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Abstract

Like all other materials, biological soft tissues are subject to general laws of physics, includ-

ing those governing mechanical equilibrium and stability. In addition, however, these tissues

are able to respond actively to changes in their mechanical and chemical environment. There

is, therefore, a pressing need to understand such processes theoretically. In this paper, we

present a new rate-based constrained mixture formulation suitable for studying mechanobi-

ological equilibrium and stability of soft tissues exposed to transient or sustained changes in

material composition or applied loading. These concepts are illustrated for canonical prob-

lems in arterial mechanics, which distinguish possible stable versus unstable mechanobiolog-

ical responses. Such analyses promise to yield insight into biological processes that govern

both health and disease progression.

Keywords: mechanical homeostasis, extracellular matrix, adaptation, matrix turnover,

tissue growth

1. Introduction

Biological soft tissues consist of myriad proteins, glycoproteins, and glycosaminoglycans

(Hynes and Naba 2012), each having individual natural (stress-free) configurations, mechani-

cal properties, and rates of turnover. It is appropriate, therefore, to consider mixture theories

of multiple solid constituents when establishing theoretical frameworks for mathematically

modeling growth (changes in mass) and remodeling (changes in microstructure). Adopting
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a classical continuum theory of mixtures presents numerous challenges, however, including

difficulty in identifying constitutive relations for linear momentum exchanges between con-

stituents as they turnover and challenges in prescribing how traction boundary conditions

partition by constituent, particularly as they evolve. For this reason, we have advocated a

constrained mixture theory wherein one assumes that structurally significant constituents

possess individual natural configurations but are constrained to move with the mixture as

a whole, and one satisfies full mixture equations for mass balance but classical equations

for linear momentum balance augmented with a rule-of-mixture relation for the stored en-

ergy (Humphrey and Rajagopal 2002). Such models simplify the constitutive formulation

and solution of initial-boundary value problems. Nevertheless, the full constrained mixture

theory involves heredity integrals for the evolution of constituent-specific mass density and

stress, which can render the associated computational modeling expensive except in problems

defined by simple geometries. Rate-based models can thus be useful.

It is also well-known that biological soft tissues grow and remodel in response to changes

in mechanical loading. Such responses – that is, changes in microstructural composition

and/or organization and thus changes in mechanical properties and geometry – stem from

mechanobiological processes, often changes in gene expression that control the production

and removal of constituents in potentially evolving configurations (Humphrey et al. 2014).

In parallel to classical concepts of mechanical equilibrium and mechanical stability, modeling

biological growth and remodeling (G&R) necessitates an understanding of mechanobiological

equilibrium and mechanobiological stability. The former can be defined by a balanced pro-

duction and removal of stressed constituents within an unchanging configuration (Latorre

and Humphrey 2018b); the latter can be defined as the ability of a tissue to preserve its

mechanobiological equilibrium despite transient perturbations in loading under physiologi-

cal or pathophysiological conditions (Cyron and Humphrey 2014). For example, we do not

expect a muscle to grow or remodel simply because of a transient loading. Rather, we ex-

pect a muscle to grow or remodel in response to sustained or repetitive loading, which could

lead to mechanobiological adaptivity to the new mechanical environment. Failed adaptivity

can occur in disease and injury, however, which may result from a loss of mechanobiological

stability.
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In this paper, we first summarize a full hereditary integral-based constrained mixture

model for growth and remodeling of soft tissues. We then derive a fully three-dimensional

rate-based constrained mixture theory that is equivalent to the integral-based model. We

subsequently particularize this formulation to a prototypical cylindrical artery to identify

equilibrium solutions for vanishing rates and to assess their mechanobiological (static) sta-

bility with respect to sustained changes in external loads or model parameters. Finally,

we use this rate-based approach to assess whether a (dynamic, self-excited) G&R process

around a previously equilibrated solution is mechanobiologically unstable or stable, either

neutrally or asymptotically, with respect to perturbations in external loads that are eventu-

ally sustained over time. For purposes of illustration, we consider computational results for

a cylindrical murine aorta exposed to sustained or transient changes in mechanical loading

and/or material properties. Consistent with most prior constitutive descriptions of arterial

mechanics, we assume an underlying pseudoelastic rather than viscoelastic or poroelastic

material response; similarly, consistent with most prior stress analyses, we assume quasi-

static solutions rather than elastodynamics over a cardiac cycle (Humphrey 2002). In this

way, we focus primarily on evolving mechanobiologically induced changes in geometry and

material properties. Finally, we do not consider further complications associated with aortic

dissection or rupture, which necessarily require one to invoke additional constitutive frame-

works.

2. Theoretical Framework

2.1. Constrained mixture framework: Integral form

Consider the Cauchy stress σ, at G&R time s, for a biological soft tissue consisting of

a mixture of N structurally significant constituents and exhibiting incompressible behavior

under transient mechanical loading,

σ(s) =
N∑
α=1

σα(s)− p(s) I (1)

with σα the mixture-level contribution to σ of constituent α = 1, ..., N and p the Lagrange

multiplier that enforces transient incompressibility although the tissue may change mass and
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volume over G&R timescales. The stress tensor σα can be expressed in constrained mixture

models (Humphrey and Rajagopal 2002) through the following hereditary integral (Latorre

and Humphrey 2018b)

σα(s) =
1

ρ

∫ s

−∞
mα(τ) qα(s, τ) σ̂α(s, τ) dτ (2)

where ρ is the assumed constant spatial mass density of the tissue (since most of the struc-

turally significant constituents are hydrated similarly), mα(τ) > 0 is a spatial mass density

production rate of constituent α, qα(s, τ) ∈ [0, 1] is a survival function for constituent α de-

posited within extant matrix at G&R time τ ≤ s that survives at G&R time s, and σ̂α(s, τ)

is the constituent-level Cauchy stress at s for constituent α deposited at τ . Let Ŵα(Cα
n(τ)(s))

be the strain energy function of constituent α, with Cα
n(τ)(s) = FαT

n(τ)(s) Fα
n(τ)(s) the right

Cauchy–Green tensor at time s for constituent α deposited at time τ , which is computed from

the associated deformation gradient Fα
n(τ)(s) with respect to natural configuration καn (τ),

which is denoted n (τ). It can be shown that (Baek et al. 2006)

Fα
n(τ)(s) = F(s) F−1(τ) Gα(τ) (3)

with F the deformation gradient of the mixture at time s or τ , measured with respect to

an original homeostatic (reference) configuration κ (0) (Figure 1), and Gα(τ) a symmetric

(Gα = GαT ) and volume-preserving (det Gα = 1) deposition (pre)stretch tensor by which

constituent α is deposited within the extant matrix at time τ relative to its own possibly

evolving natural configuration καn(τ) (Figure 1). This deposition stretch arises via synthetic

cells acting on the secreted matrix via actomyosin activity (Humphrey et al. 2014), thus its

magnitude becomes a constitutive parameter and so too the orientation of the new tissue

when deposited (Baek et al. 2006; Valent́ın et al. 2013). Furthermore, let the constituent-level

Cauchy stress for each constituent α be

σ̂α(s, τ) =
2

Jαn(τ)(s)
Fα
n(τ)(s)

∂Ŵα(Cα
n(τ)(s))

∂Cα
n(τ)(s)

FαT
n(τ)(s) (4)
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where Jαn(τ)(s) = det Fα
n(τ)(s) = J(s) /J(τ), with J = det F at time s or τ .

Also let ρα represent the spatial (apparent) mass density of constituent α (i.e., its mass

per unit current volume of mixture) so that the assumed constant spatial mass density ρ of

the mixture is

ρ ≡ ρ(s) =
N∑
α=1

ρα(s) . (5)

The referential mass density ρR(s) = J(s) ρ(s) ≡ J(s) ρ of the mixture (i.e., mass per unit

reference volume) can similarly be expressed as

ρR(s) =
N∑
α=1

ραR(s) , (6)

with ραR(s) = J(s) ρα(s). Consistent with Eq. (2), ραR(s) reads in constrained mixture models

(Latorre and Humphrey 2018b)

ραR(s) =

∫ s

−∞
mα
R(τ) qα(s, τ) dτ (7)

with mα
R(τ) = J(τ)mα(τ) the corresponding referential mass density production rate of

constituent α. Note from Eqs. (2) and (7) that one must specify constitutive relations for

qα(s, τ), mα
R(τ), and Ŵα(Cα

n(τ)(s)) for the particular soft tissue under study.

Following previous studies of arterial G&R (Baek et al. 2007b; Latorre and Humphrey

2018b; Valent́ın and Humphrey 2009), we let the degradation of structural constituents be

described by first-order type kinetics

qα(s, τ) = exp

(
−
∫ s

τ

kα(t) dt

)
(8)

where kα is a rate-type parameter for mass removal that may depend on biomechanical or

biochemical factors. For illustrative purposes, let (Latorre and Humphrey 2018b)

kα(t) = kαo
(
1 + (∆σ(t))2

)
, t ∈ [τ, s] (9)

with kαo the original homeostatic value and ∆σ the relative difference of a given coordinate
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invariant measure σ̃ of the Cauchy stress σ with respect to its original homeostatic value σ̃o,

namely

∆σ(t) =
σ̃(t)− σ̃o

σ̃o
. (10)

Moreover, let the mass density production ratemα
R(τ) be described by (Latorre and Humphrey

2018b)

mα
R(τ) = kα(τ) ραR(τ) Υα(τ) (11)

where kα(τ) ραR(τ) =: mα
N(τ) represents an evolving nominal mass production rate of con-

stituent α per unit total reference volume and Υα(τ) is a stimulus function for G&R that

can be modulated by biomechanical stimuli (e.g., in healthy arteries; Latorre and Humphrey

2018a,b; Valent́ın and Humphrey 2009) or other effects, as, for example, biochemical medi-

ators or inflammation (Baek et al. 2007b; Latorre and Humphrey 2018c; Miller et al. 2014).

Importantly for the present case wherein we consider mechanobiological stability of pre-

viously equilibrated mechanobiological states, mα
R, as given in Eq. (11), should ensure a

production that balances removal in any evolved homeostatic states “h” with Υα
h → 1 and

hence ραRh → mα
Rh/k

α
h . Of course, Υα

o ≡ 1 and ραRo ≡ mα
Ro/k

α
o in the original homeostatic

state “o”.

2.2. Constrained mixture framework: Rate form

Consider now the rate of change of the referential mass density ραR given in Eq. (7), which

yields, by the Leibniz integral rule,

ρ̇αR(s) = mα
R(s) qα(s, s)

ds

ds
+

∫ s

−∞
mα
R(τ)

∂qα (s, τ)

∂s
dτ (12)

or, upon consideration of chain and Leibniz rules in Eq. (8), (Latorre and Humphrey 2018b)

ρ̇αR(s) = kα(s) ραR(s) (Υα(s)− 1) (13)

where qα(s, s) = 1 and we used Eq. (11). Thus, Eq. (13) along with

ρ̇R(s) =
N∑
α=1

ρ̇αR(s) (14)
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are equivalent to Eqs. (7) and (6), respectively, though in rate form. For later use, since

ρR(s) = J(s) ρ, with ρ constant, note the rate of change

J̇(s)

J(s)
=
ρ̇R(s)

ρR(s)
=

N∑
α=1

kα(s)
ραR(s)

ρR(s)
(Υα(s)− 1) =

N∑
α=1

kα(s)φα(s) (Υα(s)− 1) (15)

with φα := ρα/ρ the spatial mass fraction of constituent α, where in this case, ρα/ρ ≡ ραR/ρR.

Evolution of the stress given by Eqs. (1) and (2) can also be described by an equivalent

rate form. Consider

σ̇(s) =
N∑
α=1

σ̇α(s)− ṗ(s) I (16)

where σ̇α yields, from Eq. (2) and the Leibniz rule,

σ̇α(s) =
mα(s) qα(s, s) σ̂α(s, s)

ρ

ds

ds

+
1

ρ

∫ s

−∞
mα(τ)

∂qα(s, τ)

∂s
σ̂α(s, τ) dτ

+
1

ρ

∫ s

−∞
mα(τ) qα(s, τ)

∂σ̂α(s, τ)

∂s
dτ (17)

which, with qα(s, s) = 1, ∂qα(s, τ) /∂s = −kα(s) qα(s, τ), mα(s) = kα(s) ρα(s) Υα(s), and

a (potentially evolving) deposition Cauchy stress at the constituent level (cf. Eq. (4))

σ̂α(s, s) = Gα(s) Ŝα(Gα2(s))Gα(s) = σ̂αdep(s), reads

σ̇α(s) = kα(s) Υα(s)σαdep(s)− kα(s)σα(s)

+
1

ρ

∫ s

−∞
mα(τ) qα(s, τ)

∂σ̂α(s, τ)

∂s
dτ (18)

where we define the current deposition stress at the mixture level as σαdep(s) = φα(s) σ̂αdep(s).

Regarding the third term in the right-hand side of Eq. (18), ∂σ̂α(s, τ) /∂s yields, from
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Eq. (4) (with the notation Ḟα
n(τ)(s) = ∂Fα

n(τ)(s) /∂s and J̇αn(τ)(s) = ∂Jαn(τ)(s) /∂s)

∂σ̂α(s, τ)

∂s
=

1

Jαn(τ)(s)
Ḟα
n(τ)(s) Ŝα(Cα

n(τ)(s))F
αT
n(τ)(s)

+
1

Jαn(τ)(s)
Fα
n(τ)(s) Ŝα(Cα

n(τ)(s))Ḟ
αT
n(τ)(s)

+
1

Jαn(τ)(s)
Fα
n(τ)(s)� Fα

n(τ)(s) :
∂Ŝα(Cα

n(τ)(s))

∂s

−
J̇αn(τ)(s)

Jα2n(τ)(s)
Fα
n(τ)(s) Ŝα(Cα

n(τ)(s))F
αT
n(τ)(s) (19)

which involves the rates Ḟα
n(τ)(s), J̇

α
n(τ)(s) and ∂Ŝα(Cα

n(τ)(s))/∂s, where Ŝα(Cα
n(τ)(s)) =

2∂Ŵα/∂Cα
n(τ)(s), and (for further convenience) the symbol � represents (A�B)ijkl =

AikBjl while the symbol : represents the usual double contraction operation between second-

or higher-order tensors, e.g., A : B = AijBij. First, from Eq. (3)

Ḟα
n(τ)(s) :=

∂Fα
n(τ)(s)

∂s
= Ḟ(s) F−1(τ) Gα(τ) = l(s) Fα

n(τ)(s) (20)

where l(s) = Ḟ(s) F−1(s) is the spatial velocity gradient at the mixture level at current G&R

time s. With Jαn(τ)(s) = J(s) /J(τ), we have

J̇αn(τ)(s) :=
∂Jαn(τ)(s)

∂s
=
J̇(s)

J(τ)
=
J̇(s)

J(s)
Jαn(τ)(s) (21)

where J̇(s) = J(s) tr l(s). Moreover, the chain rule yields

∂Ŝα(Cα
n(τ)(s))

∂s
= 2

∂Ŝα(Cα
n(τ)(s))

∂Cα
n(τ)(s)

:
∂Cα

n(τ)(s)

∂C(s)
:

1

2
Ċ(s) , (22)

where we identify the referential constitutive (hyperelastic) fourth-order tangent tensor at

the constituent level

Ĉα(Cα
n(τ)(s)) := 2

∂Ŝα(Cα
n(τ)(s))

∂Cα
n(τ)(s)

= 4
∂2Ŵα(Cα

n(τ)(s))

∂Cα
n(τ)(s)⊗ ∂Cα

n(τ)(s)
(23)
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with the symbol ⊗ representing (A⊗B)ijkl = AijBkl, and the purely kinematic fourth-order

tensor (Latorre and Humphrey 2018b)

∂Cα
n(τ)(s)

∂C(s)
= Gα(τ) F−T (τ)�Gα(τ) F−T (τ) . (24)

Hence, knowing that the rate of deformation tensor d = sym l = 1
2
F−T ĊF

−1
, we have, from

Eq. (22), along with Eqs. (23) and (24),

∂Ŝα(Cα
n(τ)(s))

∂s
= Ĉα(Cα

n(τ)(s)) : FαT
n(τ)(s)� FαT

n(τ)(s) : d(s) . (25)

Defining a spatial constitutive (hyperelastic) fourth-order tangent tensor Ĉα through the

following push-forward operation over Ĉα at the constituent level

Ĉα(s, τ) =
1

Jαn(τ)(s)
Fα
n(τ)(s)� Fα

n(τ)(s) : Ĉα(Cα
n(τ)(s)) : FαT

n(τ)(s)� FαT
n(τ)(s) , (26)

then Eq. (19), with Eqs. (20), (21), and (25), reads

∂σ̂α(s, τ)

∂s
= l(s) σ̂α(s, τ) + σ̂α (s, τ) lT (s) + Ĉα(s, τ) : d(s)− J̇(s)

J(s)
σ̂α(s, τ) . (27)

Finally, substitution of Eq. (27) into Eq. (18) yields the rate equation

σ̇α(s) = kα(s) Υα(s)σαdep(s)− kα(s)σα(s) + Cα(s) : d(s)

+ l(s)σα(s) + σα(s) lT (s)− σα(s) tr l(s) (28)

where we used Eq. (2) to obtain mixture-level stresses σα(s) from constituent-level stresses

σ̂α(s, τ) and, in parallel, we defined associated mixture-level moduli Cα in terms of constituent-

level moduli Ĉα(s, τ) through the hereditary integral

Cα(s) :=
1

ρ

∫ s

−∞
mα(τ) qα(s, τ) Ĉα(s, τ) dτ . (29)

Eq. (28) reveals multiple contributions to the (instantaneous) change of stress σα at G&R
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time s that are intrinsically included in Eq. (2), but can only be distinguished in rate form.

The first two addends associate, respectively, with an increase in stress σα over time due to

the deposition at rate kαΥα of mass (cf. Eq. (13)) having prestress σαdep and removal at rate

kα of constituent α (cf. Eq. (13)) having stress σα, hence emphasizing the importance of

rates of true production (by deposition) and removal (by degradation or death). The third

addend includes material nonlinearities described constitutively by the spatial (linearized)

stiffness tensor Cα. The fourth and fifth addends include well-known geometric nonlinearities

associated with instantaneous changes of the reference configuration for the Cauchy stress

(i.e., as given by l, see Eq. (20)). Finally, the sixth addend highlights a change in stress

associated with a change in current total volume (consequently, total mass) of the soft tissue

over G&R timescales, as given constitutively by Eq. (15) in a coupled manner (recall that

stimulus functions Υα are typically driven by stress). We assume that such mass addition

occurs interstitially due to local cellular synthesis and secretion.

Remark 1

An important (yet controversial) issue that can arise when developing evolution equations

directly in rate form is selection of an appropriate objective (i.e., frame indifferent) rate in

which a spatial quantity (typically, stress) is expressed and how it relates to kinematic and/or

physical quantities and their objective rates (Simó and Pister 1984). In this regard, observe

that the expression for σ̇α in Eq. (28) is not objective. Note, however, that we did not

posit a constitutive equation for σ̇α; rather we obtained the (non-objective) material time

derivative of the (objective) integral-type expression for σα given in Eq. (2). In other words,

both equations (Eq. (2), and Eq. (28) including all terms) describe the same evolution for

σα over G&R time s, hence we can write Eq. (28) as a proper objective rate of the stress

tensor σα. Recalling the Truesdell rate (cf. Holzapfel 2000, p. 195), here written for each

constituent α,

◦
σα(s) = σ̇α(s)− l(s)σα(s)− σα(s) lT (s) + σα(s) tr l(s) (30)
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allows us to write Eq. (28) as

◦
σα(s) = kα(s)

[
Υα(s)σαdep(s)− σα(s)

]
+ Cα(s) : d(s) (31)

which is now an objective equation for the rate of change of mixture level Cauchy stresses σα

whose (convolution-type) solution is given, equivalently, by Eq. (2). Of course, other objec-

tive (e.g., Oldroyd/Lie, Green–Naghdi, or Jaumann) rates would give different expressions

for the same constitutive relation in rate form (i.e., the expanded Eq. (28)). Equations (13)

and (31), for example, thus constitute a pair of objective equations in rate form equivalent

to Eqs. (7) and (2), respectively, given in (hereditary) integral form.

Remark 2

Noting that Jσα = FSαFT , with Sα the second Piola–Kirchhoff stress tensor for con-

stituent α at the mixture level (Latorre and Humphrey 2018b), Eq. (30) can be expressed

in terms of the material time derivative of Sα as

◦
σα(s) =

1

J(s)
F(s) Ṡα(s) FT (s) (32)

so, from Eq. (31),

Ṡα(s) = kα(s)
[
Υα(s) Sαdep(s)− Sα(s)

]
+ Cα(s) :

1

2
Ċ(s) (33)

where we defined Sαdep and Cα through respective pull-back operations over σαdep and Cα,

namely the Piola transformations

Sαdep(s) := J(s) F−1(s)σαdep(s) F−T (s) (34)

and

Cα(s) := J(s) F−1(s)� F−1(s) : Cα(s) : F−T (s)� F−T (s) . (35)
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With Eq. (33) (equivalently, Eq. (31)) written in this way, we define (cf. Eq. (13))

Ṡαg (s) := kα(s) [Υα(s)− 1] Sα(s) =
ρ̇αR(s)

ραR(s)
Sα(s) (36)

and

Ṡαr (s) := −kα(s) Υα(s)
[
Sα(s)− Sαdep(s)

]
= −

[
ρ̇αR(s)

ραR(s)
+ kα(s)

] [
Sα(s)− Sαdep(s)

]
(37)

as well as

Ṡαe (s) := Cα(s) :
1

2
Ċ(s) (38)

so that Eq. (33) results from the addition of three contributions, growth-type, remodeling /

relaxation-type, and elastic-type, to the stress rate Ṡα (equivalently,
◦
σα in Eq. (31)), namely

Ṡα(s) = Ṡαg (s) + Ṡαr (s) + Ṡαe (s) (39)

which, having been derived from the general (nonlinear, finite strain) constrained mixture

model of Section 2.1, represents a generalization of the rate-form evolution equation employed

in a temporally homogenized constrained mixture model for G&R (Cyron et al. 2016). In-

deed, as done in viscoelasticity, in which strain-like (Latorre and Montáns 2015; Sidoroff

1974) or stress-like (Holzapfel 1996; Simó 1987) internal state variable approaches can be

employed to formulate evolution equations in rate form, one could compute stress evolutions

in Eqs. (36)-(38) using appropriate strain- or stress-based internal variables, bypassing the

need to track contributions of individual structurally significant constituents over the mid-

and long-term past history (e.g., via Eqs. (2) and (29)), with consequent savings in compu-

tational time and memory. Of course, different approaches to G&R (integral- or rate-based,

with the latter either internal strain- or stress-based) could lead to different predictions and

results and thus must be subjected to experimental validation.
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2.3. A constrained mixture model for arterial G&R in rate form

For illustrative purposes, we now specialize the evolution equations for referential mass

density and Cauchy stresses in rate form for a cylindrical artery in maturity that can exhibit

active or passive (pseudoelastic) material behaviors. We consider three main structurally

significant constituents, an elastin-dominated amorphous matrix (α = e), oriented smooth

muscle (α = m), and oriented collagen (α = c). We assume that elastin does not turnover

during short to moderate periods of G&R (Wagenseil and Mecham 2009) while smooth

muscle and collagen turnover continuously (generally within 4 to 6 months, Humphrey 2002).

We further consider active and passive contributions by smooth muscle (Murtada et al. 2017).

Eq. (6), with N = {e,m, c}, reads for this constrained mixture of solid constituents as

ρR(s) =

e,m,c∑
α

ραR(s) = ρeR(s) + ρmR (s) + ρcR(s) (40)

whereas Eq. (1), under the assumption of an axisymmetric state of stress (with er, eθ, and

ez representing unit vectors in radial, circumferential, and axial directions, and using the

compact notation jj → j for second- and fourth-order tensors) such that

σ(s) =

r,θ,z∑
j

σj(s) ej ⊗ ej − p(s) I , (41)

reads for each (principal) component

σr(s) = σer(s)− p(s) , (42)

σθ(s) =

e,m,c∑
α

σαθ (s) + σactθ (s)− p(s) , (43)

and

σz(s) =

e,c∑
α

σαz (s)− p(s) , (44)

where only the elastin-dominated material (which includes effects of glycosaminoglycans,

often of much lower mass fraction than that of elastin) contributes to radial stress, while all

three constituents (with separate passive and active terms for smooth muscle) contribute to
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circumferential stress and only elastin and collagen contribute to axial stress. Assuming an

axisymmetric deformation, F reads in terms of principal stretches

F(s) =

r,θ,z∑
j

λj(s) ej ⊗ ej (45)

where, from Figure 1, F(0) = Fo = I refers to the original homeostatic (loaded) configuration

(cf. Bellini et al. 2014). Because of the constituent-specific deposition (pre)stretches, σ(0) =

σo 6= 0, in general. The resulting spatial velocity gradient l = ḞF
−1

is also symmetric, hence

l(s) ≡ d(s) =

r,θ,z∑
j

λ̇j(s)

λj(s)
ej ⊗ ej . (46)

Lastly, since the principal directions of Cauchy stress remain constant over G&R time,

we can also consider constant deposition stretch tensors Gα(τ) = Gα ∀τ (Latorre and

Humphrey 2018a,b; Valent́ın et al. 2013), with associated constituent-level deposition stresses

σ̂α = GαŜα(Gα2)Gα = σ̂αdep constant as well (i.e., σ̂α = σ̂αo ≡ σ̂αh).

2.3.1. Elastin

Consistent with prior comments, arterial elastin is assumed to be deposited and cross-

linked in the perinatal period and, due to its long half-life under normal conditions (> 25

years), not turnover in maturity. Hence, me
R (s) ' 0 for all s ≥ 0 herein. Moreover, in the

absence of diseases characterized by increased elastolytic activity, qe (s, 0) ' 1 over short-

to-modest periods. Hence, elastin requires a different treatment within this formulation.

We thus account for its contribution to the mechanical state of the artery at the initial

time through an equivalent (fictitious, arising largely from prior somatic growth) deposition

stretch tensor Ge(τ = 0) = Ge

Ge =

r,θ,z∑
j

Ge
j ej ⊗ ej (47)

such that additional incremental deformations for elastin given by Eq. (3) at time s, with

F(τ = 0) = I, read
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Fe(s) := Fe
n(0)(s) = F(s) F−1(0) Ge(0) = F(s) Ge . (48)

The current mass of elastin per unit reference volume of mixture then remains constant over

time, namely

ρeR(s) = ρeR(0) = ρe(0) = ρeo , (49)

which in rate form yields

ρ̇eR(s) = 0 (50)

consistent with Eq. (13) with neither production nor removal (i.e., ke (s) = 0) for s > 0.

Under the same assumptions (no production, no removal), it can be shown that compo-

nents of Cauchy stress for elastin, Eq. (2), specialize to (Latorre and Humphrey 2018b)

σej (s) = φe(s)λ2j(s)G
e2
j Ŝ

e
j (s) =

φeo
J(s)

λ2j(s)G
e2
j Ŝ

e
j (s) , j = r, θ, z (51)

where Ŝe(Ce(s)) = 2∂Ŵ e(Ce(s))/∂Ce(s), with Ce(s) := Ce
n(0)(s). The material time deriva-

tive of σej (s) in Eq. (51) yields

σ̇ej (s) = [2σej (s) + cejj(s)]
λ̇j(s)

λj(s)
+
∑
k 6=j

cejk(s)
λ̇k(s)

λk(s)
− σej (s)

J̇(s)

J(s)
(52)

which, again, is consistent with the general Eq. (28) without production or removal of

elastin for s > 0, with cejk (j, k = r, θ, z) given in Appendix A. Note that 2σej + cejj accounts

for geometrically and materially nonlinear stiffnesses in direction ej, as equivalently derived

from a “theory of small on large” (Baek et al. 2007a), and that cejk, with j 6= k, introduces

a Poisson-type coupling between the stress rate σ̇ej and transverse stretch rate λ̇k.

2.3.2. Smooth muscle

We assume that, like collagen, smooth muscle is continuously produced (cell division) and

removed (cell apoptosis), hence associated referential mass densities and Cauchy stresses in

rate form are given by the general formulation of Section 2.2. In contrast to Eq. (50) for

15



elastin, Eq. (13) for smooth muscle reads

ρ̇mR (s) = km(s) ρmR (s) [Υm(s)− 1] . (53)

The deposition stretch tensor for smooth muscle, assumed to be oriented predominantly in

the circumferential direction, is

Gm
θ = Gm

θ eθ ⊗ eθ , (54)

hence the rate of change of passive circumferential stress for smooth muscle is, from Eq.

(28),

σ̇mθ (s) = km(s) [Υm(s)φm(s) σ̂mθ − σmθ (s)]

+ [2σmθ (s) + cmθθ(s)]
λ̇θ(s)

λθ(s)
− σmθ (s)

J̇(s)

J(s)
(55)

where σmdep|θ(s) = φm(s) σ̂mθ . Note that the transverse-to-axial coupling term cmθz = 0 because

smooth muscle is aligned unidirectionally (Appendix A).

2.3.3. Collagen

Consistent with prior models (Bellini et al. 2014), we consider a four-family distribution

of collagen fibers, one oriented circumferentially (θ), one axially (z), and two symmetric

diagonally (d). This collection of fiber families accounts for orientations observed via mi-

croscopy as well as difficult to measure cross-links that contribute to the overall anisotropy.

The total referential mass density of collagen is thus

ρcR(s) =

θ,z,d∑
i

ρcRi(s) (56)

which, assuming the same removal and production functions and related constants for all

four families, satisfies in rate form (Latorre and Humphrey 2018b)

ρ̇cR(s) = kc(s) ρcR(s) [Υc(s)− 1] . (57)
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Circumferential, axial, and symmetric diagonal deposition stretches are

Gc
θ = Gc

θ eθ ⊗ eθ , Gc
z = Gc

z ez ⊗ ez , (58)

and

Gc
d = Gc

d ed ⊗ ed , ed = sinαd eθ + cosαd ez , with αd = ±αo , (59)

hence circumferential and axial components of rates of change of Cauchy stress are, from

Eq. (28),

σ̇cθ(s) = kc(s) [Υc(s)φc(s) σ̂cθ − σcθ(s)]

+ [2σcθ(s) + ccθθ(s)]
λ̇θ(s)

λθ(s)
+ ccθz(s)

λ̇z(s)

λz(s)
− σcθ(s)

J̇(s)

J(s)
, (60)

and

σ̇cz(s) = kc(s) [Υc(s)φc(s) σ̂cz − σcz(s)]

+ [2σcz(s) + cczz(s)]
λ̇z(s)

λz(s)
+ cczθ(s)

λ̇θ(s)

λθ(s)
− σcz(s)

J̇(s)

J(s)
(61)

where (symmetric) coupling stiffness terms ccθz = cczθ persist because of the diagonal fibers

(Appendix A) that contribute to σcθ (along with circumferential fibers) and σcz (along with

axial fibers).

2.3.4. Active stress

Consider the tensile stress generated by active contraction of smooth muscle cells, which,

similar to the passive stress contribution, can be expressed in the general form

σactθ (s) = φm(s) σ̂actθ (s) . (62)

Anticipating that we will assess mechanobiological stability of previously mechanobiologically

equilibrated states, we assume the following form for σactθ (s) in terms of an active second

Piola–Kirchhoff stress (cf., Eq. (51) for elastin, without considering deposition stretches for

the active contribution)
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σactθ (s) = φm(s) σ̂actθ (s) = φm(s)λ2θ(s) Ŝ
act
θ (s) (63)

which does not incorporate possible time-dependent readjustment of actomyosin filament

overlap to optimize the force–length response (Baek et al. 2007b), as assumed by Valent́ın

et al. (2013). Yet, Eq. (63) allows Ŝactθ to depend on a ratio of vasoconstrictors to vasodilators

C, as, for example

σactθ (s) = φm(s)λ2θ(s) Ŝ
act
θ (s) = φm(s)λ2θ(s) Ŝ

(
1− e−C2(s)

)
(64)

with Ŝ a material constant and C ultimately depending on the flow-induced shear stress τw

over the endothelium through the linearized expression (Valent́ın and Humphrey 2009)

C(s) = CB − CS∆τw(s) , (65)

with CB and CS constants, where ∆τw, the relative change in τw with respect to the original

homeostatic value τwo, can be expressed in terms of associated volumetric blood flow rates

(Q, Qo) and luminal radii (a, ao) as (Latorre and Humphrey 2018a,b)

∆τw(s) =
τw(s)− τwo

τwo
=
Q(s) a3o
Qoa3(s)

− 1 . (66)

Inclusion of the wall shear stress here reminds us that certain components of Cauchy

stress can be important mechanobiologically though not important mechanically; note that

flow-induced wall shear stress is typically of the order 1.5 Pa while the pressure-induced in-

plane intramural stresses are of the order 150 kPa, yet Pa-order changes in wall shear stress

can dramatically affect matrix turnover and the geometry in which such turnover occurs.

Nevertheless, the material time derivative of σactθ in (63) yields, with φm = ρm/ρ ≡ ρmR/ρR,

σ̇actθ (s) =

(
ρ̇mR (s)

ρmR (s)
− ρ̇R(s)

ρR(s)

)
σactθ (s)

+ 2σactθ (s)
λ̇θ(s)

λθ(s)
+ φm(s)λ2θ(s)

dŜactθ (C(s))

dC(s)
Ċ(s) (67)
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where Ċ reads, from Eqs. (65) and (66),

Ċ(s) = −CS
τ̇w(s)

τwo
= CS

τw(s)

τwo

(
3
ȧ(s)

a(s)
− Q̇(s)

Q(s)

)
. (68)

Let an active stiffness-like term cactθθ > 0 be

cactθθ (s) := φm(s)λ2θ(s) 3CS
τw(s)

τwo

dŜactθ (C(s))

dC(s)
(69)

and the circumferential stretch for active stresses be approximated by

λθ(s) ≈
a(s)

ao
(70)

so ȧ/a ≈ λ̇θ/λθ, such that Eq. (67) adopts a similar expression to its passive counterpart,

Eq. (55),

σ̇actθ (s) = km(s)
[
Υm(s)φm(s) σ̂actθ (s)− σactθ (s)

]
+
[
2σactθ (s) + cactθθ (s)

] λ̇θ(s)
λθ(s)

− σactθ (s)
J̇(s)

J(s)
− cactθθ (s)

3

Q̇(s)

Q(s)
. (71)

Note that an increase (or decrease) in blood flow would potentially lead to an instantaneous

vessel dilatation (or constriction) via the relaxation (or further contraction) of its smooth

muscle, as desired during acute responses to altered flow (Humphrey 2002).

2.3.5. Mixture-level constitutive relations

Noticing that we include constituents that either turnover or not and that can have

different passive and active contributions as well as different spatial arrangements and ori-

entations, the constitutive relations for total referential mass density and Cauchy stresses in

rate form specialize for our prototypical artery as

ρ̇R(s) =

m,c∑
α

ρ̇αR(s) = J̇(s) ρ , (72)
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and

σ̇θ(s) =

e,m,c,act∑
α

σ̇αθ (s)− ṗ(s) , σ̇z(s) =

e,c∑
α

σ̇αz (s)− ṗ(s) , σ̇r(s) = σ̇er(s)− ṗ(s) (73)

where, for notational compaction, we include the superscript act for active circumferential

stresses within the summation over the “constituent” index α. Let the “extra” part of stress

(Humphrey 2002) given by different constituents in the principal directions be denoted with

superscript x as

σxθ (s) =

e,m,c,act∑
α

σαθ (s) , σxz (s) =

e,c∑
α

σαz (s) , and σxr (s) = σer(s) (74)

with respective stiffnesses as

cxθθ(s) =

e,m,c,act∑
α

cαθθ(s) , cxzz(s) =

e,c∑
α

cαzz(s) , and cxrr(s) = cerr(s) (75)

as well as (with cxjk = cxkj)

cxθz(s) =

e,c∑
α

cαθz(s) , cxzr(s) = cezr(s) , and cxθr(s) = ceθr(s) . (76)

Hence, with Eqs. (53), (57) for referential mass densities, and Eqs. (52), (55), (60), (61),

and (71) for stress contributions, we can write constrained mixture equations in rate form

for an idealized cylindrical artery as

ρ̇R =

m,c∑
α

kαραR (Υα − 1)

σ̇θ +
cactθθ
3

Q̇

Q
=

m,c,act∑
α

kα
(

Υαρ
α
R

ρR
σ̂αθ − σαθ

)
+ 2σxθ

λ̇θ
λθ

+

r,θ,z∑
j

cxθj
λ̇j
λj
− σxθ

ρ̇R
ρR
− ṗ

σ̇z = kc
(

Υcρ
c
R

ρR
σ̂cz − σcz

)
+ 2σxz

λ̇z
λz

+

r,θ,z∑
j

cxzj
λ̇j
λj
− σxz

ρ̇R
ρR
− ṗ

σ̇r = 2σxr
λ̇r
λr

+

r,θ,z∑
j

cxrj
λ̇j
λj
− σxr

ρ̇R
ρR
− ṗ

(77)

(78)

(79)

(80)
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where the rates in the right-hand sides are yet to be related to the variables of interest for

each particular case. Note that these, and all relations in Section 2.3, hold at any point

within a cylindrical arterial wall whether thin- or thick-walled.

2.4. Equivalent thin-walled artery: Stability analysis

We seek to analyze the mechanobiological stability of evolving loaded states of an artery,

which we assume to have achieved a state of mechanobiological equilibrium when subjected

to an inner pressure P = Ph, flow rate Q = Qh, and axial stretch λz = λzh. Because

these external loads are eventually sustained over time during the dynamic stability analy-

ses performed, the resulting solutions represent self-excited deformations caused by combined

growth, remodeling, and elastic responses. That is, we are not analyzing forced dynamic re-

sponses, either over short (cardiac cycle) or long (G&R) timescales. Moreover, because of

residual stresses in maturity (which arise from materially non-uniform deposition stretches

and somatic growth), the mean values of Cauchy stress represent well the transmural dis-

tribution of stress. Hence, we use mean values similar to those for a thin-walled pressure

vessel. Because of the aforementioned order of magnitude difference in mean in-plane (θ

and z) and out-of-plane (r) stresses, we also assume a quasi-plane-stress state for which

|σr| /σθ ∼ |σr| /σz � 1, hence the Lagrange multiplier in Eqs. (78)-(80) is obtained di-

rectly from Eq. (42) as (hereafter, we omit any dependences on times s or τ for notational

convenience)

σr = σer − p = 0 =⇒ p = σer . (81)

Noticing from Eq. (51) that σej ∝ Ge2
j and that in-plane deposition stretches for elastin are

typically Ge
θ ∼ Ge

z ∼ 2, with Ge
r = 1/(Ge

θG
e
z) ∼ 1/4, we have

|σer |
σeθ
∼ |σ

e
r |
σez
∼
(

1

Ge
θG

e
z

)3

� 1 (82)

and because smooth muscle and/or collagen contribute to circumferential and axial stresses

through Eqs. (74)1 and (74)2, we find

|p| = |σer | � σeθ, σ
e
z < σxθ , σ

x
z (83)
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whereby p will be negligible in this mechanobiological stability analysis. If this assumption

did not hold at a given homeostatic (loaded) state, a similar procedure could be followed

while incorporating ṗ = σ̇er , from Eq. (80), in Eqs. (78) and (79). Finally, for analytical

convenience, we consider the same (original) rates and gains for turnover of smooth muscle

and collagen, thus

kmo = kco ≡ ko , and Υm = Υc ≡ Υ . (84)

2.4.1. Nonlinear, non-autonomous system

The previous assumptions, along with the external loads remaining constant over time

during the stability (self-excitation) analysis, that is,

P = Ph , Q = Qh , λz = λzh =⇒ Ṗ = 0 , Q̇ = 0 , λ̇z = 0 (85)

reduce Eqs. (77)-(80) to the following nonlinear system of first-order differential equations

ρ̇R = k (Υ− 1) (ρR − ρeo) (86)

σ̇θ = k

m,c,act∑
α

(
Υ
ραR
ρR
σ̂αθ − σαθ

)
+ (2σθ + cθθ)

λ̇θ
λθ

+ cθr
λ̇r
λr
− σθ

ρ̇R
ρR

(87)

σ̇z = k

(
Υ
ρcR
ρR
σ̂cz − σcz

)
+ czθ

λ̇θ
λθ

+ czr
λ̇r
λr
− σz

ρ̇R
ρR

(88)

which suggests that ρR, σθ, and σz could represent an appropriate set of time-dependent

variables for an asymptotic stability analysis of arterial G&R if the three right-hand sides

could be expressed as functions of these variables and, perhaps, G&R time s, either implicitly

or explicitly. In other words, we seek to identify a non-autonomous system of the form

(Rouche et al. 1977)

ẏ (s) = f (y (s) , s) , s ≥ 0 , y (0) = yh + δyh (89)

with y = [ρR, σθ, σz]
T the dependent variable, s the independent variable, f (y, s) a nonlinear

vector-valued function, and δyh an initial (typically modest) perturbation relative to the

evolved homeostatic state yh = [ρRh, σθh, σzh]
T .
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Consider first the global equilibrium equation for mean circumferential stress σθ = Pa/h,

with transmural pressure P , luminal radius a, and wall thickness h, which can be expressed

in terms of γh = Ph/Po, σθo = Poao/ho, λθ = a/ao, and ρR/ρ = J = λrλθλzh, with λr = h/ho,

as

σθ = σθo
Phaho
Poaoh

= γhσθo
λθ
λr

= γhσθo
λ2θλzh
J

= γhλzhρσθo
λ2θ
ρR

(90)

Hence, internal (constitutive) and external (mechanical equilibrium) expressions for σ̇θ yield,

from Eqs. (87) and (90)

k

m,c,act∑
α

(
Υ
ραR
ρR
σ̂αθ − σαθ

)
+ (2σθ + cθθ)

λ̇θ
λθ

+ cθr
λ̇r
λr
− σθ

ρ̇R
ρR

= σθ

(
2
λ̇θ
λθ
− ρ̇R
ρR

)
(91)

whereupon the associated (total) Truesdell rate vanishes, cf. Eq. (31),

◦
σθ = k

m,c,act∑
α

(
Υ
ραR
ρR
σ̂αθ − σαθ

)
+ cθθ

λ̇θ
λθ

+ cθr
λ̇r
λr

= 0 (92)

Furthermore, J̇ = J tr l, with Eqs. (15)1 and (46), and λ̇z = 0, yields

λ̇θ
λθ

+
λ̇r
λr

=
ρ̇R
ρR

(93)

which, along with Eq. (92), enable expressions for λ̇θ/λθ and λ̇r/λr to be substituted into

Eqs. (87) and (88). Letting the stimulus function Υ in Eqs. (86)-(88) be driven by relative

intramural ∆σ (same as in Eq. (9)) and wall shear ∆τw stresses (same as in Eq. (65))

through a linearized relation (Latorre and Humphrey 2018b; Valent́ın and Humphrey 2009),

we have

Υ = 1 +Kσ∆σ −Kτ∆τw (94)

with Kσ ≥ 0 and Kτ ≥ 0 gain-type G&R parameters, and σ̃ in Eq. (10) the first principal

invariant of σ, namely σI = σr + σθ + σz ' σθ + σz, so

∆σ =
σI − σIo
σIo

' σθ + σz
σθo + σzo

− 1 (95)

which, importantly, accounts for the biaxial wall mechanics, noting that axial mechanics
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plays fundamental roles in arterial mechanics (Humphrey et al. 2009), including arterial

G&R (Gleason et al. 2007). In addition, we can rewrite τw/τwo in Eq. (66), with εh = Qh/Qo

and Eq. (90), as

τw
τwo

=
Qha

3
o

Qoa3
=
εh
λ3θ

= εh

(
γhλzh

ρσθo
ρRσθ

)3/2

(96)

so we obtain the desired dependences for Υ = Υ (y) ≡ Υ (ρR, σθ, σz). Now, let the terms∑m,c,act
α σαθ and σcz in Eqs. (87) and (88) be expressed as

m,c,act∑
α

σαθ = σθ − σeθ , and σcz = σz − σez . (97)

If, as in previous work (Latorre and Humphrey 2018a,b,c), the hyperelastic response of

elastin is modeled via a neoHookean function with shear modulus ce, for which Ŝeθ = Ŝez = ce

are constant, we have from Eqs. (51) and (90)

σeθ = φeoG
e2
θ Ŝ

e
θ

λ2θ
J

= σeθo
λ2θ
J

=
σeθo

γhλzhσθo
σθ (98)

and

σez = φeoG
e2
z Ŝ

e
z

λ2zh
J

= σezo
λ2zh
J

= λ2zhσ
e
zo

ρ

ρR
(99)

whereby terms in Eq. (97) can be expressed as a function of the variables in y = [ρR, σθ, σz]
T

as
m,c,act∑
α

σαθ =

(
1− σeθo

γhλzhσθo

)
σθ , and σcz =

(
1− λ2zh

ρσezo
ρRσz

)
σz . (100)

Likewise, because cejk = 0 for this particular case, cθr = 0 = czr in Eqs. (87) and (88).

Consider, finally, the terms in Eqs. (87) and (88)

m,c,act∑
α

ραR
ρR
σ̂αθ , and

ρcR
ρR
σ̂cz (101)

which, after noticing that if (Latorre and Humphrey 2018b)

kmo = kco , Υm = Υc =⇒ ρmR
ρmo

=
ρcR
ρco

=
ρmR + ρcR
ρmo + ρco

=
ρR − ρeo
ρ− ρeo

(102)
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then
ρcR
ρR
σ̂cz =

ρ

ρR

ρcR
ρco

ρco
ρ
σ̂cz =

ρ

ρR

ρR − ρeo
ρ− ρeo

σczo (103)

with the (original) total axial stress for collagen σczo = φαo σ̂
c
z constant. Moreover

m,c,act∑
α

ραR
ρR
σ̂αθ =

m,c,act∑
α

ρ

ρR

ραR
ραo

ραo
ρ
σ̂αθ =

ρ

ρR

ρR − ρeo
ρ− ρeo

m,c,act∑
α

φαo σ̂
α
θ (104)

with

m,c,act∑
α

φαo σ̂
α
θ = φmo σ̂

m
θ + φcoσ̂

c
θ + φmo σ̂

act
θ = σmθo + σcθo + φmo

ρRσθ
γhλzhρσθo

Ŝactθ (σθ, ρR) (105)

where σmθo and σcθo are constant. Note, from Eqs. (63), (64), (65), (90) and (96), the

dependences for σ̂actθ

σ̂actθ = λ2θ (σθ, ρR) Ŝactθ (σθ, ρR) . (106)

Therefore, after some lengthy (but otherwise straightforward) algebra, Eqs. (86)-(88)

reduce to the following nonlinear system of differential equations of the form in Eq. (89),

which, for prescribed constant loads Ph, Qh, λzh, and initial perturbation δyh, describes the

evolution of ρR, σθ, and σz in terms of themselves and the G&R-time-dependent stiffnesses

cθθ and czθ (see Eqs. (75), (76), and Appendix A), namely

ρ̇R
kρR

=
ρR − ρeo
ρR

(Υ− 1)

σ̇θ
kσθ

= −ρR − ρ
e
o

ρR
(Υ− 1) +

2σθ
cθθ

Ω

σ̇z
kσz

= −ρR − ρ
e
o

ρR
(Υ− 1) +

2σθ
cθθ

czθ
2σz

Ω− χ

(107)

(108)

(109)

where

Υ = 1 +Kσ

(
σθ + σz
σθo + σzo

− 1

)
−Kτ

(
τw
τwo
− 1

)
, (110)

and we defined

Ω := 1− 1

γhλzh

σeθo
σθo
−Υ

ρR − ρeo
ρ− ρeo

(
ρ

ρR

σmθo + σcθo
σθ

+
1

γhλzh

φmo Ŝ
act
θ

σθo

)
, (111)
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and

χ := 1− λ2zh
ρ

ρR

σezo
σz
−Υ

ρR − ρeo
ρ− ρeo

ρ

ρR

σczo
σz

(112)

with τw/τwo (in Υ) and Ŝactθ (in Ω) functions of ρR and σθ from Eqs. (96) and (106). Although

one would need to update the hereditary-integral-based elastic moduli cθθ and czθ (cf. Eq.

(29)) between incremental steps to solve numerically Eqs. (107)-(109) for ρR, σθ, and σz, we

will just need their homeostatic values cθθh and czθh to analyze the stability of the dynamical

system of Equations (107)-(109) near a homeostatic state.

2.4.2. Mechanobiological equilibrium

As mentioned above, we seek a mechanobiological stability analysis of an equilibrated

mechanobiological state, previously computed for prescribed Ph, Qh, λzh. Mathematically,

the equilibrated state yh must satisfy ρ̇R = 0, σ̇θ = 0, and σ̇z = 0 in Eqs. (107)-(109), that

is, from Eq. (89)

0 = f (y (s) , s) ∀s ≥ 0 =⇒ y (s) = yh (113)

hence representing a so-called equilibrium or critical point (Rouche et al. 1977) of this system

of first-order differential equations.

Considering ρ̇R|h = 0, σ̇θ|h = 0, and σ̇z|h = 0 in Eqs. (107)-(109), requires

Υh = 1 , Ωh = 0 , and χh = 0 (114)

at mechanobiological equilibrium. It can be shown, numerically, that the steady-state solu-

tion yh = [ρRh, σθh, σzh]
T obtained from Eq. (114), via our rate-based constrained mixture

approach, represents the same mechanobiologically equilibrated solution obtained from an

integral-based constrained mixture approach for the same prototypical vessel (Latorre and

Humphrey 2018b). In particular, it is easy to verify, analytically, that the original home-

ostatic rule-of-mixture solution (cf. Section 3.2 in Latorre and Humphrey (2018b), with

volume and mass fractions being equivalent and p negligible with respect to in-plane stresses)

ρR =

e,m,c∑
α

ραo ≡ ρ , (115)
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σθ =

e,m,c,act∑
α

φαo σ̂
α
θo =

e,m,c,act∑
α

σαθo ≡ σθo , (116)

and

σz =

e,c∑
α

φαo σ̂
α
zo =

e,c∑
α

σαzo ≡ σzo (117)

obtained for P = Po, Q = Qo, and λz = λzo = 1, satisfies Υo − 1 = Ωo = χo = 0 in Eqs.

(110)-(112), and, thus, represents an associated critical point of the system of first-order

Equations (107)-(109).

2.4.3. Mechanobiological stability

Importantly, distinction between time-dependent and time-independent solutions, Eqs.

(89) and (113), respectively, allows us to analyze two types of (un)stable responses related to

different mechanobiological sources. Briefly, Eq. (89) describes the evolution of y (s) near a

previously mechanobiologically equilibrated solution yh following an initial perturbation δyh

at s = 0 for prescribed model parameters and external loads for s ≥ 0, and, hence, requires

that the critical point yh exists and is bounded, in general. Subsequently, a dynamic stability

analysis determines if the time-dependent solution y (s > 0) approaches yh, remains close to

yh, or diverges. On other hand, Eq. (113) yields a time-independent mechanobiologically

equilibrated solution yh for prescribed model parameters and external loads, which might

be statically bounded or unbounded, or even give rise to bifurcations. We thus refer to

mechanobiological dynamic stability as the ability of the time-dependent solution y (s) to

remain close to a finite (bounded) equilibrated state yh, with rate-dependent terms in Eq.

(89) playing a central role. We alternatively refer to mechanobiological static stability as

the ability of time-independent solutions yh to remain finite (bounded), where only rate-

independent terms in Eq. (89) are relevant.

Mechanobiological (static) stability of yh with respect to sustained perturbations. Consider

our idealized artery with initial geometry and mass fractions xo = {ao, ho, lo, φo} in an

original homeostatic (loaded) state o. An associated original equilibrated solution yo =

[ρRo, σθo, σzo]
T (with ρRo = ρ) is obtained from Eq. (113) for prescribed original external

loads ξo = {Po, Qo, λzo} and original model parameters ςo, namely, Eqs. (115)-(117). Con-
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sider, too, an evolved equilibrated solution yh = [ρRh, σθh, σzh]
T , obtained from Eq. (113) for

evolved loads ξh = {Ph, Qh, λzh} and evolved parameters ςh, which can be computed numeri-

cally from the three conditions in Eq. (114) (cf., equivalently, Latorre and Humphrey 2018b).

The steady-state solution yh is called mechanobiologically stable with respect to sustained

changes in external loads ξh if, for every (physiological) ε > 0, there is a (physiological)

δ > 0, such that

‖ξh − ξo‖ < ε =⇒ ‖yh − yo‖ < δ . (118)

Equivalently, yh is called mechanobiologically stable with respect to sustained changes in

parameters ςh if, for every (physiological) ε > 0, there is a (physiological) δ > 0, such that

‖ςh − ςo‖ < ε =⇒ ‖yh − yo‖ < δ . (119)

Otherwise, the steady-state solution yh is mechanobiologically unstable with respect to phys-

iologically admissible changes in ξh or ςh. Note that neither G&R time s nor rate-dependent

terms influence this type of statically (un)bounded solution.

Eq. (113) with y (s) = yh, absent G&R time s, and explicit consideration of the evolution

of a single parameter ζh ∈ {ξh, ςh} can be rewritten as a one-parameter family of equations

f (yh, ζh) = 0. By the implicit function theorem, we have

f (yh, ζh) = 0 =⇒ yh = yh (ζh) , (120)

hence static stability of yh with respect to changes in ζh can be assessed through the

evolution of the (implicit) parameter-dependent solution yh = yh (ζh). Differentiation of

f (yh (ζh) , ζh) = 0 with respect to ζh yields

df (yh (ζh) , ζh)

dζh
=
∂f (yh, ζh)

∂yh
· dyh (ζh)

dζh
+
∂f (yh, ζh)

∂ζh
= 0 (121)

whereupon
dyh (ζh)

dζh
= − ∂f (yh, ζh)

∂yh

∣∣∣∣−1 · ∂f (yh, ζh)

∂ζh
. (122)

A first-order Taylor expansion yields yh (ζh + ∆ζh) ' yh (ζh)+(dyh (ζh) /dζh)∆ζh. Assuming
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that ‖yh‖ increases monotonically with respect to monotonic changes in ∆ζh, mechanobio-

logical static stability of yh, in the sense of Eqs. (118) or (119), requires, from Eq. (122),

that the Jacobian matrix ∂f (yh, ζh) /∂yh is invertible. In other words, if there exists a

physiological value ζh (i.e., |ζh − ζo| < ε), such that

det

[
∂f (yh, ζh)

∂yh

]
→ 0 =⇒ ‖yh (ζh)− yo‖ → ∞ (123)

then the mechanobiologically equilibrated solution yh is statically unstable (i.e., unbounded).

For our idealized artery,

∂f (yh, ζh)

∂yh
=
∂f (y, ζ)

∂y

∣∣∣∣
h

=



∂ρ̇R
∂ρR

∂ρ̇R
∂σθ

∂ρ̇R
∂σz

∂σ̇θ
∂ρR

∂σ̇θ
∂σθ

∂σ̇θ
∂σz

∂σ̇z
∂ρR

∂σ̇z
∂σθ

∂σ̇z
∂σz


h

(124)

which we compute numerically using Eqs. (107)-(109) in examples below. Importantly,

other types of G&R instabilities (not necessarily unbounded) could arise depending on the

specific evolution of the nonlinear function yh (ζh), including limit-point instabilities and/or

bifurcations (cf. Erlich et al. 2019). Hence, each case, defined by specific constitutive rela-

tions, material constants, geometry, and boundary conditions should be evaluated separately

(Haslach and Humphrey 2004).

Mechanobiological (dynamic) stability of y (s) with respect to transient perturbations near

yh. As explained above, a mechanobiologically equilibrated solution yh represents a critical

point of Eq. (89) for a given original geometry and mass fractions xo, prescribed evolved

loads ξh, and prescribed evolved model parameters ςh. Assume now that for a given εh > 0,

there exists a δh > 0 such that Eqs. (118) and (119) are satisfied, or, in other words, that

yh exists and remains physiological. Eq. (89), with xo given, and ξh and ςh fixed, describes

a time-dependent solution y (s ≥ 0) following an initial perturbation δyh at s = 0. The

time-dependent solution y(s) is called mechanobiologically stable at s = 0 with respect to
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arbitrary perturbations δyh if, for every ε > 0, there is a δ > 0 such that if

‖δyh‖ < ε =⇒ ‖y (s)− yh‖ < δ ∀s ≥ 0 . (125)

Otherwise, y(s) is mechanobiologically unstable at s = 0 with respect to transient pertur-

bations δyh. Note that both the G&R time s and rate-dependent terms play crucial roles in

dynamically (un)bounded solutions.

Consider an evolved equilibrium solution yh = [ρRh, σθh, σzh]
T of Eqs. (107)-(109) for

prescribed ξh and ςh, with ẏ = 0. We linearize about yh (0), as given in Eq. (89), as

ẏ = f (y, s) ' f (yh, 0) +
∂f (y, s)

∂y

∣∣∣∣
h

· (y − yh) +
∂f (y, s)

∂s

∣∣∣∣
h

(s− 0) (126)

where we neglect higher-order terms. Considering that cθθ and czθ are additional variables

(to ρR, σθ, and σz) that depend on s,

∂f (y, s)

∂s

∣∣∣∣
h

=


∂ρ̇R
∂s
∂σ̇θ
∂s
∂σ̇z
∂s


h

= Ωh


0

−2σθ
c2θθ

dcθθ
ds

−2σθ
c2θθ

c2zθ
2σz

d(cθθ/czθ)

ds


h

= 0 (127)

which, importantly, vanish because of the equilibrium value Ωh = 0 in Eq. (114). Thus,

since yh is an equilibrium point (i.e., f (yh, 0) = 0) and ∂f (y, s) /∂s|h = 0, linearization of

Eq. (89) at yh (i.e., Eq. (126)) is represented by a linear autonomous system of differential

equations in terms of an incremental (time-dependent) solution δy(s) = y(s)− yh

δẏ (s) =
∂f (y, s)

∂y

∣∣∣∣
h

· δy (s) , s ≥ 0 , δy (0) = δyh , (128)

which is valid in a neighborhood of the evolved homeostatic solution y = yh.

It is well-known (Hairer et al. 1993) that the eigenvalues of the matrix of constant co-

efficients ∂f (y, s) /∂y|h determine the stability of the associated linear(ized), autonomous

system given in Eq. (128). The question now is whether these eigenvalues determine, too,

the stability of the nonlinear, non-autonomous system given in Eq. (89) near the equilibrium
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state yh. This theory, initiated in the late 1800s, was “brought to perfection”(Hairer et al.

1993) by Lyapunov (1882), so we employ his main contributions in this regard.

Original homeostatic state. For illustration, we analyze analytically the asymptotic stabil-

ity of y (s) near the original equilibrium state yo. After considering the dependences of

the right-hand sides of Eqs. (107)-(109) on ρR, σθ, and σz, performing all the required

partial derivatives in Eq. (124), and rearranging terms conveniently (see Appendix B), we

obtain the following (generally complex) eigenvalues for the linearized problem of Eq. (128)

particularized at the original state yo

l1o = −ko (129)

l2o =
ko
2

(
To +

√
T 2
o − 4Do

)
(130)

l3o =
ko
2

(
To −

√
T 2
o − 4Do

)
(131)

where To := (tr (∂f/∂y|o)− l1o)/ko = tr (∂f/∂y|o)/ko + 1 reads

To = −
(

2σneθo
cθθo

Cθzo
2σθo

+ φneo − φeo
σ̂nezo
σθo

)
K̄σ −

2σneθo
cθθo

K̄τ −
Cactθθo

cθθo
+

2σneθo
cθθo

, (132)

and Do := (det(∂f/∂y|o)/l1o)/k2o = − det(∂f/∂y|o)/k3o reads

Do =

(
2σneθo
cθθo

φeo

(
1 +

σ̂nezo
σθo

)
+
Cactθθo

cθθo

(
φneo − φeo

σ̂nezo
σθo

))
K̄σ +

2σneθo
cθθo

K̄τ , (133)

with K̄σ = Kσσθo/σIo, K̄τ = 3Kτ/2, φneo = 1 − φeo, σneθo = σθo − σeθo, σ̂nezo = σzo − σ̂ezo, Cθzo =

2σθo+cθzo, and Cactθθo = 2σactθo +cactθθo. Clearly, many parameters influence the system, including

mass fractions, active stress and stiffness (which can depend on vasoactive parameters),

passive circumferential and axial stresses, and circumferential and axial-to-circumferential

total stiffnesses (that depend, additionally, on elastic constants, deposition stretches and

diagonal collagen orientation), and, of course, rate and gain parameters for removal and

production.

Regarding the type and sign of the eigenvalues l1o to l3o in Eqs. (129)-(131), we firstly
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observe that

ko ≷ 0 =⇒ l1o ≶ 0 . (134)

Hence, for l1o < 0 (i.e., with ko > 0, which is physical), one can assure, based on a linearized

analysis (Rouche et al. 1977), that the following (partial) results regarding the critical point

yo = [ρ, σθo, σzo]
T of the nonlinear system of Eqs. (107)-(109) hold in a neighborhood of yo

(cf. the Trace-Determinant plane, Figure 9.1.9 in Boyce and DiPrima 2012) such that

To < 0 and Do > 0 =⇒ y (s) is asymptotically stable (135)

or

To > 0 or Do < 0 =⇒ y (s) is unstable (136)

where neglect of higher-order terms in Eq. (126) intentionally disregarded particular cases

that would generally require their consideration (e.g., complex eigenvalues with vanishing real

parts, giving rise to “the [nonlinear] center problem”, cf. Hairer et al. 1993). Importantly,

if, because of the current lack of empirical evidence of oscillatory behaviors in vivo over

G&R timescales, one assumes that physiological G&R responses are dynamically stable

and progress over time without oscillations, then To < 0 and Do > 0 in Eq. (135) must

additionally satisfy

To < −2
√
Do < 0 =⇒ y (s) is asymptotically stable without oscillations (137)

which, based on Eqs. (132) and (133), imposes conditions on mechanobiological parameters

to ensure physiologically reasonable dynamical adaptations. Indeed, depending on differ-

ent values of the trace To and determinant Do (hence, eigenvalues l2o and l3o), we found in

numerical examples below that so-called asymptotically stable (spiral or nodal) sinks, un-

stable (spiral or nodal) sources, or neutrally stable centers (Boyce and DiPrima 2012) are

mathematically admissible.
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2.5. Illustrative results for the murine aorta

Recall that the mechanical response of elastin is modelled using a neoHookean relation

Ŵ e(Ce(s)) =
ce

2
(Ce(s) : I− 3) , (138)

with ce a shear modulus, which we used to express σeθ and σez in Eqs. (98) and (99) in terms

of the primary variables σθ and ρR. Conversely, smooth muscle and collagen are modelled

using Fung-type relations

Ŵα(λαn(τ)(s)) =
cα1
4cα2

[
ec
α
2 (λ

α2
n(τ)

(s)−1)2 − 1
]
, α = m, c , (139)

where cα1 (dimensions of stress) and cα2 (dimensionless) are material parameters, and λαn(τ)(s)

is the fiber stretch (relative to its evolving natural configuration due to continued matrix

production). Collagen fiber families oriented in circumferential, axial, and symmetric diag-

onal directions have respective fractions βθ, βz, and βd = 1− βθ − βz. Representative values

of parameters for a mouse descending thoracic aorta are listed in Table 1, with smooth

muscle and collagen sharing rate and gain constants for convenience, recall Eqs. (84) and

(94). Additional values needed to quantify the active response of smooth muscle through

Eqs. (64) and (65) are given in specific examples below. The inner pressure at the original

homeostatic state, for vanishing active contribution, is Po = 13.2 kPa, with mean values of

circumferential σθo = 213 kPa and axial σzo = 238 kPa stresses in the original homeostatic

state, consistent with experimental findings (Bellini et al. 2014).

3. Illustrative Results

Here, we consider three cases of (patho)physiological importance – an acute but sustained

increase in blood pressure, a pathological loss of elastin, and the role of active smooth muscle

contraction – as well as two studies of key constitutive parameters.
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3.1. Mechanobiological stability of equilibrium solutions

3.1.1. Acute increase in pressure

Consider the equilibrium inner pressure ratio γh = Ph/Po as the driving parameter ζh

for a one-parameter family of nonlinear equations of the type (120)1, explicitly, Eqs. (107)-

(109) with ẏ = [ρ̇R, σ̇θ, σ̇z]
T = 0 ∀s ≥ 0, or, alternatively, Eqs. (114). Let the flow rate

and axial stretch preserve their original homeostatic values εh = Qh/Qo = 1 and λzh =

1. The solution to these time-independent equations, with baseline parameters in Table

1, represents a mechanobiologically equilibrated state for each γh, that is, yh(γh) in Eq.

(120)2. Corresponding inner radius ah, thickness hh and axial force fh are then obtained

from ρRh/ρ = Jh plus the mechanical equilibrium equations σθh = Phah/hh and σzh =

fh/(2πahhh), with Jh/λzh = λrhλθh = hhah/(hoao).

Figure 2 shows equilibrium values for (a) ah, (b) hh, (d) σθh, and (e) σzh as functions

of the stimulation-driver Ph/Po. In addition, panels (c) and (f) show the evolution of these

variables in respective phase-type planes, with the driving parameter γh removed. The pres-

sure was increased from its original homeostatic value γo = 1 (i.e., Po ≈ 99 mmHg) up to

an evolved ratio γh = 1.8 (i.e., Ph ≈ 178 mmHg), hence ε = 0.8Po in Eq. (118), which

is a proper range of biological interest. Observe that all the equilibrium variables remain

statically bounded for increasing pressure within this range (following, e.g., Humphrey 2002,

qualitatively), which, according to Eq. (118), represents a mechanobiologically stable situ-

ation. The problem remains well-posed for this range of pressures, with the γh-dependent

Jacobian determinant, cf. Eq. (123), Do = − det(∂f/∂y|o)/k3o = 0.15 for γo = 1 and

Dh = − det(∂f/∂y|h)/k3h = 0.10 for γh = 1.8. The partial derivatives ∂f/∂y|h at equilib-

rium points yh(γh), see Eq. (124), were computed numerically via forward (first-order) finite

differences. In particular, the Jacobian determinant computed numerically at the original

homeostatic state was consistent with the analytical expression in Eq. (133). Results show

wall thickening with slight dilatation as is common in hypertension (Humphrey 2002).

3.1.2. Elastin degradation

Consider G&R driven, quasi-statically, by elastin degradation prescribed by ζh ≡ ceh =

(1− ϕh) ceo, where ceo is the original shear modulus for elastin, ceh is the evolved modulus used
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to compute the associated equilibrated states, and ϕh ∈ [0, 1] quantifies elastin degradation.

In addition to the flow rate and axial stretch, the inner pressure also remains constant, that

is, γh = εh = λzh = 1. Note that the modified elastin properties, Eqs. (98) and (99) derived

for a constant value ce, needed to be updated by the corresponding factor, ceh/c
e
o = 1−ϕh. If

Kτ = Kσ/2 (Table 1), we find a bounded growth of the vessel for all ϕh ∈ [0, 1]; in contrast,

if Kτ = Kσ/5, we find an unbounded growth at some ϕh < 1. Specifically, Figure 3 shows

equilibrium values for (a) ah, (b) hh, (d) σθh, and (e) σzh as functions of the stimulation-driver

ϕh. Panels (c) and (f) show associated evolutions in phase planes. Following prior studies,

which decrease either the mass fraction of elastin (Cyron et al. 2014; Zeinali-Davarani et al.

2011) or its elastic parameter (Valent́ın et al. 2013; Watton et al. 2004), we degraded ceh up

to ϕh,max ≈ 0.8, namely ε ≈ 0.8ceo in Eq. (119). Observe in this case that equilibrium values

of inner radius and thickness, which remain statically bounded initially, rapidly diverge

when ceh approaches the value ceh = (1− 0.775)ceo = 0.225ceo, at which an asymptotic growth

response occurs. Consistent with Eq. (123), the problem becomes ill-posed during a quasi-

static evolution, with Jacobian determinants Do = 0.069 for ϕo = 0 and Dh → 0+ for

ϕh → 0.775−. Conversely, equilibrium values of intramural stresses decreased only slightly,

remaining close to normal. These results are consistent with previous evolution analyses

and observations (cf. Valent́ın et al. 2013 and references therein) showing that irreversible

damage to elastin prevents an artery from maintaining its original homeostatic geometry and

composition; with the passive stress contribution by elastin diminished, the artery distends

and collagen production increases in an attempt to compensate (Cyron et al. 2014).

A similar asymptotic growth response results for the pressure-driven case of Figure 2,

with ceh = ceo constant, but with Kτ = Kσ/5 and a high inner pressure of Ph ≈ 4.4Po, which

could be reached only in cases of extreme adaptations such as veins placed in the arterial

system (Ramachandra et al. 2017). Note that this blow-up pressure, if any, depends on

specific values of material parameters. Finally, the Jacobian determinants Dh computed

for all the static cases studied evolved continuously and were positive. According to Eq.

(122), a potential change of sign of Dh(yh, ζh), occurring at a bounded equilibrium state

yh, could lead to singularities of some primary variables in the corresponding phase plane.

At least in the cases analyzed, with the present boundary conditions, constitutive relations
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and simulation-driver parameters, we observed asymptotic responses and not limit points or

bifurcations.

3.2. Mechanobiological stability of dynamic evolutions

3.2.1. Gain parameters Kσ and Kτ

The results in Section 3.1 describe how (static) equilibrium points of the system of Eqs.

(107)-(109) evolve with respect to sustained changes in external loads or model parameters

(e.g., in Figures 2 or 3). Ideally, in the absence of further perturbations, these solutions would

remain statically equilibrated. We now employ Eqs. (107)-(109), including rate terms, to

describe how perturbed dynamic solutions behave near a previously equilibrated point under

constant loads. Specifically, consider perturbations of y (s) around the original homeostatic

state yo with parameters in Table 1, that is, the initial equilibrium point in Figures 2 or 3.

To show a precise correspondence between the integral-based formulation of Section 2.1 and

rate-based formulation of Section 2.2, we compute the eigenvalues of the Jacobian matrix

in Eqs. (129)-(131) but also the temporal evolution of the system using the integral-based

formulation. For all cases analyzed, the transient (impulse-like) perturbation consists of a

rapid rise of inner pressure up to 1.5Po at s = 0+ days, which is maintained for 20 days and

returned back to the original homeostatic value Po at s = 20+ days. The dynamic stability

character of y (s) around the original state yo is then analyzed according to Eq. (125).

Figure 4 shows five different dynamic responses associated with increasing absolute values

of the gain parameters Kσ = 2Kτ > 0, which, based on Eq. (110), do not modify the original

homeostatic state (because the terms within parentheses vanish originally, i.e., Υo ≡ 1 in

any case). For the first case, Kσ = 0.03, we obtain To = 0.149 > 0 and Do = 0.004 > 0,

which yields eigenvalues l2o/ko = 0.110 > 0 and l3o/ko = 0.040 > 0 in Eqs. (130) and (131),

representing an asymptotically unstable (non-oscillatory) solution, or unstable source; see the

phase plane in Figure 4. The case Kσ = 0.12 yields To = 0.087 > 0 and Do = 0.018 > 0, with

complex conjugates l2o and l3o given by Ro ≡ Re(l2o)/ko = 0.044 > 0 and Io ≡ Im(l2o)/ko =

0.125, representing an asymptotically unstable (oscillatory) solution, or unstable spiral. The

specific value Kσ = 0.2445 results in a dynamic response that is neutrally stable around yo,

with To = 0 and Do = 0.036 > 0, hence Ro = 0 and Io = 0.189, represented by a stable
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center. The oscillatory response becomes asymptotically stable for a further increase up

to Kσ = 0.3, with To = −0.038 < 0 and Do = 0.044 > 0, hence Ro = −0.019 < 0 and

Io = 0.208, represented by a stable spiral in the phase plane. Finally, for the higher value

Kσ = 1.8, we obtain To = −1.075 < 0 and Do = 0.262 > 0, which yields real eigenvalues

l2o/ko = −0.372 < 0 and l3o/ko = −0.703 < 0, representing an asymptotically stable (non-

oscillatory) solution, or stable sink in the phase plane. Indeed, based on the condition in

Eq. (137), stable non-oscillatory responses were obtained for Kσ = 2Kτ > 1.67.

Note the apparently low influence of neglected higher order terms in Eq. (128), especially

for Kσ = 0.2445, which remains neutrally stable, even for a moderate perturbation as the one

introduced herein. Additional information regarding the evolution of y (s) after removing the

perturbation can be extracted from the eigenvalues computed from the linearized problem, as

rates of amplitude decay / grow (from their real part) or periods of oscillatory responses (from

their imaginary part). For example, for Kσ = 0.2445, Im(l2o) = Ioko = 0.0189 days−1, which

yields an oscillatory period of 2π/ Im(l2o) ≈ 332 days, consistent with the corresponding

undamped response in Figure 4 computed using the associated integral-based formulation.

Lastly, it can be shown that the same qualitative behavior is obtained for mean circumfer-

ential and axial stresses for the different cases analyzed. For illustration, we show in Figure 5

the dynamic evolution of σθ and σz for Kσ = 0.12 (first row, unstable) and Kσ = 0.3 (second

row, asymptotically stable). Hence, intramural stresses may eventually become unbounded

for dynamically unstable situations, whereas they remained bounded in the statically unsta-

ble cases simulated above, recall Figure 3. This fact highlights the importance of identifying

what kind of instability develops in an arterial wall, if any.

3.2.2. Rate parameter ko

We comment here on the effect of the degradation rate parameter ko ≡ kmo = kco > 0

on mechanobiological stability. First, because this parameter is absent from Eqs. (110)-

(112), different values of ko do not affect the mechanobiologically equilibrated solutions

given by Eq. (114); they merely influence when equilibration occurs. In case kmo 6= kco,

different ratios kmo /k
c
o yield different evolved homeostatic solutions, in general (Latorre and

Humphrey 2018b). In the present case, with kmo /k
c
o = ko/ko = 1, different values of ko yet
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affect the dynamics of the problem. Based on the eigenvalues in Eqs. (129)-(131), or the

original differential Eqs. (107)-(109), ko defines the time scale on which the system evolves

but, because the signs of (the real part of) the eigenvalues lio, i = 1, 2, 3, remain unchanged

for different ko > 0, there is no change in the mechanobiological stability character of the

perturbed solutions. Albeit not shown, this was confirmed numerically using our integral-

based constrained mixture model with various values ko; if the dynamic response after a

transient perturbation was asymptotically stable originally (e.g., fourth row in Figure 4),

an increase in ko made the response more stable, whereas if it was unstable originally (e.g.,

second row in Figure 4), an increase in ko made the response more unstable.

Substitution of Eq. (94) in Eq. (107) yields

ρ̇R = ρ̇+R − ρ̇
−
R = kKσ (ρR − ρeo) (∆σ − (Kτ/Kσ)∆τw) (140)

which means that the net production of material (i.e., difference between total production

ρ̇+R and total removal ρ̇−R) is proportional to kKσ (cf., Cyron and Humphrey 2014 and Wu

and Shadden 2016, wherein shear stress effects are not considered and rate and gain param-

eters are combined into single non-dimensionless “gain” or “growth feedback” constants).

Considering a reference case I and a case II with possible different production and removal

rates, with Kτ/Kσ = const, an increased production rate with a constant removal rate (i.e.,

kII = kI) requires KII
σ > KI

σ in our formulation, such that the net production ρ̇IIR > ρ̇IR

(for equal remaining variables). However, an increased removal rate (i.e., kII > kI) for a

constant production rate requires KII
σ < (kI/kII)KI

σ < KI
σ, such that the net production

ρ̇IIR < ρ̇IR. Hence, because changes in ko do not modify the stability character of the system,

while lower values of Kσ tend to destabilize it, we conclude that increased removal rates for

preserved production rates (i.e., kII > kI and KII
σ < (kI/kII)KI

σ) tend to destabilize the

system from a dynamic standpoint.

3.2.3. Material-to-prestress stiffness ratio cθθ/(2σθ)

Similarly to ko, the equilibrium components of the total material stiffness C(s) (cf. Eq.

(29) for different constituents α) are absent from Eqs. (110)-(112), hence equilibrated

stresses, rather than equilibrated values of stiffness, affect the mechanobiologically equili-
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brated solutions given by Eq. (114). Again based on Eqs. (132) and (133), however, the

circumferential equilibrium stiffness cθθo may modify the dynamic stability character of per-

turbed solutions near the original homeostatic state. In particular, the material-to-prestress

stiffness ratio cθθo/(2σ
ne
θo ) = cθθo/(2σθo − 2σeθo) appears in both To and Do. Even though the

prestress σneθo = σθo − σeθo only accounts for the stress of constituents that turnover, namely

collagen and smooth muscle cells, we analyze in this example the effect on dynamic stability

of the (total) material-to-prestress stiffness ratio cθθo/(2σθo).

The center row of panels in Figure 4 showed a neutrally stable response around the

original equilibrium state that follows a 20-day impulse-like perturbation in inner pressure.

For that case, Kσ = 2Kτ = 0.2445 and, from parameters in Table 1, cθθo/(2σθo) ≈ 2.5,

which yielded Ro = Re(l2o)/ko = 0 and Io = Im(l2o)/ko = 0.189. We show in Figure 6

results computed with the same set of parameters except for the constants cc1 and cc2 for

collagen, which were modified such that σθo remains constant while cθθo/(2σθo) decreases to

≈ 1.5 (first row) or increases to ≈ 3.5 (second row). Clearly, a reduction in circumferential

stiffness, for constant circumferential stress, which yielded Ro > 0, destabilizes the referential

(neutral) stable response, whereas an increase in cθθo/(2σθo), which yielded Ro < 0, stabilizes

it asymptotically.

Lastly, the condition in Eq. (137) predicts that the ratio cθθo/(2σθo) should reach ≈ 29 (or

higher) to yield a convergent non-oscillatory response if the gain parameters remain as low

as Kσ = 2Kτ = 0.2445. However, a more realistic, actually attainable, minimum value for

stable non-oscillatory evolutions cθθo/(2σθo) ≈ 5 is predicted if the likely more physiological

(cf. Section 3.2.1) values Kσ = 2Kτ = 1 are considered. Changes in intrinsic material

stiffness appear to be fundamental in thoracic aortic aneurysms (Bellini et al. 2017), hence

the importance of such considerations.

3.2.4. Active contraction of muscle

The prior results have focused on the passive response of an idealized arterial wall. We

analyze in this example the influence on mechanobiological stability of the active contribution

to stress and stiffness given in Eqs. (64) and (69), along with (65). The first row of panels in

Figure 7 show an asymptotically unstable (oscillatory) response near an associated original
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homeostatic state computed with parameters in Table 1, except with Kσ = 2Kτ = 0.12 (cf.

second row in Figure 4) and an additional active contribution to stress given by Ŝ = 40 kPa,

CB = 0.8326, and CS = 0.5CB. The associated Jacobian matrix is such that To = 0.068 > 0

and Do = 0.020 > 0, with complex eigenvalues l2o and l3o given by Ro = 0.034 > 0 and

Io = 0.137.

We analyze three different modifications of the active response given by the different

parameters Ŝ, CB, and CS. A fold increase in the second Piola-Kirchhoff stress-like active

tone Ŝ yields the same fold increase in both equilibrated active stress, which from Eq. (64),

with λθo = 1, ∆τw|o = 0, and Co = CB, reads

σactθo = φmo Ŝ(1− e−C2
B) , (141)

and equilibrated active-like stiffness, which from Eq. (69), with τwo/τwo = 1 and dŜactθ /dC|o =

2ŜCBe
−C2

B , reads

cactθθo = 6φmo ŜCSCBe
−C2

B . (142)

A fold increase in the basal ratio CB yields a nonlinear increase in stress, which saturates

for high increments of CB

σactθo → φmo Ŝ > 0 for CB ↑ , (143)

and a nonlinear decrease in stiffness, which tends to vanish

cactθθo → 0+ for CB ↑ . (144)

Finally, a fold increase in the vasoactive parameter CS yields no change in stress σactθo , but

the same fold change in stiffness cactθθo.

According to Eqs. (132) and (133), along with Eqs. (135) and (136), different effects

on σactθo and cactθθo, and hence on the combined stiffness Cactθθo = 2σactθo + cactθθo, lead to different

dynamic responses for a given initial perturbation. We show in Figure 7, second to fourth

rows, computed dynamic responses for respective 10-fold increases in Ŝ, CB, and CS with

respect to the reference case (first row). Interestingly, higher values of Ŝ (second row), which

increase σactθo and cactθθo proportionally, and CS (fourth row), which increase cactθθo, stabilize
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(Ro = −0.042 and Ro = −0.027, respectively) the reference response (Ro = 0.034), whereas

an equal fold increase in CB (third row), with associated saturated stress σactθo and vanishing

stiffness cactθθo, yields a slightly more unstable response (Ro = 0.040) than the referential

one. Albeit not shown, intramural stresses for each case followed respective stable (second,

fourth rows) or unstable (first, third rows) dynamic evolutions. Lastly, among the many

possible combinations for these parameters, Eq. (137) predicts stable non-oscillatory G&R

responses for a combined 7.07- or higher-fold change in both Ŝ and CS, with CB unchanged.

The importance of active stress generation has long been known in general arterial G&R

(Valent́ın et al. 2009) and recently was revealed in aortic dissection (Ferruzzi et al. 2016).

4. Discussion

Years ago, Waxman (1981) considered axial (buckling) instabilities in arteries as a func-

tion of prior biological growth. Although inappropriately based on linear elasticity, this

paper highlighted the need to study growth and related issues of stability within a frame-

work of continuum mechanics. Soon thereafter, Skalak et al. (1982) emphasized the need to

study growth in terms of finite displacements, that is, nonlinear continuum mechanics. They

also noted the possibility of unstable growth if one does not consider appropriate interdepen-

dencies in rates of allometric growth of individual structural elements. No formal stability

analysis was offered, however. Somewhat surprisingly, growth mechanics did not advance

much further until mid-1990s, with the introduction of a theory of finite kinematic growth.

Among others who adopted this approach, Taber (1998) suggested that evolution laws for

arterial adaptations to altered hemodynamics must include negative feedback, in terms of

homeostatic target values, to yield stable responses. Further increasing interest in modeling

G&R was the introduction of a constrained mixture approach that enabled one to consider

different rates of turnover of different constituents (Humphrey and Rajagopal 2002).

There now exist many different models of soft tissue G&R based on mixture theory. For

example, Klisch et al. (2003) used a mixture model to describe independent contributions

of proteoglycans and collagen to the growth of cartilage. Lemon et al. (2006) used a porous

flow mixture theory to study growth of engineered tissues ex vivo. Cristini et al. (2009) used

a multi-phase mixture model to study the growth of avascular solid tumors. Narayanan et al.
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(2009) presented a general mixture-based model of growth that coupled mass transport and

tissue mechanics. Haider et al. (2011) used a mixture model to study matrix production in

a cell-seeded tissue engineered scaffold for cartilage. Cowin and Cardoso (2012) proposed

a general mixture-based poroelastic model of interstitial growth. Ateshian et al. (2014)

modeled interstitial tissue growth by considering both the solid mechanics and biochemical

reactions. Soares and Sacks (2016) used a triphasic constrained mixture model to describe

engineered tissue formation under in vitro dynamic mechanical loading. Vernerey (2016)

used a constrained mixture model of interstitial growth in polymeric scaffolds for tissue

engineering. Truster and Masud (2017) similarly used a mixture theory to study the infil-

tration of cells and neotissue formation within degrading polymeric scaffolds used for tissue

engineering. Additional discussion of these and other mixture approaches can be found in

Ambrosi et al. (2011) and Ateshian and Humphrey (2012). Note, too, that Watton et al.

(2004) and Baek et al. (2006) used mixture-based computational models to study aneurysmal

G&R. Whereas the former reported an unstable / unbounded enlargement of these lesions,

the latter showed that multiple parameters (e.g., rates of tissue production and preferential

alignment of the new tissue) can stabilize the enlargement, at least when production rates

depend on differences in stress from homeostatic targets, consistent with the suggestion of

Taber (1998). Again, however, these works did not consider formal stability analyses. In

contrast, Ben Amar and Goriely (2005) noted that growth can alter both the geometry of

and residual stress field within a tissue, each of which can affect mechanical stability under

near static loading. Specifically, these authors contrasted cases wherein prior growth could

either stabilize (via wall thickening or tensile residual stresses) or destabilize (via thinning or

compressive residual stresses) a prototypical thick-walled, neoHookean spherical shell model

of a tissue. Revisiting the study of Waxman (1981), Goriely and Vandiver (2010) used similar

ideas to study axial buckling of arteries subjected to increasing pressures.

More recent studies have instead focused on the stability of the G&R process itself (i.e.,

mechanobiological stability) rather than the mechanical stability that results from prior

G&R. Erlich et al. (2019) studied the possible stability of the growth of layered tubular

structures that exhibit an isotropic, materially uniform behavior; they used the concept of

kinematic growth rather than a mixture approach. Additionally, Satha et al. (2014), Cyron
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et al. (2014), and Wu and Shadden (2016) used different approaches to study the stability of

G&R in arteries and arrived at consistent conclusions. Increased tissue stiffness and higher

rates of tissue production tend to stabilize G&R processes under constant pressures while

increased rates of degradation can destabilize the G&R. Hence, there is an acute need to

consider parameter values carefully, both to identify optimal G&R capacity and to determine

whether a process will or will not be mechanobiologically stable.

In this paper, we sought both to develop a general framework and to illustrate conse-

quences of G&R stabilities by performing a systematic, formal analysis for idealized arteries

while yet accounting for complexities such as different nonlinear material properties and

rates of turnover for different structurally significant constituents and including intramural

biaxial and wall shear stresses as stimuli for mass production as well as active and passive

contributions of smooth muscle. Toward this end, we first derived a new rate-based form

for a constrained mixture that is equivalent to the traditional heredity integral-based form

but facilitates linearized stability analyses about appropriate mechanobiological equilibria.

Numerical simulations confirmed this equivalency, at least for the canonical problems con-

sidered. This rate-form revealed, among other findings, the appropriateness of the Truesdell

stress rate in constrained mixture G&R formulations and the natural separation of rates of

change of stress into elastic and inelastic parts, the latter in terms of “growth” and “remodel-

ing” aspects. We next derived a system of nonlinear ordinary differential equations for G&R

of a cylindrical artery that admitted both an analysis of critical points and an eigenvalue

analysis of respective linearized systems. The former led to the concept of mechanobiological

static stability of mechanobiologically equilibrated states, which allows one to analyze how

soft tissues adapt to sustained changes in external loads or material properties, with G&R

time s conveniently eliminated from the analysis; the latter led to the concept of mechanobi-

ological dynamic stability of perturbed solutions around previously equilibrated states. For

the arterial model considered, these analyses delineated two different types of possible insta-

bilities, namely, asymptotic growth of static equilibria and asymptotic growth of dynamic

responses around (bounded) equilibrated states.

Regarding the novel concept of mechanobiological static stability of G&R states, our

findings are consistent with prior studies that showed a destabilizing effect of elastin degra-
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dation (cf. Watton et al. 2004, Zeinali-Davarani et al. 2011, and Valent́ın et al. 2013). Yet,

even though this G&R problem in the aorta, leading to aneurysm growth, is frequently ad-

dressed from a time-dependent perspective, we confirmed that its ultimate cause may be a

mechanobiological instability of the evolving equilibrium state (Cyron et al. 2014), which we

directly addressed with a static approach. Analyses of this type driven by other external

loads or material parameters could lead to other types of static instabilities, such as limit

points or bifurcations.

Additional findings related to the mechanobiological stability of transiently perturbed

evolutions around equilibrium states were consistent with other studies that showed the sta-

bilizing effects of increased material stiffness and tissue production rates and destabilizing

effects of increased removal rates (cf. Satha et al. 2014, Cyron et al. 2014, and Wu and

Shadden 2016). At least for the constitutive relations and model parameters used, we ad-

ditionally showed that gain parameters for mass production that are associated with both

intramural biaxial and wall shear stresses play important roles in the eigenvalue analysis and

that an increasing active contribution to stress was stabilizing. Consistent with the type

and sign of the eigenvalues of the Jacobian matrix, determined analytically for the original

homeostatic state, numerical simulations further revealed that unstable, neutrally stable, or

asymptotically stable results could arise mathematically in response to transient perturba-

tions depending on specific model assumptions or values of the parameters, hence extending

the analysis of Satha et al. (2014). In this regard, note that we focused on the stability of an

idealized and isolated growing artery from a constitutive point of view, disregarding other

factors that could damp oscillations, including external perivascular support or additional

intrinsic dissipation. Nevertheless, as we illustrated in examples above, mathematical anal-

yses of this type can serve to identify conditions that ensure a physiologically reasonable

dynamics predicted by the G&R constitutive model.

Our theory, based originally on fully coupled nonlinear evolutions of mass and stress

(Fung 1995), thus builds on the mechanobiological stability theory of Cyron and Humphrey

(2014), where mechanical stability (against displacement perturbations) and mechanobiolog-

ical stability (against mass perturbations) were analyzed incrementally based on a theory of

small on large (Baek et al. 2007a) extended to G&R by distinguishing elastic and inelastic
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deformations. Mechanobiologically stable systems considered therein, with sustained and

transient responses analyzed together, were always neutrally (Lyapunov) stable under small,

residual perturbations with respect to the original state, leading to associated definitions of

mechanobiological adaptivities. Using a linearized stress-strain relation with respect to a

homeostatic state of the vessel wall, among other assumptions, Wu and Shadden (2016) also

found a neutrally stabilizing condition, or degeneration, when the dynamics of displacement

and mass variables were decoupled from the dynamics of an additional generalized stiffness

variable. Further use of an extended system led to the main stability conclusions that dis-

placements and mass were neutrally stable whereas stress and stiffness were asymptotically

stable. In contrast, our formulation, based on nonlinear constitutive relations for multiple

constituents that may turnover or not, did not lead, by default, to a degenerate system of

this kind; rather, neutral stability in the sense of Lyapunov around evolved critical points

was obtained only for particular cases. In general, mechanobiological dynamic stability fol-

lowing the nonlinear equations considered herein exhibited an asymptotic character, either

oscillatory or not, under moderate perturbations. Because of the lack of empirical evidence

of oscillatory behaviors in vivo, these findings can aid further in refining values of parameters

that are physiologically meaningful and yet revealing.

In conclusion, it is becoming increasingly evident that mechanical homeostasis is fun-

damental to healthy tissue structure and function and conversely that compromised or lost

homeostasis underlies many cases of disease (Humphrey et al. 2014). Homeostasis necessarily

implies negative feedback loops that govern G&R processes at the tissue level, with target

values of appropriate mechanical metrics. It has recently been suggested that the converse,

that is positive feedback loops, implies disease progression, leading to a type of biological

instability (Schwartz et al. 2018). We suggest that mechanobiological stability analyses, such

as those performed herein, promise to provide increasing insight into general processes that

promote health versus disease progression. There is, therefore, a pressing need to continue to

broaden and advance our constitutive relations for G&R, building on new biological findings

as they become available while continuing to capture fundamental features of soft tissues,

including the different material properties, rates of turnover, and natural configurations of

the different structural constituents.
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Artery Mass Density ρ 1050 kg/m3

Inner Radius, Wall Thickness ao, ho [0.6468, 0.0402] mm
Mass Fractions φeo, φ

m
o , φ

c
o [0.30, 0.35, 0.35]

Collagen Fractions βθ, βz, βd [0.068, 0.381, 0.551]
Diagonal Collagen Orientation α0 45.36o

Elastin Parameter ce 114.5 kPa
Smooth Muscle Parameters cm1 , c

m
2 [401.0 kPa, 0.012]

Collagen Parameters cc1, c
c
2 [411.2 kPa, 5.5]

Deposition Stretches Ge
r, G

e
θ, G

e
z [1/(1.9 · 1.6), 1.9, 1.6]

Deposition Stretches Gm
θ = Gc

θ, G
c
z, G

c
d [1.071, 1.193, 1.192]

Mass Production Gains Kσ, Kτ [1.0, 0.5]
Mass Removal Rate ko 1/10 day−1

Table 1: Representative baseline model parameters for a mouse descending thoracic aorta, adapted (homog-
enized through the thickness) from Latorre and Humphrey (2018a). Superscripts e, m, c denote elastin,
smooth muscle, and collagen, with superscripts/subscripts r, θ, z, d denoting radial, circumferential, axial,
and symmetric diagonal directions. Subscript o denotes original homeostatic values. Subscripts σ and τ
denote intramural and wall shear stress related parameters, respectively.

G ( )τ
α

κ n ( )τα

F
τn( ) (s)

α

Constituent
natural configurations

κ(0) =
o

κ

κ( )τ

F ( )τ

F ( )s

G&R

Mixture in vivo configurations
κ( )s

Figure 1: Schematic representation of different configurations involved in soft tissue G&R. The original in
vivo homeostatic configuration of the mixture κ (0) = κo is chosen as the reference configuration for the
computation of G&R deformations of the mixture via F (τ), τ ∈ [0, s]. Fαn(τ) (s) = F (s)F−1 (τ)Gα (τ)
describes the deformation experienced, at time s, by the material element of constituent α deposited at time
τ . We assume that the constituents, deposited with prestretches Gα (τ), are constrained to deform with the
mixture.
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Figure 2: Mechanobiologically stable (static) equilibrium responses illustrated for a “normal” murine aorta.
Panels (a,b,d,e) show equilibrium values for (bounded) inner radius ah and thickness hh, as well as (bounded)
circumferential σθh and axial σzh Cauchy stress, as functions of the stimulation-driver pressure ratio γh =
Ph/Po. Panels (c) and (f) show the associated evolution of the homeostatic state in phase-type planes:
thickening with slight dilation and slight reduction in biaxial stress. Note, too, that the thickening is not
fully mechano-adaptive, consistent with experimental observations for the murine thoracic aorta (Bersi et al.
2016).
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Figure 3: Mechanobiologically unstable (static) equilibrium responses with respect to prior elastin degra-
dation while preserving inner pressure Ph = Po. Panels (a,b,d,e) show equilibrium values for (unbounded)
inner radius ah and thickness hh, as well as (bounded) circumferential σθh and axial σzh Cauchy stress, as
functions of the stimulation-driver parameter ϕh = (ceo − ceh)/ceo. Panels (c) and (f) show the associated
evolution of the homeostatic state in phase-type planes: asymptotic thickening and dilation with moderate
reduction in biaxial stress.
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Figure 4: Mechanobiologically unstable (Kσ = 0.03, “source”, and Kσ = 0.12, “spiral”; top two rows),
neutral stable (Kσ = 0.2445, “center”; third row), and asymptotic stable (Kσ = 0.3, “spiral”, and Kσ = 1.8,
“sink”; bottom two rows) dynamic responses that follow a perturbation in pressure, consisting of a rapid
rise from Po up to 1.5Po at s = 0+ days, subsequently sustained for 20 days, and finally returned back to
the original homeostatic value Po at s = 20+ days. For all cases, Kτ = Kσ/2.
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Figure 5: Dynamic stress response (σθ and σz) for cases Kσ = 0.12 (cf. unstable spiral; second row, Fig. 4)
and Kσ = 0.3 (cf. stable spiral; fourth row, Fig. 4).
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Figure 6: Dynamic stabilization afforded by an increased ratio of circumferential stiffness to material pre-
stress cθθo/(2σθo). Panels in first row show an unstable oscillatory response with Kσ = 2Kτ = 0.2445 and
cθθo/(2σθo) ≈ 1.5 (cf. third row, Fig. 4, wherein Kσ = 2Kτ = 0.2445 and cθθo/(2σθo) ≈ 2.5). Panels
in second row show results for cθθo/(2σθo) ≈ 3.5, which stabilizes asymptotically the prior neutrally stable
response.

50



0 100 200 300 400
0.5

1

1.5

0 100 200 300 400
0.5

1

1.5

0.5 1 1.5
0.5

1

1.5

0 100 200 300 400
0.5

1

1.5

0 100 200 300 400
0.5

1

1.5

0.5 1 1.5
0.5

1

1.5

0 100 200 300 400
0.5

1

1.5

0 100 200 300 400
0.5

1

1.5

0.5 1 1.5
0.5

1

1.5

0 100 200 300 400
0.5

1

1.5

0 100 200 300 400
0.5

1

1.5

0.5 1 1.5
0.5

1

1.5

Figure 7: Dynamic stabilization by the active response of smooth muscle cells. Panels in first row show an
unstable response with passive (Table 1, except for Kσ = 2Kτ = 0.12; cf. second row, Fig. 4) and additional
active (Ŝ = 40 kPa, CB = 0.8326, CS = 0.5CB) contributions to stress. A 10-fold increase in either Ŝ (second
row) or CS (fourth row) stabilize the prior response (first row). A 10-fold increase in CB (third row) has
little effect over the prior response, even augmenting the instability.
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c
zz(s, τ)

λ4z(τ)
dτ

+
λ4z(s)

J(s) ρ

∫ s

−∞
kc(τ) Υc(τ) qc(s, τ)

ρcRd(τ)Gc4
d Ĉ
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dŜactθ (C(s))

dC(s)

τw(s)

τwo
(A.6)

Mechanobiologically equilibrated values

σθo =

e,m,c,act∑
α

σαθo = φeoŜ
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e
zG

e2
z + φco

(
βzŜ
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