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Abstract Nowadays the most common approach to
model elastic behavior at large strains is through hyper-

elasticity. Hyperelastic models usually specify the shape

of the stored energy function. This shape is modulated

by some material parameters that are computed so the

predicted stresses best fit the experimental data. Many
stored energy functions have been proposed in the lit-

erature for isotropic and anisotropic materials, either

compressible or incompressible. What-You-Prescribe-

Is-What-You-Get (WYPIWYG) formulations present a
different approach which may be considered an exten-

sion of the infinitesimal framework. The shape of the

stored energy is not given beforehand but computed

numerically from experimental data solving the equi-

librium equations. The models exactly fit the experi-
mental data without any material parameter. WYPI-

WYG procedures have comparable efficiency in finite

element procedures as classical hyperelasticity. In this

work we present a WYPIWYG numerical procedure for
compressible isotropic materials and we motivate the

formulation through an equivalent infinitesimal model.
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Pza.Cardenal Cisneros, 28040-Madrid, Spain
E-mail: j.crespo@upm.es

Marcos Latorre
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pacio, Universidad Politécnica de Madrid
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1 Introduction

Rubber-like solids [1–4] and soft biological materials

[5, 6] are able to sustain large strains in many cases

without relevant inelastic effects during loading. The
behavior of these materials is frequently modelled as

that of hyperelastic materials. Then, other effects may

be added to the hyperelastic formulation as for exam-

ple viscoelasticity or damage [1, 2, 4–6]. A hyperelastic
model typically consists of an assumed stored energy

function shape having some material parameters which

are left free to be prescribed by the user. These material

parameters are computed in such a way that the model

predictions fit the available experimental data [3, 7, 8].
The typical procedure is to establish an error func-

tion between predictions and experimental data and

then minimize that error employing an optimization

algorithm, for example, the Levenberg-Marquardt al-
gorithm [7, 8]. Therefore, in the current usual proce-

dure, a stored energy is proposed (either physically mo-

tivated or purely phenomenological) and that function

is modulated as to fit experimental data from different

types of tests presented to the model, see for exam-
ple [8–11]. The obvious purpose is to characterize the

behavior of the material in any loading situation [12].

Thereafter the behavior from the resulting stored en-

ergy density is sometimes checked against the exper-
imental data from other additional tests [13–22]. The

models may be even modified in order to account for

some experimental evidence [24]. This procedure is also
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employed in anisotropic materials, typically in biologi-

cal tissues, see for example [25–42], among many others.

The What-You-Prescribe-Is-What-You-Get (WYPI-

WYG) approach is very different from that employed in

classical models. Instead of prescribing the shape of the
stored energy, this shape is computed numerically from

the presented experimental data, i.e. it is in essence

a computational procedure instead of a purely ana-

lytical one. The WYPIWYG model for incompressible
isotropic hyperelasticity compatible with the Valanis-

Landel [43] decomposition is due to Sussman and Bathe

[44]. This model uses the Kearsley and Zapas inversion

formula [45] to exactly obtain the stored energy in a

given number of points. Then the energy function is in-
terpolated using piecewise cubic splines in order to have

a piecewise analytical expression that may be used in

a finite element program. The Sussman–Bathe WYPI-

WYG formulation is currently available in the commer-
cial finite element program ADINA [46].

WYPIWYG models for incompressible transversely

isotropic [47] and orthotropic materials [48] are due to

Latorre and Montáns. These formulations use a gener-

alization of the Inversion Formula and a separable form
of the stored energy density similar to that of the in-

finitesimal framework but in functions of invariants of

the logarithmic strains, which are a natural extension of

the infinitesimal ones [49–52]. The numerical efficiency
of these procedures in finite element implementations

is similar to that of traditional models, see [46] for the

isochoric, isotropic formulation and [48, 53, 54] in the

context of incompressible anisotropy. The WYPIWYG

procedure has been extended to viscoelasticity [53, 54]
and damage [55] in order to model the Mullins effect.

WYPIWYG hyperelastic functions are obtained from a

set of experimental data, either from true experiments

or freely prescribed by the modeler. The proposed set of
experimental data is a key ingredient of the procedure,

because the equations from this set are solved in a nu-

merically exact manner in order to extract the stored

energy information. The experimental set must be com-

plete so these experiments uniquely define the behav-
ior of the material under the constitutive assumptions.

This set is equivalent to the set of material constants

of a comparable infinitesimal model [56–58].

The main difficulty of WYPIWYG hyperelasticity

lies in the necessity of solving the differential equa-
tions of the proposed experiments. Hence the inclusion

of different material symmetries or compressibility re-

sults in necessary nontrivial modifications of the over-

all computational procedure, i.e. WYPIWYG hypere-
lasticity is not a model, but a family of computational

procedures. Classical hyperelasticity proposes global so-

lutions to the problem (as Rayleigh functions does in

structural mechanics problems) and material parame-

ters adapt that solution as to fit experimental data. On

the contrary WYPIWYG hyperelasticity proposes local

interpolations (as the Galerkin method does in struc-

tural mechanics) between computed, numerically exact
solutions to the problem, i.e. the energy derivatives.

The point is that once the stored energy is obtained

solving a complete set of experiments, it is valid and

accurate (if the constitutive hypotheses are fulfilled) in
any other loading situation, i.e. the material behavior

is completely and uniquely determined.

The purpose of this paper is to extend the WYPI-

WYG approach to compressible isotropic materials. The

model is capable of capturing a proper complete set of
experimental data that defines the material behavior up

to machine precision. Because WYPIWYG approaches

are a natural extension of the infinitesimal framework,

in the next section we present a comparable infinitesi-
mal bilinear model just for motivation and to explain

the number of experimental curves needed to properly

define the material. Thereafter, keeping an instructive

parallelism with the bilinear model, we introduce the

computational procedure and describe possible experi-
ments to practically determine the large strain hypere-

lastic model. We also explain how to perform the equiv-

alence to uniaxial curves which may be set as the stan-

dard input data to the model in finite element pro-
grams.

Some demonstrative examples show that the model

is capable of exactly capturing some stored energy func-

tions published in the literature (Neohookean [59], Og-

den [60, 61], Mooney [62], Hartmann–Neff [63]) using
only their numerical stress-strain predictions for the

uniaxial test as if they were “experimental data” of a

real material. Then, the behavior of these models under

any arbitrary loading conditions is also captured “ex-

actly” (numerically speaking). This shows that if the
real material were behaving as these models predict,

we would also capture the behavior under any arbi-

trary type of loading. In another example we predict the

uniaxial behavior of the stored energy from Gent [64].
We note that this model does not follow the Valanis-

Landel decomposition, which is one of the assumptions

of our procedure. However, because the Valanis-Landel

decomposition is mathematically accurate for moder-

ate large strains [3], we show that even in this case we
are able to capture to a very high precision the be-

havior predicted by this model in any loading situa-

tion for those moderately large strains. To show the

performance of our proposal to capture the behavior
observed in actual materials, we use the experiments

by Blatz and Ko [65] over compressible polyurethane

foam. The observed differences between our predictions
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and experimental data in a different test than those

used to determine the stored energies are of the order of

the measured experimental errors. We note that if that

were not the case, the only possibility would be that

at least one of the hypotheses (isotropy, hyperelastic
behavior, Valanis-Landel) would not be applicable to

this material. We thereafter verify that the incompress-

ible WYPIWYG formulation of Sussman and Bathe is

recovered as a particular case in the limit. In practi-
cal finite element implementations incompressibility is

frequently enforced through penalty volumetric formu-

lations which frequently result in numerically under-

constrained problems at low strains or numerical con-

ditioning problems at large strains. Then our proce-
dure is also a natural way of properly enforcing quasi-

incompressibility in finite element simulations at every

strain level, hence circumventing this problem. We also

show the performance in finite element simulations and
the equivalence (even in terms of iterations and conver-

gence values) to models based on analytical functions.

Finally we note that WYPIWYG anisotropic for-

mulations (as any other anisotropic hyperelastic model)

should recover the isotropic behavior when the experi-

mental data presented to the model is that of an isotropic
material [67]. The current proposal may be coupled to

our incompressible transversely isotropic and orthotropic

WYPIWYG models [47, 48] as described in [67] in or-

der to obtain a compressible orthotropic model or to
obtain a quasi-incompressible one with the incompress-

ibility constraint adequately enforced at every strain

level.

2 The infinitesimal bilinear model

As mentioned, the purpose of this section is to perform

a parallelism of the nonlinear model with an infinitesi-

mal model. To facilitate the comparisons with the large

strain model we will consider initially that the material
has different linear behavior in extension than in com-

pression, because as we will see the nonlinear model

evaluates functions in both ranges in the same equa-

tion. Then, of course, the linearized behavior of the

nonlinear formulation at the origin is recovered if we
make the slopes of both branches equal.

2.1 Basic model determination

Consider a bilinear infinitesimal isotropic and compress-
ible material which nonlinearity simply consists in that

it has different linear behavior under tension and com-

pression. Let I be the second order identity tensor and

Fig. 1 Bilinear model. Left plot: stress-strain uniaxial bilin-
ear behavior. Right plot: Transverse strains bilinear behavior.

P the fourth order projector tensor

P := I
s − 1

3I ⊗ I (1)

where Is is the symmetric fourth-order identity tensor.

Let also εv = tr (ε) = ε1 + ε2 + ε3 be the volumet-

ric strain and εdi = εi −
1
3ε

v be the principal devia-

toric strains, whose principal directions are N i. Then

the constitutive equations may be written in uncoupled
volumetric-deviatoric fashion as

σ = σ
v + σ

d = K∗ε
v
I + σ

|d : P (2)

where σ is the stress tensor,

K∗ =

{
Kt if εv ≥ 0

Kc if εv < 0
(3)

is the bulk modulus and σ
|d is the modified stress tensor

(generally non-deviatoric if µc 6= µt)

σ
|d =

3∑

i=1

σ
|d
i N i ⊗N i =

3∑

i=1

(
2µ∗ε

d
i

)
N i ⊗N i (4)

such that

µ∗ =

{
µt if εdi ≥ 0

µc if εdi < 0
(5)

Thus, we take into account the possibility of differ-

ent moduli in extension and compression. Note that

we have four moduli to be determined. Then we need

four (linear) independent semi-curves (two extension-

compression curves) to determine such moduli. Assume
that by some tests we can determine the behavior of the

material under tension and compression, and that the

experimental data is presented in the form of a uni-

axial (tension-compression) test curve σu (εu) (Young
moduli Yt and Yc) and a uniaxial (tension-compression)

test curve εt (εu) (Poisson ratios νt and νc, see Figure

1) such that the slopes are—note that the subscript t
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means transverse in the strain variable εt but tension

in the material constants Yt, νt, Kt and µt.
{
Yt = σ+

u /ε
+
u for ε+u ≥ 0

Yc = σ−
u /ε

−
u for ε−u < 0

(6)

and
{
νt = −ε+t /ε

+
u for ε+u ≥ 0

νc = −ε−t /ε
−
u for ε−u < 0

(7)

We have used + and − superscripts in order to empha-

size the sign of the main (driving) strain εu. We will

use this emphasizing notation when convenient. The

four experimental moduli Yt, Yc, νt, νc determine the
basic constitutive ones Kt,Kc, µt and µc.

For example, during extension in direction 1 the

strains are






ε1 ≡ ε+u > 0 and ε2 = ε3 ≡ ε+t < 0

εv+u = ε1 + 2ε2 > 0

εd+u ≡ εd1 = 2
3 (ε1 − ε2) > 0

εd2 ≡ εd3 = − 1
3 (ε1 − ε2) < 0

(8)

Then, the deviatoric stresses in compact Voigt notation

are (just using the diagonal terms involved)

σ
|d : P =





2/3 −1/3 −1/3

−1/3 2/3 −1/3

−1/3 −1/3 2/3











2µtε
d+
u

2µcε
d+
t

2µcε
d+
t







(9)

=







2
3

(
2µtε

d+
u − 2µcε

d+
t

)

− 1
3

(
2µtε

d+
u − 2µcε

d+
t

)

− 1
3

(
2µtε

d+
u − 2µcε

d+
t

)







(10)

The equilibrium equations are
{
σ1 = Ktε

v+
u + 2

3

(
2µtε

d+
u − 2µcε

d+
t

)
≡ σ+

u

0 = Ktε
v+
u − 1

3

(
2µtε

d+
u − 2µcε

d+
t

) (11)

We can factor-out Ktε
v+
u from the second equation

Ktε
v+
u = 1

3

(
2µtε

d+
u − 2µcε

d+
t

)
(12)

and substitute in the first one to get

σ+
u =

(
2µtε

d+
u − 2µcε

d+
t

)
with εu > 0 (13)

or —note that Kt is not involved if we measure εt

σ+
u = 2µt

[
2
3

(
ε+u − ε+t

)]
− 2µc

[
− 1

3

(
ε+u − ε+t

)]
(14)

Note also that εdt = − 1
2ε

d
u and

σ+
u = (2µt + µc) ε

d+
u ⇒ 2µt + µc =

σ+
u

εd+u
(15)

Then combining Eqs. (11) and (12) we also have

Ktε
v+
u = σ+

u /3 (16)

i.e. if the transverse strain is given by εt = −νtεu we

obtain the expected relation

Kt =
σ+
u

3 (1− 2νt) ε
+
u

=
Yt

3 (1− 2νt)
(17)

Since
(
ε+u − ε+t

)
= (1 + νt) ε

+
u , Identity (11)1 can be

written as

σ+
1 =

(
2
32µt +

1
32µc

)
(1 + νt) ε

+
u ≡ Ytε

+
u (18)

so we obtain

1

3
(2µt + µc) =

Yt
2 (1 + νt)

=: Gt (19)

This relation should be familiar to the reader for the

particular case µc = µt. It is evident that we need the

compression part in order to fully determine the basic
constitutive parameters because of the involvement of

µc. These equations emphasize the need for the com-

pression part to properly define the material [56].

Consider now the compression test in which the

strains are







ε−1 ≡ ε−u < 0 and ε−2 = ε−3 ≡ ε−t > 0

εv−u = ε−1 + 2ε−2 < 0

εd−u ≡ εd−1 = 2
3

(
ε−1 − ε−2

)
< 0

εd−2 ≡ εd−3 = − 1
3

(
ε−1 − ε−2

)
≡ − 1

2ε
d−
1 > 0

(20)

Performing the same algebraic manipulations as for the
tension case

σ−
u = 2µcε

d−
u − 2µtε

d−
t = (2µc + µt) ε

d−
u (21)

and

Kcε
v−
u = σ−

u /3 (22)

If the transverse strain is given by ε−t = −νcε
−
u we

obtain again the expected relation for compression

Kc =
σ−
u

3 (1− 2νc) ε
−
u

=
Yc

3 (1− 2νc)
(23)
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2.2 Determination of the material constants from

actual tests

Whereas the tensile test is easy to perform in soft ma-
terials, an unconfined compression test is not so reli-

able. An alternative in incompressible materials is to

substitute the compression test by an equibiaxial test,

which is completely equivalent in such incompressible
case [56]. However, as we will see below, in the com-

pressible case we need an additional test in order to

present a complete, independent group of experimental

data. The physical reason is that in the equibiaxial test

the volume also expands as in the tensile test.

Consider the equibiaxial test equilibrium equations
when the stretch is in directions 1 and 2, so —we do

not need the sign emphasis notation because we will

assume always an equibiaxial test in extension







ε1 = ε2 ≡ εe > 0 and ε3 ≡ εw < 0

εve = 2ε1 + ε3 > 0

εd1 ≡ εd2 = 1
3 (ε1 − ε3) ≡ εde > 0

εd3 = − 2
3 (ε1 − ε3) ≡ −2εd1 = εdw < 0

(24)

Then

σ
|d : P =








1
3

(
2µtε

d
e − 2µcε

d
w

)

1
3

(
2µtε

d
e − 2µcε

d
w

)

− 2
3

(
2µtε

d
e − 2µcε

d
w

)








(25)

So the equilibrium equations are

σe ≡ σ1 = Ktε
v
e +

1
3

(
2µtε

d
e − 2µcε

d
w

)
≡ Btεe (26)

0 = Ktε
v
e −

2
3

(
2µtε

d
e − 2µcε

d
w

)
(27)

where Bt is the tensile equibiaxial stiffness modulus.

Obviously we can again factor-outKt (ε
v
e) from the sec-

ond equation

Ktε
v
e = 2

3

(
2µtε

d
e − 2µcε

d
w

)
(28)

and substitute in the first equation

σe = 2µtε
d
e − 2µcε

d
w = 2µtε

d
e − 2µc

(
−2εde

)
(29)

= (2µt + 4µc) ε
d
e with εe > 0 (30)

or

σe =
2
3 [µt (εe − εw) + 2µc (εe − εw)] (31)

so —cf. Eq. (16)

Ktε
v
e = 2σe/3 (32)

i.e. using εve = (2− νe) εe, where νe is the Poisson-like

equibiaxial ratio (with value of νe = 2 for the incom-

pressible case)

Kt =
Bt

3 (1− νe/2)
=

Yt
3 (1− 2νt)

(33)

If we compare Eq. (29) with Eq. (21) we can define the

uniaxial equivalence

−σe
−2εde

= 2µc + µt =
σ−
u

εd−u
(34)

We now use the underline notation to emphasize for
future reference that they are functions with differ-

ent dependency but with the same numerical value for

equivalent arguments, i.e. underlined functions have de-

viatoric strains as arguments. We also use the brack-

eted subindex (u) to emphasize that they are uniaxial-
equivalent values obtained from equibiaxial ones; i.e.

σ−
(u)

(
−2εde

)
= −σe

(

εd−(u)

)

with σe > 0 so σ−
(u) < 0

(35)

Note that εd−(u) = εdw, i.e. the uniaxial equivalent devi-

atoric strains are the transverse equibiaxial deviatoric

deformations

εd−(u) = εdw = −2εde = − 2
3 (εe − εw) with ε(u) < 0 (36)

Comparing the moduli—cf. Eq. (21)

σ(u) = −σe = (µt + 2µc)
(
−2εde

)
≡ (µt + 2µc) ε

d−
(u) (37)

= Ycε
−
(u) = −Btεe (38)

We remark that this equivalence is established only

with the deviatoric strains, i.e. σ−
(u)

(

εd−(u)

)

. In order to

complete the equivalence, i.e. determine σ−
(u)

(

ε−(u)

)

, we

need the volumetric part which we obtain below. It is

immediate to show that

Bt

2 (1 + νe)
=

Yc
2 (1 + νc)

= Gc (39)

which clearly explains that equibiaxial and compres-
sion tests are equivalent in deviatoric terms. On the

contrary, in volumetric terms Eq. (33) shows that the

equibiaxial test is equivalent to a tensile test. Then note

that from the equibiaxial test we cannot obtain Kc. If
we cannot assume that Kc = Kt, for the remaining

needed test to compute Kc we can consider a confined

compression test which can be easily performed in soft
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materials. In this case, if we perform the test in direc-

tion 1






ε1 < 0 and ε2 = ε3 = 0

εv = ε1 < 0

εd1 = 2
3ε1 < 0

εd3 = εd2 = − 1
3ε1 > 0

(40)

and

σ
|d : P =







8
9ε1µc +

4
9ε1µt

− 4
9ε1µc −

2
9ε1µt

− 4
9ε1µc −

2
9ε1µt







(41)

The equilibrium equation in the main axis is

σ1 =

[

Kc +
4

9
2µc +

2

9
2µt

]

ε1 = Dcε1 (42)

whereDc is the confined compressibility modulus. Then,

since we already know Gc from the equibiaxial test we
can factor-out Kc

Kc = Dc −
4
9 (2µc + µt) = Dc −

2
3

[
2µc

2
3 − 2µt

(
− 1

3

)]

(43)

In order to complete the equivalence to the compres-

sion branch of the uniaxial test, note that using Eq. (22)

and Eq. (37), we can obtain the uniaxial equivalent vol-

umetric strain obtained from the modulus of Eq. (43)
and the equivalent stresses of the equibiaxial test

εv−(u) = K−1
c

(

σ−
(u)/3

)

(44)

Finally the equivalence is built as follows from the pairs

(σe, εe) and (εw, εe)

εw → εde = 1
3 (εe − εw) → εd−(u) = −2εde

σe → σ−
(u) = −σe → εv−(u) = K−1

c σ−
(u)/3






(45)

⇒







ε−(u) =
1
3ε

v−
(u) + εd−(u)

ε−(t) =
1
3ε

v−
(u) −

1
2ε

d−
(u)






⇒







σ−
(u)

(

ε−(u)

)

ε−(t)

(

ε−(u)

)

In summary, we can choose to obtain µt, µc, Kt and Kc

directly from the complete set of tests (tensile, equibi-
axial and confined compression), or from the complete

uniaxial curves. As a handy alternative for standard

plotting and to unify the input to the codes, the former

case can be converted to the latter using the described
equivalence procedure.

We now extend these ideas to large strains by use

of the inversion formula.

3 The inversion formula

The formulation we will introduce in the next section is

solved through a generalization of the Kearsley and Za-

pas inversion formula which we introduced in Ref. [47].

Assume three functions f (x), g (x) and h (x) related by

f (x) = g (x) − g (h (x)) (46)

Then, we can also write

f (h (x)) = g (h (x))− g (h (h (x))) (47)

f (h (h (x))) = g (h (h (x)))− g (h (h (h (x)))) (48)

...

f
(

h(k) (x)
)

= g
(

h(k) (x)
)

− g
(

h(k+1) (x)
)

(49)

...

where

h(k) (x) = h (h (h (...h (x))))
︸ ︷︷ ︸

k times

(50)

is a recursive function and we define h(0) (x) = x. Then

adding K + 1 equations

g (x)− g
(

h(K+1) (x)
)

=

K∑

k=0

f
(

h(k) (x)
)

(51)

If h(K) (x) → 0 and f (0) = 0, the series converges

up to machine precision (i.e. numerically exact) in a fi-

nite number of K addends. Equation (51) is the general

inversion formula, first derived in Reference [47]. The

elegant layout of the proof as given in this Section is
due to Sussman, which improved our original, lengthier

proof. In the case h(∞) (x) 9 0, an alternative inversion

formula is possible just considering

f
(

h(−1) (x)
)

= g
(

h(−1) (x)
)

− g (x) (52)

where h(−1) (h (x)) = x.

4 WYPIWYG isotropic compressible

hyperelasticity

In this section we extend the previous concepts to large
strain hyperelasticity within the What-You-Prescribe-

Is-What-You-Get realm. The formulation is based on

the Valanis-Landel decomposition and a volumetric de-

coupling in the form

Ψ (E1, E2, E3) = U (Ev) +W
(
Ed

1 , E
d
2 , E

d
3

)
(53)

= U (Ev) + ω
(
Ed

1

)
+ ω

(
Ed

2

)
+ ω

(
Ed

3

)

(54)
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Fig. 2 Nonlinear compressible isotropic hyperelasticity. Left
plot: nonlinear stress-strain behavior. Right plot: nonlinear
relation between transverse and uniaxial strains. Compare
with Figure 1.

where Ei are the principal logarithmic strains,

Ev := E1 + E2 + E3 = ln J (55)

is the volumetric logarithmic strain (the logarithm of

the Jacobian determinant J of the deformation gradient

X) and Ed
i are the deviatoric logarithmic strains, i.e.

Ed
i := Ei −

1
3E

v (56)

The (rotated or generalized [66]) Kirchhoff principal

stresses are

τ̄i ≡ Ti =
∂Ψ (E1, E2, E3)

∂Ei

(57)

=
dU (Ev)

dEv

∂Ev

∂Ei

+

3∑

j=1

dω
(
Ed

j

)

dEd
j

∂Ed
j

∂Ei

(58)

where

∂Ev

∂Ei

= 1 and
∂Ed

j

∂Ei

= δij −
1
3 (59)

In tensor notation —cf. Eq. (2)

T = T
v + T

d = U ′
I + T

|d : P (60)

where T
d := T

|d : P is the corresponding deviatoric

stress tensor and T
|d is the modified stress tensor —cf.

Eq. (4)

T
|d :=

dW

dEd
=

3∑

i=1

ω′
(
Ed

i

)
N i ⊗N i =

3∑

i=1

T
|d
i N i ⊗N i

(61)

In this equation N i are the principal stress (and strain)

directions, so T |d is a second-order tensor with the same

eigenvectors as T d, T and E.

The purpose of the computational procedure is to
obtain the stored energy derivative functions ω′

(
Ed

)

and U ′ (Ev) from some given stress-strain measured

data. As we have seen in the previous section, we need

to assume two complete “experimental” (prescribed by

the modeller) “curves” (actually discrete pairs of data),

namely T̃ u(Ẽu) ≡ τ̃ u(Ẽu) and Ẽt(Ẽu), where Ẽu is

the array of discrete, experimental, uniaxial (logarith-

mic) strain measurements, τ̃ is the array of correspond-
ing Kirchhoff stresses and Ẽt is the array of corre-

sponding transverse strains, see Figure 2, i.e. τ̃p and

Ẽtp are the measured axial Kirchhoff stress and trans-

verse strain at the uniaxial strain Ẽup, with p = 1, ..., P .
We will use the tilde notation to denote measured ex-

perimental discrete values.

Consider the uniaxial extension test performed in
direction 1 in which the driving variable is Eu ≡ E1.

The compatibility equations yield —cf. Eq. (8)







Eu ≡ E1 and Et ≡ E2 = E3

Ev
u (Eu) = E1 + 2E2 (E1)

Ed
u (Eu) ≡ Ed

1 (E1) =
2
3 (E1 − E2 (E1))

Ed
t (Eu) =

1
3 (E2 (E1)− E1) = − 1

2E
d
u (Eu)

(62)

so the deformation state is characterized by both the

uniaxial strain Eu and the transverse strain Et (Eu),

which may be a nonlinear function. The constitutive

equations together with the equilibrium ones give —cf.
Eq. (11)







Tu (Eu) = U ′ (Ev
u (Eu)) +

2
3 [ω

′
(
Ed

u (Eu)
)
−

−ω′
(
Ed

t (Eu)
)
]

0 = U ′ (Ev
u (Eu))−

1
3

[
ω′

(
Ed

u (Eu)
)
− ω′

(
Ed

t (Eu)
)]

(63)

Note that we are explicitly keeping in the notation the

functional dependencies on the main, driving strain Eu.

From Eq. (63)2 we can factor-out U ′ (Ev
u (Eu))—cf. Eq.

(12)

U ′ (Ev
u (Eu)) =

1
3

[
ω′

(
Ed

u (Eu)
)
− ω′

(
Ed

t (Eu)
)]

(64)

and substitute into Eq. (63)1 to obtain

Tu (Eu) = ω′
(
Ed

u (Eu)
)
− ω′

(
Ed

t (Eu)
)

(65)

Equation (65) can be compared to Eq. (13), see in-
terpretation in Figure 3. Note that Eq. (13) is the lin-

earized model if we take 2µc = 2µt = 2µ, i.e. the slope

of ω′ at the origin. In fact ω′′/2 presents the evolution

of the instantaneous shear modulus at each deviatoric
strain value. Because of the assumed one-to-one rela-

tion in Eq. (62)3 between Ed
u and Eu for this test we

can define the new functional dependence Tu

(
Ed

u (Eu)
)
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Fig. 3 Conceptual comparison of the nonlinear model with
the bilinear one. The slope of ω′ at the origin is the linearized
modulus 2µ. The curve ω′′ represents the evolution of such
modulus.

= Tu (Eu), numerically equal for different arguments, so

now we have the same dependences

Tu

(
Ed

u (Eu)
)
= ω′

(
Ed

u (Eu)
)
− ω′

(
− 1

2E
d
u (Eu)

)
(66)

i.e.—cf. Eq. (13)

Tu

(
2
3 (Eu − Et)

)
= ω′

(
2
3 (Eu − Et)

)
−ω′

(
− 1

3 (Eu − Et)
)

(67)

Then, we can also determine U ′ as—cf. Eq. (16)

U ′ (Ev
u (Eu)) =

1
3

[
ω′

(
Ed

u (Eu)
)
− ω′

(
Ed

t (Eu)
)]

= Tu (Eu) /3 (68)

Note that U ′ (Ev
u (Eu)) = U ′ (Eu + 2Et (Eu)) is deter-

mined directly from Tu (Eu) with the knowledge ofEt (Eu).

On the other hand, the function ω′
(
Ed

)
in Eq. (66) may

be obtained at Ed
u (Eu) from the Inversion Formula Eq.

(51) as

ω′
(
Ed

u (Eu)
)
=

K∑

k=0

Tu

((
− 1

2

)k
Ed

u (Eu)
)

(69)

We have set the reference at Tu (0) = 0 and ω′ (0) = 0
—note that the actual value of ω′ (0) in the previous

equations is not relevant.

The relation Et (Eu) has already been used in the

computation of Tu

(
Ed

u (Eu)
)
. Note that Tu may be

obtained from the tensile-test nominal stresses Pu as

Pu = Tu/λu = Tu exp (−Eu). It is also important to
note that both the tension and the compression parts

of the uniaxial test are needed in Eq. (69) to deter-

mine ω′, see Ref. [56]. The need for the compression

data includes herein the additional data for the rela-
tion Et (Eu < 0) as to properly evaluate Ed

u (Eu) for

Eu < 0. Furthermore, this expression needs the eval-

uation of Tu at different values of Eu which are not

necessarily coincident with those given by the experi-

mental (discrete) data points Ẽu. Hence, some kind of

interpolation is needed.

We use piece-wise cubic splines in order to inter-
polate the data sets T̃ u(Ẽu) and Ẽt(Ẽu). With these

interpolations we obtain smooth piecewise continuous

functions Tu (Eu) and Et (Eu). If the experimental data

present some dispersion, but we require the functions
Tu (Eu) and Et (Eu) to have some degree of smoothness,

the “experimental” spline functions would not necessar-

ily pass through the truly measured data points T̃ u(Ẽu)

and Ẽt(Ẽu). We remark that the resulting smooth func-

tions Tu (Eu) and Et (Eu) constitute the actual “ex-
perimental” data prescribed by the user and gotten by

the WYPIWYG procedure. Subsequently, a new dis-

cretized domain Ēu is employed (say 50 equispaced

Ēup, p = 1, .., 50 points) in order to obtain the re-

spective volumetric and deviatoric strain point sets Ē
d

u

and Ē
v

u using the smoothed spline function Et (Eu), see

Eqs. (62)2 and (62)3, and the corresponding stress point
set T̄ u using the smoothed spline function Tu (Eu). We

note that the strain point sets Ē
d

u and Ē
v

u are not

equispaced if Et (Eu) is non linear, so further inde-
pendent discretizations may be considered. With the

pairs {Ē
v

u, T̄ u/3} we directly compute the discrete so-

lution values Ū
′
(Ē

v

u) from Eq. (68). With the pairs

{Ē
d

u, T̄ u} we build the non-uniform spline Tu

(
Ed

u

)
,

which is to be used in the inversion formula of Eq.

(69) in order to compute the discrete solution values

ω̄
′(Ē

v

u) ≡ T̄
|d
(Ē

v

u). Once the data point sets Ū
′
(Ē

v

u)

and ω̄
′(Ē

d

u) are known, the piecewise spline interpola-

tions U ′ (Ev) and ω′
(
Ed

)
are performed, which should

be re-built in order to obtain the final uniform first-
derivative spline functions. Note that the impact of us-

ing piecewise splines in actual finite element simulations

is negligible in terms of computational time if their do-

main breaks are evenly spaced because the correspond-

ing cubic spline may be directly addressed. The stored
energy first-derivative functions are determined before

running any finite element simulation and then their

spline coefficients are saved in memory. The memory

needs to save the piecewise spline coefficients are the
main disadvantage of WYPIWYG procedures. How-

ever, this memory necesity is a very low share of the

memory used in a typical finite element problem.

The overall computational procedure is

Experim.
data pairs:
{

Ẽu, T̃ u

}

{

Ẽu, Ẽt

}







Smooth
−→

splines

Spline funct.:

Tu (Eu)

Et (Eu)







Eq. (62)
−→

at each Ēup
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−→

Resampled

pairs(*):
{
Ēu, T̄ u

}

{
Ēu, Ē

v

u

}

{

Ēu, Ē
d

u

}







Spline
−→

interp.

New spline funct.:

Tu

(
Ed

u

)

}

−→

Eqs. (68) & (69)
−→

at each Ēup, using also (*)

{

Ē
v

u, Ū
′
}

{

Ē
d

u, ω̄
′
}







Spline
−→

interp.

U ′ (Ev)

ω′
(
Ed

)

}

A more detailed explanation of the WYPIWYG pro-

cedures layout may be found in Ref. [48], so we omit
here those details.

Note that once determined, U ′ (Ev) and ω′
(
Ed

)

uniquely define the behavior of the material in any load-

ing situation if it fulfills the constitutive assumptions.

In this general loading case, it simply suffices to obtain
the stretch tensor U of the deformation gradient X,

extract the eigenvectors N i and eigenvalues λi, define

the logarithmic strains Ei = lnλi, compute the volu-

metric and deviatoric parts using Eqs. (55) and (56),

and apply Eq. (58) to obtain the principal stresses Ti
or Eq. (60) to obtain T .

As mentioned, since in soft materials it is usually

difficult to perform accurate uniaxial compression tests,

it is frequently the case when alternative tests are de-

vised. In the next section we show how to convert data
from the more convenient equibiaxial and confined uni-

axial tests to the compression branch of the uniaxial

tensile test.

5 Conversion of equibiaxial and confined

compression test data to uniaxial data

The strains during an equibiaxial test in axes 1 and 2,
with E1 > 0, are







Ev
e (E1) = 2E1 + E3 (E1) > 0

Ed
e (E1) ≡ Ed

1 (E1) =
1
3 [E1 − E3 (E1)] > 0

Ed
w (E1) ≡ − 2

3 [E1 − E3 (E1)] ≡ −2Ed
1 (E1) < 0

(70)

The equibiaxial test equilibrium and constitutive equa-

tions under the aforementioned hypotheses (isotropy
and Valanis-Landel form) are







T1 (E1) = U ′ (Ev
e (Ee)) +

1
3 [ω

′
(
Ed

e (Ee)
)

−ω′
(
Ed

w (Ee)
)
] ≡ Te (Ee)

T2 (E2) = ... ≡ Te (Ee)

T3 ≡ 0 = U ′ (Ev
e (Ee))−

2
3ω

′
(
Ed

e (Ee)
)

−ω′
(
Ed

w (Ee)
)
]

(71)

From the third equation we can factor out —cf. Eq.

(28)

U ′ (Ev
e (Ee)) =

2
3

[
ω′

(
Ed

e (Ee)
)
− ω′

(
Ed

w (Ee)
)]

(72)

and using the first equation —cf. Eq. (32)

U ′ (Ev
e (Ee)) = 2Te (Ee) /3 (73)

Note that Ev
e (Ee) is computed from Ee and from the

measured Ew (Ee). On the other hand, Eqs. (70) and

(73) also bring

Te (Ee) = ω′
(
Ed

e (Ee)
)
− ω′

(
−2Ed

e (Ee)
)

(74)

Compare this equation with Identity (29)2 and note

again that the linearized case is obtained for 2µt =
2µc = 2µ, where 2µ is the tangent of ω′ at the origin.

Defining a new function T e

(
Ed

e (Ee)
)
= Te (Ee),

T e

(
Ed

e (Ee)
)
= ω′

(
Ed

e (Ee)
)
− ω′

(
−2Ed

e (Ee)
)

(75)

If we perform the same conversions as we did in the
infinitesimal model, with Ee ≥ 0, so Ed−

(u) ≤ 0, we have

Ed−
(u) (Ee) = Ed

w (Ee) = −2Ed
e (Ee) = − 2

3 [Ee − Ew (Ee)]

(76)

and —cf. Eq. (35)

T−
(u)

(
−2Ed

e (Ee)
)
= −T e

(

Ed−
(u) (Ee)

)

(77)

with T e ≥ 0 so T (u) < 0. Thus we can write

T−
(u)

(

Ed−
(u) (Ee)

)

= ω′
(

Ed−
(u) (Ee)

)

− ω′
(

− 1
2E

d−
(u) (Ee)

)

(78)

This equation can be compared to Eq. (66), whose so-

lution is given in Eq. (69), i.e. for Ed−
(u) < 0

ω′
(

Ed−
(u) (Ee)

)

=

K∑

k=0

T−
u

((
− 1

2

)k
Ed−

(u) (Ee)
)

(79)

which is identical to that of the extension branch. Then,

it is sufficient to apply Equivalences (76) and (77) to

the experimental data and we recover the (stem) case

of the previous section. However note that as it hap-
pened with the infinitesimal formulation, we still have

not completely defined the transformation because we

need the volumetric part to obtain E−
(u).

On the other hand we have only defined U ′ (Ev) for
Ev ≥ 0 because the sign in the volumetric change in

both the tensile and equibiaxial tests is the same —

recall the bilinear case, Eq. (39). For a general loading
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situation in which volumetric compression may be ex-

pected, we need to define U ′ (Ev) for Ev < 0 or other-

wise make a reasonable assumption on it. We also need

this correspondence to complete the transformation of

the experimental data to the compression branch of the
uniaxial (tensile) test.

In the confined compression test in direction 1, the
strain field is given by E1 ≡ Ec ≤ 0 and E2 = E3 = 0.

Then






Ev (Ec) = Ec

Ed
1 (Ec) =

2
3Ec

Ed
2 (Ec) ≡ − 1

3Ec ≡ Ed
3 (Ec)

(80)

and the first equation gives —cf. Identity (43)2

U ′ (Ec) = Tc (Ec)−
2
3

[
ω′

(
2
3Ec

)
− ω′

(
− 1

3Ec

)]
(81)

Since the last addend is already known from the ten-

sile and equibiaxial tests, Tc (Ec) determines U ′ (Ec) for

values Ec ≡ Ev ≤ 0.

Now, with the knowledge of U ′ (Ev) for Ev ≤ 0 we

can complete the equivalence computing the uniaxial

transverse strains E(t)

(
E(u)

)
for E(u) ≤ 0. Indeed Eq.

(68) brings —cf. Eq. (44)

Ev−
(u)

(

E−
(u)

)

= U ′(−1)
(

1
3T

−
(u)

)

(82)

where U ′(−1) denotes the inverse function of U ′ (i.e.

such that U ′(−1)U ′ (∗) = ∗) which is easily performed

within the piecewise spline context. Note the dependen-

cies T−
(u)

(

Ed−
(u)

(

E−
(u)

))

. Using Eq. (62)2

E−
(t)

(

E−
(u)

)

=
1

2

[

Ev−
(u)

(

E−
(u)

)

− E−
(u)

]

(83)

Then, the computational procedure is summarized as

in (45)

Ew (Ee) → Ed
e = 1

3 (Ee − Ew (Ee)) → Ed−
(u) = −2Ed

e

Te (Ee) → T−
(u) = −Te → Ev−

(u) = U ′(−1)
(

1
3T

−
(u)

)







⇒







E−
(u) =

1
3E

v−
(u) + Ed−

(u)

E−
(t) =

1
3E

v−
(u) −

1
2E

d−
(u)






⇒







T−
(u)

(

E−
(u)

)

E−
(t)

(

E−
(u)

) (84)

6 Tangent moduli

Once the stored energy density function derivatives U ′

and ω′ have been obtained, the tangent moduli are ex-
actly the same as in any formulation employing the

compressible Valanis-Landel decomposition. The tan-

gent moduli may be easily obtained in T −E form and

then converted to any other pair of stress-strain mea-

sures through the adequate mapping tensors [66]. In

general, using Eq. (54) the stress tensor T = T
v + T

d

may be obtained as in Eq. (60). Then, using —see for

example [55]

C
|d :=

dT |d

dEd
=

d2W

dEddEd

=

3∑

i=1

ω′′
(
Ed

i

)
M i ⊗M i +

3∑

i=1

∑

j 6=i

T d
j − T d

i

Ed
j − Ed

j

M ij ⊗M ij

(85)

with

M i := N i⊗N i and M ij :=
1
2 (N i ⊗N j +N j ⊗N i)

(86)

the constitutive tangent is obtained as

C =
dT

dE
=

d2Ψ

dEdE
= U ′′ (Ev) I ⊗ I + P : C|d : P (87)

Note that the derivatives of the stored energy function

densities are spline derivatives (i.e. local polynomials).
WYPIWYG models have comparable efficiency to tra-

ditional hyperelastic models in finite element simula-

tions; see Ref. [48].

To finish the presentation of the procedure, it is

worth mentioning that since WYPIWYG procedures
are different from traditional ones in that they have

no global material parameters, analyzing the stability

properties of the obtained stored energy needs also dif-

ferent approaches in general. Of course the positive sign
of the second derivatives of the corresponding energy

terms ω and U may be readily performed once the coef-

ficients of the splines have been computed. Restrictions

on those coefficients may also be imposed in order to

guarantee some stability properties. However we note
that What-You-Prescribe-Is-What-You-Get procedures

would be able to capture unstable behavior in unstable

materials. The main concern here is that experimental

noise or simultaneous presentation of data from differ-
ent specimens may result in oscillatory or in nonphys-

ical unstable predicted behavior for stable materials.

Smoothing techniques for splines to fit very noisy ex-

perimental data with a given degree of smoothness or

behavioral conditions are well known in statistics and
in the curve and surface fitting fields, see for exam-

ple [69–71] and therein references. However, in practice,

normal experimental noise is easily smoothed out using

penalized splines as the ones implemented in MATLAB.
WYPIWYG procedures are then initialized with those

pre-processed data points as prescribed input. For ex-

ample we have used these splines in the computations
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from actual experimental data of compressible foam

in Fig. 12 below, in the computations in Ref. [56] us-

ing actual experimental data from incompressible rub-

ber, and in the computations in Ref. [58] with data

from murine skin using the incompressible transversely
isotropic model. Since in these cases there was a low

experimental noise, very low smoothing was needed in

practice.

7 Examples

As mentioned, the model captures to any desired nu-

merical precision the behavior of hyperelastic materials
which fulfill the separability hypothesis of the strain

energy function proposed by Valanis and Landel, i.e.

models fulfilling the form of Eq. (54). There are many

analytical stored energy functions published in the lit-
erature which follow this assumption. For the isochoric

part ω we have chosen the Neohookean model [59], the

Mooney model [62] and the Ogden model [60], [61]. For

the volumetric part we have chosen the same function

for all models which is the convex function from Hart-
mann and Neff [63], see arguments for the selection

therein. We now show that the proposed formulation

is of course capable of reproducing the behavior pre-

dicted by those models in any loading situation just em-
ploying as input the “experimental” stress-strain data

that those energy functions generate for the uniaxial

case. We also employ the Gent [64] model which does

not follow the Valanis-Landel decomposition. We show

that even in this case we are able to capture the behav-
ior of the model to high precision in moderately large

strains. Note that the Valanis-Landel decomposition

is mathematically accurate for moderate large strains

and has been experimentally verified in some materi-
als [3]. Furthermore, if the real material does not fol-

low the Valanis-Landel decomposition, additional tests

are needed in order to determine the coupling between

strain components at very large strains. Then we se-

lect some experimental data from Blatz and Ko [65] to
show the performance of our proposal in predicting the

behavior of actual materials. We also show that this

formulation includes the formulation of Sussman and

Bathe for isotropic (quasi-)incompressible materials as
a particular case. Finally, we present a finite element

simulation to show the efficiency of the method.

7.1 Volumetric component

As mentioned, for the volumetric part to be added to

all models, we have chosen the function from Hartmann

and Neff [63] given by the following derivative

U ′ (Ev) =
K

β1
(exp (β2E

v)− exp (β3E
v)) (88)

where K = 8 × 105Pa, β1 = 10, β2 = 4 and β3 = −6.

The value of K was selected to allow a high compress-

ibility at low strain as to show the features of the model.
At very large strains the volumetric term usually be-

comes dominant. The rest of the parameters are those

given by Hartmann and Neff in Table 4 of Ref. [63].

7.2 Neohookean model

The compressible Neohookean stored energy function is

frequently given by the following expression [60], [59]

Ψ = U (Ev) + C1

(
Id1 − 3

)
(89)

where Id1 is the first invariant of the isochoric (devia-

toric) right Cauchy-Green deformation tensor obtained

from the isochoric deformation gradient of Flory’s de-

composition. The material parameter is C1 = 0.4MPa,
taken from Ref. [59].

For the uniaxial case, σ2 = σ3 = 0, and the problem

is solved using a Newton-Raphson algorithm. Since the
procedure is well-known we omit the details.

In Figure 4a we represent the uniaxial stress-strain

curve, where we show the analytical predictions given
by the Neohookean/Hartmann–Neff model. We have

used this Neohookean predictions as the input data

of our model, as if they were measured experimental

data. In the same figure 4a we also show the numeri-
cal predictions using our proposal which are coincident

with the spline interpolation, and the latter obviously

with the predictions of the Neohookean model. In Fig-

ure 4b we show the transverse strain predictions from

the Neohookean model (and also input data to our pro-
cedure) and the resulting numerical predictions using

our proposal. In Figure 4c and Figure 4d we show, re-

spectively, the stored energies derivatives ω′ and U ′ for

both the Neohookean/Hartmann-Neff model and the
WYPIWYG model. It can be seen in this Figure that

both stored energy derivatives are visually coincident.

As a consequence, both predictions are also coincident.

However we remark that even though the stored energy

derivatives in Figures 4c and 4d look identical for both
models, they are indeed different. The stored energy

derivatives of the Neohookean/Hartmann–Neff model

are those given by the derivative of Eqs. (89) and (88).

On the contrary, the stored energy derivatives of the
WYPIWYG procedure are piecewise third order poly-

nomials. Both stored energy derivatives are exactly co-

incident at the discretization points Ēup.
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Fig. 4 Compressible Neohookean/Hartmann–Neff model
predictions for the uniaxial test and WYPIWYG predic-
tions using the former ones as “experimental” data. a) Ten-
sile Kirchhoff stresses in Pa versus uniaxial (longidutinal)
logarithmic strains. b) Transverse strains versus longitudi-
nal strains. c) Energy derivative components ω′ in Pa ver-
sus deviatoric longitudinal strains: prescribed (Neohookean)
and obtained (WYPIWYG) energies. d) Volumetric stored
energy derivative: prescribed (Hartmann and Neff) and ob-
tained (WYPIWYG) energies.

Consider now the following family of deformation

gradients

X =





(1 + γ)n

γ (1 + γ)
n

1



 (90)

where γ is the main deformation variable and n is a
constant. The case n = 0 is a simple shear case and γ

is the “amount of shear”. We consider also the cases of

n = 1/3 and n = 1/2, which correspond to different

combinations of volumetric and isochoric parts.
The predictions for the in-plane normal stresses σ11,

σ22 and shear stress σ12 as a function of the “amount

of shear” γ are given in Figure 5 for both models. In
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Fig. 5 Predictions for the deformation gradient given in
Eq. (90) using the compressible Neohookean/Hartmann–Neff
model and predictions obtained using the WYPIWYG model
using the stored energies of Figure 4. First row: predictions
for components σ11, σ12, σ22 (Pa) versus γ for n = 0 (simple
shear) in Eq. (4). Second row: predictions for n = 1/3. Third
row: predictions for n = 1/2.

this figure, as well as in similar figures below, we plot

in the first row of axes the predictions for n = 0 in Eq.

(90) (simple shear case), in the second row of axes we
plot the predictions for n = 1/3 and in the third row

of axes the predictions for n = 1/2. The first column

corresponds to the component σ11 of the Cauchy stress

tensor for each case, the second column corresponds

to the shear component σ12 of the Cauchy stress tensor
and in the third column the component σ22 of the same

tensor is given. Note that in this case for the WYPI-

WYG model we simply use the stored energy deriva-

tives given in Figures 4c and 4d. It should be of no
surprise that the predictions using both models are co-

incident again in all cases. In fact, since we have “ex-

actly” computed the stored energy, both models match
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numerically and the predictions will be coincident in

any loading situation. In the next examples we repeat

these same curves, showing that we obtain the same

conclusions for any model being used if it fulfills the

Valanis-Landel decomposition.

7.3 Mooney model

The Mooney stored energy function is [62]

Ψ = U (Ev) + C1

(
Id1 − 3

)
+ C2

(
Id2 − 3

)
(91)

where C1 = 0.39×106Pa and C2 = 0.15×106Pa are the

material parameters, Id2 is the second invariant of the
deviatoric right Cauchy-Green deformation tensor and

U (Ev) is the same Hartmann-Neff volumetric stored

energy.

Figure 6 shows the comparison of this model and

the WYPIWYG approach for the material parameters
of the Mooney model. As with the previous model, it

can be verified that both models give exactly the same

predictions. Figure 7 shows the predictions for the de-

formation pattern given by Eq. (90) following the lay-
out already explained in the previous example. It can

be seen again that both models give exactly the same

predictions, i.e. the WYPIWYG model exactly (numer-

ically speaking) replicates the material behavior in any

loading situation.

7.4 Ogden model

The stored energy function of the Ogden model is given

by the following expression [60], [61]

Ψ = U (Ev) +

M∑

p=1

µp

αp

(
(λd1)

αp + (λd2)
αp + (λd3)

αp − 3
)

(92)

where µi and αi are the material parameters, M is

the number of terms, typically M = 3, and λdi are
the isochoric (deviatoric) stretches. The material pa-

rameters we have used are [59] µ1 = 0.62 × 106Pa,

µ2 = 1.18× 103Pa, µ3 = −9.81× 103Pa and α1 = 1.3,

α2 = 5, α3 = −2.

Figures 8 and 9 show the same comparisons as be-

fore. We obtain the same conclusions as in the previous

examples.
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Fig. 6 Compressible Mooney/Hartmann–Neff model predic-
tions for the uniaxial test and WYPIWYG predictions using
the former ones as “experimental” data. a) Tensile Kirch-
hoff stresses in Pa versus uniaxial (longidutinal) logarithmic
strains. b) Transverse strains versus longitudinal strains. c)
Energy derivative components ω′ in Pa versus deviatoric lon-
gitudinal strains: prescribed (Mooney) and obtained (WYPI-
WYG) energies. d) Volumetric stored energy derivative: pre-
scribed (Hartmann and Neff) and obtained (WYPIWYG) en-
ergies.

7.5 Gent model

The Gent stored energy function is [64]

Ψ = U (Ev) + ψ
(
Id1
)
= U (Ev)−

µJm
2

ln

(

1−
Id1 − 3

Jm

)

(93)

where µ = 6000Pa and Jm = 80 are the material pa-

rameter values we have chosen. This model does not

admit a Valanis-Landel decomposition which is a basic

hypothesis of our proposal. In Figure 10 we show the
predictions of the Gent model and the associated stored

energy derivatives; in the case of Gent’s model the func-

tion ψ′ was obtained for the uniaxial test at hand. It
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Fig. 7 Predictions for the deformation gradient given in Eq.
(90) using the compressible Mooney/Hartmann-Neff model
and predictions obtained using the WYPIWYG model using
the stored energies of Figure 6. First row: predictions for com-
ponents σ11, σ12, σ22 (Pa) versus γ for n = 0 (simple shear)
in Eq. (90). Second row: predictions for n = 1/3. Third row:
predictions for n = 1/2.

is seen that as in the previous cases the WYPIWYG

model is capable of capturing the stress-strain behav-

ior during the uniaxial test.

In Figure 11, the deformation gradients given by

Eq. (90) are again imposed to both models. However,

in this case we have limited the exponent n to n = 1/5

due to the asymptotic behavior of the Gent model. As
mentioned the Gent model does not fulfill the Valanis-

Landel decomposition. However, for moderate large de-

formations the Valanis-Landel decomposition is an ade-

quate approximation. The predictions shown in Figure
11 are in line with this observation. Even though Gent’s

model is not built on the Valanis-Landel decomposition,

our WYPIWYG model is able to capture the deforma-
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Fig. 8 Compressible Ogden/Hartmann–Neff model predic-
tions for the uniaxial test and WYPIWYG predictions using
the former ones as “experimental” data. a) Tensile Kirch-
hoff stresses in Pa versus uniaxial (longitudinal) logarithmic
strains. b) Transverse strains versus longitudinal strains. c)
Energy derivative components ω′ in Pa versus deviatoric lon-
gitudinal strains: prescribed (Ogden) and obtained (WYPI-
WYG) energies. d) Volumetric stored energy derivative: pre-
scribed (Hartmann and Neff) and obtained (WYPIWYG) en-
ergies.

tions predicted by Gent’s model to a very high accuracy

for moderately large deformations.

7.6 Predictions for the Blatz and Ko experiments

We now show the performance of the WYPIWYG ap-
proach to predict the behavior measured by the ex-

periments from Blatz-Ko [65] on a polyurethane foam,

which is a highly nonlinear compressible material. For

this purpose, the data from both the uniaxial tension
and equibiaxial tension tests are prescribed and the en-

ergy function derivatives ω′ and U ′ are computed as de-

scribed in this paper. We have considered that Ew (Es)



WYPIWYG hyperelasticity for isotropic, compressible materials 15

−0.5 0 0.5
−5

−4

−3

−2

−1

0
x 10

4

n 
= 

0

σ
11

 (Pa)

 

 

−0.5 0 0.5
−3

−2

−1

0

1

2

3
x 10

5 σ
12

 (Pa)

−0.5 0 0.5
0

2

4

6

8
x 10

4 σ
22

 (Pa)

Ogden prediction
WYPIWYG prediction

−0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

6

n 
= 

1/
3

 

 

−0.5 0 0.5
−4

−3

−2

−1

0

1

2
x 10

5

−0.5 0 0.5
−20

−15

−10

−5

0

5
x 10

5

−0.5 0 0.5
−15

−10

−5

0

5
x 10

6

γ

n 
= 

1/
2

 

 

−0.5 0 0.5
−6

−4

−2

0

2
x 10

5

γ

Ogden vs. WYPIWYG predictions

−0.5 0 0.5
−15

−10

−5

0

5
x 10

6

γ

Fig. 9 Predictions for the deformation gradient given in Eq.
(90) using the compressible Ogden/Hartmann–Neff model
and predictions obtained using the WYPIWYG model using
the stored energies of Figure 8. First row: predictions for com-
ponents σ11, σ12, σ22 (Pa) versus γ for n = 0 (simple shear)
in Eq. (90). Second row: predictions for n = 1/3. Third row:
predictions for n = 1/2.

is an odd function. In Figures 12a and 12b we show

the averaged values (the circles in Figure 12) given
by Blatz-Ko [65] for the performed experiments, con-

veniently converted from Figures 13, 14, 21 and 22 of

Ref. [65]. This experimental data, slightly smoothed,

was captured by the computed stored energy terms,
whose derivatives are given in Figures 12c and 12d.

These stored energies fully determine the material be-

havior in any loading situation if the material fulfills the

constitutive hypothesis of isotropy and Valanis-Landel

decoupling.

We now proceed to predict the behavior of the mate-
rial for strip-biaxial (plane strain) experiments. In this

case the principal deformation is given in axis 1, i.e.

Es ≡ E1. Axis 2 has a vanishing strain E2 = 0 and
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Fig. 10 Compressible Gent/Hartmann–Neff model predic-
tions for the uniaxial test and WYPIWYG predictions using
the former ones as “experimental” data. a) Tensile Kirch-
hoff stresses in Pa versus uniaxial (longidutinal) logarithmic
strains. b) Transverse strains versus longitudinal strains. c)
Energy derivative components ω′ ot ψ′ in Pa versus devi-
atoric longitudinal strains: prescribed (Gent) and obtained
(WYPIWYG) energies. d) Volumetric stored energy deriva-
tive: prescribed (Hartmann and Neff) and obtained (WYPI-
WYG) energies.

the thickness reduction is Ew ≡ E3. We can perform

the predictions using a finite element. However, since

this is an homogeneous deformation it is more straight-

forward and instructive to solve directly the nonlinear

equilibrium equations. The volumetric and deviatoric
logarithmic strains are







Ev = Es + Ew

Ed
s = 2

3Es −
1
3Ew

Ed
2 = − 1

3 (Es + Ew)

Ed
w = 2

3Ew − 1
3Es

(94)
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Fig. 11 Predictions for the deformation gradient given in
Eq. (90) using the compressible Gent/Hartmann–Neff model
and predictions obtained using the WYPIWYG model using
the stored energies of Figure 10. First row: predictions for
components σ11, σ12, σ22 (Pa) versus γ for n = 0 (simple
shear) in Eq. (90). Second row: predictions for n = 1/10.
Third row: predictions for n = 1/5.

In order to determine either Ew (Es), or alternatively

Es (Ew), we use the boundary condition τw = 0 to ob-
tain the nonlinear equation

2
3ω

′
(
2
3Ew − 1

3Es

)
− 1

3ω
′
(
− 1

3 (Es + Ew)
)

− 1
3ω

′
(
2
3Es −

1
3Ew

)
+ U ′ (Es + Ew) = 0 (95)

which can be solved for Ew by a Newton-Raphson scheme

given a value of Es. Once the relation Ew (Es) is known,
the strains in Eq. (94) are known and we can compute

the main stresses by a similar equilibrium equation in

Axis 1.

In Figure 13 we show the predictions given by the

WYPIWYG model for the strip-biaxial experiments on

the same material using the stored energy densities
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Fig. 12 Determination of the stored energies of polyurethane
foam from the Blatz and Ko experimental data. The circles
are the averaged data for the experimentes given by Blatz and
Ko. The diamonds correspond to the WYPIWYG predictions
using the computed stored energies. a) Kirchhoff stress in Pa
as a function of the uniaxial strain. b) Transverse strains. c)
Computed ω′ in units of J /m3 ≡ Pa. c) Computed volumet-
ric stored energy derivative U ′ in Pa.

of Figure 12. The predictions for the strip-biaxial ex-

periments are presented against averaged experimental

data from Blatz and Ko (Figures 17 and 18 of Ref. [65]).

It is seen in Figure 13a that the stresses are accurately

predicted by the WYPIWYG formulation, since the er-
ror observed is of the order of the experimental errors

given in Reference [65]. In Figure 13b we show the pre-

dicted transverse strains (thickness reduction) against

the longitudinal ones. The observed discrepancies are
also in the order of some estimated experimental errors

for these quantities, see Figures 22 and 24 of Ref. [65]

and note that we plot logarithmic measures.
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Fig. 13 Predictions of the strip-biaxial experiments from
Blatz and Ko using the stored energy density derivatives of
Figures 12a and 12b. a) Kirchhoff stresses (Pa) versus longi-
tudinal logarithmic strains. b) Transverse strains (thickness
contraction) as a function of longitudinal strains.

7.7 Recovery of the incompressible formulation

In order to show that the (quasi-)incompressible model

of Sussman and Bathe is recovered as a particular case,
we modify the transverse strains and set E2(E1) =

−νE1 with different values of ν. The case of ν → 0.5

corresponds to the incompressible formulation. In Fig-

ure 14 we show the predictions and stored energy den-

sity derivatives for the Ogden model with modified trans-
verse strains as to obtain a constant ν for values from

ν = 0 to ν = 0.499. It is seen in Figures 14a and 14b

that the prescribed stress-strain uniaxial behavior is

still captured. Remarkably Figure 14a shows that the
uniaxial stress-strain behavior is exactly captured in all

cases. However, it is seen in Figure 14d that the stored

energy derivative approaches the values U ′′ → ∞, and

the volumetric strains Ev → 0 as ν → 0.5, i.e. they

approach the quasi-incompressible case. Note that even
though the largest change is in U ′, the function ω′ also

changes with ν so the predicted stress-strain curve given

in Figure 14a is “exactly” the same regardless of the ν

value; only the predictions in Figure 14b change to ac-
commodate the varying Poisson ratio.

It is well known that incompressibility is frequently
imposed in finite element procedures through a penalty

volumetric stored energy density. However, because the

range of deformations is large and the change in the

relative volumetric stiffness may be large, this method
frequently results in a too weak imposition of the in-

compressibility constraint at moderate strains or in nu-

merical conditioning problems at very large strains. The
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Fig. 14 Determination of the stored energies with modified
transverse strains approaching the quasi-incompressible be-
havior. a) Kirchhoff stress in Pa as a function of the uniaxial
strain; uniaxial data from the example using Ogden’s model.
b) Transverse strains (modified to obtain different ν values).
c) Computed derivatives of the stored energy density compo-
nents ω′ in units of J /m3 ≡ Pa. d) Computed volumetric
stored energy density derivatives U ′ in Pa.

present formulation also allows for an adequate impo-
sition of the incompressibility constraint at all defor-

mation levels simply prescribing a constant value of ν

close enough to 0.5 in the transverse strains.

7.8 Plate with a hole using the Ogden model and the

WYPIWYG approach

As a demostrative example of the possibilities of the

WYPIWYG approach in finite element simulations, we

analyze a plate with a hole using our in-house finite el-

ement code Dulcinea. This example, with different con-
stitutive models has been used in Refs. [48, 53, 54, 68].

The plate has initial dimensions of l0×h0 = 32×16mm2

and an inner hole of radius r0 = 4mm.
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Fig. 15 Rectangular plate with a concentric hole: unde-
formed finite element mesh employing quadratic elements
with full integration.

The material data is the same as that used in the
previous Ogden example. We have performed two anal-

yses. One using the compressible Ogden/Hartmann–

Neff model and one using our WYPIWYG approach

capturing the Ogden/Hartmann–Neff uniaxial data, i.e.

we use the stored energy densities of Figures 8c and 8d.
The finite element mesh consists of 9-node plane strain

quadratic elements with full integration. The prescribed

displacement using a penalty approach is of 10mm im-

posed at each lateral end in 10 proportional paths (i.e.
2mm per step).

In Figure 16 we show the von Mises stress distri-
butions and the pressure distributions for both mod-

els, along with the deformed meshes at the end of the

analysis. As it could have been predicted from the pre-

vious examples, no difference can be observed in the
results given by both models. This is a consequence of

the WYPIWYG model ability to capture the behav-

ior of both the Ogden and the Hartmann–Neff models

in any loading situation. Note that we have used the

Ogden/Hartmann-Neff model as to clearly show that
if this model were exactly predicting the behavior of

a real material, we would have exactly (again, numeri-

cally speaking) captured the behavior of that material

in any loading situation. Of course this conclusion ap-
plies to any other model or actual material if the hy-

potheses of hyperelasticity, isotropy and Valanis-Landel

decomposition hold.

Furthermore, in Table 1 we present the relative con-

vergences of both models obtained in a characteristic

step. This table shows that indeed the iterations of both
models are almost identical; note that only the force

residual at iteration 3 and the energy residual at itera-

tion 4 present a difference in the 5 digits shown in the

numbers of the table. This should not be a surprise be-

cause as repeatedly commented throughout the paper,

the numerical values of the energies of both models in

any loading situation are also almost identical.

This example has been computed using one pro-

cessor of a 2011 Windows-PC with Dulcinea running

as a 32-bit fortran90 Pentium application. Under these
conditions the Ogden/Hartmann–Neff model needed 91

seconds (elapsed time), whereas the WYPIWYG for-

mulation needed 110 seconds. We attribute the differ-

ence mainly to the retrieval and addressing operations
of the spline coefficients in order to compute the stresses

and constitutive tangent. Whereas the material param-

eters for the Ogden/Hartmann–Neff model are given

explicitly to the program, the WYPIWYG computa-

tional time includes also the initial determination of
the stored energies from uniaxial data. However, this

initial determination took less than one second.

Relative convergence rates of the plate-with-a-hole

problem. Step 7/10

Ogden/Hartmann–Neff model

Iter Force residual Energy residual

1 1.000E + 00 1.000E + 00

2 1.339E − 03 4.449E − 06

3 5.441E − 06 2.542E − 11
4 2.998E − 11 3.069E − 21

WYPIWYG model

Iter Force residual Energy residual

1 1.000E + 00 1.000E + 00
2 1.339E − 03 4.449E − 06

3 5.443E − 06 2.542E − 11

4 2.998E − 11 3.071E − 21

Table 1 Convergence rates for both the Ogden/Hartmann–
Neff model and the WYPIWYG model

8 Conclusions

WYPIWYG hyperelasticity differs from traditional mod-

els in that the shape of the stored energy is not assumed

beforehand, in that there are no material parameters

and in that no optimization algorithms to obtain those

parameters are needed. The stored energies are numer-
ically computed to the desired precision solving the dif-

ferential equations of the tests. These tests uniquely

(numerically speaking) define the stored energy under

the constitutive assumptions. In this work we have pre-
sented a WYPIWYG procedure to numerically com-

pute the stored energy for compressible isotropic mate-

rials fulfilling the Valanis-Landel hypothesis. We have
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Fig. 16 Rectangular plate with a concentric hole. Deformed meshes and stresses. a) Von Mises stress distribution (Pa) for
the Ogden/Hartmann-Neff model. b) Pressure distribution (Pa) for the Ogden/Hartmann-Neff model. c) Von Mises stress
distribution for the WYPIWYG model. d) Pressure distribution for the WYPIWYG model

shown that the model is capable of capturing analyti-
cal models using the Valanis-Landel decomposition and

of predicting the behavior observed in the experiments

of Blatz and Ko. Furthermore, we have shown that

the quasi-incompressible formulation is naturally recov-
ered.

Because we understand WYPIWYG models as a

natural extension of the infinitesimal framework to large

strains, we have motivated the formulation in the small
strain setting and have justified the number of tests

needed to uniquely define such materials, an issue fre-

quently not clear in the literature [8], [56]. Furthermore,

we have also explained the way to convert data from
equibiaxial and confined compression tests to the stan-

dard data of an equivalent uniaxial tension-compression

curve, which can be used as the standardized input in

finite element procedures. The efficiency of WYPIWYG
procedures in general finite element simulations is par-

allel to that of traditional models not only in the case of

compressible isotropy presented herein but also in the

case of anisotropy [48, 54].

Acknowledgements

Partial financial support for this work has been given
by grants DPI2011-26635 and DPI2015-69801-R from

the Dirección General de Proyectos de Investigación of

the Ministerio de Economı́a y Competitividad of Spain.
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