 bits are required to index both
the general purpose integer and floating point register files.

On the other hand, NOEL-V core uses a 7-stage pipeline.
Register file access is located at the 3rd stage of pipeline. As
stages 1°¢ and 5 are devoted to instruction and data cache
access, respectively, they will incur in a higher delay and these
stages will likely to be the in critical path. Thus, the slight
increase in register access time due to the RFR should not have
any impact in clock cycle. Indeed, as the core is dual-issue,
up to 4 registers can be read and 2 registers can be written
every clock cycle. This means that the RFR mechanism must
be applied on a per read and write port basis. However, the
circuitry related to the computation of the key (k = r@® D(c)))
will be shared among all ports.

Figure 2 shows the implementation of RFR in NOEL-V.
To implement RFR we take the core ID bits (¢) from hindex
parameter (a read-only register). For the random 5-bit key
(r) we have implemented a pseudo random number generator
(PRNG) that uses a linear-feedback shift register as described
in [20]. The bits of the PRNG are kept constant and only
modified after a system reset to ensure the consistency of
register file data. The hash obtained from the core ID (D(c))
is bitwise xored with the random key (r) to obtain the key
value k bits. Thus, the k£ key is computed once after system
reset and it is stored in a special purpose register. This value is
bitwise xored with the architectural register index z to obtain
the physical index p. As the register file has 4 read and 2 write
ports, randomization has to be performed at each address port.

An special case arises when applying the RFR mechanism
to RISC-V architecture. RISC-V (and other) ISA specification
defines one architectural register to be read-only and hardwired
to zero. In particular, the “x0” is a dedicated zero register. We
can deal with this issue in two ways. First, we can ignore
that special case at the RFR mechanism, thus putting the
complexity in the core pipeline and register file design. The
register file must be aware of which index maps to register x0
to avoid writes and keep the guaranteed zero value.

Another solution is to consider the special mapping at the
RFR level. The hashing function should do nothing when
applied to x0 (i.e, architectural register 00000 will be mapped
to physical register 00000). As stated above, as the hash
function must be bijective, this implies that the architectural
register that the hash function originally map to 00000 should
now return a different value. The only valid (or available)
one is precisely the value the mapping originally returned to
architectural register x0. Formally, to deal with this case, the
hash function is defined as follows:

0 ifx=0
p=H(z, k)= k ife==k
z @k otherwise
Notice that this solution, while simpler, has the problem

that one architectural register (i.e. register with index k) will
not be randomized, thus only partially fulfilling R1 and R3

AXI Memory
It)
Kernel exec. o> RES-0 |—| %D
| E
‘ (REST) = &
| £
|
| 5 } §
Core-2 | { Kernel exec. }—D‘ RES-2 }—=
—5—»

Fig. 3. NOEL-V multicore assembly under study

TABLE 1. Details of the considered workloads

Duration

Workload Description under 6=0
(clock cycles)
Matmult ~ Matrix multiplication adapted from MiBench-automotive suite 3800
AES AES-256 encryption adapted from Tiny-AES 18800
Dijkstra Adapted Fom Mibenchmerworkiag ouite 12400
CRC Cyclic redundancy check from Malardalen WCET suite 1500
Qsort Quick sort based on stdlib 15000

Binary search within an array of key-value structures

Heavily modified version of bs from Malardalen WCET suite 3400

BinarySearch

FIR Finite impulse response filter adapted from Malardalen WCET

suite without major modifications 3600

requirements. In this paper, we have opt for this simple
solution. This has the advantage of avoiding the need to
introduce deeper modifications to the RTL code which would
require re-verification of the whole integer pipeline.

The NOEL-V core amounts a total of 12473 lines of code
whereas our modifications, without considering the PRNG
external module, incur in only 46 lines of code concentrated
in only 2 files. The PRNG is a simple module and in our
particular implementation we required only 22 lines of code.

IV. EXPERIMENTAL EVALUATION

A. Platform Setup

As stated above, we have implemented the proposed RFR
mechanism in the NOEL-V [26] processor from Cobham
Gaisler. NOEL-V is an open-source core that implements a 64-
bit RISC-V core [27] with the integer, floating point, atomics
and multiply and divide extensions (a.k.a IMAFD).

To evaluate our proposal, we use the multicore configuration
of NOEL-V to implement a triple-modular redundant system.
Diverse redundancy in this system is achieved by means of
staggered execution (using only software means). As work-
loads we have selected seven benchmark programs detailed in
Table 1. These benchmarks are adapted from MiBench [28],
Malardalen WCET [29] and Tiny-AES [30] suites to operate in
a multicore configuration in which each benchmark is executed
in three cores simultaneously. The execution of the workload
(kernel) in each core can be delayed by a configurable number
of clock cycles proportional to core ID (§ X ¢). In this case
study, three different inter-core delays have been tested under
6 =0, = 100 and § = 1000. The processing results of
each workload are stored in the form of a linear array in the

dedicated area of AXI memory. Figure 3 shows further details
regarding the TMR design under study.

To evaluate the robustness improvement attainable by means
of proposed RFR mechanism we perform two different exper-
iments.

The first experiment relies on simulation-based fault injec-
tion (SBFI) to evaluate the robustness improvement of the
design under test (DUT) in front of CCFs. Using custom
publicly available SBFI tool [31] we performed 5000 SBFI
tests per each combination of seven considered workloads with
three different staggering delays 9.

The faultload is represented by transient faults (bit-flips)
simultaneously affecting register files of three NOELV cores.
Bit-flips are uniformly sampled in time (any time instant
during workload execution) and space (any of 32x64 Register
File (RF) bits). Each fault sampled for one of the cores is
simultaneously injected into the same RF bit of the rest of
NOEL-V cores. The classification of experimental outcome in
each SBFI test comprises two steps. First, the fault effect is
determined for each individual NOEL-V core, being it either a
match (masked or latent fault) if the core has stored the correct
results to its dedicated memory area, or a failure otherwise
(incorrect/absent results). Second, the results produced by each
core are voted attending to the TMR scheme, and compared
to the reference results (obtained during fault-free simulation),
being registered as either TMR match, or TMR failure.

For the comparison purposes, the same SBFI test has been
also performed for the DUT with disabled RFR mechanism.
SBFI experiments have been executed on a HPC cluster, using
150 parallel simulation processes. The total execution time to
perform the scheduled 210 thousands of SBFI runs amounted
to roughly 50 hours.

The second test performs simulation-based profiling of RF
accesses in each NOEL-V core to evaluate the uniformity of
registers utilization under the enabled and disabled RFR mech-
anism. As previously explained, this uniformity is considered
as one of the indicators of RF wearout intensity. In each of
1000 tests, a new random key is generated, the workloads
are simulated and the number of read and write accesses to
each register is traced. Remember that each RF has four read
ports and two write ports, since NOEL-V implements dual-
issue pipeline. For the simplicity of subsequent analysis, all
accesses to these ports are aggregated on a per-register basis,
i.e. producing a number of reads and number of writes metric
for each physical register.

B. Robustness Evaluation

The results of SBFI experiment for the original DUT (with
disabled RFR mechanism) are summarized in Fig. 4-a. As it
can be seen, the failure rate of each individual NOEL-V core
ranges between 1% (CRC workload) and 6% (Qsort work-
load). An important observation regarding the original model
is that staggered execution provided rather marginal robustness
improvement for the TMR assembly. Indeed, a noticeable
reduction of TMR failure rate (in comparison with individual
cores) is observed only in four cases (out of 21): Matmult

[Core-0
Failure rate (%)

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

6=0

8 =100 CLK o A

6=1000 CLK

6=0

6 =100 CLK

6 =1000 CLK

6=0

6 =100 CLK

6 =1000 CLK

‘ 3. AES-256 ‘ 2. DIKSTRA ‘ 1. MATMULT

4. CRC

‘ 5. QSORT

6. BINARY_SEARCH

6 =100 CLK

7.FIR

6 =1000 CLK

@ Core-1

ECore-2 METMR

Failure rate (%)

1.00 2.00 3.00 4.00 5.00 6.00 7.00

1. MATMULT

2. DIJKSTRA

6 =100 CLK

3. AES-256

6 =1000 CLK

6=0

6 =100 CLK

4. CRC

6 =1000 CLK

5. QSORT

6. BINARY_SEARCH

6 =100 CLK

7.FIR

6 =1000 CLK

(a)

(b)

Fig. 4. Failure rate of individual NOEL cores and TMR assembly under staggered execution: (a) register randomization disabled,
(b) register randomization enabled. Error bars represent sampling error for 95% confidence.

with high inter-core delay (6 = 1000), CRC with medium
and high delay (6 = 100 and 6 = 1000), and Binary_Search
with high inter-core delay. These results indicate that staggered
execution is rather inefficient for protecting the DUT against
CCFs in the register file, even under the increasing inter-core
delays. This may be explained by the very high criticality of
some RF registers, i.e. bit-flips affecting these registers cause
a processor core to fail independently of fault injection time.

The results of SBFI experiment for the DUT protected by
RFR mechanism are summarized in Fig. 4-b. As it can be
seen, enabling RFR leads to significant reduction of TMR
failure rate in all cases. More precisely, this robustness gain
ranges between 2X (Qsort) and 10X (Matmult, Binary search).
Furthermore, in some cases, the TMR was able to tolerate
all injected CCFs. In particular, no TMR failures has been
observed in five cases: CRC (6 = 0, § = 1000), Binary_Search

(6 =0, 6 =1000), FIR (6 = 0). This robustness improvement
can be explained by mapping the critical logical registers to
different physical registers in each core, which lowers the
probability of CCF to cause simultaneous failure of several
NOEL-V cores.

The results of RF profiling experiment are summarized
in Fig. 5. As it can be seen from Fig. 5-a, in the original
DUT six consecutive registers (x// to x/6) have dominating
access rate, which exceeds the access rate of the rest of
registers by an order of magnitude. In the RISC-V ABI,
this range of registers corresponds to function arguments.
This uneven distribution of registers utilization is especially
pronounced in case of write transactions. The peak access
rate (8 millions of read/write transactions in 1000 consecutive
workload executions) is measured for x/4 and x/5. While
the access rate of x3 and x4 is close to zero. In the RISC-

@mRead OWrite

31
30
29
28
27
26
25
24
23
22
21
20

% 19
T 18
£ 17
5 16
@ 15
‘B0 14]
213
12
11
B — —
9 E0
8 I
7 B0
[—
5
4
3
2 &4
1 m , , , ,
— T T T T
0 2000 4000 6000 8000
Register File transactions (thousands)
(@

@mRead OWrite

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11

=N WA U N

ﬂ

500 1000 1500
Register File transactions (thousands)

(b)

o

2000

Fig. 5. Amount of read and write operations (total of all tested workloads) measured for each RF register in a sequence of
1000 tests: (a) RF randomization disabled, (b) RF randomization enabled

V ABI, these registers are the global and the thread pointer,
respectively.

As it can be seen from the Fig. 5-b, after enabling the
RFR mechanism, the RF accesses become distributed much
more evenly. The resulting access rate of all registers ranges
between 1.4 and 1.7 millions of read/write transactions per
1000 workload executions (remember that a new random key is
generated in each execution). In such a way, RFR mechanism
not only equalizes the the relative criticality of physical RF
registers, but also reduces the absolute stress suffered by RF, as
the maximum access rate per register is reduced from 8 x 10°
per 1000 workload runs to just 1.7 x 10,

Finally, in the original system some logical registers have
much higher access rates than the rest of the registers (as
shown in Fig. 5-a), which leads to increased electrical stress
of corresponding physical registers. In the instrumented system
(with RFR mechanism) these logical registers periodically
become remapped onto different physical registers, allowing
to equalize the electrical stress suffered by each register, and
thus to extend the overall device lifetime.

Fig. 6 illustrates the relative lifetime improvement, com-
puted as the ratio between the access rate of most active
register in the original system, and the access rate of most
active register in the RFR-instrumented system. As it can
be seen, in our case study, enabling RFR reduces the stress
of physical registers (improves RF lifetime) from 4.7 times
(CRC) to 7.4 times (binary search).

C. Overhead Analysis

Both original and RFR-instrumented NOEL-V designs have
been synthesized and implemented (as a part of a custom SoC)

FIR .
BINARY_SEARCH |
QSORT
CRC s
AES I~
DIKSTRA .
MATMULT .

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Lifetime improvement factor

Fig. 6. Lifetime improvement factor resulting from equalized
FR utilization

TABLE II. Utilization of LUTs in the original and RFR-
instrumented SoC

Core-0 Core-1 Core-2 Core-3 SoC
Original SoC 17501 17915 17889 18150 198536
RFR-instrumented SoC 17576 17164 18623 17786 198865

onto a Virtex UltraScale+ FPGA (device part xcvu9pfiga2104-
2L), by means of Vivado 2019.1 suite. The SoC is composed
of 4 cores (although our TMR system only uses 3 cores).
According to the logic utilization and timing reports generated
by Vivado, our implementation of RFR doesn’t introduce
noticeable overhead neither on utilization of FPGA resources,
nor on timing properties (critical paths).

The precise utilization of LUTs in original and RFR-
instrumented SoC is listed in Table II. As it can be seen,
the difference between the FPGA resources employed by
each core using the same implementation is higher than the

area overheads of RFR which makes difficult to quantify its
(negligible) impact on area overheads. These minor differences
in used FPGA resources among the cores can be attributed to
logic optimizations [32] applied by Vivado on cross-boundary
basis, such as resource sharing, LUT combining, retiming, etc.
On the other hand, the entire RFR-instrumented SoC utilizes
329 more LUTs than the original SoC, which translates into
less than 0.2% of utilization overhead.

The area overheads of a potential ASIC implementation of
RFR can also be regarded as negligible. The RFR hashing
circuit for the considered DUT would require the following
macrocells: 60 XNOR gates, 12 AND gates, 30 MUX2 gates,
35 XOR gates, and 15 Flip-Flops. Remember that we remove
the delay of xoring the random key and the hash function of
the core ID by storing the result in a dedicated register. Thus,
the resulting delay of the hashing circuit would be equal to
a chain of three logic gates: one XNOR, one AND, and one
MUX2.

V. RELATED WORK

Register file errors can be supported by using error cor-
rection codes (ECC) or parity. The Intel Montecito [33]
implements parity in the register file. Implementing parity
incurs in little overheads, but requires software support to
recover from errors. On the contrary, the utilization of ECC
involves higher costs, but enables the automatic correction
of faults. In the context of processors operating in harsh
environments (e.g., the space domain), Single Error Correction
Dual Error Detection (SEC-DED) can be applied to protect the
register file contents. This is the case of the LEON SPARC
core implemented in the NGMP multicore CPU [34], the
Jetson NVIDIA platform or the Infineon AURIX processor [3].
Unfortunately, the simple protection of memory structures and
interconnects is not enough to achieve the stringent robustness
requirements imposed by the highest criticality fail-operational
applications (e.g ASIL-D autonomous systems). In these very
complex systems, dual or triple modular diverse redundancy
is additionally required to achieve the target failure metrics
imposed by domain-specific safety standards [8].

Several works have been proposed to achieve diverse re-
dundant execution in multicores. Lockstep multicore designs
implementing the sphere of replication at the on-chip bus
(ak.a light-lockstep) are very well known and have been
deployed [3], [2] or proposed [11] in the context of automo-
tive ASIL-D and ASIL-C applications. For COTS platforms,
software solutions to achieve diverse redundant execution have
also been proposed for multicores [5] and GPUs [35], and de-
ployed in industrial domains [36]. In all these works, diversity
is principally achieved by implementing SRE. However, SRE
does not effectively protect the systems for CCFs that do not
exhibit a transient behaviour (e.g., the ones originated in the
register file due to wearout or systematic defects). As long
as small technology nodes (e.g., 7nm) are deployed in safety-
related areas, the introduction of new diversity techniques to
cope with increasing fault rates becomes mandatory [13].

Several mechanisms to protect SRAM structures from
wearout processes have been also proposed in the literature
for CPUs [37] and GPUs [38]. These mechanisms target bias
temperature instability (NBTI) wearout effects and thus, are
orthogonal to our proposal. Likewise, work in [39] evinces
that balancing RF utilization in MIPS processors alleviates
the NBTI-related RF wearout. The impact of randomized
cache designs in HCI-related wearout effects have also been
proposed in [40]. Similarly as our mechanism does, random-
ized cache designs distribute cache accesses uniformily across
the different cache sets, reducing the impact of the HCI-
related degradation. Interestingly, randomized cache designs
—although not evaluated yet— do also have the potential to
improve the diversity of homogenous core designs.

VI. CONCLUSIONS

Mitigation of common-cause faults (CCFs) becomes an
important concern in the design of resilient systems. As it has
been experimentally shown in this paper, staggered redundant
execution is rather inefficient for protecting multicore proces-
sors against CCFs. On the one hand, this is due to the very high
criticality of core processor structures (such as register file),
which, being affected by a fault, are very likely to lead a core
(hardware thread) to failure under most runtime conditions. On
the other hand, a very pronounced non-uniformity in utilization
of RF registers leads to quicker wearout of the most utilized
RF registers.

This paper has proposed a register file randomization mech-
anism (RFR) that addresses the two aforementioned problems.
First, by providing a diverse mapping between logical and
physical registers across processor cores, it makes that critical
logical registers are less likely to be simultaneously affected
by CCFs. Our experiments have shown that this improves
the robustness of the resulting system up to an order of
magnitude. Second, by periodically remapping logical registers
to a different set of physical registers (by changing a random
key), it also equalizes the utilization rate of physical registers.
This reduces the electrical stress suffered by the most active
physical registers, and extends the overall system lifetime (by
4 to 7 times in our presented case study).

Future work should study the possibility of using random-
ized register remapping directly at the level of processor
pipeline, in order to further improve the robustness (and poten-
tially the security) features of processor cores. Some particular
problems to be addressed in this way are the special usage
of some architectural registers and the implicit assumptions
imposed by compilers on such registers.

VII. ACKNOWLEDGMENT

This work has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No 877056 and
the Agencia Estatal de Investigacién from Spain under grant
agreement no. PCI2020-112092, and from the the European
Unions Horizon 2020 research and innovation programme
under grant agreement no. 871467.

[1]

[2]
[3]

[4]
[5]
[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi,
“Computing systems for autonomous driving: State of the art and
challenges,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6469—
6486, 2021.

STMicroelectronics, “32-bit Power Architecture microcontroller for au-
tomotive SIL3/ASILD chassis and safety applications,” 2014.

Infineon, “AURIX Multicore 32-bit Microcontroller Family to
Meet Safety and Powertrain Requirements of Upcoming Vehi-
cle Generations,” http://www.infineon.com/cms/en/about-infineon/press/
press-releases/2012/INFATV201205-040.html.

P. Okech, N. M. Guire, and W. Okelo-Odongo, “Inherent diversity in
replicated architectures,” 2015.

S. Alcaide et al., “Software-only diverse redundancy on GPUs for
autonomous driving platforms,” in JOLTS, 2019.

International Standards Organization, ISO/DIS 26262. Road Vehicles —
Functional Safety, 2009.

International Electrotechnical Commission , Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related Systems
(E/E/PE, or E/E/PES) (Edition 2.0), 2010.

D. Shapiro, “Introducing Xavier, the NVIDIA Al Supercomputer for the
Future of Autonomous Transportation,” NVIDIA blog, 2016. [Online].
Available: https://blogs.nvidia.com/blog/2016/09/28/xavier/

A. Platschek, N. Guire, and L. Bulwahn, “Certifying linux: Lessons
learned in three years of sil2linuxmp,” 02 2018.

M. Fockel, “Safety requirements engineering for early sil tailoring,”
Dissertation, Fakultét fiir Elektrotechnik, Informatik und Mathematik,
Universitdt Paderborn, Dec. 2018.

X. Iturbe, B. Venu, J. Jagst, E. Ozer, P. Harrod, C. Turner, and J. Penton,
“Addressing Functional Safety Challenges in Autonomous Vehicles with
the Arm Triple Core Lock-Step (TCLS) Architecture,” I[EEE Design and
Test, vol. PP, no. 99, pp. 1-1, 2018.

G. C. Medeiros, M. Fieback, L. Wu, M. Taouil, L. M. B. Poehls,
and S. Hamdioui, “Hard-to-detect fault analysis in finfet srams,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1-14,
2021.

L. Condra, A. Alagappan, and C. Hillman, “Sae arp6338: Process for
assessment and mitigation of aging and potential early wearout of
life-limited microcircuits (1lm),” SAE International Journal of Advances
and Current Practices in Mobility, vol. 1, no. 4, pp. 1653-1660, apr
2019. [Online]. Available: https://doi.org/10.4271/2019-01-1254

Q. Zhang, A. Z. Mohammed, Z. Wan, J.-H. Cho, and T. J. Moore,
“Diversity-by-design for dependable and secure cyber-physical systems:
A survey,” 2020.

S. Mittal and R. Blanton, “Learnx: A hybrid deterministic-statistical
defect diagnosis methodology,” in 2019 IEEE European Test Symposium
(ETS), 2019, pp. 1-6.

M. T. Rahman, A. Hosey, Z. Guo, J. Carroll, D. Forte, and M. Tehra-
nipoor, “Systematic correlation and cell neighborhood analysis of sram
puf for robust and unique key generation,” Journal of Hardware and
Systems Security, vol. 1, 06 2017.

P. Tummeltshammer, “Analysis of common cause faults in dual core
architectures,” PhD dissertation, Technische Universitat Wien, 2009.

H. Amrouch and J. Henkel, “Self-immunity technique to improve
register file integrity against soft errors,” in 2011 24th Internatioal
Conference on VLSI Design. 1EEE, 2011, pp. 189-194.

ARM, “Arm trustzone true random number generator: Technical ref-
erence manual.” 2017, http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.100976_0000_00_en.

P. A. et. al, “Efficient Shift Registers, LFSR Counters, and
Long Pseudo-Random Sequence Generators, Xilinx application note
XAPP052.” https://www.xilinx.com/support/documentation/application_
notes/xapp052.pdf.

A. Gonzilez, M. Valero, N. Topham, and J. M. Parcerisa, “Eliminating
cache conflict misses through xor-based placement functions,” in
Proceedings of the 11th International Conference on Supercomputing,
ser. ICS ’97. New York, NY, USA: Association for Computing
Machinery, 1997, p. 76-83. [Online]. Available: https://doi.org/10.1145/
263580.263599

S. McFarling, “Combining branch predictors,” Citeseer, Tech. Rep.,
1993.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
(31]

(32]

(33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

R. Pefiaranda, C. G. Requena, M. E. Gémez, and P. Lépez, “Xor-based
hol-blocking reduction routing mechanisms for direct networks,”
Parallel Comput., vol. 67, pp. 57-74, 2017. [Online]. Available:
https://doi.org/10.1016/j.parco.2017.06.004

H. Kim, S. B. K. Boga, A. Vitkovskiy, S. Hadjitheophanous, P. V.
Gratz, V. Soteriou, and M. K. Michael, “Use it or lose it: Proactive,
deterministic longevity in future chip multiprocessors,” ACM Trans.
Des. Autom. Electron. Syst., vol. 20, no. 4, Sep. 2015. [Online].
Available: https://doi.org/10.1145/2770873

R. Zhang, T. Liu, K. Yang, and L. Milor, “Analysis of time-dependent
dielectric breakdown induced aging of sram cache with different
configurations,” Microelectronics Reliability, vol. 76-77, pp. 87—
91, 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0026271417302287

C. Gaisler, NOEL-V Processor,
https://www.gaisler.com/index.php/products/processors/noel-v.
A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi¢, “The
risc-v instruction set manual, volume i: User-level isa, version
2.0,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http:
/Iwww?2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in IEEE 4th Annual Workshop on Workload
Characterization, 2001, pp. 3-14.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mélardalen
wcet benchmarks: Past, present and future,” in 10th International Work-
shop on Worst-Case Execution Time Analysis (WCET 2010). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

“Tiny aes in c,” https://github.com/kokke/tiny- AES-c.

I. Tuzov, D. de Andrés, and J.-C. Ruiz, “Davos: Eda toolkit for
dependability assessment, verification, optimisation and selection of
hardware models,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 1EEE,
2018, pp. 322-329. [Online]. Available: https://doi.org/10.1109/DSN.
2018.00042

Xilinx Inc., “Vivado Design Suite User Guide. Synthesis. UG901
(v2017.4),” 2017. [Online]. Available: https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2017_4/ug901-vivado-synthesis.pdf
C. McNairy and R. Bhatia, “Montecito: a dual-core, dual-thread itanium
processor,” IEEE Micro, vol. 25, no. 2, pp. 10-20, 2005.

J. Andersson, J. Gaisler, and R. Weigand, “Next generation multipurpose
microprocessor,” DASIA, 08 2010.

S. Alcaide Portet, L. Kosmidis, C. Hernandez, and J. Abella, “Software-
only triple diverse redundancy on gpus for autonomous driving plat-
forms,” in 2020 50th Annual IEEE-IFIP International Conference on De-
pendable Systems and Networks-Supplemental Volume (DSN-S), 2020,
pp. 82-88.

A. Gerstinger, H. Kantz, and C. Scherrer, “Tas control platform: A
platform for safety-critical railway applications,” ERCIM News, vol.
2008, 2008.

J. Abella, X. Vera, and A. Gonzalez, “Penelope: The nbti-aware
processor,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), 2007, pp. 85-96.

A. Valero, F. Candel, D. Sudrez-Gracia, S. Petit, and J. Sahuquillo, “An
aging-aware gpu register file design based on data redundancy,” IEEE
Transactions on Computers, vol. 68, no. 1, pp. 4-20, 2019.

H. Amrouch, T. Ebi, and J. Henkel, “Stress balancing to mitigate nbti
effects in register files,” in 2013 43rd Annual IEEE/IFIP international
conference on Dependable Systems and Networks (DSN). 1EEE, 2013,
pp. 1-10.

D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Aging assessment
and design enhancement of randomized cache memories,” IEEE Trans-
actions on Device and Materials Reliability, vol. 17, no. 1, pp. 32-41,
2017.

2020,

http://www.infineon.com/cms/en/about-infineon/press/press-releases/2012/INFATV201205-040.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2012/INFATV201205-040.html
https://blogs.nvidia.com/blog/2016/09/28/xavier/
https://doi.org/10.4271/2019-01-1254
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100976_0000_00_en
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100976_0000_00_en
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://doi.org/10.1145/263580.263599
https://doi.org/10.1145/263580.263599
https://doi.org/10.1016/j.parco.2017.06.004
https://doi.org/10.1145/2770873
https://www.sciencedirect.com/science/article/pii/S0026271417302287
https://www.sciencedirect.com/science/article/pii/S0026271417302287
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://github.com/kokke/tiny-AES-c
https://doi.org/10.1109/DSN.2018.00042
https://doi.org/10.1109/DSN.2018.00042
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug901-vivado-synthesis.pdf

