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Abstract

Quality assessment of ECG signals acquired with wear-
able devices is essential to avoid misdiagnosis of some car-
diac disorders. For that purpose, novel deep learning al-
gorithms have been recently proposed. However, training
of these methods require large amount of data and pub-
lic databases with annotated ECG samples are limited.
Hence, the present work aims at validating the usefulness
of a well-known data augmentation approach in this con-
text of ECG quality assessment. Precisely, classification
between high- and low-quality ECG excerpts achieved by
a common convolutional neural network (CNN) trained on
two databases has been compared. On the one hand, 2,000
5 second-length ECG excerpts were initially selected from
a freely available database. Half of the segments were
extracted from noisy ECG recordings and the other half
from high-quality signals. On the other hand, using a data
augmentation approach based on time-scale modification,
noise addition, and pitch shifting of the original noisy ECG
experts, 1,000 additional low-quality intervals were gener-
ated. These surrogate noisy signals and the original high-
quality ones formed the second dataset. The results for
both cases were compared using a McNemar test and no
statistically significant differences were noticed, thus sug-
gesting that the synthesized noisy signals could be used for
reliable training of CNN-based ECG quality indices.

1. Introduction

Recent evolution of wearable devices along with devel-
opment of new telemedicine and portable systems have
popularized very long-term electrocardiographic (ECG)
monitoring (for several weeks or months) of patients suf-
fering from different cardiac disorders [1]. This kind
of monitoring is highly promising to improve diagnosis
of some common cardiovascular diseases, and especially
those characterized by an intermittent nature. This is the
case of atrial fibrillation (AF), whose initial episodes are
mostly asymptomatic and only last for a few seconds or
minutes [2]. Thus, the longer the duration of monitoring,

the greater the possibility of early identification of patients
suffering from intermittent AF [2].

However, these modern devices often acquire the ECG
in free-living conditions, the signal then presenting fluc-
tuating quality [3]. Indeed, ambulatory resting ECG is
well-known to be susceptible to several artifacts, such as
powerline interference, muscle contractions, and baseline
drifts (due to respiration), but wearable and portable sys-
tems are additionally sensitive to motion artifacts (as the
users are now mobile), electrode contact noise (when sen-
sor loses contact with skin during movement), and impulse
noise [3]. Moreover, the change of noise intensity over
time and overall non-stationarity of the ECG also compli-
cate further processing of this long-term recording [3].

Regrettably, the presence of large levels of noise in the
ECG is detrimental to automated decision support systems,
which are imperatively required to process such big data
acquired with wearable and portable devices [3]. Thus,
ECG quality assessment is paramount, such that potential
of very long-term monitoring can be completely exploited,
but avoiding automated misdiagnosis and misinterpreta-
tion of corrupted ECG intervals [3]. For that purpose, a
handful of ECG quality indices have been recently pro-
posed. Most are based on extracting morphological fea-
tures or fiducial points of the ECG and then constructing
decision models via common machine learning techniques,
such as support vector machines or k-nearest neighbors
classifiers [4]. Although these ECG quality indices have
reported interesting results, they have been overcome by
more recent deep learning algorithms [5]. Moreover, these
new methods also present some interesting advantages,
such as ability to directly deal with the raw ECG with-
out demanding any kind of preprocessing stage, manual or
external intervention, and tedious ECG-based or R-peak-
based feature computation and selection [5].

However, training of deep learning algorithms requires
large amount of data and only reduced and highly un-
balanced public ECG databases with reliable annotations
from experts are nowadays available [6]. To face this
drawback, different data augmentation techniques have
been recently introduced, such as oversampling, Gaus-
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sian mixture modeling, or generative adversarial networks
(GAN) [7]. The most common methodology in the lit-
erature is oversampling, which consists of applying dif-
ferent kinds of transformations (e.g., rotation, mirroring,
cropping, etc.) to the original samples for expanding the
dataset [7]. Hence, the present work aims at validating
usefulness of this approach in the context of ECG quality
assessment through deep learning techniques.

2. Methods

2.1. Algorithm for ECG quality assessment

To discern between high- and low-quality ECG inter-
vals, a previously published algorithm based on the well-
known pre-trained convolutional neural network (CNN)
AlexNet was used [5]. In brief, the architecture of this
CNN is composed of eight layers with learning abil-
ity, where five are convolutional and three are fully-
connected [8]. After these layers, linear activation func-
tions are employed. Moreover, in two intermediate points
of the network, pooling layers are included to reduce spa-
tial length of the feature map. Also, two dropout regu-
larization functions are inserted after the two first fully-
connected layers to reduce the problem of over-fitting. All
details about this architecture can be found in [8].

Because AlexNet is a 2-D CNN, i.e., receives as input
a 2-D image, ECG intervals were transformed into a ma-
trix using a Continuous Wavelet transform (CWT) [9]. The
resulting wavelet coefficients were then graphically repre-
sented with a Jet colormap to obtain a wavelet scalogram.
More details about the parameters used in this transforma-
tion can be found in [5].

2.2. Experimental setup

Although AlexNet is a pre-trained CNN, it firstly had
to be fine-tuned for its use in ECG quality assessment [5].
Hence, the layers containing the pre-trained weights (i.e.,
the convolutional and fully-connected layers) were re-
trained to discern between high- and low-quality ECG ex-
cerpts. Nonetheless, to assess usefulness of the oversam-
pling approach in this fine-tuning of AlexNet, the net-
work was re-trained and tested in two different ways. On
the one hand, 2,000 5 second-length ECG excerpts from
the PhysioNet/CinC Challenge 2017 database were ini-
tially used as a reference. The mentioned database is
freely available and contains more than 8,000 single-lead
ECG recordings with annotations from experts into four
classes: AF, normal sinus rhythm (NSR), other rhythms
(OR) and noise [10]. Given the huge unbalance between
clean (three first classes) and noisy (forth class) record-
ings in the database, only 1,000 high-quality and 1,000
low-quality segments were analyzed, such as in previous

works [5]. Note that similar proportions of the three differ-
ent rhythms in high-quality ECG signals were maintained,
thus analyzing 300 AF, 400 NSR, and 300 OR segments.

On the other hand, AlexNet was re-trained and tested
on a surrogate dataset generated from the previous one.
Since annotations of noise in public ECG databases are
much less frequent than those for clear heart rhythms (from
clean signals), the 1,000 high-quality ECG intervals were
maintained. Contrarily, a new subset was obtained by ran-
domly applying different transformations to the original
1,000 low-quality ECG excerpts. Precisely, four transfor-
mations were simultaneously considered for each segment
with an occurrence probability of 0.5. The first transfor-
mation was a time stretching, where duration of the ECG
signal was slightly modified by a factor ranging between
0.75 and 1.5. This operation does not affect the pitch at
all, but resampling was needed. The second transformation
was pitch shifting, such that the ECG pitch was raised or
lowered scaling by a factor ranging between -2 and 2. Note
that the ECG was considered as a sound and its pitch was
measured in semitones. The third transformation was noise
addition. In this case, Gaussian white noise was added by
adjusting a signal to noise ratio between 0 and 3 dB. Fi-
nally, the four transformation was amplitude modification,
where the ECG gain was changed between -5 y 5 dB.

As an example, Figure 1 shows the result of each trans-
formation individually applied to a typical 5 second-length
ECG excerpt, which presents electrode contact noise (a).
After the first transformation (b), a shorter ECG signal can
be seen. Notable changes in the ECG morphology and am-
plitude can also be noticed after pitch shifting (c). The ef-
fect of the Gaussian noise is also clearly observed, because
the original ECG morphology is completely degraded (d).
Contrarily, the original morphology of the ECG signal is
totally preserved after the four transformation, but its am-
plitude is notably altered (d). The ECG-based images ob-
tained for each example are shown in Figure 2. As can be
seen, there exists a clear concordance between each ECG
and its corresponding image. To this respect, Figure 2(a)
shows how QRS complexes correspond with Figure 1(a),
in which R-peaks and the artifact are conspicuous. Fig-
ures 2(b) and (c) display how time stretching and pitch
shifting have modified the signal morphology, completely
changing the original hallmark in the wavelet scalogram.
Gaussian noise addition also alteres the original pattern
by blurring R-peaks, as Figure 2(d) shows. Finally, Fig-
ure 2(e) depicts how the gain adjustment is the transforma-
tion which applies less distortion to the original signal.

2.3. Performance analysis

Classification performance achieved by AlexNet after
fine-tuning on both the original and surrogate datasets was
analyzed through a stratified 5-fold cross-validation ap-
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Figure 1. Result of common transformations in the oversampling approach individually applied to a noisy 5 ECG excerpt
(a). The transformations were: time stretching (b), pitch shifting (c), noise addition (d) and amplitude modification (e).
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Figure 2. Images obtained from the ECGs presented in
Figure 1 by applying CWT and inputted to AlexNet for
ECG quality assessment.

proach, and the two cases were compared using a McNe-
mar test. Classical statistics of sensitivity (Se), specificity
(Sp) and accuracy (Acc) were computed. Thus, Se was de-
fined as the percentage of correctly identified high-quality

ECG excerpts, Sp as the rate of properly classified low-
quality segments, and Acc as the total ratio of all ECG
intervals appropriately detected. Finally, the success rates
of correctly identified NSR (RNSR), AF (RAF ) and OR
(ROR) within the high-quality ECG group were also com-
puted for the two experiments.

3. Results

A McNemar test reported no statistically significant dif-
ferences (p-value > 0.05) between the classification results
obtained by AlexNet after re-training on the original and
surrogate databases. In fact, Table 1 displays very simi-
lar values of Acc, Se and Sp for both cases. Similarly,
no differences in the values of RNSR, RAF and ROR
were also observed. Nonetheless, values about 90% were
seen for all performance metrics, with standard deviation
among the five conducted iterations being lower than 6%.

4. Discussion

To the best of our knowledge, this is the first study deal-
ing with the usefulness of a data augmentation approach
for the training of CNN-based algorithms in the context
of ECG quality assessment. The classification results ob-
tained for the two analyzed databases suggest that common
transformations (i.e., time stretching, pitch shifting, noise
addition and amplitude modification) used for data aug-
mentation in other fields, e.g., audio deep learning, could
also be useful in this case. However, it is worth noting
that the present pilot study has only assessed the possibil-
ity of generating realistic noisy ECG signals using such
transformations, and the effect of oversampling the low-
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Table 1. Classification results obtained by the AlexNet-based algorithm re-trained on the original and surrogate databases.

Classification Performance
Dataset Se Sp Acc RNSR RAF ROR
Original 0.89±0.02 0.87±0.045 0.88±0.02 0.92±0.03 0.88±0.03 0.87±0.04
Surrogate 0.90±0.03 0.90±0.04 0.90±0.01 0.91±0.02 0.89±0.06 0.89±0.05

quality ECG group on the fine-tuning of CNN-based algo-
rithms will be analyzed in a future work. In fact, the kind
of study conducted in the present work has motivated that
the original and surrogate datasets shared the same 1,000
high-quality ECG intervals for an unbiased comparison.

Although making use of other transformations, a few re-
cent works have also suggest that data augmentation could
be useful in improving the training of CNN-based meth-
ods in a variety of ECG-based contexts. To this respect,
Alghamdi et al. [11] have reported better detection of my-
ocardial infarction with different CNN architectures when
data augmentation was conducted with common image
transformation techniques. Similarly, Shaker et al. [6] have
proposed a GAN to synthesize artificial heartbeats and then
improve their subsequent classification with a CNN-based
algorithm. Despite the good results reported by this work
and the current trend to use GANs for data augmentation
in many fields [6], this alternative could not be appropriate
to generate noisy ECG recordings. The great variety of ar-
tifacts and nuisance components in the ECG signals could
make it difficult to find recurrent patterns, even for the high
abstraction levels achieved by the CNNs. Nonetheless, this
data augmentation approach will be analyzed in the future.

5. Conclusions

The use of common transformations for the well-known
data augmentation approach of oversampling could be in-
teresting to increase the number of noisy ECG signals for
the fine-tuning of CNN-based ECG quality indices, thus
resulting in more robust and reliable methods. However,
more studies considering wider databases and using addi-
tional data augmentation techniques are still required for
validation of the obtained results.
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