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Abstract

Regular monitoring of blood pressure (BP) is essential
for early detection of cardiovascular diseases caused by
hypertension, a potentially deadly condition without symp-
toms in its first stages. This study investigates whether
deep learning techniques can assess risk levels of BP us-
ing only photoplethysmographic (PPG) recordings without
the need of electrocardiographic (ECG) recordings, as in
many previous studies. 15.240 segments from 50 different
patients containing simultaneous PPG and arterial blood
pressure (ABP) signals were analysed. GoogleNet and
ResNet pretrained convolutional neural networks (CNN)
with the scalogram of PPG signals obtained by continuous
wavelet transform (CWT) used as input images were em-
ployed for the classification. The highest F1 score was
achieved by discriminating normotensive (NT) patients
from prehypertensive (PH) and hypertensive (HT), being
92.10% for GoogleNet and 93.91% for ResNet, respec-
tively. In addition, intra-patient classification using dif-
ferent data segments for training and validation provided
an F1 score of 90.28% with GoogleNet and 89.04% with
ResNet. Time frequency transformation of PPG recordings
to feed deep learning classifiers has been able to provide
outstanding results in hypertension risk assessment with-
out requiring either ECG recordings or feature extraction.

1. Introduction

Blood pressure (BP) can be considered as the most im-
portant biomarker for cardiovascular diseases, which are
the leading cause of mortality worldwide and a major con-
tributor to the global reduction of quality of life [1]. Hyper-
tension is a condition in which the blood vessels have per-
sistently raised pressure, and its early diagnosis and control
are essential in preventing cardiovascular diseases. More-

over, most patients with severely elevated blood pressure
have asymptomatic hypertension, without evident signs or
symptoms of end-organ damage. Without an early detec-
tion, this can derive in an hypertensive urgency with the
presence of many risk factors for progressive diseases, as
hearth failure and preexisting renal insufficiency or severe
uncontrolled hypertension [2].

The most common noninvasive technique for BP mea-
surement are based on uncomfortable arterial occlusion
by inflatable cuffs where adequate accuracy is offered but
only provide intermittent measurement and needs to be
applied by professionals [3]. Recent advances in sen-
sor technology have developed unobstructive cuffless de-
vices to measure physiological parameters anytime. In this
way, the use of photoplethysmographic (PPG) recordings
is very promising for being noninvasive, with continuous
measurement, low cost, simple and with a high correlation
with arterial BP in frequency and time domain [4].

In this regard, many studies have applied artificial in-
telligence technology in order to estimate or discriminate
between blood pressure levels. Machine learning tech-
niques combining electrocardiographic (ECG) and PPG
signals get use of propagation theory with parameters as
pulse transit time (PTT), pulse arrival time (PAT) and
pulse wave velocity (PWV) to determine cardiovascular
state [5]. Recent studies combine this propagation param-
eters with PPG morphological feature extraction as inputs
for the models [6]. In recent years, deep learning with
powerful computational methods that eliminates feature
extraction have shown an improvement in BP estimation
from PPG signals [7]

The present work proposes a method for hypertension
risk assessment using the pretrained CNNs GoogleNet and
ResNet and the scalogram of PPG signals by continuous
wavelet transform (CWT) as inputs to feed this models
without the need for ECG recordings or hand extraction
of signals features for classification.
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2. Material and Methods

2.1. Data acquisition and preprocessing

A total number of 635 recordings from 50 different pa-
tients were collected from MIMIC-III (’Medical Informa-
tion Mart for Intensive Care’), a free to use database with
information and vital signs of patients admitted to critical
care unit [8]. As signals are obtained by commercial de-
vices, often contain artefacts caused by sensor movements
or loss of contact. The main artefacts detected and the rea-
son why many records were not incorporated in the dataset
was noisy PPG and BP signals, improbable BP values, or
continuous signals that do not represent their characteristic
morphology.

In this study, simultaneous and stable ABP and PPG sig-
nals with 120 s length and 125 Hz sampling rates were
employed. The systolic blood pressure (SBP) were ex-
tracted from the ABP signals, to which no preprocessing
was carried out, and were used to label the PPG signals
in normotensive (NT), prehypertensive (PH) and hyper-
tensive (HT), with SBP values of 120 mmHg or lower,
between 120 and 140 mmHg and 140 mmHg or higher
respectively, as defined by the US National Institutes of
Health [1]. Additionally, a 0.5-10 Hz Chebyshev II band-
pass filter of fourth order was applied to the normalized
PPG signals to remove noise [9]. After these steps, both
signals were cut in 5s length segments, being 15.240 the
total number of segments analysed.

Furthermore, it is studied the effect of down sampling
the PPG signal to 25 Hz in order to introduce this method
in the mobile health field. Lower sampling rates reduces
the power consumption of the device and if the transmitted
data is reduced, the database storage will be saved [10].

2.2. Pretrained Convolutional Neural Net-
works

Two different deep convolutional neural networks were
evaluated for the hypertension risk classification problem,
GoogleNet [11] and ResNet50 [12]. Transfer learning
works with pretrained networks that have already used the
ImageNet dataset [13] with more than a million of images
and 1000 classes to learn how to extract informative fea-
tures. They are a starting point for identification and clas-
sification problems much faster than training from scratch
using less images for training. In this way, the last learning
layer and the final layer of classification are replaced with
new layers adjusted to the new training images.

Training options established a minimum Batch size of
128, the validation frequency is modified depending on the
number of training images and the maximum Epoch was
25. In order to minimise the effect of overfitting, early

Figure 1. Block diagram of the deep learning classificator.

stopping technique stops training automatically when the
loss on the validation set starts to increase.

Due to both networks uses 224x224x3 sizes RGB im-
ages as inputs, PPG segments were processed by contin-
uous wavelet transform and transformed to a scalogram,
a representation of frequency along the time, and then re-
sized to 224x224x3 to feed the training models. It has been
used the analytic Morse (3,60) wavelet in the cwtfilterbank
of Matlab, setting the VoicesperOctave to 12 to create the
CWT. In the scalogram is included the cone of influence,
that represents where occur edge effects in the CWT for
obtaining better classification results.

2.3. Hypertension Risk Assessment

In order to classify the hypertension risk using PPG sig-
nals, the three group of labelled signals were compared
discriminating NT versus PH + HT and NT + PH versus
HT for the classification. Then, two different methods
were developed, starting with the division of the dataset
of 635 records in 80% for training and validation and 20%
for testing with recordings of new patients. In addition,
the first group is randomly divided again in 80% for train-
ing and 20% for validation. It must be taken into account
that in this approach this division is done to the images,
not to the records, so images obtained from segments of 5
seconds from the same records are present in training and
validation datasets. Furthermore, intra-patient classifica-
tion was developed using different PPG complete signals
of 120 s for training and validation.

Finally, the evaluation of the results of validation was
carried out by the statistical tests of sensibility (Se), speci-
ficity (SP) and F1 score, calculated from the recall and pre-
cision of the validation.
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Se Sp F1score

GoogleNet NTvsPH+HT 95.44% 83.08% 92.10%
NT+PHvsHT 84.45% 90.99% 84.16%

ResNet NTvsPH+HT 94.37% 90.52% 93.91%
NT+PHvsHT 87.67% 93.87% 88.23%

Table 1. Training-Validation performance from PPG sig-
nals with 125 Hz sampling rate.

Se Sp F1score

GoogleNet NTvsPH+HT 94% 83.83% 91.54%
NT+PHvsHT 82.49% 91.87% 83.64%

ResNet NTvsPH+HT 94.56% 89.29% 93.58%
NT+PHvsHT 88.94% 92.83% 88.08%

Table 2. Training-Validation performance from PPG sig-
nals with 25 Hz sampling rate.

3. Results

Tables 1 and 2 show the classification efficiency when
the dataset is randomly divided in training and validation
with the original sampling rate of 125 Hz and downsam-
pled to 25 Hz, respectively. All the models followed the
same pattern, in which F1 score is higher comparing NT
segments versus PH + HT, being over 91.5%, than compar-
ing NT + PH segments versus HT, being lower than 88.5%.

Tables 3 and 4 show test performance when previous
trained models are used to classify test dataset images from
PPG signals of new subjects with the original sampling rate
of 125 Hz and downsampled to 25 Hz respectively.

All models comparing NT vs PH+HT obtain similar
F1 score, around 65%. Nevertheless, models comparing
NT+PH vs HT obtain low test results, with F1 score around
10% as almost all new records are classified as negative.

After obtaining these results, the intra-patient study was
developed only with the first distribution of hypertension
risks as represented in Table 5. The higher F1 score per-
centage, approximately 90%, is obtained in models that
uses subsampled signals representations as inputs.

4. Discussion

Being able to monitor and detect hypertension with a
continuous measurement is of great importance as is the
main risk factor of many cardiovascular diseases. For this
reason, new cuff-less devices based on Machine Learning
and Deep Learning techniques have been proposed as an
alternative to traditional methods to measure BP. Almost
all the studies use the PPG signal as its variation in mor-
phology is mainly caused by the activity of the heart and
the condition of the vascular walls. Moreover, PPG signals
are simple to obtain with nonivasive low cost devices and
can be measured in real time.

Se Sp F1score

GoogleNet NT vs PH+HT 68.13% 48.03% 65.95%
NT+PH vs HT 9.05% 87.67% 10.07%

ResNet NT vs PH+HT 69.67% 49.58% 67.31%
NT+PH vs HT 16.11% 83.70% 15.38%

Table 3. Test results using GoogleNet and ResNet models
from 125 Hz sampling rate PPG signals

Se Sp F1score

GoogleNet NT vs PH+HT 59.70% 51.16% 60.97%
NT+PH vs HT 4.61% 89.47% 5.60%

ResNet NT vs PH+HT 67.75% 45.68% 65.17%
NT+PH vs HT 20.18% 82.33% 18.29%

Table 4. Test results using GoogleNet and ResNet models
from 25 Hz sampling rate subsampled PPG signals.

Se Sp F1score

GoogleNet 125 Hz 88.89% 78.13% 87.37%
25 Hz 90.28% 85.42% 90.28%

ResNet 125 Hz 83.83% 83.83% 85.71%
25 Hz 93.06% 76.04% 89.04%

Table 5. Intra patient classification performance from PPG
signals comparing NT segments versus PH + HT.

This work tries to investigate whether new Deep Learn-
ing techniques are able to impose to the most commonly
used technique, Machine Learning classifiers, to obtain
the hypertension risk. This method has some difficul-
ties, needing to extract features from signals with different
properties and quality and in this particular type of classifi-
cation, the need to use other biomedical signal, the ECG, to
obtain PAT. Deep learning approaches is a good solution to
avoid this difficulties as extracts the features from an image
obtained from PPG signals (without needing ECG signal)
automatically and robustly.

F1 score for both pretrained models and using both the
original PPG signal with 125 Hz sampling rate and sub-
sampled to 25 Hz have been around 93%. This similar and
huge results between both sampling rates lead to the pro-
posal to use subsampled signals for the potential applica-
tion of this technique in a wearable device as would reduce
the computational complexity and use of memory.

It is noteworthy that in all models, the best results are
obtained comparing NT with PH and HT patients. This is
very relevant, since the best classification performance is
obtained when PH patients are identified as diseased, so
the extracted features in PH patients are more similar to
those in HT patients than in NT patients. In addition, it
should be taken into account that PH patients do not show
serious symptoms until they are in very advanced stages
of the disease, causing serious cardiovascular problems, so
alerting this group as sick patients is very interesting.
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Furthermore, in test results, the classification of new
subjects is not correctly performed, with F1 score around
65%. This could be because each subject have a unique
cardiovascular dynamics, so not everyone has the same
relationship between PPG signals and BP. Moreover, the
same PPG cycle shapes do not guarantee the same BP
level, so information from each subject should be in train-
ing, validation and test sets [14].

Finally, intra-patient classification has been studied,
where segments of PPG signal from the same subject
in different hours have been introduced in training and
validation sets seeking to avoid the possible overfitting.
GoogleNet and subsampled PPG signals has obtained the
higher F1 score value, 90.28%, proving the importance of
calibration to reduce the classification error.

5. Conclusion

Hypertension risk classification models from PPG
recordings using deep learning classifiers have been eval-
uated. The combination of continuous wavelet transform
and pretrained CNN models has demonstrated outstand-
ing performance and potential as extracts the main features
from PPG image representation automatically and does not
need ECG signals for the feature extraction as classical
methods based on Machine Learning, with F1 score of
93.91%. In addition, the viability of use subsampled PPG
signals and intrapatient accomplishment has been proved
for the implementation of this models in wearable devices.

Acknowledgements

Research supported by grants DPI2017–83952–C3 from
MINECO/AEI/FEDER UE, SBPLY/17/180501/000411
from JCCLM and AICO/2021/286 from GVA.

References

[1] Chobanian AV, Bakris GL, Black HR, Cushman WC, Green
LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT,
Roccella EJ. Seventh Report of the Joint National Commit-
tee on Prevention, Detection, Evaluation, and Treatment of
High Blood Pressure. Hypertension dec 2003;42(6):1206–
1252. ISSN 0194-911X.

[2] Kessler CS, Joudeh Y. Evaluation and Treatment of Severe
Asymptomatic Hypertension. American Family Physician
feb 2010;81(4):470–476. ISSN 0002-838X.
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