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Plaza Cardenal Cisneros, 3, 28040-Madrid, Spain

Abstract

Hyperelastic constitutive models for anisotropic biological materials are frequently
based on orthotropic incompressible stored energy functions. The material param-
eters of these models are then obtained through an optimization procedure as to
fit some stress-strain experimental data. For example, in arterial wall mechanics
the material data usually employed for the Holzapfel-Gasser-Ogden and the Gasser-
Ogden-Holzapfel models are two uniaxial tension curves from circumferential and ax-
ial specimens. The transverse strains from these specimens are frequently not taken
into consideration. In this paper we analyze the evolution of those strains, show-
ing that an unrealistic behaviour may be predicted. We then show how transverse
strains may be prescribed using our What-You-Prescribe-Is-What-You-Get (WYPI-
WYG) model in a very intuitive way, still capturing the longitudinal stress-strain
behavior in an exact manner without employing any constitutive parameter. This is
possible because, in contrast to what it is usually done, we exactly solve the equilib-
rium and compatibility equations without imposing the shape of the stored energy
function. Furthermore, we show that the small strains formulation is naturally recov-
ered and that the physical insight from the infinitesimal theory is preserved. In fact,
for incompressible materials, the present approach can be considered as a natural
extension of the infinitesimal continuum elastic framework to large strains. This new
physical insight clearly shows that if some subclasses of orthotropic incompressible
material models are determined with just two uniaxial curves, then the transverse
behavior should be contrasted with additional experimental observations.
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1. Introduction

In contrast to the usual approach employed in fiber-reinforced industrial compos-
ites, where a linear small strain analysis is performed [1], in soft biological tissues
large strain measures and associated constitutive equations are employed because
the behavior is highly nonlinear. Then, the first modelling approach to soft biologi-
cal (collagen-reinforced) tissues is to employ hyperelastic constitutive models [2, 3].
However, hyperelastic (true elastic, path independent) behavior puts some restric-
tions in the constitutive equations which, for the linear model, are simply fulfilled
by the symmetries of the constitutive tensor. In order to also automatically fulfill
these restrictions in the nonlinear regime, authors typically propose a stored energy
function shape; the shape being modulated by some material parameters as to fit
(with variable success) some experimental data [4]. For isotropic materials, many
constitutive models have been proposed (see [5, 6, 7, 8, 9, 10] among others), and
usually, the linear infinitesimal theory may be recovered and the infinitesimal moduli
easily related to the material parameters as, for example, in the Ogden model [10].

In the case of transverse isotropic and orthotropic materials, several proposals
are also available and frequently used in soft biological tissues, some of them phe-
nomenological in approach as the popular Fung model [11, 12] (see also [13]), and
some using microstructure information, see for example [14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29]. In these models a frequent approach to pre-
serve frame invariance in general is to establish the stored energy as a function of
Spencer’s pseudo-invariants of the right Cauchy-Green metric tensor [30]. Then, to
arrive at workable formulations, some of these invariants are frequently neglected
[31], see discussion in [32], and because the meaning of some of these invariants is
not intuitive, the consequences may be unexpected, as we show below. Moreover,
it is usual the case where the material parameters are also of difficult interpreta-
tion, and the problem encountered in finding the best solution for isotropic materials
[33, 52], is magnified in anisotropic ones [19, 60]. Then, material symmetries con-
gruency may not be obtained either theoretically or computationally [34], so the
predictions for an isotropic material characterized with these models may result in
that of an anisotropic material. Some requirements regarding this issue for stored
energies based on Cauchy–Green invariants may be found in the paper of Murphy
[35].
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Furthermore, a relevant point recently analyzed also by Murphy is that the pro-
posed anisotropic models do not recover the full infinitesimal orthotropic theory [35].
In fact, for someone not acquainted with biomechanics constitutive models but with
fiber-reinforced composites background, it may be surprising that an incompressible
orthotropic material may be fully characterized with just two tension curves [28, 36],
when the linear fiber-reinforced elastic counterpart needs six independent moduli
(i.e. six slopes of six independent curves), see [32]. Then, in these models the effects
of transverse strains are either neglected, ignored or assumed to be correctly given
by the model (but usually never verified) and the result may be rather unexpected
[23]. It is obvious, even from the infinitesimal theory, that transverse strains are very
important in 3D or 2D constrained analyses, so if transverse strains are not correctly
captured, in general it is to be expected that the longitudinal behavior will neither
be correctly predicted in a configuration different from the uniaxial test. General re-
quirements on stored energies based on Cauchy–Green invariants in order to recover
the full infinitesimal theory are given in [35]. A consequence of not fulfilling these
requirements may be the inability of the model to properly represent a general in-
compressible orthotropic material not only under infinitesimal strains but also under
large deformations. Indeed, for the case of arteries, it has been recently shown that
predictions of Poisson’s ratio with some widely used models initially developed for
these type of biological materials are inconsistent with experimental data [37]. In
summary, apart from the challenging interpretation of the invariants and material
parameters being used (which are usually obtained from optimization procedures),
and assuming that the compression behavior of fibers is properly accounted for [38],
the following difficulties are frequently found in these models: non-uniqueness of
material parameters [33, 19, 60], inconsistency with the equivalent full linear theory
[35], lack of numerical material symmetries congruency [34] and unrealistic transverse
strains [37].

In order to overcome all these difficulties, we have recently presented two hy-
perelasticity models in the realm of the WYPIWYG (What-You-Prescribe-Is-What-
You-Get) approach, an approach which we also applied to viscoelasticity [39, 40]
and damage [41]. One of the hyperelastic models is for transverse isotropic mate-
rials [42], see also Ref. [43], and the other one for orthotropic materials [44]. The
formulations are based on the isotropic incompressible model of Sussman and Bathe
[45], which is already available in the commercial finite element code ADINA [46].
These models are purely phenomenological, i.e. no information about the structure
of the material is employed, except for the material symmetries. Furthermore, the
models use meaningful, easy-to-interpret invariants of the logarithmic strains [47],
which are a natural extension of infinitesimal strains. In fact, we show here that
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the formulation itself may be understood as a natural extension of the infinitesimal
model to large strains because we use the same uncoupled form for the stored energy
as that of the infinitesimal framework and because logarithmic strains have unique
properties parallel to those of infinitesimal strains. For example, they are additive
if the principal strain directions remain fixed, the push-forward and pull-back oper-
ations are performed with the rotation part of the deformation gradient (i.e. they
preserve the metric with respect both the reference and the current configurations)
and the deviatoric and volumetric operators are the same as those of the infinitesimal
theory. Discussions on the properties of logarithmic strains and their relation with
infinitesimal strains can be found in [47, 48, 49, 50, 51], among others. As a result,
six curves (including the compression part when applicable [52]) are needed to fully
characterize our orthotropic model. These curves are exactly captured, close to the
machine precision, with the modified algorithm given below, and uniquely determine
the six reference elastic moduli and their evolution. With the previous algorithm,
presented in [44], the solution was not obtained in an strictly exact manner (com-
putationally speaking), although the solution could be considered exact for practical
purposes if the tendency of the transverse deformations, e.g. linear, quadratic, etc.,
is known from experimental measurements [37]. However, the new algorithm yields
exact solutions which will be useful for the current analysis and without employing
user-prescribed starting values. Furthermore, as we also show below, insight into
the behavior of the model under finite strains is naturally and accurately obtained
by an analysis of the infinitesimal theory. This insight is also crucial in order to be
able to prescribe the possibly unknown (in a quantitative manner) transverse finite
strains such that the behavior is according to what one would physically expect (in a
qualitative manner). In our opinion, this is a much better option for unknown curves
than to simply ignore them.

The rest of the paper is structured as follows. We first analyze the transverse
strains under uniaxial tests obtained, just as examples, by two well-known and
widely used models: the Holzapfel-Gasser-Ogden model [19] and the Gasser-Ogden-
Holzapfel model [23]. However we emphasize that similar situations may be present
in other simplified models when transverse strains are not explicitly considered, as
the experiments of Skacel and Bursa [37] show. Then we explain the new compu-
tational procedure for the Latorre-Montáns model [44] which exactly captures the
prescribed experimental non-linear curves, a procedure which uses the insight given
by the infinitesimal model. Furthermore, we then show that this insight allows for
the prediction beforehand of additional transverse strain distributions and also their
influence in the third direction, showing a behavior under finite strains similar to
that of the small strains theory. We finally demonstrate that the same axial and
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circumferential stress predictions over the arterial wall may be exactly obtained with
different stored energies if different transverse strains are prescribed; i.e. a real, gen-
eral orthotropic incompressible material is not correctly characterized in preferred
material directions using only two curves, even if they are exactly captured, as it is
immediately deduced from the linear theory. Only particular cases of orthotropy may
be represented with those stored energies. Then, the adequacy of those hypothesis
to represent the actual material behavior of the specific materials at hand should be
tested [37, 32].

2. Holzapfel–Gasser–Ogden aligned fiber model

In this section we study the mechanical behavior of arterial wall specimens under
uniaxial testing using the well-known model of Holzapfel, Gasser and Ogden [19],
usually referred to as the HGO model. This model is also similar to that given in
Eqs. (13) and (20c) of [15]; see also therein references for motivation. The main
purpose in this section is to analyse the transverse deformation patterns given by
the model in uniaxial testing. It will be assumed (throughout this work) that the
arterial wall deformation is purely isochoric.

The most general form of the HGO hyperelastic model for purely incompress-
ible materials depends on seven invariants obtained from the right Cauchy–Green
isochoric deformation tensor C̄: two of them being isotropic invariants and the re-
maining five being anisotropic pseudo-invariants, see Eq. (62) in Ref. [19]. The
second-order tensor C̄ is defined using the isochoric deformation gradient tensor
X̄ resulting from the Flory decomposition of the total deformation gradient X =:
J1/3X̄ =: det(X)1/3X̄ as C̄ = X̄TX̄. However, if the number of available experi-
mental curves are insufficient to properly define an orthotropic model including all
the independent invariants, it is frequent the case where the number of invariants
and material parameters that describe the corresponding strain energy function is
reduced [32]. For example, the model of Eq. (62) in Ref. [19] is further simplified
and formulated in terms of one isotropic invariant Ī1 and two anisotropic invariants
Ī4 and Ī6, see Eq. (63) in Ref. [19]. This simpler decomposition was originally con-
sidered sufficiently general to describe the arterial mechanical response [19], hence
being the most frequently (simplified) version of the HGO model encountered in the
literature and also recently considered “the most influential model to be developed
in the last 20 years for modelling biological tissues” [53].

At this point, we note that there is nothing wrong in neglecting the contribution
of some invariants. Approximations are frequently sought and desired in engineer-
ing problems and performed in soft tissues because of practical reasons, see analysis
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in [32]. For example, in the transversely isotropic model of the myocardium due
to Humphrey et al. [16, 17], only the invariants Ī1 and Ī4 were used, whereas the
remaining Ī2 and Ī5 were dropped. This simplification allowed them to use two invari-
ants, making both the experimental design and the computational model tractable.
No inability to reproduce the (available) data was observed. However, approxima-
tions of this type may be more questionable in the orthotropic case because more
invariants are involved. In any case, and this is the point of this analysis, simplifi-
cations regarding the number of selected invariants should never result in unrealistic
responses, as the ones we show below, or go against experimental evidences, as the
ones recently measured in Ref. [37]. That unrealistic behavior should be prevented
when performing such approximations.

The HGO model was also employed to analyze the mechanical behavior of arte-
rial specimens under uniaxial testing with consideration of fiber dispersion. Hereafter
we use the notation of Ref. [23]. The strain energy function W associated to the
simplified HGO model includes two main contributions. The first contribution, Wg,
accounts for the purely isotropic behavior of the matrix constituent (mainly elastin),
and the second one, Wf , accounts for the anisotropic contribution associated to the
(collagen) fibres within the artery. Since arteries present two preferred referential di-
rections a01 and a02 about which the fibers are preferentially aligned, the anisotropic
contribution is additively split asWf =

∑2
i=1Wfi, withWfi describing the mechani-

cal behavior of the ith aligned fiber family. The groundmatrix strain energy function
Wg is formulated in Refs. [19], [23] by means of the incompressible neo-Hookean
model

Wg(Ī1) =
c

2
(Ī1 − 3) (1)

where Ī1 = tr C̄ = I : C̄ is the first principal invariant of C̄ and c is the (shear
modulus alike) neo-Hookean parameter. Each transversely isotropic stored energy
functionWfi is represented by the same Fung-type exponential function —as in Ref.
[23] we consider Ī41 ≡ Ī4 and Ī42 ≡ Ī6

Wfi(Ī4i) =Wf (Ī4i) =
k1
2k2

[

exp
(

k2(Ī4i − 1)2
)

− 1
]

(2)

where k1 and k2 are material parameters and the invariant Ī4i = a0i ⊗ a0i : C̄

represents the squared stretch of the fiber initially oriented about the referential
direction a0i.
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2.1. Uniaxial testing

We obtain now numerical results from uniaxial tensile tests performed over ar-
terial wall specimens using the HGO model. We consider the material parameters
c = 7.64 kPa, k1 = 996.6 kPa and k2 = 524.6, which are taken from Ref. [23]. When
used with the aligned model of Eq. (2), these material parameters do not describe
the mechanics of advential tissue [23]. However, as in that Reference, we use these
specific values for comparison purposes. The angle γ = 90o−49.98o = 40.02o defines
the orientation of both fibers in the arterial wall reference frame X123 = {1, 2, 3} of
Figure 1 through a01 = [cos γ,− sin γ, 0] and a02 = [cos γ, sin γ, 0], where we have
changed the definition of the angle γ with respect to Ref. [23] for the matter of
convenience in the model definition of Section 4. The axial and circumferential spec-
imens to be tested are also shown in that figure. The uniaxial tensile tests over the
axial and circumferential specimens are separately performed along Axis 1 (with the
stretch λ1 ≥ 1) and 2 (for which λ2 ≥ 1), respectively. The modified [19, 31] sec-
ond Piola–Kirchhoff stresses S̄ = 2∂W/∂C̄ that directly derive from the total strain
energy function W =Wg +

∑2
i=1Wfi are

S̄ = 2
∂Wg

∂Ī1

∂Ī1

∂C̄
+

2
∑

i=1

2
∂Wfi

∂Ī4i

∂Ī4i

∂C̄
= cI + 4k1(Ī4 − 1) exp

[

k2(Ī4 − 1)2
]

A0 (3)

where A0 :=
1
2

∑2
i=1 a0i ⊗ a0i and the invariants Ī1 and Ī4 := Ī41 = Ī42 are given by

Ī1 = λ2
1 + λ2

2 + 1/
(

λ2
1λ

2
2

)

(4)

Ī4 = λ2
1 cos

2 γ + λ2
2 sin

2 γ (5)

where note that the incompressibility constraint λ1λ2λ3 = 1 has been used in the
expression of Ī1 —even though it is not present in the second identity in Eq. (3).
The only non-vanishing components of the second-order tensor A0 in Identity (3)2,
expressed in the reference frame X123 = {1, 2, 3} of Figure 1, are (A0)11 = cos2 γ
and (A0)22 = sin2 γ. The true, total Cauchy stresses are readily obtained from the
fictitious second Piola–Kirchhoff stresses S̄ of Eq. (3) and the isochoric deformation
gradient tensor X̄ = diag [λ1, λ2, 1/(λ1λ2)] through σ = X̄S̄X̄

T + pI, where p is an
additional hydrostatic pressure to be obtained from the equilibrium equations and
boundary conditions of the respective uniaxial test under consideration, cf. Ref. [38].

For the uniaxial tensile test performed over the axial specimen (Axis 1 in Figure
1, λ1 ≥ 1), the boundary conditions are σ2 = σ3 = 0. After eliminating the pressure
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Figure 1: Definition of axial and circumferential specimens for the tensile tests and global axes
numeration. Axis 3 (perpendicular to the advential patch) represents the artery radial direction.
γ = 90o − 49.98o = 40.02o.

from the system of equations σ = X̄S̄X̄T + pI, we arrive at

σ1 = c

(

λ2
1 −

1

λ2
1λ

2
2

)

+ 4k1(Ī4 − 1) exp
[

k2(Ī4 − 1)2
]

λ2
1 cos

2 γ (6)

0 = c

(

λ2
2 −

1

λ2
1λ

2
2

)

+ 4k1(Ī4 − 1) exp
[

k2(Ī4 − 1)2
]

λ2
2 sin

2 γ (7)

where Eq. (5) is to be used. Equations (6) and (7) can be solved numerically for
each stretch λ1 > 1 to give the uniaxial (axial) stress σ1 (λ1) and the transverse
(circumferential) stretch λ2 (λ1). More specifically, we can obtain the transverse
stretch λ2 (λ1) directly from Eq. (7) and then substitute in Eq. (6) to obtain the
corresponding stress σ1 (λ1). The computed solution variables σ1 and λ2, together
with the radial stretch λ3 = 1/(λ1λ2), are shown in Figure 2 for the range λ1 ∈
[0, 1.228] (the value λ1 = 1.228 is taken so that (σ1)max ≈ 10MPa in Section 3). As
a result of these calculations, it is obtained that the invariant Ī4 is always greater
than one for each value of the axial stretch λ1 > 1, see the case labelled as κ = 0 in
Figure 4 of Ref. [38], hence fibers are always in extension and no tension-compression
switch is needed in this case.

The results regarding the uniaxial test over the circumferential strip (Axis 2 in
Figure 1, λ2 ≥ 1), which boundary conditions are σ1 = σ3 = 0, are shown in Figure
3 for λ2 ∈ [0, 1.32]. Again, the invariant Ī4 is always greater than one in this test,
see the case labelled as κ = 0 in Figure 3 of Ref. [38].

In Figures 2 and 3 we can observe that the radial stretch λ3 is greater than one
after some deformation level, i.e. the thickness of both specimens increases with
respect to the initial thickness when both strips are subjected to tensile tests. This
could be considered an unexpected, unrealistic result. Indeed, these nonphysical
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Figure 2: Uniaxial test over the axial specimen (direction 1 in Figure 1) using the model of Section
2. (a) Uniaxial stress in axial direction σ1 (b) Transverse stretch in circumferential direction λ2 (c)
Transverse stretch in radial direction λ3.
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Figure 3: Uniaxial test over the circumferential specimen (direction 2 in Figure 1) using the model
of Section 2. (a) Uniaxial stress in circumferential direction σ2 (b) Transverse stretch in axial
direction λ1 (c) Transverse stretch in radial direction λ3.
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specimen using the model of Section 2.
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Figure 5: Undeformed and deformed (λ2 = 1.32) cross-sectional areas of the stretched circumfer-
ential specimen using the model of Section 2.

deformation pattern was already identified by Gasser et al. in Ref. [23], see Figure
9 therein. For further comparison, we show in Figures 4 and 5 the undeformed and
deformed cross-sections of both specimens. The deformed configurations in Figures
4 and 5 correspond to the maximum uniaxial stretches shown in Figures 2 (λ1 =
1.228) and 3 (λ2 = 1.32), respectively. We clearly observe the increment of thickness
(extension in radial direction 3) in both cases. We note that this type of behavior
is not usually encountered in composite linear materials [1]. As mentioned, those
strains may be very relevant in 3D or constrained 2D analyses, where the boundary
conditions over the third direction may greatly influence the in-plane behavior. At
this point we emphasize that it is important to capture the complete in-axes behavior
of the orthotropic material, not just two curves, if a general (not just uniaxial)
analysis is to be performed.
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3. Gasser–Ogden–Holzapfel fiber dispersion model

The unrealistic transverse deformation behavior obtained with the model of the
preceding section is a direct consequence of the fact that the mechanical response of
the tissue perpendicular to the fibers is mostly dominated by the soft groundmatrix
for this (idealized) model with aligned fibers [23]. A more realistic behavior in terms
of transverse deformations is obtained if the previous model is modified in order to
take into account the fiber dispersion within the tissue, so the overall stiffness in
radial direction is somewhat increased. As a result, large extensions in that direction
are prevented. A model of this type is presented in Ref. [23]. Moreover, with this
modification, the model becomes well-suited to describe the experimentally observed
stiffening of adventitial strips, which is not predicted by the model with aligned fibers
within the typical range of deformation, in general.

The fiber dispersion model introduced by Gasser, Ogden and Holzapfel in Ref.
[23] is based on the Generalized Structure Tensor (GST) approach. This GST hyper-
elastic formulation modifies the argument of the free-energy fiber family functions
Wfi of Eq. (2) as

Wfi(Āi) =Wf(Āi) =
k1
2k2

[

exp
(

k2Ā
2
i

)

− 1
]

(8)

where the so-called structure invariant Āi represents an averaged Green–Lagrange
strain measure relative to the ith dispersed fiber family defined through [28] —this
invariant is usually represented as Ēi, but we use below the symbol E for logarithmic
strains

Āi = H i : (C̄ − I) = Hi : C̄ − trHi (9)

where
Hi = κI + (1− 3κ)a0i ⊗ a0i (10)

is the ith Generalized Structure Tensor and κ the dispersion (structural) parame-
ter. The second-order tensor Hi characterizes the fiber dispersion effects about the
main orientation a0i through a weighted combination of a fully isotropic (spherical)
distribution of fibers and a perfectly aligned distribution of fibers. For more details
about how this model is motivated and built from pre-integration of the specific
fiber family distribution, the reader is referred to Ref. [23]. Other more elaborated
structure-tensor-based approaches can be seen in Refs. [28], [38], [54] and [55].

For the GOH-GST model, Eq. (9) is expressed in terms of κ, Ī1 and Ī4i as
Āi = κ(Ī1 − 3) + (1− 3κ) (Ī4i − 1). Note that for κ = 0 the model reduces to the
model with perfectly aligned fibers described in Section 2, i.e. Wf (Āi) ≡ Wf (Ī4i−1).
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On the other hand, the value κ = 1/3 is associated to the case with isotropically
distributed fibers, for which Hi ≡

1
3
I and Āi ≡ Ī1/3 − 1, so each fiber family

contribution Wf (Āi) ≡ Wf (Ī1/3− 1) becomes isotropic in the limit.

3.1. Uniaxial testing

The modified second Piola–Kirchhoff stresses S̄ = 2∂W/∂C̄ in the uniaxial ten-
sile tests under study specialize in this case to

S̄ = 2
∂Wg

∂Ī1

∂Ī1

∂C̄
+

2
∑

i=1

2
∂Wf

∂Āi

∂Āi

∂C̄
=

[

c+ 4k1Ā exp
(

k2Ā
2
)

κ
]

I+4k1Ā exp
(

k2Ā
2
)

(1− 3κ)A0

(11)
where the invariant Ā := Ā1 = Ā2 is given in terms of Eqs. (4) and (5) as

Ā = κ(Ī1 − 3) + (1− 3κ) (Ī4 − 1) (12)

Similar equilibrium equations to Eqs. (6) and (7) are obtained in this case for the
tensile test over the axial specimen, cf. Ref. [38]. The same procedure detailed in the
preceding section can be followed to solve the corresponding equilibrium equations.
The computed axial stress σ1 and circumferential stretch λ2, along with the radial
stretch λ3, are shown in Figure 6 for the interval λ1 ∈ [0, 1.228]. The solution being
shown corresponds to the value of κ = 0.226, specifically taken from Ref. [23].
Interestingly, it can be observed in Figure 6.c that, even including some amount of
fiber dispersion in the model, there are some deformation states for which λ3 > 1,
so the thickness of the arterial wall increases with respect to its referential value.
We observe, however, that the tendency of the curves λ3(λ1) is very different for the
cases κ = 0 (Figure 2.c) and κ = 0.226 (Figure 6.c) in the shown interval: the former
is greater than one and is still increasing at λ1 = 1.228, whereas the latter is also
greater than one at that deformation level but is decreasing. The radial deformation
in the latter case goes through a maximum and approaches to a point such that
λ3 = 1, i.e. it goes through an inversion point and approaches to a perversion point,
see [56, 57] for terminology. The fact that the extension in radial direction is reduced
for the case κ = 0.226 with respect to the case κ = 0 was already noticed in Ref.
[23], see Figure 12 therein, even though it was not numerically quantified. We note
that the invariant Ī4 is always greater than one in this case, see Figure 4 of Ref. [38],
hence the main fiber direction is always in extension during the test.

The results regarding the uniaxial test over the circumferential strip (Axis 2 in
Figure 1, λ2 ≥ 1) are shown in Figure 7. Again, the maximum extension in radial
direction is reduced with respect to the case with aligned fibers, see Figure 3.c, even
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Figure 6: Uniaxial test over the axial specimen (direction 1 in Figure 1) using the model of Section
3. (a) Uniaxial stress in axial direction σ1 (b) Transverse stretch in circumferential direction λ2 (c)
Transverse stretch in radial direction λ3.
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though the transverse deformation λ3 (λ2) is greater than one for some deformation
states. It is important to remark that in this case the invariant Ī4 is lower or equal
than one within the interval 1.0132 / λ2 / 1.256, cf. Ref. [38], so some mechanism
to exclude the contribution of the contracted fibers in the given potential should have
been applied if the common assumption that fibers do not support compression is
accepted. The tension-compression switch to be applied should be smooth enough in
order to give both continuous stresses and equilibrated and compatible (hyperelastic)
solutions within the typical ranges of deformation. We refer to Ref. [38] for a recent,
physically motivated proposal. However, this is not relevant for the present analysis
regarding transverse deformation effects. We note that the main fiber orientations
are extended, i.e. Ī4 > 1, when λ2 = 1.32 and the radial deformation is positive
λ3 (λ2 = 1.32) > 1, see Figure 7. Hence the hyperelastic solution at λ2 = 1.32 is
compatible with the switch criterion proposed by the authors in Ref. [23].

We can effectively observe in Figures 8 and 9 that the increment of thickness of
the axial (at λ1 = 1.228) and circumferential (at λ2 = 1.32) specimens is reduced,
and somehow controlled, when they are compared to those of the respective deformed
configurations of Figures 4 and 5. However, in our opinion, the radial deformation
patterns given by this model, as shown in Figures 6.c and 7.c, are still unrealistic and
have not been verified against experimental evidence. Indeed, we show in the next
section that the transverse deformation of an incompressible orthotropic material
should be material-dependent (i.e. given by experiments) and not model-dependent
(i.e. given by the model as a result). Then, a given material model should be able
to describe this experimental evidence. A recent analysis [57] shows the relevance
of the the expansion and contraction in transverse direction given by certain models
under uniaxial testing in assessing their applicability to fiber-reinforced materials. As
it occurs within the corresponding small strains regime, the transverse deformation
should not be left to be given by the model, unless the model prediction is verified
against experiments. Indeed, the model with aligned fibers may represent the overall
material behavior in some cases, as in [32], but in other cases the predictions will be
inconsistent with the experimental observations, as shown in [37].

4. Spline-based model of Latorre and Montáns

The models presented in the previous sections depend, in essence, on the three
invariants Ī1, Ī41 and Ī42. Other more recent structure tensor formulations, e.g.
[54, 55], use strain energy functions depending on the same invariants, even though
including higher order terms of the Taylor expansion of the anisotropic strain energy
contribution. Anisotropic hyperelastic models based on the three invariants Ī1, Ī41
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Figure 7: Uniaxial test over the circumferential specimen (direction 2 in Figure 1) using the model
of Section 3. (a) Uniaxial stress in circumferential direction σ2 (b) Transverse stretch in axial
direction λ1 (c) Transverse stretch in radial direction λ3.
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specimen using the model of Section 3.
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Figure 9: Undeformed and deformed (λ2 = 1.32) cross-sectional areas of the stretched circumfer-
ential specimen using the model of Section 3.
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and Ī42 are frequently determined fitting experimental data from uniaxial tensile tests
over circumferential and axial arterial specimens alone [23]. As we show below, only
with these experimental curves it is not possible, in general, to reproduce the actual
finite strain behavior of an orthotropic material along preferred axes and, by no way,
to reproduce the shear behavior in preferred planes. Furthermore, the optimization
procedure used to determine the material parameters of these models may lead to
obtain anisotropic material parameters when the experimental data corresponds to
an isotropic material in the limit [34]. Another consequence regarding simplified
strain energies of this type is that they do not reproduce the behavior of the arterial
wall (or any other real material) in the infinitesimal deformation case [35].

The spline-based orthotropic model of Ref. [44] overcomes the three preceding
drawbacks just pointed out. That is, we show below that it is capable to exactly and
completely reproduce the finite strain responses of the arterial wall about preferred
directions (this being its most appealing feature and, in practice, the most relevant
one) and that it is fully consistent with the linear theory by construction; being also
easily re-formulated to achieve both theoretical and numerical material-symmetries
congruency [34]. The model in Ref. [44] is formulated in terms of separate functions
ωij of the six components of the deviatoric logarithmic strain tensor Ē = 1

2
ln C̄ in

the orthotropic preferred basis Xpr = {e1, e2, e3} of the material under study as

W =

3
∑

i,j=1

ωij(Ēij) (13)

This strain energy function depends on the six invariants Ēij = ei · Ēej , from which
only five are independent due to the incompressibility constraint Ē11+Ē22+Ē33 = 0.

4.1. Consistency with the infinitesimal behavior

Certainly, as emphatized in Ref. [35], consistency with the linear theory should
be an essential feature of any nonlinear model. In this case, the correct limit is simply
attained if —compare to the complex conditions to be satisfied by models based on
Cauchy–Green invariants and pseudo-invariants Īi given in [35]

∂2W

∂Ē2
ij

∣

∣

∣

∣

∣

Ēij=0

=
∂2ωij(Ēij)

∂Ē2
ij

∣

∣

∣

∣

∣

Ēij=0

= 2µij (14)

where µij are the six reference deviatoric (shear-like) moduli that completely define
the incompressible orthotropic behavior within the infinitesimal context. Then, the
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linearized strain energy function reads

Wlin =
3

∑

i,j=1

µijĒ
2
ij ≡

3
∑

i,j=1

µij ε̄
2
ij (15)

where ε̄ij are the components of the infinitesimal deviatoric strain tensor in the
material orthotropy basis Xpr.

4.2. Explicit determination of the linear model

The main aim of this Section is to derive some explicit results from the lin-
ear/linearized model of Eq. (15) that will prove useful for the implicit determination
procedure of the nonlinear finite strain model of Eq. (13). At the same time, we also
illustrate the consequences of overlooking transverse deformation effects in uniaxial
tests. The raised conclusions will be evidently applicable to the more general, large
strain context.

Six experimental curves (straight lines or slopes, indeed) are required to com-
pletely determine the infinitesimal (or linearized) model given in Eq. (15). This
is usually done by means of three experimental curves obtained from uniaxial test-
ing along the preferred directions, from which we can determine µ11, µ22 and µ33,
and other three experimental curves obtained from shear tests within the preferred
planes of symmetry, that directly give the shear moduli µ12 = G12, µ23 = G23 and
µ31 = G31. The deviatoric moduli µ11, µ22 and µ33 can be related to the more usual
Young’s moduli Y1 and Y2 and the Poisson ratio ν12 through [39] —we use the sym-
bol Y for Young’s moduli instead of E in order to avoid confusion with logarithmic
strains

Y1 = 2
µ11µ22 + µ22µ33 + µ33µ11

µ22 + µ33
(16)

Y2 = 2
µ11µ22 + µ22µ33 + µ33µ11

µ33 + µ11

(17)

ν12 =
µ33

µ22 + µ33
(18)

It should be apparent now that three independent experimental curves (with slopes
Y1, Y2 and ν12, or any other combination of independent Young’s moduli and Pois-
son’s ratios) are needed to properly characterize the linear in-axes behavior of an
incompressible orthotropic material. If we only know the Young’s moduli Y1 and Y2,
then there exist infinite (mathematical) solutions {µ11, µ22, µ33} that fulfill Eqs. (16)
and (17). Subsequently, each one of these “solutions” will predict a different Poisson
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ratio ν12 using Eq. (18) as a result. Evidently, only one of those (mathematical) so-
lutions will be the correct (physical) solution that reproduces the material behavior
for small strains. We will show this fact in the example below in the context of finite
strains.

As mentioned, we have just explained this very simple linear example to describe
what may be happening when the nonlinear models of the previous sections (or
other similar models) are determined from two uniaxial stress-strain curves only
(i.e. two Young’s moduli in the infinitesimal limit). In that case, even if we are
able to exactly replicate the two non-linear stress-strain experimental curves, the
transverse deformation (i.e. the Poisson ratio) is, as a result, defined by the material
parameters obtained from the optimization procedure, which we note, are usually
not unique and strongly dependent on the initial optimization parameters. In other
words, the transverse deformation is defined by the material model in those cases.
Moreover, different local minima of the minimization procedure will provide different
transverse deformation patterns. Certainly, as it occurs within the linear framework,
it should be required that the orthotropic material model is defined by the material

transverse deformation in those cases.

4.3. Nonlinear finite strain model

The model given in Eq. (13) represents the non-linear extension of the deviatoric
infinitesimal model of Eq. (15) to the context of finite deformations using loga-
rithmic strains. This extension is motivated by the fact that the logarithmic strain
tensor represents a natural generalization of the infinitesimal strain tensor to the
finite deformation setting [47]. In Ref. [44] we provide two different procedures to
determine the first-derivative spline-based functions of the axial terms ω11, ω22 and
ω33 present in Eq. (13). The first one of them (Table 1 in Ref. [44]) requires as input

the experimental data σ̃
(1)
11 (Ẽ11) and Ẽ

(1)
22 (Ẽ11) obtained from uniaxial tension and

compression tests in direction e1 –hence the superscript (1)– and the stress-strain

data σ̃
(2)
22 (Ẽ22) from uniaxial tension and compression tests in direction e2 —compare

to the left-hand sides of Eqs. (16)-(18). Other possibility is to obtain the axial strain

energy terms from the experimental data set σ̃
(1)
11 (Ẽ11), σ̃

(2)
22 (Ẽ22) and σ̃

(3)
33 (Ẽ33) (Table

2 in Ref. [44]). Unlike the linear case, the non-linear equilibrium equations resulting
from the corresponding tests cannot be solved explicitly. Hence, two optimization
procedures were proposed to solve the equilibrium equations in a least-squares sense
in Ref. [44]. The unknown variables are equivalent Poisson ratios in the logarithmic
strain space (with a clear physical meaning), which facilitate the initialization of
the iterative procedure and the interpretation of the solution parameters. The use

20



of the so-called inversion formula within the procedure gives a final solution which
reproduces the experimental data with a very good (exact, in practice) agreement.

The inversion formula, originally proposed by Kearsley and Zapas [59], gives an
exact solution of the uniaxial equilibrium equation in the isotropic case. Sussman
and Bathe [45] solved this equation using piecewise spline representations of both
the experimental data and the first derivative function of the isotropic strain energy
term ω. In Ref. [42] a compacted, more general version of the inversion formula
was derived, which made possible its use with experimental data from anisotropic
materials. Following this line, in the next subsection we detail an enhanced algorith-
mic iterative procedure (with respect to that of Table 1 in Ref. [44]) that provides
the exact solution (close to machine precision) for the axial terms ω′

11, ω
′

22 and ω′

33

when the available experimental data are the distributions σ̃
(1)
11 (Ẽ11), Ẽ

(1)
22 (Ẽ11) and

σ̃
(2)
22 (Ẽ22). In this case, we need neither to invoke any optimization procedure nor to

propose any specific shape (linear, exponential, etc.) for the remaining transverse
strain functions present in the equilibrium equations. From now on, since we are
considering the perfectly incompresible case, for which E = Ē, we remove the bar
decoration over the logarithmic strains for the matter of notation simplicity.

4.3.1. Implicit determination of ω′

11(E11), ω′

22(E22) and ω′

33(E33) from σ̃
(1)
11 (Ẽ11),

Ẽ
(1)
22 (Ẽ11) and σ̃

(2)
22 (Ẽ22)

The following algorithmic iterative procedure exactly solves (from a numerical
viewpoint) the equilibrium Eqs. (70)-(74) of Ref. [44]. This is possible due to
the use of continuous spline interpolations of stress-strain curves, transverse strain
curves and first derivative functions of strain energy terms. Once a solution has been
obtained, the model exactly replicates the axial behavior of the orthotropic material
about its preferred directions. Note the difference with the procedure detailed in
Table 1 of Ref. [44], where some transverse-to-axial relations were considered linear.
The procedure of Table 2 in Ref. [44] can be analogously generalized.

1. Spline-based smooth continuous functions σ
(1)
11 (E11), E

(1)
22 (E11) and σ

(2)
22 (E22) are

obtained from the interpolation of the tension-compression experimental data
points (experimental noise should be previously removed from data). These
spline-based functions, say fi (x), have to satisfy the requirements fi (0) = 0.
The slopes at the origin of these curves are, respectively Y1, ν12 and Y2.

2. Take the linearized relations for transverse strains as E
(2)
11 (E22) = −ν21E22 and

E
(3)
11 (E33) = −ν31E33, associated to the corresponding orthotropic infinitesimal

behavior, just to initialize the iterative procedure (iteration k = 0). The initial
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Poisson ratios ν21 and ν31 are given from the linear theory as in [1]

ν21 = ν12
Y2

Y1
(19)

ν31 =
(1− ν12)Y2

(1− ν21)Y1 + (1− ν12)Y2

(20)

where

Y1 =
dσ

(1)
11

dE11

∣

∣

∣

∣

∣

E11=0

, Y2 =
dσ

(2)
22

dE22

∣

∣

∣

∣

∣

E22=0

and ν12 = −
dE

(1)
22

dE11

∣

∣

∣

∣

∣

E11=0

(21)

3. Compute the initial (k = 0) spline-based functions ω′

11(E11), ω′

22(E22) and

ω′

33(E33) associated to the initial transverse distributions E
(2)
11 (E22) and E

(3)
11 (E33)

following steps 5 to 7 in Table 1 of Ref. [44].

4. Update the first derivative function of E
(2)
11 (E22) and E

(3)
11 (E33) at iteration k+1

through

dE
(2)
11 (E22)

dE22

∣

∣

∣

∣

∣

k+1

= −
ω′′

33

(

E
(2)
33 (E22)

)

ω′′

11

(

E
(2)
11 (E22)

)

+ ω′′

33

(

E
(2)
33 (E22)

)

∣

∣

∣

∣

∣

∣

k

(22)

dE
(3)
11 (E33)

dE33

∣

∣

∣

∣

∣

k+1

= −
ω′′

22

(

E
(3)
22 (E33)

)

ω′′

11

(

E
(3)
11 (E33)

)

+ ω′′

22

(

E
(3)
22 (E33)

)

∣

∣

∣

∣

∣

∣

k

(23)

which are obtained after differentiating Eqs. (73) and (74) in Ref. [44] and
considering the respective incompressibility constraints. Remarkably, note that
Eqs. (22) and (23) are the non-linear counterpart of the small strains Poisson’s
ratios expressed in terms of the deviatoric moduli –cf. Eq. (18) above or the
general Expression (140) in Ref. [39].

5. Build the piecewise cubic splines
(

E22, dE
(2)
11 (E22)/dE22

)

k+1
and

(

E33, dE
(3)
11 (E33)/dE33

)

k+1
.

Note that for these functions, say gj (x), the requirements gj (0) = 0 do not
have to be enforced.

6. Integrate the first-derivative functions of step 5 and then build the updated
splines E

(2)
11 (E22) and E

(3)
11 (E33) at iteration k + 1. At this step, consider the

(integration) requirements E
(j)
11 (0) = 0.

7. Compute the updated spline-based functions ω′

11(E11), ω
′

22(E22) and ω′

33(E33)
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following steps 5 to 7 in Table 1 of Ref. [44].

8. Quantify the associated relative error for the transverse strains set [E
(2)
11 (E22), E

(3)
11 (E33)]

between iterations k and k+1. Exit if error ≤ tolerance. Take k ← k+1 and
go to step 4 if error > tolerance.

Note that this is a self-contained iterative procedure in which the required data
to be initialized are contained in the experimental data of Step 1. In other words,
we do not need to propose specific numerical values from which start the iterations.
For all the examples shown below, which include the typical strong non-linearities of
biological tissues, the present procedure has converged in few iterations (k ≈ 25) to
the numerically exact solution (tolerance = 10−14) using these self-contained, initial
values. Note that this is a extremely small tolerance value close to the machine
precision. Indeed, for all the cases being analyzed below, the stress and transverse
strain predictions become practically indistinguishable for tolerance = 10−3, which
is a tolerance for transverse strains we typically enforce.

The fact that we solve the equilibrium equations in an exact way (instead of
solving it in a least-squares sense), and without needing to propose guess values,
represents a clear advantage of this procedure with respect to the non-linear least
squares optimization methods frequently used to determine hyperelastic functions
with an initially assumed analytical shape. See for example Ref. [33] for inherent
difficulties associated to this type of optimization procedures even for the simpler
case of isotropic material models. Obviously, for anisotropic material models the
situation is even worse [60], [19]. We provide some insight into this issue in Ref. [52]
regarding uniaxial and biaxial tensile tests.

4.4. Uniaxial testing: capturing transverse deformation effects in arteries

In this section we use the model of Eq. (13) and apply the procedure of Section
4.3.1 in order to exactly replicate the uniaxial stresses predicted by the fiber disper-
sion model of Gasser et al. [23] for advential tissue. That is, we consider the stresses

of Figures 6.a and 7.a as the “experimental” stresses σ
(1)
11 (E11) and σ

(2)
22 (E22) in the

step 1 of Section 4.3.1. Note that in the calculations of Figure 7 we have not con-
sidered any tension-compression switch in order to exclude the contribution of fibers
in compression. However, we could equally use the stresses predicted by this model
along with the consideration of a given continuous criterion [38] as the “experimen-

tal” data σ
(2)
22 (E22). In this case, the response of the arterial layer with compressed

fibers excluded would be included in the stress-strain experimental data σ
(2)
22 (E22) and

the phenomenological model of Eq. (13) would also include that information. Note
also that the shear terms in Eq. (13) are irrelevant for the present in-axes study. The
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shear terms in Eq. (13) are to be obtained from three additional shear tests in the
corresponding preferred planes. If these experimental data are not available at large
strains, then an extrapolation using both logarithmic strains and the infinitesimal
shear moduli, see Eq. (15), may be assumed and prescribed by the user in order to
use the model of Eq. (13) in more generic off-axes responses. In an equivalent way
to what occurs for the transverse deformation in the in-axes behavior, we advocate
prescribing a realistic shear behavior (which, in essence, is material-dependent for
orthotropic materials) rather than let the model further predict a likely unrealistic
shear behavior (i.e. model-dependent).

The main point of this example is that we exactly reproduce both highly nonlinear
stress responses of Figures 6.a and 7.a for several “experimental” transverse strains
curves E

(1)
22 (E11) being additionally prescribed at step 1 of Section 4.3.1. On the other

hand, the beauty of this academic example is that we will be able to interpret all
the obtained finite strain results analogously as we would do within the infinitesimal
strains framework. In that respect, and without loss of generality, we take the stiffest
direction of the tissue (in axial direction) as direction 1 of our model, recall Figure
1, which will let us explain the orthotropic behavior more easily.

We next show the results obtained when we consider as initial data the “exper-
imental” linear transverse strains E

(1)
22 = −ν12E11 in the procedure of Section 4.3.1

along with the “experimental” stress responses σ
(1)
11 (E11) and σ

(2)
22 (E22). We compute

five different sets of strain energy axial terms ω′

11(E11), ω
′

22(E22) and ω′

33(E33) for
five different in-plane equivalent Poisson ratios ν12 = {0.1, 0.2, 0.3, 0.4, 0.5}.

In Figure 10 we show the stresses predicted by the model for each value ν12. We
can see in the left figure that the “experimental” stresses σ

(1)
11 (E11) and σ

(2)
22 (E22) are

exactly replicated in all the cases. In the right figure, however, we see that each
strain energy function being obtained predicts different uniaxial stresses σ

(3)
33 (E33)

for a hypothetical tensile test in the radial direction 3 (cf. Eq. (83) of Ref. [44]).
At this point, note the analogy of this non-linear case with the discussion above
regarding the linear Relations (16)-(18). That is, there are infinite sets of axial
terms of the strain energy ω′

11(E11), ω
′

22(E22) and ω′

33(E33) (equivalently, µ11, µ22 and
µ33 for the small strains case) that exactly reproduce a given pair of experimental

curves σ
(1)
11 (E11) and σ

(2)
22 (E22) (equivalently, Y1 and Y2). Hence, a third experimental,

independent curve (e.g. transverse strains E
(1)
22 (E11)) is strictly necessary in order

to determine the specific in-axes behavior of the incompressible orthotropic material
being characterized. As aforementioned, if the third in-axes behavior curve is not
available from experiments, we should propose a realistic one (e.g. E

(1)
22 ≃ −ν12E11

with 0 < ν12 < 0.5, see Eq. (1) and Fig. 11.C in Ref. [37]) before determining the
strain energy function contributions in preferred axes, as we have successfully done
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in this work.
Furthermore, in Figure 10.b we see that the higher the value ν12, the stiffer the

response σ
(3)
33 (E33). We can explain this result considering that the higher the value

ν12, the larger the contraction in the circumferential direction E
(1)
22 = −ν12E11 for a

fixed value E11, the smaller the contraction in radial direction by incompressibility
E

(1)
33 = −E11 − E

(1)
22 = −(1 − ν12)E11, i.e. the higher the relative stiffness of the

material in the radial direction with respect to the circumferential direction. In-
terestingly, the same result is analytically deduced from the small strains relation
given in Eq. (18). In fact, it is obtained that the computed curve σ

(3)
33 (E33) predicts

lower values than the prescribed curve σ
(2)
22 (E22) for ν12 < 0.5 (i.e. Y1 > Y2 > Y3)

and that σ
(3)
33 (E33) ≡ σ

(2)
22 (E22) for ν12 = 0.5 (i.e. Y1 > Y2 = Y3). In this last case,

it is obtained from the computations that the strain energy axial terms are also
coincident, ω′

22(E22) ≡ ω′

33(E33), and the in-axes behavior is transversely isotropic.
If, additionally to µ22 = µ33, we obtain from the small strain behavior the relation
µ23 = µ22 = µ33, then the transversely isotropic model of Refs. [42, 43], should be
used (with direction 1 being the anisotropic direction).

We show in Figure 11 the different solutions E
(2)
11 (E22) y E

(3)
11 (E33) being com-

puted for each “experimental” input distribution E
(1)
22 = −ν12E11 considered in the

procedure of Section 4.3.1. For example, in Figure 11.b we observe that the higher
the value ν12, the larger the contraction E

(2)
11 (E22). We can easily explain this result

focusing on the small strain Relation (19). Since the referential Young’s moduli Y1

and Y2 are the same for all the cases under study, see Eq. (21), then the higher the
value ν12, the higher the value ν21 in Eq. (19), i.e. the larger the (non-linear) trans-

verse contraction E
(2)
11 (E22) in the uniaxial test along the circumferential direction 2.

Furthermore, since Y1 > Y2, Eq. (19) gives the small strains relation ν21 < ν12. The
same qualitative behavior is obtained for large strains, which can be verified compar-
ing the respective finite, non-linear behaviors in Figures 11.a (prescribed curves) and
11.b (computed curves). We have also represented in Figure 11 the linear extrapo-

lations from the small strains theory E
(2)
11 (E22) = −ν21E22 and E

(3)
11 (E33) = −ν31E33

(used also at step 2 of Section 4.3.1 to initialize the iterative procedures). We can see

that the non-linear solution curves E
(2)
11 (E22) and E

(3)
11 (E33) approach their respective

linear behavior curves in the limit of small strains, i.e. the spline-based model of Eq.
(13) is fully consistent with the small strains theory, see Eq. (14).

We represent the first derivative functions ω′

11(E11), ω
′

22(E22) and ω′

33(E33) being
computed for each ν12 case in Figure 12. Although each pair of curves ω′

11(E11) and
ω′

22(E22) on the left figure are almost identical for all the values ν12 and for finite
strains, they are not exactly coincident. In particular, these subtle differences become
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Figure 10: (a) “Experimental” stresses σ
(1)
11 (Ē11) and σ

(2)
22 (Ē22) and exact predictions using the

model of Section 4 for different “experimental” prescriptions Ē
(1)
22 (Ē11) = −ν12Ē11. Due to

the absence of experimental compression data, we have assumed σ
(1)
11 (−Ē11) = −σ

(1)
11 (Ē11) and

σ
(2)
22 (−Ē22) = −σ

(2)
22 (Ē22) in order to apply the inversion formula [52]. (b) Model predictions

σ
(3)
33 (Ē33) in a hypothetical uniaxial test in direction 3.
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Figure 11: (a) “Experimental”, prescribed transverse logarithmic strains Ē
(1)
22 (Ē11) = −ν12Ē11 (b)

Corresponding computed transverse strains solutions Ē
(2)
11 (Ē22) (solid lines) and linear extrapola-

tions Ē
(2)
11 (Ē22) = −ν21Ē22 using the respective small strains Poisson ratios ν21 (dashed lines) (c)

Corresponding computed transverse strains solutions Ē
(3)
11 (Ē33) (solid lines) and linear extrapola-

tions Ē
(3)
11 (Ē33) = −ν31Ē33 using the respective small strains Poisson ratios ν31 (dashed lines).
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Ēii

0 0.05 0.1 0.15 0.2 0.25 0.3

d
ω
ii
(Ē
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Figure 12: (a) Computed strain energy solution ω′

11(Ē11), ω
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22(Ē22) for different “experimental”

prescriptions Ē
(1)
22 (Ē11) = −ν12Ē11. (b) Corresponding first derivative terms ω′
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units of MJ /m3.

extremely relevant in order to attain the aforementioned consistency with the linear
theory. We represent these curves, along with the stress predictions of Figure 10.a,
within the small strains interval ε ≃ E < 10−2 in Figure 13. Remarkably, note that
the computed referential deviatoric stiffnesses, as given in Eq. (14), are different for
each case and that the predicted Young’s moduli, as given in Eq. (21), are the same
for all the cases. It is straightforward to verify that each set of these values satisfy
Eqs. (16)-(18) for the corresponding Poisson ratio ν12. Furthermore, since this purely
computational procedure does not give an energy function solution with an analytical
shape, we encourage interested readers to verify that the evaluation of the right-hand
sides of Eqs. (70) and (72) of Ref. [44], using the spline-based functions of Figures
12 and 11, exactly predict the “experimental” stress prescriptions of Figure 10.a.

Finally, in Figures 14 and 15 we show the deformed cross-sectional areas of the
axial (at λ1 = 1.228) and circumferential (at λ2 = 1.32) specimens for all the cases
under study. Note that the thickness of each deformed specimen in axial direc-
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Figure 13: (a) Detail of Figure 12.a for small strains. (b) Detail of Figure 10.a for small strains.
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Figure 14: Undeformed and deformed (λ1 = 1.228) cross-sectional areas of the stretched axial
specimen using the model of Section 4 and different prescriptions for ν12.

tion 1 is in perfect correspondence to the “experimental” value ν12 being prescribed
in each case, i.e. the higher the value ν12, the smaller the contraction in radial
direction E

(1)
33 = −(1 − ν12)E11 for E11 = lnλ1 fixed. Certainly, this is a What-

You-Prescribe-Is-What-You-Get (WYPIWYG) orthotropic hyperelastic model. The
different deformations of the circumferential specimen shown in Figure 15 are also as
expected beforehand. Based on the acquired experience in the small strains realm,
it should not be surprising that all these pairs of axial and circumferential, material-
dependent, deformations patterns are compatible with the “experimental”, highly
nonlinear, stresses of Figure 10.a. To the best of the authors’ knowledge, the present
model is the first one that accomplishes such a challenging task.

5. Conclusions

In this paper we analyse the importance of considering transverse strains in or-
thotropic, incompressible hyperelastic materials undergoing large deformations. We
show that neglecting some relevant invariants and, hence, employing an insufficient
set of experimental data curves to characterize the material behavior in preferred
material axes may result in unrealistic transverse strains. Furthermore, the different
material parameters obtained in the parameter-fitting exercise may result in com-
pletely different transverse strain evolutions, which may even change sign during
deformation. Recent experimental measurements proves the inconsistency of these
models with the arterial wall mechanics [37].
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Figure 15: Undeformed and deformed (λ1 = 1.228) cross-sectional areas of the stretched circumfer-
ential specimen using the model of Section 4 and different prescriptions for ν12.

In contrast, for the WYPIWYG models that we recently presented transverse
strains may be prescribed so the model exactly replicates that data along with the
remaining stress-strain data. This is possible because the equilibrium and compat-
ibility nonlinear equations of the experiments are exactly solved without imposing
the shape of the stored energy terms being proposed, which represent an extension to
the nonlinear finite strain case employing logarithmic strains. As a consequence, the
physical intuition of the linear theory is preserved within the finite strain regime and
the infinitesimal model is recovered in the limit by construction. Then, the trans-
verse strains given by the model in other situations may be predicted beforehand.
We remark and have proven that all stress-strain curves, including transverse and
shear ones are important in reproducing the actual behavior of a general orthotropic
material, regardless of being the response linear or nonlinear and of how exactly they
are captured. Thanks to the insight from the linear theory, we have also been able to
give herein an improved algorithm for the spline-based model which exactly captures
the prescribed finite strain behavior employing neither an optimization procedure
nor a user-prescribed parameter guess set.

In 1967, Fung’s vision on soft tissue mechanics was that “the main difficulty
[in the modelling of soft biological tissues] lies in the customary use of infinitesimal
theory of elasticity to the media which normally exhibit finite deformations” [61], see
also the excellent review by Humphrey [62]. Today, in our opinion, the main difficulty
in modelling soft biological tissues lies in the frequent overlook of infinitesimal theory
of elasticity to the media which normally exhibit finite deformations, but which may
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equally exhibit infinitesimal deformations as a particular, fundamental case and also
in the incremental, general one.
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