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Abstract

What-You-Prescribe-Is-What-You-Get (WYPIWYG) procedures are a novel and
general phenomenological approach to modelling the behavior of soft materials,
applicable to biological tissues in particular. For the hyperelastic case, these pro-
cedures solve numerically the nonlinear elastic material determination problem.
In this paper we show that they can be applied to determine the stored energy
density of superficial fascia. In contrast to the usual approach, in such determi-
nation no user-prescribed material parameters and no optimization algorithms are
employed. The strain energy densities are computed solving the equilibrium equa-
tions of the set of experiments. For the case of superficial fascia it is shown that
the mechanical behavior derived from such strain energies is capable of reproduc-
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ing simultaneously the measured load-displacement curves of three experiments
to a high accuracy.

Keywords: Biological tissues; orthotropy; hyperelasticity; WYPIWYG
hyperelasticity.

1. Introduction

The determination of the mechanical properties of soft tissues is fundamental
to better understand the mechanisms that regulate the tissue behavior. A deep
knowledge of the mechanical behavior of soft tissue is often the previous step to
the determination and fitting of the most appropriate constitutive models to capture
the tissue behavior. These constitutive models can be used to feed both mathe-
matical and numerical methods that try to simulate the processes that take place
in the human body.

Fascia is a multilayered collagenous tissue found throughout the body that
is intimately connected with muscles. The fascia consists of the superficial fas-
cia and the deep fascia. The deep fascia is a dense connective tissue that lies
beneath the superficial fascia. Deep fascia is closely linked with a multitude of
orthopaedic diseases [1]. The mechanical properties of fasciae strongly affect
muscular actions and the development of pathologies, such as acute and chronic
compartment syndromes. However, very few studies regarding fascia mechanical
properties are available and these are mainly focused on the study of the proper-
ties of deep fascia [2, 3] but not on the properties of superficial fascia [4].

The usual approach to modeling the behavior of soft materials under elastic,
path-independent (i.e. hyperelastic, non-dissipative) behavior is to propose a form
of the stored energy [5]. In the case of anisotropic biological tissues, it is frequent
to additionally separate the energy of the ground matrix (including for example
elastin) from that of the fibers (collagen) [6]. Since fibers are statistically distributed
in the specimen, it is also frequent to propose a distribution function, which can
be integrated either fiber-by-fiber in Angular Integration models (AI) [7, 8, 9] or
somehow averaged in Generalized Structure Tensor (GST) approaches [9, 10, 11].
Other approaches include homogeneization methods or explicit structural finite
element modelling of the constituents [12, 13].

Whereas a purely phenomenological approach has obvious limitations in order
to study the theoretical influence of different fiber contents, waviness, linking and
distributions in the overall behavior of the composite, the advantage of this ap-
proach is that the material is treated as a whole, so there is no need to account for
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those fiber distributions, fibre undulations, tension-compression switches [14, 15]
or interactions between fibers themselves and between fibers and matrix. Hence,
the phenomenological, continuum approach is appealing for modelling biological
tissues [5], specially if finite element simulations of organs are to be performed.

What-You-Prescribe-Is-What-You-Get (WYPIWYG) constitutive models for soft
materials are purely phenomenological, continuum-based models, in which the
material is treated as a whole. Although interpretations in terms of fibers and
matrix are also possible, they are not essential in the computational procedure.
The basis for these models is WYPIWYG hyperelasticity [16, 17, 18]. WYPIWYG
formulations are being employed to model the hyperelastic behavior of soft bio-
logical tissues like arteries and skin (Latorre et al, Romero et al, under review).
The underlying hypotheses are similar to those employed in infinitesimal elasticity
and the number of curves needed to properly define the material are the same as
the number of material constants of an equivalent infinitesimal model. If exper-
imental results for a test are not available, engineering judgement may be used
to prescribe some values without affecting the predictive capability for the other
tests. The salient feature of WYPIWYG formulations is that, once a specific de-
composition of the strain energy function is assumed, no analytical shapes of the
terms are ever proposed, no user-prescribed material parameters are needed.
Thus no optimization procedures are employed to obtain such parameters. In-
stead, a complete set of experiments that properly define the material behavior is
proposed. The equilibrium and compatibility equations of those experiments are
numerically solved (up to machine precision if desired) in order to fully determine
the WYPIWYG stored energy density of the material at hand. Then, the mate-
rial behavior may be predicted in any loading situation and in any boundary value
problem that may be simulated using, for example, finite elements.

In this paper we apply the WYPIWYG procedure to analyse superficial fascia.
We consider this tissue to be a locally transverse isotropic material. The purpose
is to show that WYPIWYG procedures are useful for accurately modelling soft
biological tissues using a continuum approach which is efficient for finite element
analysis. Thus this is an important step towards accurate simulations of surgery
in soft tissues.

2. Materials and methods

2.1. Experimental setting and measurements
Superficial fascia were dissected from the hindlimbs of an adult sheep, sacri-

ficed for other study that did not interfere with this work obtained from the slaugh-
terhouse immediately after animal slaughter. After tissue harvesting, the sample
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was cleaned by removing excess connective tissue and kept frozen at −18oC until
testing. After thawing, samples were preserved in ion-free PSS (0.9% NaCl) at
4oC until the preparation of testing samples was carried out. The experimental
part was performed by the ICTS “NANBIOSIS” specifically by the Tissue & Scaf-
fold Characterization Unit (U13), of the CIBER in Bioengineering, Biomaterials &
Nanomedicine at the University of Zaragoza.

Two dog-bone shaped specimens and one rectangular specimen were punched
out of the fascia of the sheep hindlimb by the use of a die cutter with pre-shaped
dies of dimensions 30× 5 mm and 35× 20 mm for uniaxial and simple shear tests,
respectively. The thickness of each sample was measured at different locations
and then averaged, resulting in 0.392mm for the longitudinal uniaxial specimen,
0.257mm for the transverse uniaxial specimen and 0.58mm for the simple shear
specimen. For the uniaxial tests, the die was aligned with its long side either
along to or perpendicular to the optically observable collagen fibers in order to ob-
tain the respective longitudinal and transverse specimens [4]. Following a similar
setting than that used in [19], the simple shear specimen was mounted in a set of
custom clamps on a material testing machine with the fiber direction oriented ver-
tically (parallel to the clamps) with dimensions between clamps of 15.4×15.4mm2.
The simple tension tests of the dog bones strips and simple shear tests of the
fascia strips were performed in a high precision drive Instron Microtester 5548
system adapted for biological specimens. An ultrasonic humidifier was used to
avoid specimen drying enabling humidity to be maintained during the test. The
displacements map (not needed in the analysis below) and the lengths between
the two markers in each direction were measured by a Digital Image Correlation
(DIC) Strain Master LaVision System equipped with two high performance digital
cameras with a megapixel sensor (2.5 [µm] ± 0.5%). The tested specimens and
the predominant direction a3 of the collagen fibers are shown in Figure 1. The DIC
measurements were used to reproduce the initial geometry for the finite element
simulations shown below.

Each dog-bone shaped and rectangular shaped sample was preconditioned
with four cycles at a nominal strain of 10% based on the measured width of each
specimen. The applied displacement rate was 5mm /min in order to preserve
quasi-static testing conditions. The clamp reaction force and global applied dis-
placement from the loading portion of the 4th cycle were used for the material
characterization described below.

WYPIWYG procedures need a complete set of experimental data that fully
determines the material behavior from a physical standpoint. Given the experi-
mental data available [4], the WYPIWYG procedure for transversely isotropic ma-
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terials [17] seems a reasonable assumption for the material at hand. Indeed, this
symmetry group needs two complete, tension-compression experimental uniaxial
curves (one in the longitudinal, stiffer direction and one in the transverse direc-
tion within the isotropic plane) and also one shear test in a plane including the
anisotropy direction. The experimental load-displacement curves for both the lon-
gitudinal and transverse uniaxial specimens are shown in Figure 2a and 2b—black
lines; finite element results will be addressed below. Since uniaxial compression
data are not available, the uniaxial stress-strain behavior will be assumed sym-
metric in tension and compression in terms of Cauchy stresses and logarithmic
strains, as we explain below. The experimental load-displacement curve obtained
from an additional simple shear test performed over the same material is shown
in Figure 2c—again, black lines. The initial horizontal part of this curve, due to the
settlement of the experiment before effective loading takes place, has been elimi-
nated. This set of three experimental curves (including the assumed compression
branches) uniquely and completely define our material model.

2.2. Constitutive modelling

The WYPIWYG stored energy for incompressible transversely isotropic mate-
rials has the following uncoupled form of the deviatoric energy function which is
parallel to that of the infinitesimal case but written in terms of logarithmic strains
and non-linear dependencies

W (E, a3 ⊗ a3) = ω11 (E11) + ω11 (E22) + ω33 (E33) + 2ω13(E
#
13) (1)

where E is the isochoric logarithmic strain tensor, a3 is the material preferred
direction (usually, the stiffer one), E33 = a3 · Ea3 is the logarithmic strain tensor
component in that direction, E11 = a1 ·Ea1 and E22 = a2 ·Ea2 are in-plane principal
logarithmic strains in the isotropic plane {a1,a2} (i.e. such that E12 = a1 ·Ea2 = 0)
and E#

13 =
√

E2
13 + E2

23 > 0 is the logarithmic shear composite invariant in a plane
containing the preferred direction. The functions ωij and others alike below are the
piecewise spline functions to be determined numerically during the computational
procedure. In order to guarantee the material-symmetries congruency [20], the
stored energy may be computed in practice as the addition of an isotropic (ground
matrix) contribution and a tranversely isotropic deviation, i.e.

W (E, a3 ⊗ a3) = Wiso (E) +Wtr (E, a3 ⊗ a3) (2)

where Wiso (E) = ω (E1) + ω (E2) + ω (E3) follows the Valanis–Landel decompo-
sition in terms of the (Lagrangian) principal logarithmic isochoric strains Ei, with
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i = 1, 2, 3, and Wtr (E, a3 ⊗ a3) is the anisotropic deviation which follows an anal-
ogous decomposition to Eq. (1). For example, during uniaxial tests in which the
test axes ei are coincident with the material preferred axes ai—note that in these
cases Eii ≡ Ei

W (E, a3 ⊗ a3) = ω11 (E11) + ω11 (E22) + ω33 (E33)

= [ω (E1) + ω̃11 (E1)] + [ω (E2) + ω̃11 (E2)] + [ω (E3) + ω̃33 (E3)]
(3)

where the axial deviation from the isotropic response is given in these specific
cases by the terms ωtr

ii ≡ ω̃ii. On the other hand, during a pure shear test in the
plane {e1, e3}, with a3 = 1/

√
2 (e1 + e3), the principal Cauchy stress in the test

direction e1 is—note that in this case E#
13 ≡ E13 = E1 > 0 [17]

σ1 (E1) = ω′

13 (E1) = ω′ (E1) + ω̃′

13 (E1) (4)

and the shear deviation from the isotropic response is given in this specific case
by the term ωtr

13 ≡ ω̃13.
If we explicitly consider a ground matrix contribution, the first derivative func-

tions to be determined through the WYPIWYG procedure are ω′, ω̃′

11, ω̃′

33 and
ω̃′

13. These functions are piece-wise spline functions, i.e. cubic polynomials. The
number of pieces is given by the desired accuracy. The determination of the (to-
tal) axial terms ω′

11 (E) = ω′ (E) + ω̃′

11 (E) and ω′

33 (E) = ω′ (E) + ω̃′

33 (E) is per-
formed solving numerically the system of (coupled) equations resulting from both
tension-compression uniaxial tests in directions 1 and 3, following the procedure
presented in [17] which we enhance below. If the compression parts of the uniaxial
test curves are not available, an assumption must be made. These branches are
needed in order to compute the stored energy, but they do not affect the results
of the corresponding tensile branches (i.e. the extension parts of the uniaxial test
curves). The shear (deviation) function ω̃13(E

#
13) may be determined from different

tests, as for example a pure shear test just factoring out ω̃′

13 (E1) from Eq. (4).
Other possibilities are a simple shear test [17], see below as well, or a non-coaxial
uniaxial tensile test, but in these two cases it is required the previous knowledge
of the axial functions. Further details on the procedure for the determination of
these functions are given in [17] and [20].
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3. Results

3.1. Simple tension tests

In order to compute the stress-strain uniaxial responses shown in Figure 3,
we have initially assumed equivalent rectangular uniaxial specimens with homo-
geneous stress fields, i.e. ideal uniaxial specimens. Minimum cross-sectional
area of each specimen are considered in order to compute the stresses from
the measured load at the grips (ordinates in Figure 2). This gives a reference
cross-sectional area of 2.40 × 0.392mm2 for the longitudinal strip and a reference
cross-sectional area of 2.45 × 0.257mm2 for the transverse strip. Following the
analysis and recommendation given in Ref. [21], we also considered an effective
length of 95% of the actual distance between grips in order to compute the strains
from measured displacements between grips (abscissae in Figure 2). This gives
a reference effective length of 15.39mm for the longitudinal specimen and a ref-
erence effective length of 12.16mm for the transverse specimen. The results of
these computations are the stress plots shown with cross (×) lines in Figure 3a.
Subsequently, these stress-strain curves have been slightly smoothed to eliminate
experimental noise (specially present in the transverse specimen, Fig. 2b). The
result of this smoothing operation is shown as continuous lines in Figure 3a.

From these continuous stress-strain curves we can compute the first deriva-
tive functions of the terms present in Eq. (3), i.e. ω′, ω̃′

11 and ω̃′

33. The computed
derivative functions of the stored energy (total) axial terms are shown in Figure
3b. We note that WYPIWYG procedures are computational ones, so the reader
should not expect an analytical expression of the stored energy function. Then,
no material parameters to modulate such expression are needed. The result of
the computational procedure are piecewise polynomials (tens or even hundreds
of cubic polynomials depending on the desired accuracy; we typically use 10 to
50) which are visually summarized in the plots of Figure 3b. These strain energy
derivatives may be employed to solve numerically any problem, using for exam-
ple MATLAB for the case of homogeneous deformations or using a finite element
program for the case of non-homogeneous deformations. The stress plots shown
in Figure 3a as red circles have been computed using MATLAB from these stored
energy functions assuming homogeneous tensile tests. With WYPIWYG proce-
dures, the predictions that we get from the prescribed experimental stress-strain
data set are exact to any desired, computationally possible, precision. It can be
seen in Figure 3a that predicted and prescribed curves are coincident. The reason
is that we have numerically solved the boundary value problem of the experiments
without imposing the shape of the stored energy terms in Eq. (3).
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During the computation of the stored energy axial terms ω′

11 and ω′

33, the non-
linear relation between transverse and axial strains (by Poisson’s effect) for the
test about the isotropic direction 1 is computed as a byproduct. In Figure 3c we
show the solution transverse-to-axial relation E

(1)
2 (E1) for the uniaxial test in the

isotropic direction, hence the superscript (1). In this plot we show as dashed red
lines the ranges for the allowed domain for the search of the solution. The upper
limit E(1)

2 (E1) = −1
3
E1, i.e. ν12 = 1

3
and ν13 = 1 − ν12 = 2

3
, corresponds to an

applicability boundary of the Inversion Formula for the test in direction 3 (see [17])
and the lower limit E(1)

2 (E1) = −E1, i.e. ν12 = 1 and ν13 = 0, to another boundary
with the meaning of a positive Poisson effect (ν13 > 0) which is to be expected
in most materials, including biological tissues, and which some material models
used in biomechanics fail to predict [22]. Even in the case that the solution were
out of these reasonable bounds, an alternative Inversion Formula is possible. In
Figure 3c we also show the linear extrapolation from the infinitesimal behavior.

With the computed axial terms ω′, ω̃′

11 and ω̃′

33 given in Figure 3b, present in
the general decomposition of Eq. (2), respective finite element simulations of the
longitudinal and transverse tensile tests over the actual specimens have been per-
formed. These simulations have been performed using the commercial general-
purpose finite element program ADINA, where the WYPIWYG procedures have
been included via a material user subroutine. In Figure 4 we show the unde-
formed original meshes, the deformed meshes and the von Mises effective stress
maps. The elements used are fully integrated 8−node trilinear finite elements with
mixed u− p formulation to avoid volumetric mesh locking (there is no appreciable
shear locking in this type of test).

It is seen in Figure 4 that even though the actual geometries of the specimens
are not specially close the to ideal ones, the stress distributions are rather uniform
along the loading path. This explains in part the excellent results shown in Figures
2a and 2b. In Figures 2a and 2b the red lines with circles are the computed
load-displacement curves obtained from the finite element simulations using the
meshes given in Figure 4. Each circle corresponds to one step out of the ten steps
used in total in the finite element simulation, which was performed using an implicit
plain Newton-Raphson algorithm for equilibrium iterations. It can be concluded
that the first assumption of ideal uniaxial geometry is adequate for this type of
tests in biological tissues. Indeed, we note that in these simulations we have
used the shear term ω̃′

13 obtained in the next section, also present in the general
decomposition of Eq. (2) and required by the material user subroutine, but it has
proven to be somehow irrelevant when obtaining the global load-displacement
curves of Figure 2, which reinforces the premise of ideal uniaxial geometry again
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and the absence of shear locking.

3.2. Simple shear test

Following the setting given in [19], similar to that given in [23] and [24] for simple
shearing, a square specimen was considered for the simple shear test, see Image
(c) in Figure 1. As in [19] (see also [26] for a similar case) we considered this
test to represent an ideal simple shear test; i.e. a test with a homogeneous stress
field. To compute the stress-strain shear curve shown in Figure 5, we have initially
considered a cross-sectional area for shearing of L× t = 15.4× 0.58mm2 in order
to compute the stresses from the measured vertical load at the grips (ordinates in
Figure 2c). The amount of shear strain, from which the logarithmic tensor shear
component E13 is defined [17], is obtained from the measured displacement at
grips (abscissae in Figure 2c) as γ13 = u/d, with d = 15.4mm. The results of these
operations (and the associated smooth continuous curve) are shown in Figure 5a.

From this continuous stress-strain curve we can compute the first derivative
function of the anisotropic shear term present in Eq. (4), i.e. ω̃′

13. Since the avail-
able stress-strain curve is that of a simple shear case, we compute the function
ω̃′

13 using Eq. (85) of Ref. [17], where we have to use the already known functions
ω̃′

11 and ω̃′

33 and the simple shear (deviation) stresses σ̃13 = σ13 − σiso
13 , where σ13

are the total shear stresses of Figure 5a and σiso
13 are the simple shear stresses de-

rived from the isotropic function ωiso(E) ≡ ω(E). The stress plots shown in Figure
5a as red circles have been computed using MATLAB from the stored energy func-
tion (note that in this case all the terms are involved) assuming a homogeneous
simple shear test. Again, the predictions gotten for the prescribed experimental
stress-strain data set are exact (up to machine precision).

In a finite element setting, this ideal test may be simulated using a single trilin-
ear element. In this case the finite element predicts homogeneous stresses and
an exact solution of the represented ideal test (the one in an infinitesimal element).
In Figure 5b we show the load-displacement predictions for the ideal test against
the experimental data if we consider the latter to be an ideal simple shear test, i.e.
using a 8-node trilinear Q1/P0 element. With the WYPIWYG approach one gets
the prescribed behavior and it is seen that the ideal load-displacement behavior
is also captured.

However as it is well-known [27], the actual experimental setting is not an ideal
simple shear one mainly because of the length-to-width ratio of the specimen.
Then, the stresses are not homogeneous within the specimen and the problem
is a general boundary value problem which is to be solved using finite elements;
the approach also followed in [19]. To this end we employed a fine mesh of fully
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integrated Q2/P1 elements which are optimal mixed quadratic elements with a
linear pressure field and known to pass the inf-sup condition. As it can be seen in
Figure 6a the stress distribution is not homogeneous. It is well-known, and it can
be observed in the figure, that in this case the free surfaces have a shape similar
to a cubic polynomial, an effect that is weaker in soft biological tissues because of
the low shear stiffness of the ground matrix. Then, the shown shear stress distri-
bution is far from being constant at the grips, reaching a maximum at the corners
of the specimen. As a consequence, the predictions of a mesh that accurately
reproduces the boundary value problem of the experiment are not in accordance
with experimental data because in order to obtain the stored energy employed in
such simulations we have considered that the load-displacement curve was ob-
tained from an ideal simple shear experiment, which was not the case. In Fig. 5b
we show that using just a single Q2/P1 element, the predicted load-displacement
curve differs substantially from the ideal one but it is in fact very close to the re-
spective actual solution using a fine mesh of Q2/P1 elements (c.f. Fig. 6b). We
here emphasize that proper finite elements are to be used to model biological
tissues in general and the simple shear test in particular in order to avoid the
well-known issues of volumetric and shear locking which affect the standard for-
mulation; and also to avoid hourglass modes specially present in same elements
when large stiffness ratios are expected, as it is the case of biological tissues.

In the WYPIWYG approach, the non-homogeneous finite element solution of
the actual test simulation may be used to compute the correct ideal simple shear
load-displacement and stress-strain curves. We explain next a very simple itera-
tive procedure that gives both the correct ideal (homogeneous) solution and the
corresponding correct actual (nonhomogeneous experimental) solution.

Let k denote the iteration counter. In order to obtain the ideal stress-strain
curve σ

(0)
13 (E13) of Figure 5a in the iteration zero (k = 0), we have considered

F
(0)
ideal = Fexp, where Fexp is the measured experimental load of Figure 2c and

F
(k)
ideal = σ

(k)
13 Aexp is the resultant load of an ideal test where σ

(k)
13 is the ideal, uniform

stress. Then we obtained the associated shear stresses as σ
(0)
13 = F

(0)
ideal/Aexp, with

Aexp being the actual specimen cross-sectional area for shearing, i.e. Aexp =
L× t = 15.4× 0.58mm2. This allowed us to compute the strain energy shear term
function ω̃

′(0)
13 (E#

13). Subsequently, a proper finite element simulation of the actual
simple shear test setting (see Figure 6a) using the function ω̃

′(0)
13 (E#

13) gave the
actual FEM-computed vertical load F

(0)
actual, see Figure 6b, just by integration of the

shear stress distribution in the clamps —in practice the sum of the reactions in the
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shearing direction at each clamp

F
(k)
actual (u) =

∫

Aexp

σ
(k)
13 (u) dA (5)

Clearly, F
(0)
actual < Fexp, which means that the primary assumption F

(0)
ideal = Fexp

was not correct. We propose the following iterative procedure for F
(k)
ideal, which

converges to the solution Fideal in very few iterations—just take α(0) = 1 in order to
initialize the procedure



































1. F (k)
ideal = α(k)Fexp → σ

(k)
13 =

F
(k)
ideal

Aexp

WYPIWYG−→ ω̃
′(k)
13

FEM, Eq. (5)−→ F
(k)
actual

2. If
∣

∣

∣
F

(k)
actual − Fexp

∣

∣

∣
< tol ⇒ Fideal = F

(k)
ideal (converged, exit)

otherwise update α(k+1) = α(k) Fexp

F
(k)
actual

and go to Step 1

(6)

This iterative process converged to α(4) = 1.75 in just four iterations. In Figure 6b
we show the results obtained from the respective boundary value problem with
nonhomogeneous solution during each considered iteration. For k = 4 the load-
displacement predictions are very close to the measured experimental values.
Interestingly, we note that

σ
(k)
13 =

F
(k)
ideal

Aexp

=
α(k)Fexp

Aexp

=
Fexp

Aexp/α(k)
=

Fexp

A
(k)
ideal

(7)

so one can consider that the ideal loading curve is being corrected (increased)
through F

(k)
ideal = α(k)Fexp preserving the value of the cross-sectional area Aexp or,

equivalently, that the (effective) cross-sectional area of the ideal simple shear test
is being corrected (decreased) through A

(k)
ideal = Aexp/α

(k) preserving the value of
the experimental loading Fexp.

Obviously the correct material characterization must be performed with the
corrected load-displacement curve whose derived stress-strain curve simulates
an ideal, homogeneous simple shear test, i.e. that given by Fideal = F

(4)
ideal =

α(4)Fexp = 1.75×Fexp. We show in Figure 7a the converged stress-strain curve ob-
tained from F

(4)
ideal and Aexp and the derived strain energy shear term in Figure 7b.

Remarkably, because the strains in fascia are only moderately large, the stored
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energy derivative term ω′

13 has values close to those of σ13. However, for very
large strains both curves become very different in general.

The proper correction for the experimental loading curve is given in Figure 7c.
In this figure we show the original experimental curve, the corrected one, finite ele-
ment simulations using specimens with more adequate aspect ratios to represent
the ideal simple shear test, and a finite element simulation of the actual experi-
ment (square specimen) using an adequate finite element mesh. It is seen that,
again, the behavior is correctly predicted for both the ideal homogeneous simple
shear case (simulated by L/d = 10 in the figure) and the actual nonhomogeneous
experimental setting (L/d = 1 in the figure). We note that the iterative procedure
was performed only for the value of the maximum displacement in the experiment.
However, remarkably we have captured the behavior at all displacement levels
even though the problem is obviously nonlinear—we also show the final results in
Figure 2c for the reader convenience.

The herein described iterative procedure is much simpler and intuitive than
the one given in [19] (also similar to many other works) for the material char-
acterization using simple shear tests with square-shaped specimens and typical
hyperelastic models. However we note that, when possible, specimens with large
aspect ratios should be employed in this test to avoid this iterative procedure and
the need of solving a nonhomogeneous problem via finite element analysis as to
obtain the behavior of the solid under these more general conditions (note that all
the results with L/d = 10 are almost coincident in Figure 7c). We note that square
or cube-shaped specimens are used to test different biological tissues, see for
example [23, 24, 25]. However, the stress state within these specimens are far
from homogeneous [27], a fact that should be taken into consideration when fit-
ting material parameters from experimental data obtained this way (recall that we
obtained α = Fideal/Fexp = 1.75). To this end, as we have herein shown, a finite
element analysis of the experiment using the constitutive model being calibrated
allows to perform this correction in an iterative manner.

4. Discussion

In modelling soft biological tissues several approaches have been proposed.
Probably structure-based approaches are currently favoured in the literature. In
these approaches a distinction between the contribution of the collagen fibres
and the rest of the components (elastin, and nonfibrous molecules) is consid-
ered. There are different proposals of this kind in the literature (each one with its
own merits and inconveniences) as angular integration (AI) of statistical distribu-
tions of collagen fibres (e.g. [7, 8]), General Structure Tensor approaches (GST)
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(e.g. [10, 11]), multiscale approaches (e.g. [13, 28]) and non-affine models (e.g.
[29, 30]). The last ones emphasize the fact that the stress and strain fields are
different for the components and then contradict the assumption made in affine
models. It is interesting to note that despite of the micromechanical motivation
and structure of these models, the constitutive equations for the components are
usually phenomenological (for example Fung-type for fibers and Neokookean for
matrix) and the paramaters of these constitutive models are typically obtained
from a fit of the measured experimental behavior on the composite as a whole
[6, 11, 31, 32], frequently even using inverse analysis over continuum finite el-
ement structures [31, 32]; although recently more efforts are placed on using
the specific histological data to obtain at least some material parameters. The
structure-based approach would suggest to employ just parameters from experi-
mental data of the components and from histological data, avoiding phenomeno-
logical, macroscopic fitting of any microstructural material parameter, specially
when multiple solutions are possible and frequently reported, see for example
[31, 32, 33]. Furthermore, the computationally efficient General Structure Tensor
schemes used in finite element simulations of organs compute continuum stresses
from average (and affine) strains of components in a nonlinear problem, which is
another approximation which reduces their accuracy [9]. Just as an example of the
difficulties encountered following the GST structure-based approach in a general
problem, we note that the formulation may result in an inadequate consideration
of the fibers working in tension and those working in compression. Solutions have
been proposed just recently within the AI framework in Refs. [14, 34] and within
the GST framework in Ref. [15].

Phenomenological continuum models have also been extensively used when
modelling biological tissues, see for example [31]. However, the parameters of
the proposed stored energies are also typically obtained though optimization pro-
cedures. In this work, we also follow the phenomenological continuum approach.
Whereas with this approach it is not possible to see the influence of fiber con-
tent and distributions in the overall behavior of the composite, the continuum na-
ture of the model is in accordance with the continuum nature of the experiments
employed, and the computational efficiency is parallel to that of the usual phe-
nomenological models as Ogden’s model (Crespo et al, under review). WYPIWYG
approaches have some very appealing characteristics: (1) they are motivated in
the infinitesimal theory and, in contrast to many formulations [35] recovers that
theory in the limit (preserving also the insight from the infinitesimal framework in
the finite strain regime); (2) they use the same decomposition as that of the equiv-
alent infinitesimal framework and do not impose the shape of the associated strain
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energy non-linear terms; (3) they do not use user-prescribed material parameters
nor optimization procedures; (4) the solution is unique; (5) the prescribed stress-
strain curves are exactly captured and (6) the computational efficiency for finite
element analysis is similar to that of classical phenomenological models.

WYPIWYG procedures solve the following mathematical problem: Find the
unique material which following the hypothesis given by Eqs. (1)-(4) behaves ex-
actly as measured (or prescribed) in a complete set of experiments. The material
behavior will then be exactly captured in any other loading situation and bound-
ary value problem if those hypotheses hold. Regarding this issue we note that
the Valanis-Landel decomposition used in the isotropic part is widely accepted
and holds mathematically for the moderately large deformations present in biolog-
ical tissues. The decomposition used for the anisotropic contribution is also the
one used in the linear case and similar in nature to the ones used in many other
structure-based models, where the energy of the fibers is added to that of the
matrix. WYPIWYG procedures may be used to obtain the material behavior from
load-displacement curves in nonhomogeneous problems. With the insight from
the linear theory, an iterative nonlinear procedure may be established to obtain
first the stress-strain curves and then the corresponding WYPIWYG strain energy
density terms to apply to other problems. These stored energies may be efficiently
used in finite element simulations of organs.

As it can be seen in the final result of Figure 2, we have shown that WYPI-
WYG procedures are useful for modelling accurately the behavior of soft tissues
for finite element analysis in general and for fascia in particular. We show that
the computed load-displacement behavior for longitudinal, transverse and simple
shear specimens have an exceptional correlation with the experimental measure-
ments. Of special interest is the performed simple shear test because it results in
non-homogeneous stress and strain fields. We show that even for this case we
are able to capture the load-displacement curve to a high accuracy via finite ele-
ment analysis of the actual experiment using a simple, physically sound intuitive
procedure.
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Figures

Figure 1: Principal anisotropy direction a3 over images of the specimens mounted in a uniaxial
testing device for longitudinal (a) and transverse (b) specimens and in a simple shear device (c)
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Figure 2: Experimental load-displacement data and finite element computed results for the longi-
tudinal uniaxial specimen (a), the transverse uniaxial specimen (b) and the simple shear specimen
(c)
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Figure 3: (a) Stress-strain response curves for ideal uniaxial tests. Experimental stresses are
those obtained directly from the load-displacement curves shown in Figure 2 using the respective
minimum cross-sectional areas and effective distances between grips (95%). Smooth stress plots
are slightly smoothed stresses from experimental data as to eliminate experimental noise. Pre-
dicted stress plots are the stresses derived from the computed WYPIWYG stored energy function
shown in (b). (b) First derivative functions of the (total) axial terms ω′

ii(Eii) = ω′(Eii) + ω̃′

ii(Eii)
of the stored energy density, see Eq. (3). The isotropic contribution ω′(E), not shown explic-
itly, has been previously computed assuming an isotropic tension-compression uniaxial response
σ(E) = 0.9×σ1(E), see (a), and the symmetries σi (−Ei) = −σi (Ei) have been considered for the
uniaxial compression branches. (c) Computed nonlinear transverse strains relation E

(1)
2 (E1) for a

test performed in direction 1. Red dashed lines are the limits of applicability of the usual inversion
formula and of positive Poisson effect (a solution is searched within these limits).
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(0)
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curve shown in Figure 2c using the actual (i.e. total) cross-sectional area for shearing. Smooth
stress plots are slightly smoothed stresses from experimental data as to eliminate experimental
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Figure 6: (a) Displacement field and shear stress field in the configuration of the performed exper-
iment. (b) Iterative correction applied to the ideal simple shear loading curve (F (k)

ideal = α(k)Fexp) to
recover the actual simple shear test (Factual ≃ Fexp). The four iterations are shown. It is seen that
the converged load-displacement ideal response F

(4)
ideal = 1.75Fexp (or equivalent effective area

A
(4)
ideal = 0.57Aexp) yields a very accurate conversion between the experimental setting and an

ideal simple shear test at all strain levels. Note that the value of A(4)
ideal = 0.57Aexp could be ap-

proximately deduced directly from the stress discribution (a) using a simple engineering reasoning
of stress equivalence
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Figure 7: (a) Stress-strain (discrete and smoothed) simple shear responses derived from the
proper ideal simple shear test, with F

(4)
ideal = 1.75Fexp (compare to Figure 5a). (b) Corresponding

first derivative function of the (total) shear term ω′

13(E13) = ω′(E13)+ ω̃′

13(E13) of the stored energy
density, see Eq. (4). The isotropic contribution ω′(E), not shown explicitly, has been previously
computed assuming an isotropic tension-compression uniaxial response σ(E) = 0.9× σ1(E), see
Figure 3. Predicted stresses in (a) are the stresses derived from the complete WYPIWYG stored
energy function; i.e. shear term shown in (b) and axial terms shown in Figure 3b. (c) Ideal and
actual simple shear loading curves for the square specimen under study. It can be observed that
all the shown finite element simulations with aspect ratios of 10 : 1 (close to an ideal test with
homogeneous distributions) tend to the same ideal response and that the simulation with aspect
ratio of 1 : 1 (the experimental layout in this paper, resulting in a nonhomogeneous stress field)
reproduces the experimental loads. The results are presented in terms of the amount of shear
γ = γ13 in order to make the cases L/d = 10 and L/d = 1 comparable to each other.
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