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Abstract

Sheet metal forming is a very important process in industry to create a wide variety of
goods. The analysis of local ductility and residual stresses is important both to assess the
viability of the manufacturing process and the reliability of the resulting elements in service.
An example is crash-worthiness, where remaining ductility and residual stresses govern the
safety of the overall structure during the impact.

A main ingredient of finite element simulations for sheet metal forming in industry is
a robust continuum-based computational algorithm for large strain elastoplasticity which
includes both elastic and plastic anisotropy, as well as mixed hardening. The theory should
use exactly-integrable (conservative) elastic and hardening behaviors based on physically
motivated proper state variables and, if possible, result in a simple integration algorithm. In
this work we implement a novel large strain formulation for anisotropic hyperelasto-plasticity
in a user subroutine of the commercial program ADINA to perform sheet metal forming
simulations, testing the robustness and suitability of the model for industry, as well as its
accuracy. The formulation is based on a new approach to the treatment of large strain
kinematics, using logarithmic elastic corrector rates instead of plastic rates. Furthermore,
kinematic hardening is formulated without an explicit backstress. We compare and discuss
the results with those in the literature which use alternative frameworks.

Keywords: Large strains; anisotropic plasticity; sheet metal forming; logarithmic strains;
multiplicative decomposition; Hill plasticity.

1. Introduction

The manufacturing process of metal goods, such as automobiles, typically employ sheet
metal forming procedures which entail large displacements, contacts and large deformations
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[1]. Due to manufacturing processes like rolling, metal sheets are anisotropic [2]. Metal
forming procedures are complex, and the resulting product may need to sustain important
loads and/or is involved in safety parts of a structure, like in crash-worthiness. Therefore,
the analysis of residual stresses [3], and of the remaining ductility [4], are important in many
applications [5, 6, 7].

Efficient finite element simulations which use large strain continuum plasticity models
are now systematically employed in analysing the deformation processes involved [8]. How-
ever, several issues may affect the reliability of the obtained solutions if the computational
algorithm is affected by lack of objectivity, shear stress oscillation, spurious elastic dissipa-
tion, or the lack of weak-invariance under reference configuration changes [9]. Hence, sound
large strain integration algorithms for plasticity are pursued for general applications, and in
particular, for metal forming applications. To have the desired generality, these large strain
algorithms should be valid for anisotropic elasticity, anisotropic plasticity and mixed harden-
ing, including the possibility of incorporating nonlinear kinematic hardening and viscoelastic
effects in a simple manner. Furthermore, simplicity and robustness of the stress integration
algorithm are also important assets [8, 10].

Traditionally, continuum formulations and their related stress integration algorithms were
based on objective stress rates [11] and incrementally objective algorithms, as the Hughes-
Winget [12] and Rolph-Bathe [13] algorithms. Probably, because there were no simple alter-
natives to treat flow kinematics, these algorithms are still used in commercial codes, especially
for anisotropic materials. However, hypoelastic-based formulations may present shear stress
oscillation and spurious elastic dissipation [14, 15] because, except in the case of using the
logarithmic rate and linear elasticity [16], they fail to fulfill Bernstein’s integrability con-
ditions [17, 18]. Because of this, Simo and co-workers popularized the use of hyperelastic
formulations in the context of large strain elastoplasticity [19, 20]. The elastic state variable
for hyperelasticity can be obtained either from additive Green ansatzes and plastic metrics
(e.g. [21, 22, 23, 24, 25, 26], among many others) or from Kröner-Lee multiplicative decom-
positions (e.g. [19, 27, 28, 29], among others). The former misses a clear microstructural
motivation and has been recently criticised for loosing ellipticity properties during plastic
flow [30], and for lacking weak-invariance [9] (i.e. results depend on the arbitrary reference
configuration).

When using multiplicative decompositions, there are mainly two approaches. The first
one, due to Simo, which allowed arbitrary isotropic stored energies [11], is the use of quadratic
measures and of a flow rule in terms of the Lie derivative of the elastic left Cauchy-Green
(or the Finger) strain tensor [31, 32], resulting in an unconventional [33] flow rule of ar-
guably difficult interpretation, which initially failed to preserve volume during plastic flow,
an issue solved in subsequent works [34, 33]. The second approach, due to Eterović and
Bathe [35] and Weber and Anand [36], is the use of logarithmic strains and an exponential
mapping. This approach resulted in very attractive additive integration algorithms similar
to the small strain ones, in which large strain kinematics were taken into account just with
explicit pre- and post-processors, a remarkable simple framework emphasized by the work
of Eterovic and Bathe [35]. Because of the attractive simple implementation, this approach
was followed later by other researchers which developed formulations in spatial configuration
and/or used principal deformations [33, 37]. However, in contrast to the latter spatial for-
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mulations, even though it is seldom recognized, the algorithm of Eterović and Bathe allows
for anisotropic yield functions and kinematic hardening; but elasticity is linear in logarith-
mic strains, further restricted to isotropy and to moderate strains, and kinematic hardening
must be linear. Hence, formulations without those restrictions have been pursued for long
time. For example, Caminero et al [29] removed the restriction of elastic isotropy for the
Eterović and Bathe algorithm, keeping the additive, small strain structure. In a similar way,
Papadopoulus and Lu [24] and Miehe et al [23] used plastic metrics instead of the multiplica-
tive decomposition to obtain additive ansatzes in anisotropic elastoplasticity. More recently,
using the alternative pulled-back formulation within the context of the multiplicative decom-
position (see for example Remark 9.2.1 in [11]), Vladimirov et al [27, 28] used a lagrangian
approach taking advantage of some properties of the right Cauchy-Green strain tensors and
using the exponential mapping to preserve volume. However, this approach results in a more
complex formulation loosing the appealing structure of the infinitesimal framework. Similar
formulations include[38, 39, 40, 41, 42, 43, 44], among others. Badreddine et al [45] proposed
a formulation that preserves the structure of the small strain theory by assuming the elas-
tic strain to be small compared to plastic strain in order to get additive decomposition of
the total strain rate tensor. A recent comparison of different approaches may be found in
[46]. Additive Green approaches are still a common selection for complex materials, see for
example the recent work [47].

Obviously, sheet metal forming simulations need efficient and robust algorithms which
account for both elastic and plastic anisotropy, and which also allow for nonlinear mixed
hardening. Kinematic hardening is of energetic nature (non-disipative) so it requires a proper
state variable tensor to enter the stored energy terms. This stored energy term gives a proper
definition of the backstress and guarantees stable cycles in the case of kinematic hardening; see
[48, 49]. Usually, the chosen state variable is either the plastic Cauchy-Green strain tensor or
an energetic deformation obtained from the (subsequent) Lion multiplicative decomposition
of the plastic deformation gradient. Unfortunately, these approaches become computationally
more complicated with nonlinear kinematic hardening, where further nested decompositions
are needed.

A solution to most of the difficulties found in the large strain kinematics when using
hyperelasticity and Kröner-Lee multiplicative decompositions was found in [50] using elastic
correctors directly derived from the chain rule and conventional flow rules in terms of these
strains. The framework is in line with anisotropic large strain nonequilibrium viscoelasticity
[51, 52] and the theory replicates the typical scheme of the closest-point projection algorithms,
but also at the continuum level so the algorithm results in a plain backward-Euler implemen-
tation of the continuum theory. As a result, the iterative part of the plastic stress integration
algorithm is identical to the small strains one, being additive, simple and volume-preserving
[53] by construction. For the case of isotropic elastoplasticity, we have shown that an efficient
algorithm is possible reproducing the case of nonlinear kinematic hardening with multiple
backstresses following the Armstrong-Frederick rule [54], noteworthy without even explicitly
employing the backstress concept. Large strain kinematics are in our formulations reduced
to geometric, noniterative (explicit), pre- and post-processors. Continuum and algorithmic
constitutive tangents in the intermediate configuration are also identical to small strains ones,
but in terms of logarithmic strains and their work-conjugate generalized Kirchhoff stresses. A
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relevant drawback of other formulations including anisotropic elasticity is the presence of the
non-symmetric Mandel stresses in the formulation and the coupling of the plastic spin with
the symmetric flow, so alternatives are desired, see e.g. [55]. Remarkably, these drawbacks
are not present in our formulation.

However, a successful elastoplasticity formulation should not only be shown to be satisfy-
ing on theoretical grounds and to be numerically simple and efficient, but it should also clearly
prove to be useful for industry, being capable to rival established formulations in meaningful
simulations in commercial software. As aforementioned, sheet metal forming simulations are
very demanding and important for industry, so a large number of publications are dedicated
to prove the usefulness of proposed formulations and their algorithmic implementations to
sheet metal forming; e.g. [48, 56, 57, 58, 59, 60, 61, 62], among many others. Therefore, the
purpose of the present work is to show that a simple implementation of anisotropic multi-
plicative hyperelasto-plasticity including mixed hardening is possible, showing furthermore
the robustness and applicability of the novel framework to simulate several complex sheet
metal forming benchmarks. To validate the formulation for these types of simulations, we
compare the results obtained with our flow rule in terms of elastic correctors with other
formulations which use flow rules in terms of plastic rates.

To this end, in the next section we describe the formulation used in this paper, which
was programmed as a user subroutine in the commercial finite element program ADINA.
Thereafter, we demonstrate the applicability of the approach to different sheet metal forming
problems and perform the comparison with established formulations. Because the algorithm
and the prescription of material parameters is very simple, similar to the small strains case
(because it is formulated in logarithmic strains), we also discuss several aspects on their
influence in the results.

2. Anisotropic finite elastoplasticity model

In this section we derive the most important aspects of the continuum formulation and
stress integration algorithm used in this work.

2.1. Continuum formulation

The material model is motivated from the rheological model for the small strain formu-
lation as shown in Fig. 1, which includes an “internal” Prandtl (friction-spring) element in
parallel with an “external”single Hooke (spring) element. This Hooke element is responsible
for the phenomenologically observable (macroscopic) kinematic hardening of the model. The
approach differs from the classical kinematic hardening which assumes explicitly a backstress
and its evolution. In the context of isotropic elastoplasticity, the behavior typical of the
Chaboche and Ohno-Wang models based on the Armstrong-Frederick rule can be obtained
using a Besseling structure with multiple Prandtl devices, avoiding the assumption of back-
stresses and the use of the Lion decomposition [54]. Furthermore, it is noted that either a
linear or a nonlinear hyperelastic relation between the strain and stress tensor can be assigned
to the Hooke element, resulting in a kinematic hardening which is also linear or nonlinear
in terms of the corresponding conjugate pair of strain and stress measures. Noteworthy, at
large strains, a linear kinematic hardening in terms of logarithmic strains and generalized
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Kirchhoff stresses may be nonlinear in terms of other strain and stress measures as shown in
Ref. [53].

σ
Ψkin

σ
k Ψint

ε

εp εe

Figure 1: Proposed rheological model motivating the anisotropic finite elastoplasticity model with combined
isotropic and kinematic nonlinear hardening

For obtaining the proper elastic state variables entering the stored energy terms, the
Kröner-Lee multiplicative decomposition of the deformation gradient F into an elastic part
Fe and a plastic part Fp is employed

F = FeFp (1)

Consider the internal elastic Green-Lagrange strains in the intermediate configuration Ae :=
1
2(F T

e Fe − I) as a function of the total independent external Green-Lagrange strains A :=
1
2(F TF −I) and the independent internal plastic deformation gradient Fp—note that we use
the symbol A for Green-Lagrange strains to reserve E for material logarithmic strains

Ae(A,Ap) = F−Tp (A−Ap)F
−1
p = F−Tp � F−Tp : (A−Ap) (2)

in which the operator � is the mix dyadic product between two second order tensors defined
as (Y �Z)ijkl = YikZjl. This expression shows that Ae,A,Ap are not additive because Ae

lives in a different configuration from that ofA andAp. IfA−Ap is pushed forward to the in-
termediate configuration, we obtainAe. However, because of their salient features [63], we are
interested in using the natural logarithmic strain framework. Since the one-to-one relations
Ee = Ee(Ae), Ap(Fp) and E = E(A) hold, where Ee = 1

2 ln(F T
e Fe) and E = 1

2 ln(F TF ) are
the elastic and total material logarithmic strain tensors in their respective configurations, we
can obtain also the general dependence Ee(E,Fp) and hence, we can decompose the elastic
logarithmic strain-rate tensor into the addition of two partial contributions:

Ėe =
∂Ee
∂E

∣∣∣∣
Ḟp=0

: Ė +
∂Ee
∂Fp

∣∣∣∣
Ė=0

: Ḟp = Ėe|Ḟp=0 + Ėe|Ė=0 (3)

The first addend is obtained when the (internal) dissipative evolution is frozen, whereas the
second addend is obtained when the external power is frozen, and only internal evolution is
allowed. Using the operator split usually employed in computational inelasticity within the
algorithmic framework, we can interpret these terms as follows

Ėe = Ėe|Ḟp=0 + Ėe|Ė=0 =
tr
Ėe +

ct
Ėe (4)
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where
tr
Ėe is the trial elastic contribution to the rate of the total elastic logarithmic strain Ėe,

and depends on the total logarithmic strain rate Ė only (i.e. the plastic evolution given by Fp

is frozen). The rate
ct
Ėe is the plastic corrector contribution to the total elastic logarithmic

strain rate Ėe and depends on the total plastic deformation gradient rate Ḟp only (i.e. the
external deformation given by E is frozen).

The stored energy function may be expressed in terms of any Lagrangian strain measure,
or associated invariants. Herein, it is written in terms of the total and elastic logarithmic
strains and decomposes additively into two parts: Ψkin(E), the strain energy function associ-
ated with the “external” spring element, and Ψint(Ee), the strain energy function associated
with the “internal” spring element as in the rheological model. Then, we write

Ψ(E,Ee) = Ψkin(E) + Ψint(Ee) (5)

By using work-conjugacy (see details in [50]), the stress power per reference volume may
be written in terms of E and its work-conjugate in the most general case, the material
“generalized” Kirchhoff stress tensor T , as

P = S : Ȧ = T : Ė (6)

where S is the second Piola-Kirchhoff stress tensor in the reference configuration. Note also
that all quantities in this equation are in the reference configuration. In the typical tests
performed in principal material axes under proportional loading the stresses T are coincident
with the spatial Kirchhoff stresses, so the identification of material constants is very simple.

According to the Clausius-Duhem inequality for the iso-thermal processes, the dissipation
written in terms of Lagrangian logarithmic strains can be determined as

DP = P − Ψ̇ = P − Ψ̇kin − Ψ̇int = T : Ė − Tkin : Ė − T |eint : Ėe (7)

where we defined

Tkin =
dΨkin(E)

dE
and T

|e
int =

dΨint(Ee)

dEe
(8)

Note that Tkin, as E, lives in the reference configuration and T
|e
int, as Ee, lives in the inter-

mediate configuration.

Consider that dissipation is frozen, so Ḟp = 0 and therefore we have Ėe ≡
tr
Ėe =

∂Ee/∂E|Ḟp=0 : Ė, in this case, the dissipation inequality is

DP =

(
T − Tkin − T

|e
int :

∂Ee
∂E

∣∣∣∣
Ḟp=0

)
: Ė = 0 if Ḟp = 0 (9)

Since the strain rate may take arbitrary values, Eq. (9) requires in general that

T = Tkin + T
|e
int :

∂Ee
∂E

∣∣∣∣
Ḟp=0

= Tkin + Tint (10)
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in which (note the abuse of notation in using the same symbol for the energy when considering
different arguments; we make explicit the dependencies when needed)

Tint =
dΨint(Ee)

dEe
:
∂Ee
∂E

∣∣∣∣
Ḟp=0

= T
|e
int :

∂Ee
∂E

∣∣∣∣
Ḟp=0

≡ ∂Ψint(E,Fp)

∂E

∣∣∣∣
Ḟp=0

(11)

Note that the tensor ∂Ee/∂E|Ḟp=0 is physically a geometric mapping tensor which performs a

pull-back of T
|e
int from the intermediate configuration (where it lives with Ee) to the material

one (where E lives). If we now freeze the external power, so Ė = 0 (i.e. the external
deformation given by E is frozen and there is a plastic evolution Ḟp 6= 0), we get Ėe =
ct
Ėe = ∂Ee/∂Fp|Ė=0 : Ḟp, the dissipation inequality of Eq. (7) is

DP ≡ − Ψ̇int

∣∣∣
Ė=0

= −T |eint :
ct
Ėe > 0 if Ḟp 6= 0 (12)

Remarkably, it is expressed in terms of purely symmetric tensors of elastic nature lying in
the intermediate configuration, namely the corrector contribution to the elastic logarithmic

strain rate Ėe and its power-conjugate generalized Kirchhoff stress tensor T
|e
int = dΨint/dEe.

The dissipation inequality obtained in Eq. (12) should be positive for all possible motions
according to the second law of thermodynamics, which imposes the restrictions on the possible
forms of the plastic evolution. Herein, we consider that the plastic evolution is given by the
maximum plastic dissipation, i.e. an associative flow rule is adopted as follows:

ct
Ėe = −Γ̇∇φT = −γ̇ 1

2
3k
∇φT = −γ̇ 1

2
3k

NT : T
|e
int (13)

where γ̇ = 2
3kΓ̇ ≥ 0 is the plastic consistency parameter (equivalent plastic strain rate),

power-conjugate of the reference yield stress parameter k. The scalar function φT (T
|e
int) is the

Lagrangian internal convex potential so ∇φT := dφT /dT
|e
int is the flow direction, which we

take as ∇φT = NT : T
|e
int and NT is a positive-definite fully symmetric fourth order tensor of

yield constants associated with the preferred material axes in the intermediate configuration.
This tensor NT may be deviatoric as in Hill’s yield function or could include volumetric
terms for pressure-sensitive plasticity. With this consideration, the dissipation inequality in
Eq. (12) can be written as

DP = γ̇
1

2
3k
T
|e
int : NT : T

|e
int > 0 if γ̇ > 0 (14)

Alternatively, giving the physical meaning of dissipation to kγ̇,

DP = γ̇
1

2
3k

(
T
|e
int : NT : T

|e
int −

2
3k

2
)

+ kγ̇ ≡ kγ̇ > 0 if γ̇ > 0 (15)

where the yield function fT (T
|e
int, k) can be identified as a function of the elastic generalized

Kirchhoff stress tensor and the plastic loading condition in the intermediate configuration:

fT (T
|e
int, k) = T

|e
int : NT : T

|e
int −

2
3k

2 = 0 if γ̇ > 0 (16)
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and the loading/unloading condition also can be identified as

γ̇ = 0 if fT (T
|e
int, k) = T

|e
int : NT : T

|e
int −

2
3k

2 < 0 (17)

in such a way that the dissipation inequality is finally given in terms of the internal flow
stress k > 0 and its power-conjugate slip rate γ̇ > 0 through DP = kγ̇ ≥ 0. From Eq. (10),
the total stresses T include two contributions, one from the external kinematic hardening
stresses Tkin, and one from the internal isotropic stresses Tint. In rate form, we have the
following relation:

Ṫ = Ṫkin + Ṫint = Akin : Ė + Aint : Ė

= (Akin + Aint︸ ︷︷ ︸
A

) : Ė = A : Ė (18)

where Akin are the external kinematic moduli, Aint are the internal elastoplastic tangent
moduli and A are the continuum tangent moduli of the model. All moduli are written in
the reference configuration. Of course, we could interpret Tkin as a sort of backstress, so
Ṫint = Ṫ − Ṫkin, but note that Tint is not the quantity naturally used in the yield criterion

(it is T
|e
int instead). Hence, the explicit assumption of the backstress brings difficulties in the

kinematics which are not present in our formulation, where all these stresses are derived from
stored energy terms in the proper configurations.

The stresses Tkin depend only on the “external” logarithmic strain tensor E and are
determined from the strain energy function Ψkin(E) once the logarithmic strains E are ob-
tained from the deformation gradient F . Hence, the linearization of Tkin(E) in the reference
configuration is trivial and the external moduli can be determined from the hyperelastic
relation

Akin :=
dTkin
dE

=
d2Ψkin(E)

dEdE
(19)

As mentioned previously, the stresses tensor Tint represents the pull-back operation of

T
|e
int from the intermediate configuration to the reference configuration. Therefore, in order

to determine the internal elastoplastic tangent moduli Aint in the reference configuration, we
have to determine the internal elastoplastic tangent moduli in the intermediate configuration

where plastic flow takes place. The rate of the internal stresses tensor T
|e
int in the intermediate

configuration can be determined as:

Ṫ
|e
int =

dTint
dEe

: Ėe = A|eint : Ėe (20)

where we define A|eint = dTint/dEe = d2Ψint(Ee)/(dEedEe) as the hyperelastic logarithmic
constitutive tensor in the intermediate configuration.

It is noted that the internal stress tensor T
|e
int depends on the same independent variables

as Ee, namely E and Fp, and the internal flow stress k = k(γ) is a function of the integral of
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the plastic consistency parameter rate γ̇—the equivalent plastic strain. The rate of the yield
function may be formulated in two parts, using Eq. (4), as follows

ḟT = ḟT |Ḟp=0 + ḟT |Ė=0 (21)

The first addend corresponds to the “trial elastic” contribution and may be obtained as

1
2 ḟT |Ḟp=0 = ∇φT : Ṫ

|e
int|Ḟp=0 = ∇φT : A|eint :

tr
Ėe (22)

The second addend of Eq. (21) stands for a “corrector elastic” evolution and is obtained as:

1
2 ḟT |Ė=0 = −γ̇ 1

2
3k

(∇φT : A|eint : ∇φT + 4
9k

2k′) (23)

Then, from the consistency condition ḟT = 0 when γ̇ > 0, we can have the following relation
for the plastic consistency parameter

Γ̇ = γ̇
1

2
3k

=

(
A|eint : ∇φT

∇φT : A|eint : ∇φT + 4
9k

2k′

)
:
tr
Ėe if γ̇ > 0 (24)

And substituting Eq. (24) into Eq. (13), and defining

N̂ =
1√
2
3k

NT : T
|e
int (25)

we have

ct
Ėe = −

(
N̂ ⊗ (A|eint : N̂)

N̂ : A|eint : N̂ + 2
3k
′

)
:
tr
Ėe if γ̇ > 0 (26)

Now, inserting Eq. (26) into Eq. (4), we obtain the relation between the elastic and its trial
logarithmic strain rate tensor during plastic flow

Ėe =

(
IS −

N̂ ⊗ (A|eint : N̂)

N̂ : A|eint : N̂ + 2
3k
′

)
:
tr
Ėe if γ̇ > 0 (27)

Hence, the rate of internal stress can be rewritten as

Ṫ
|e
int = A|eep :

tr
Ėe (28)

in which

A|eep = A|eint −
(A|eint : N̂)⊗ (A|eint : N̂)

N̂ : A|eint : N̂ + 2
3k
′

(29)

takes the widely-known standard form of infinitesimal elastoplasticity. Here, we interpret

A|eep as the internal continuum elastoplastic tangent tensor, lying in the actual intermediate
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configuration. Using the relation between Tint and T
|e
int, established in Eq. (11), the rate of

the internal stresses tensor Tint in the reference configuration can be obtained by applying
the chain rule of differentiation as

Ṫint = Ṫ
|e
int :

∂Ee
∂E

∣∣∣∣
Ḟp=0

+ T
|e
int :

d

dt

(
∂Ee
∂E

∣∣∣∣
Ḟp=0

)
(30)

The second term in Eq. (30) is the typical convective geometric term needed to obtain the
relation of Ṫint with Ė. However, for small steps, the convective term can be neglected, and
for proportional loading, the term vanishes identically because it contains the derivative of
the identity tensor. Then, by using Eqs. (3),(4) and (28) we can approximate

Ṫint = Ṫ
|e
int :

∂Ee
∂E

∣∣∣∣
Ḟp=0

=
∂Ee
∂E

∣∣∣∣
Ḟp=0

: A|eep :
∂Ee
∂E

∣∣∣∣
Ḟp=0

: Ė = Aint : Ė (31)

where we define Aint as the continuum elastoplastic moduli in the reference configuration

by means of the pull-back operation over its internal counterpart A|eint in the intermediate
configuration.

Aint =
∂Ee
∂E

∣∣∣∣
Ḟp=0

: A|eep :
∂Ee
∂E

∣∣∣∣
Ḟp=0

(32)

The complete set of equations of the anisotropic finite elastoplasticity model is summarized
in Box 1.

2.2. Stress integration algorithm

The stress integration algorithm is simple. The purpose is to obtain the updated decom-
position (see Fig. 2)

t+∆t
0F = t+∆t

tF
t
0F = trFe

t
0Fp = t+∆t

0Fe
t+∆t

tF
−1
p

t+∆t
tFp

t
0Fp = t+∆t

0Fe
t+∆t

0Fp (33)

The integration of the elastic logarithmic strain rate tensor is immediately obtained using
a plain backward-Euler algorithm

t+∆t
0Ee = t

0Ee +

∫ t+∆t

t

trĖedτ︸ ︷︷ ︸
trEe := 1

2 ln
(
trF T

e
trFe

) +

∫ t+∆t

t

ctĖedτ︸ ︷︷ ︸
−3

2

(
∆γ/ t+∆tk

)
NT : t+∆tT

|e
int

= trEe −
∆γ

2
3
t+∆tk

NT : t+∆tT
|e
int (34)
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Box 1: Anisotropic finite elastoplasticity model

1. Elastic logarithmic strain tensor obtained from the multiplicative decomposition

Fe = F−1
p F , Ee =

1

2
ln(F T

e Fe)

2. Elastic logarithmic strain rate tensor split

Ėe = Ėe|Ḟp=0 + Ėe|Ė=0 =
tr
Ėe +

ct
Ėe

3. Generalized Kirchhoff stresses derived from the stored energy

T = Tkin + Tint

=
Ψkin(E)

E
+

Ψint(Ee)

Ee︸ ︷︷ ︸
T
|e
int

:
∂Ee
∂E

4. Evolution of the plastic flow

ct
Ėe = −γ̇ 1

2
3k
∇fT = −γ̇ 1

2
3k

NT : T
|e
int 6= −Ėp

5. Yield function
fT (T

|e
int, k) = T

|e
int : NT : T

|e
int −

2
3k

2 = 0

6. Loading/unloading condition

γ̇ ≥ 0, fT (T
|e
int, k) ≤ 0, γ̇fT (T

|e
int, k) = 0

7. Relation between in-plane total and trial elastic logarithmic strains during plastic

flow, with N̂ = NT : T
|e
int/(

√
2
3k)

Ėe =

(
IS −

N̂ ⊗ (A|eint : N̂)

N̂ : A|eint : N̂ + 2
3k
′

)
:
tr
Ėe

8. Continuum elastoplastic tangent in the intermediate configuration

A|eep = A|eint −
(A|eint : N̂)⊗ (A|eint : N̂)

N̂ : A|eint : N̂ + 2
3k
′
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Figure 2: Multiplicative decomposition of the deformation gradient at t + ∆t

where the algorithmic explicit definition of trEe should be noted. Remarkably, the update
formula is additive and identical to that of small strains. We do not explicitly employ the
exponential mapping but, as it is obvious from the properties of the logarithmic strains,
plastic flow is isochoric for pressure-insensitive yield criteria. Since stress and strains are not
aligned in anisotropy, the previous equation must be solved iteratively using any algorithm
typically employed in small strains [64]. For example, we establish the residuals

t+∆tR =

 t+∆tρint

(
t+∆t

0Ee,∆γ
)

t+∆tfT

(
t+∆t

0Ee,∆γ
) 

=

 t+∆t
0Ee − trEe +

∆γ
2
3
t+∆tk

NT : t+∆tT
|e
int

t+∆tT
|e
int : NT : t+∆tT

|e
int −

2
3
t+∆tk2

(
t+∆tγ

)
 (35)

with t+∆tT
|e
int = dΨint/d

t+∆t
0Ee = A|eint : t+∆t

0Ee. The equation t+∆tR −→ O is solved using
a Newton-Raphson algorithm whose tangent is obtained as usual by straightforward algebra

∇t+∆tR =


dt+∆tρint

d t+∆t
0Ee

dt+∆tρint
d∆γ

dt+∆tfT

d t+∆t
0Ee

dt+∆tfT
d∆γ


=

 IS +
∆γ

2
3
t+∆tk

A|eint
t+∆tk −∆γ t+∆tk′

2
3
t+∆tk2

t+∆tT
|e
int

2 t+∆tT
|e
int : NT : A|eint −4

3
t+∆tk t+∆tk′

 (36)
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with t+∆tk′ = d t+∆tk/d t+∆tγ and IS being the fourth order fully symmetric identity tensor.
As noted by Wali et al [65], an iterative procedure based on a single scalar parameter

may be obtained immediately factoring-out the strain increment from the first equation and
replacing the result in the second equation; i.e. after some algebra, for iteration (j)

t+∆tγ(j+1) = t+∆tγ(j) −

t+∆tf (j) − ∂ t+∆tf (j)

∂ t+∆t
0Ee

:

(
∂ t+∆tρ

(j)
int

∂ t+∆t
0Ee

)−1

: t+∆tρ
(j)
int

∂ t+∆tf (j)

∂ t+∆t
0Ee

:

(
∂ t+∆tρ

(j)
int

∂ t+∆t
0Ee

)−1

:
∂ ρ

(j)
int

∂∆γ
+
∂ t+∆tf (j)

∂∆γ

(37)

and using the known value of δγ(j) := t+∆tγ(j+1)− t+∆tγ(j) we can immediately update the
elastic strains

t+∆t
0E

(j+1)
e = t+∆t

0E
(j)
e −

(
∂ t+∆tρ

(j)
int

∂ t+∆t
0Ee

)−1

:

[
t+∆tρ

(j)
int +

∂ t+∆tρ
(j)
int

∂∆γ
δγ(j)

]
(38)

This update is needed with hyperelastic relations and for actualization of the flow direction.

Noteworthy, since in this case only ∂t+∆tρ
(j)
int/∂

t+∆t
0Ee =

[
IS + 3

2(∆γ/t+∆tk)A|eint
]

must be

inverted, and in metal plasticity A|eint may be considered constant (plastic strains are much
larger than elastic ones), using Mandel notation [66], we can take advantage of the spectral

decomposition of A|eint (performed only once during execution) to obtain a slightly faster
algorithm. Indeed, in Mandel notation we have(∂t+∆tρ

(j)
int

∂ t+∆t
0Ee

)−1
 = [Q]

([
IS
]

+
∆γ

2
3
t+∆tk

[
Λ
|e
int

])−1 [
QT
]

(39)

where
[
Λ
|e
int

]
is the diagonal matrix of eigenvalues,

[
IS
]

is the matrix representation of IS

(the identity matrix in Mandel notation) and [Q] is the matrix of eigenvectors of the matrix

representation of A|eint. Then, the inverse is obtained simply inverting a diagonal matrix and
performing two matrix multiplications.

2.3. Consistent tangent

Once a solution has been obtained, following the standard steps of infinitesimal elasto-
plasticity, it is straightforward to obtain the elastoplastic consistent tangent of the Prandtl
element, which takes exactly the same form as in the small strains case

t+∆tAep|trint =
d t+∆tT

|e
int

d trEe
= t+∆tD−

t+∆tD : t+∆tN̂ ⊗ t+∆tD : t+∆tN̂
t+∆tN̂ : t+∆tD : t+∆tN̂ + 2

3
t+∆tκ′

(40)
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where t+∆tD and t+∆tκ are, respectively, the algorithmic elastic moduli and algorithmic
uniaxial-like isotropic hardening defined also as in the infinitesimal framework

t+∆tD = A|eint :

[
dt+∆tρint

d t+∆t
0Ee

]−1

and t+∆tκ′ =
t+∆tk t+∆tk′

t+∆tk −∆γ t+∆tk′
(41)

As it can be checked immediately, if ∆γ → 0 then t+∆tD→ A|eint and t+∆tκ′ → t+∆tk′.

The obtained solution for t+∆t
0Ee,

t+∆tT
|e
int and t+∆tD, must be transformed to the

quantities usually handled by the finite element programs at the element level, for example
t+∆t

0Fp,
t+∆tS and t+∆tC := d t+∆tS/d t+∆t

0A. To this end, considering small incremental
steps, for logarithmic strains, we can make coincident the trial and final configurations just for
the task of performing mappings. Note that this assumption holds exactly under proportional
loads, so it is an approximation only for large steps and largely nonproportional loading. Then

we can write t+∆tT
|e
int ' t+∆tT

|tr
int (where |e and |tr implies the configuration where they live)

and by systematic use of tensor mapping transformations [50]

t+∆tSint = t+∆tS
|tr
int :

dtrAe

d t+∆t
0A

= t+∆tT
|tr
int :

dtrEe

d t+∆t
0A

(42)

where the mapping dtrEe/d
t+∆t

0A is

dtrEe

d t+∆t
0A

=
dtrEe
dtrAe

: t
0F
−T
p � t

0F
−T
p (43)

Note that dtrEe/d
trAe is known from the spectral decompositions of the involved strains

[50]. Therefore

t+∆tS = t+∆tSkin + t+∆tSint (44)

and

t+∆tC =

(
d t+∆t

0E

d t+∆t
0A

)T
: Akin :

d t+∆t
0E

d t+∆t
0A

+ Tkin :
d2 t+∆t

0E

d t+∆t
0Ad

t+∆t
0A

+

(
dtrEe

d t+∆t
0A

)T
: t+∆tAep|trint :

(
dtrEe

d t+∆t
0A

)
+ T

|e
int :

d2 trE

d t+∆t
0Ad

t+∆t
0A

(45)

where the third order tensors, containing the derivative of the mapping tensors, can be found,
for example, in [50]. If we do not consider a constitutive equation for the uncoupled plastic
spin, we can take t+∆t

0Re = trRe and the update of the plastic deformation gradient is

t+∆t
0Fp = exp

(
− t+∆t

0Ee

)
t+∆t

0R
T
e
t+∆t

0F (46)

The described implicit integration of this material model is summarized in Box 2 and
has been implemented into a user material subroutine in ADINA program [67] via UCMAT3
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user subroutine in dll format for the applications to sheet metal forming detailed below.
We mention that ADINA provides an implicit integration scheme for global resolution (by
defaut the Newton-Raphson method is used) with a Total Lagrangian formulation for large
displacement/strain formulation. Therefore, in this case, we only need to return second
Piola-Kirchhoff stress tensor S and its related consistent tangent modulus C to the main
program.

3. Sheet metal forming applications

In this section, in order to use the u/p mixed formulation which is the default in ADINA
to prevent locking in elastoplastic analyses, we propose that the total stored energy Ψ in
Eq. (5) can be split into a volumetric hyperelastic part and a deviatoric elastoplastic part.
Furthermore, the materials used in the sheet metal forming simulations below are considered
elastically isotropic, so the stored energy contributions are quadratic in terms of the respective
arguments, i.e.

Ψ(E,Ee) =
1

2
κ(trEv)2 + µkinE

d : Ed︸ ︷︷ ︸
Ψkin

+µintE
d
e : Ed

e︸ ︷︷ ︸
Ψint

(47)

where µkin and µint are the respective deviatoric, shear moduli (Lame’s constant) of the
external and internal part, respectively, and κ is the bulk modulus. Ev and Ed are the
total volumetric and deviatoric logarithmic strain, respectively. Ed

e is internal deviatoric
elastic logarithmic strain. Then, the elasticity nature are Akin = κI ⊗ I + 2µkinPS and
Aint = 2µintIS : PS .

3.1. Drawing of a thin circular flange

The purpose of this example is to simulate the drawing process of a thin circular flange
with a hole subjected to a prescribed radial displacement up to a total displacement of
u = 75 mm at the inner rim as shown in Fig. 3a. The example is a simplified approach for
the prediction of earing in cup drawing without using contact elements (which are usually the
main source of convergence problems). This application is a benchmark for the response of
anisotropic elastoplasticity based on the similar numerical problem considered in Refs. [68,
69, 29], among others. Our goal for this application is to compare the results obtained with
our anisotropic elastoplasticity model based on the corrector elastic logarithmic strain rate
with those obtained using an anisotropic additive elastoplasticity model in the logarithmic
strain space based on Green plasticity [69], and also with those using the multiplicative
decomposition with the flow rule in terms of the plastic strain rate, namely the Eterovic and
Bathe algorithm [35] and the Caminero et al algorithm [29]. The whole circular flange is
modelled in 3D using the 8-node bricks u/p mixed finite elements (in total 400 elements).
Contact elements are not needed in this simulation because no out-of-plane drawing takes
place. Only one layer of elements is considered through the thickness, while the in-plane
discretization is shown in Fig. 3b.

The material is assumed to be isotropic in elastic response and orhotropic in its yield
properties. The anisotropic plasticity is controlled by using Hill’s yield criterion [70] through
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Box 2: Implicit stress integration algorithm

1. Trial elastic predictor; geometric preprocessor: given t+∆t
0F ,

t
0Fp and t

0γ, compute
the trial elastic predictor state

trFp := t
0Fp;

trFe := t+∆t
0F

t
0Fp

trEe :=
1

2
ln(trF T

e
trFe);

trT
|e
int :=

dΨint(
trEe)

dtrEe

2. Check yield condition and test for plastic loading

trk := tk

trfT := fT (trT
|e
int,

trk) = trT
|e
int : NT : trT

|e
int −

2
3
trk2

IF trfT ≤ 0 THEN

Elastic step: set t+∆t(•) = tr(•)
ELSE

Plastic step: Proceed to step 3

ENDIF

3. Return mapping

(a) Local Newton iterations: plastic corrector

Solve iteratively R(t+∆tEe,∆γ) =

{
t+∆tρ
t+∆tfT

}
= 0 using the Newton-Raphson

method with initial values for first iteration
t+∆t

E
(0)
e = trEe, ∆γ(0) = 0 and

t+∆tk(0) = k(tγ)
(b) Update the state variables

t+∆tT
|tr
int '

t+∆tT
|e
int =

dΨint(Ee)

dEe

∣∣∣∣
t+∆t

Perform mappings to desired stress/strain quantities, e.f compute the consis-
tent elastoplastic tangent matrix during this phase (see Box 3)

(c) Compute consistent tangent and update plastic deformation gradient t+∆t
0Fp

as explained in Sec. 2.3

4. Perform mappings to the desired stress and strain quantities, e.g. t+∆tS and t+∆t
0A

in the case of Total Lagrangian formulations.

5. EXIT

the deviatoric tensor NT in Eq. (17) according to Ref. [8]. Two cases are considered for
anisotropic plasticity. In case I, it is expected that the plastic strain is concentrated at 45o
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(a) (b)

Figure 3: Drawing of a thin circular flange: a) geometry and boundary conditions b) FE discretization. All
dimensions are in mm.

and 135o from the x-axis along the direction of the maximum shear stress; while in case II
the plastic strain is expected to concentrate along the x and y axes. In both cases, linear
isotropic hardening is assumed. In examples below it is combined with the Voce-type non-
linear isotropic hardening function [71] in the form:

k = k0 + H̄γ + (k∞ − k0)(1− e−δγ) (48)

where γ is the equivalent accumulated plastic logarithmic strain, see Eq. (15). The material
parameters of the metal-sheet are identical to those used in Refs. [68, 69] and are given in
Table 1. Thus, only the flow kinematics and the type of finite element used are different
between the approaches, which makes this comparison especially interesting.

Fig. 4 shows the deformed flanges with the distribution of the accumulated plastic strains
for different cases and compared with those obtained in Ref. [69] and also with simulations
performed using either the model of Caminero et al [29] or the Eterovic and Bathe model [35]
(for the case of elastic isotropy both models give the same results as shown in Ref. [29]). It is
noted that the results obtained in both references [69, 29] are also without contact/friction.
It can be observed that the deformations and distributions of accumulated plastic strains
obtained in this work are very similar to those obtained in the other references, so the small
differences may not be necessarily attributed to the plasticity formulation because in Ref.
[69] the authors used a mixed shell element with incompatible modes. In case I the plastic
strains are produced and concentrated in the directions of maximum shear stresses at 45o and
135o from x-axis and in case II the maximum plastic strains occur in directions of maximum
normal stresses at x and y axes as expected. For both cases, the outer rim is deformed in the
a well-known earing shape of anisotropic sheet metal forming.

The nodal forces acting at the two nodes A and B depicted in Fig. 3a are also extracted
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Table 1: Material parameters for drawing of a thin circular flange

Bulk modulus κ = 164.20 GPa
Internal shear moduli µint = 80.19 GPa
Reference yield stress k0 = 0.45 GPa
Limit stress parameter k∞ = 0.45 GPa
Voce’s linear hardening modulus H̄ = 0.1 GPa
Voce hardening parameter δ = 1
Hill’s anisotropy parameters - Case I
f = g = h 1/3
l = m = n 4
Hill’s anisotropy parameters - Case II
f = g = h 1/3
l = m = n 1/4

in order to compare with those obtained in Ref. [69] (note that we used an equivalent mesh to
perform this comparison). Fig. 5 depicts this comparison of the nodal forces for both cases.
It can be observed that the nodal forces obtained in this work are close to those obtained in
Ref. [69], specially for case I. A difference can be observed for case II (see Fig. 5b) at the
maximum value of the nodal force at the point B. As already mentioned in [69], the classical
multiplicative decomposition gives a similar peak as the Green-additive plasticity of Reference
[69]. It is not clear the source of this difference, but one of the possible causes may be the
different flow rule employed. Note that our flow rule is written in terms of corrector elastic
strains derived from the chain rule, in a similar approach as isotropic plasticity based on the
Lie derivative (e.g. [31, 11]) but employing logarithmic strains, whereas classical flow rules
in anisotropy are based on the evolution of plastic quantities (e.g. [69, 72, 43, 36, 9, 29, 35],
among many others). The type of element may also have some impact since incompatible
elements as the ones used in Ref. [69] may give softer responses. Finally, typical convergence
rates of the algorithm for this example are shown in Table 2 (local algorithm) and in Figure
6 (global iterations from ADINA).

Table 2: Thin circular flange. Typical local convergence rates for the plasticity model presented in this work

Local iterative algorithm

Step/Iteration ρint residuals fT residual

2/0 1.000E + 00 1.000E + 00
2/1 5.968E − 03 1.218E − 02
2/2 5.492E − 07 5.562E − 07
2/3 2.789E − 15 1.264E − 16

90/0 1.000E + 00 1.000E + 00
90/1 4.496E − 03 1.118E − 02
90/2 5.126E − 07 5.325E − 07
90/3 1.896E − 15 1.059E − 16
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Figure 4: Comparison of the accumulated plastic strain for two cases in the final deformed configuration: a)
case I; b) case II. Top row figures show the results of the present model, second row figures show the results
obtained in Ref. [69] (with permission from Elsevier), whereas bottom row figures are the results obtained
in Ref. [29] (with permission from Elsevier) using additive Green plasticity for either the Eterovic-Bathe
algorithm or Caminero et al. 2011 [29] algorithm.

3.2. Cylindrical cup drawing

The second benchmark test is the simulation of a 3D cylindrical cup drawing process,
which is an important process in the field of the sheet metal forming and has been usually
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Point A - addi. model -  Miehe et. al. 2002
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Point B - multi. model - Miehe et. al. 2002
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Figure 5: Comparison of the nodal forces at two points A and B obtained in this work with those obtained
by [69]: a) case I and b) case II

Figure 6: Typical global convergence rates obtained from ADINA

used to demonstrate the capabilities of the material models [73, 74, 69, 75, 28, 49]. A sketch of
the specimen with its geometric dimensions is shown in Fig. 7a. The material for this case is
an Al-Mg aluminum alloy (Al-5 wt% Mg), which is the same material used in the experimental
analysis in Ref. [75] and in the subsequently in numerical simulation in Ref. [28]. Orthotropic
plasticity is introduced using the Hill yield criterion through the proper tensor NT , and the
Voce-type nonlinear isotropic hardening is only considered. For comparison purposes, we
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have employed the same (i.e. equivalent) material parameters as in Refs. [75, 28]. These
material parameters are summarized in Table 3.

Holder

Die

Punch

u=42 mm

(a) (b)

Figure 7: Sketch of the cylindrical cup drawing and its FE model

Table 3: Material parameters of Al-5 wt% Mg

Bulk modulus κ = 68, 627.47 MPa
Internal shear moduli 2µint = 26, 315.8 MPa
External shear moduli 2µkin = 0 MPa

Isotropic hardening Voce’s parameters
Reference yield stress k0 = 85.4 MPa
Limit stress parameter k∞ = 336.2 MPa
Voce’s linear hardening modulus H̄ = 0 MPa
Voce hardening parameter δ = 6.242

Hill’s anisotropy parameters
f 0.534
g 0.634
h 0.418
l = m 1.50
n 1.97

Only a quarter part of the cup is modelled due to both geometric and material symmetry
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conditions (see Fig. 7b). The blank is discretized in 8-node bricks Q1/P0 u/p mixed finite
elements (in total 4312 elements), while the punch, the holder and the die are modelled as
rigid bodies. Different contact pairs are established between the blank and the rigid tool
elements. A coefficient of 0.1 is assumed for the friction between these contact pairs. The
numerical simulation is performed in ADINA [67] (using the material user subroutine) with
a prescribed displacement of the punch to 42 mm.

Fig. 8 shows the accumulated plastic strains of the deformed cup at different states of
the drawing process, together with the appearance of the typical ears. At the final deformed
configuration, the earing profile is obtained and compared with the experimental earing profile
given in Ref. [75] and the simulated earing profile given in Refs. [75, 28]. Fig. 9a depicts
this comparison. It can be seen that the earing profile obtained in this work fits better the
measured earing in the experiments, in particular, the height of the earing at the angles (0◦,
45◦, 75◦ and 90◦) are very close to the experimental points. The model used in Ref. [75] only
fits well the experiments at the peak (90◦), while the proposed model of Ref. [28] only predicts
well the height at angle 45◦. For other angles, the models of Refs. [75] and [28] present less
accurate results than the present formulation. A remarkable observation from Fig. 9a is
that the predictions in Refs. [75] and [28] where not able to capture well the experimental
earing, neither with a Hill criterion nor with a Barlat Yld2000-2D criterion. However, our
simulation, using the Hill criterion with the same parameters was able to capture fairly well
the experimentally observed earing.

The equivalent punch force applied during the drawing process is also obtained and com-
pared with those obtained in Ref. [28] as shown in Fig. 9b. A similar punch force is predicted
in both works.

Fig. 10a shows the yield stress and the r-value of anisotropy predicted by our model and
compared with those obtained from the experimental [75] and by the numerical simulation
in Ref. [28]. It is observed that the prediction of the yield stress with respect to the angle
from the rolling direction is similar to that obtained in Ref. [28] (where equivalent parame-
ters were used), while the r-values of anisotropy predicted by our model also differ from the
experimental data, but are similar to those obtained in Ref. [28]. Since both models use the
same constants and no rotations are involved, similar values are obtained with both formu-
lations as expected, and the discrepancy seems to be due to the actual material parameters
or possibly due to the yield function, not to the specific formulation employed.

3.3. Square cup drawing

In this example, we show simulations of the square cup drawing process. The specimen for
the numerical simulation is similar to the NUMISHEET93 benchmark example for aluminum
alloy [76]. The initial flat aluminum sheet of 150 × 150 × 0.81 mm is placed between the
blank-holder and the die as shown in Fig. 11. In order to perform comparisons, the material
parameters are also obtained from Ref. [28] and are summarized in Table 4.

Due to the symmetry of the geometry and to the orthotropy of the material, a quarter
of the blank is modelled again using 8-node bricks Q1/P0 u/p mixed finite elements (see
Fig. 11). In this example, we also want to analyse the relevance of the bending effect on the
accumulated plastic strain during the drawing process. Therefore, two simulations have been
performed: one simulation with one element in the thickness of the blank (NS1) and other
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(a) u=7.5 mm

(b) u=22 mm

(c) u=32 mm (d) u=42 mm

Figure 8: Accumulated plastic strain at different punch displacements of cylindrical drawing

with two elements in the thickness (NS2). A prescribed displacement of 15 mm is applied for
the punch, while a constant force of 4.9 kN is applied for the blank-holder.

Figs. 12 and 13 show the contour plots of the von Mises stress and the accumulated plastic
strain at the final deformed configuration of the blank, respectively, and compared with the
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Figure 11: FE model for square cup drawing
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Table 4: Material parameters for Numisheet93 aluminum alloy

Bulk modulus κ = 68, 627.47 MPa
Internal shear moduli 2µint = 26, 315.8 MPa
External shear moduli 2µkin = 0 MPa

Isotropic hardening Voce’s parameters
Reference yield stress k0 = 137.5 MPa
Limit stress parameter k∞ = 351.5 MPa

Voce’s linear hardening modulus H = 0 MPa
Voce hardening parameter δ = 9.75

Hill’s anisotropy parameters
f 0.52
g 0.51
h 0.508
l = m 1.50
n 1.64

results obtained by Ref. [28]. Note that there is a visual effect because the view of our plots
is an axonometric view (parallel lines remain parallel in the view), whereas the view of Ref.
[28] is in conic perspective (with a vanishing point) with a different inclination. However, the
specimens of both works have the same dimensions, taken from Ref. [74]. It can be observed
that the maximum von Mises stress and the accumulated plastic strains are at the punch
shoulder similar to the result of Ref. [28]. The values of von Mises stresses obtained with
our models are similar to those of Ref. [28]. However, the accumulated plastic strain takes
different values in our simulation respect to those of Ref. [28]. This difference is due to the
fact that both formulations are different, and also possibly because the type of elements that
is used in our model is different. In particular, in our models 8-node Q1/P0 brick mixed u/p
finite elements (ADINA standard) have been used for the blank, while the C3D8R element
with reduced integration (ABAQUS element) has been used in Ref. [28]. Our results are
larger probably because of bending effects. Furthermore, the result from the model using one
element through the thickness is very similar to the result using two elements in thickness,
so using Q1/P0 elements, one element through the thickness may be sufficient to capture the
behavior because the problem is dominated by the membrane effects.

The amounts of draw-in in three directions, DX (rolling direction), DY (transverse direc-
tion) and DD (diagonal direction), are obtained and compared with those obtained from the
experiment [74] and those obtained in Ref. [28], and are listed in Table 6. Our results for
DX and DY are slightly higher than the observed experimental values, while slightly lower
for DD. However, errors are in all cases below 10%. In this case, contact formulations may
also be the source of some discrepancies.

3.4. S-rail forming

The present benchmark, so-called S-rail forming, was proposed in the NUMISHEET 1996
International Conference [77]. It consists in the forming of a plane metal blank into a final

25



XY

Z

SMOOTHED

EFFECTIVE

STRESS

RST CALC

TIME 1.000

330.0

300.0

270.0

240.0

210.0

180.0

150.0

120.0

90.0

60.0

30.0

0. 0

S. MISES

(a) 1 element in blank thickness

XY

Z

SMOOTHED

EFFECTIVE

STRESS

RST CALC

TIME 0.9990

333.3

300.0

266.7

233.3

200.0

166.7

133.3

100.0

66.7

33.3

0. 0

S. MISES

(b) 2 elements in blank thickness
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Figure 12: Square cup drawing: comparison of von Mises stress between the present model and that of Ref.
[28]

Table 5: Amount of draw-in

Description Experiment FE results Model Model
in [74] from [28] NS1 NS2

DX (X-direction) 5.3 5.01 5.63 5.66
DY (Y-direction) 5.4 5.05 5.67 5.69
DD (Diagonal dir.) 3.0 2.59 2.76 2.78

component with a S-shaped 3D geometry by deep drawing. Due to the complex geometry of
this problem, this simulation is an interesting validation, specially about the possible presence
of wrinkles. The geometry of the blank, die, punch and blank-holder are extracted from the
conference proceedings, Ref. [77]. Initially, the blank has a thickness of 0.92 mm and is
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Figure 13: Square cup drawing: comparison of accumulated plastic strain between our results and result of
[28]

mounted between the die and the blank-holder. The punch is moved upward until a total
displacement of 37 mm, while a constant force of 10 kN is applied on the blank-holder. In this
application we focus on the springback wrinkling prediction, since this effect is not normally
mentioned in other works [78, 27, 28, 79], but is present in experimental tests [80, 81, 82].

The numerical simulation is performed again in ADINA using our material subroutine
[67]. The punch, die and blank-holder are rigid bodies, while the blank is discretized by 8-
node Q1/P0 mixed u/p finite elements (in total 6000 elements). The contacts are established
between the tools and the blank until the punch displacement reaches 37 mm. Thereafter,
the contacts between the blank and the die, between the blank and the punch, are removed.
The contact between the blank and the blank-holder is maintained for spring-back of the
blank. The material used for the blank is a draw quality mild interstitial free (IF) steel with
its identified parameters listed in Table 6, taken from Ref. [77]. Coulomb’s coefficient of
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friction of 0.11 is considered for all surfaces in contact. Figs. 14a and 14b show the schematic
view of the tools and the adopted mesh, respectively.

Table 6: Material parameters for IF steel

Bulk modulus κ = 171, 666.67 MPa
Internal shear moduli 2µint = 157, 142 MPa
External shear moduli 2µkin = 1, 320 MPa

Isotropic hardening Voce’s parameters
Reference yield stress k0 = 152 MPa
Limit stress parameter k∞ = 297 MPa
Voce’s linear hardening modulus H̄ = 0 MPa
Voce hardening parameter δ = 4.5

(a) Tools (b) FE model

Figure 14: S-Rail drawing process

Fig. 15a shows the deformed configuration of the blank for the maximum punch displace-
ment. It can be seen that the wrinkle appearance is visible at the curved parts as expected
[80, 81, 82]. The contour of von Mises stress is also depicted in Fig. 15b.

The equivalent force applied on the punch during the forming process is also obtained
and compared with those measured in the experiment and by the numerical simulation given
in Ref. [27] as shown in Fig. 16. It is noted that our result over-predicts the experimental
data, specially in a range from 5 to 20 mm of punch displacement, but the final force is very
close to the one measured in the experiment. The source of the discrepance is unknown, but
is not necessarily attributable to the material model, since the type of elements for the blank,
and contact element formulations, may affect significatively the results, specially during the
initial stages where contact conditions have the most influences, since the interaction surface
blank-holder is larger.
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Figure 15: S-rail simulation at the end of forming
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Figure 16: S-rail simulation: comparison of the punch force during S-rail forming

4. Conclusions

To avoid spurious dissipation, large strain formulations for elastoplasticity should be based
on exactly-integrable elastic and kinematic hardening behaviors. Hyperelasticity is the sim-
plest way to achieve this. The state variables entering the stored energy may be obtained
either from additive Green-plasticity ansatzes or from multiplicative plasticity, the latter be-
ing the usually preferred approach, as explained in the Introduction Section. Unfortunately,
in the case of anisotropy, the use of the multiplicative decomposition has resulted in complex
formulations which depart from the infinitesimal theory.
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However, the use of the chain rule brings naturally elastic corrector rates into the dis-
sipation equation, which in turn motivates flow rules in terms of these rates instead of in
terms of rates of plastic quantities. Remarkably, this novel formulation results in an additive
framework identical to that of the small strains theory abiding by the accepted multiplicative
decomposition. In this formulation, the treatment of anisotropic elasto-plasticity presents no
difficulty, the Mandel stress tensor is not present, and plastic spin is uncoupled.

An important issue which we have herein addressed is the performance of the formulation
in metal forming simulations, and how the results using the novel flow rule compare with
established theories. From the simulations performed, we can conclude that the algorithmic
formulation is robust for performing complex simulations in industry, and that the theory
gives overall comparable results to those obtained using other approaches. Then, the sim-
plicity and generality of the proposed multiplicative large strain formulation is promising for
the incorporation of further features in a setting which is simple and remarkably similar to
the infinitesimal theory.

Acknowledgments

Partial financial support for this work has been given by grant PGC 2018-097257-B-C32
from the Dirección General de proyectos de Investigación of the Ministerio de Economı́a y
Competividad of Spain. The ADINA program license used in this work has been a courtesy
of ADINA R&D to the UPM.

References

[1] R. Wagoner, J.-L. Chenot, Metal forming analysis, Cambridge University Press, Cam-
bridge, 2001.

[2] J. Hu, Z. Marciniak, J. Duncan, Mechanics of sheet metal forming, Elsevier, 2002.

[3] M. James, Residual stress influences on structural reliability, Engineering Failure Anal-
ysis 18 (8) (2011) 1909–1920.

[4] F. Neukamm, M. Feucht, A. Haufe, Considering damage history in crashworthiness sim-
ulations, Ls-Dyna Anwenderforum.

[5] G. D’Amours, A. Rahem, B. Williams, M. Worswick, R. Mayer, Crashworthiness of
aluminium tubes; part 1: Hydroforming at different corner-fill radii and end feeding
levels, in: AIP Conference Proceedings, Vol. 908, AIP, 2007, pp. 787–792.

[6] P. Hosseini-Tehrani, E. Asadi, Effects of new materials on the crashworthiness of s-rails,
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials:
Design and Applications 222 (1) (2008) 37–44.

[7] G. Miscia, V. Rotondella, A. Baldini, E. Bertocchi, L. DAgostino, Aluminum structures
in automotive: Experimental and numerical investigation for advanced crashworthiness,
in: ASME 2015 International Mechanical Engineering Congress and Exposition, Ameri-
can Society of Mechanical Engineers, 2015, pp. V012T15A013–V012T15A013.

30



[8] M. Kojic, K.-J. Bathe, Inelastic Analysis of Solids and Structures, Springer-Verlag Berlin
Heidelberg, 2005.

[9] A. Shutov, J. Ihlemann, Analysis of some basic approaches to finite strain elasto-
plasticity in view of reference change, International Journal of Plasticity 63 (2014) 183–
197.

[10] K.-J. Bathe, Finite Element Procedures, 2nd Ed, Klaus-Jürgen Bathe, 2014.

[11] J. C. Simo, T. J. Hughes, Computational inelasticity, Vol. 7, Springer Science & Business
Media, 2006.

[12] T. J. Hughes, J. Winget, Finite rotation effects in numerical integration of rate constitu-
tive equations arising in large-deformation analysis, International journal for numerical
methods in engineering 15 (12) (1980) 1862–1867.

[13] W. Rolph III, K.-J. Bathe, On a large strain finite element formulation for elasto-plastic
analysis, Constitutive Equations: Macro and Computational Aspects.

[14] G. C. Johnson, D. J. Bammann, A discussion of stress rates in finite deformation prob-
lems, International Journal of Solids and Structures 20 (8) (1984) 725–737.

[15] A. Meyers, H. Xiao, O. Bruhns, Choice of objective rate in single parameter hypoelastic
deformation cycles, Computers & Structures 84 (17-18) (2006) 1134–1140.

[16] H. Xiao, O. Bruhns, A. Meyers, Hypo-elasticity model based upon the logarithmic stress
rate, Journal of Elasticity 47 (1) (1997) 51–68.

[17] B. Bernstein, Hypo-elasticity and elasticity, Archive for Rational Mechanics and Analysis
6 (1) (1960) 89–104.

[18] B. Bernstein, Relations between hypo-elasticity and elasticity, Transactions of the Soci-
ety of Rheology 4 (1) (1960) 23–28.

[19] J. Simo, On the computational significance of the intermediate configuration and hy-
perelastic stress relations in finite deformation elastoplasticity, Mechanics of Materials
4 (3-4) (1985) 439–451.

[20] J. Simo, M. Ortiz, A unified approach to finite deformation elastoplastic analysis based
on the use of hyperelastic constitutive equations, Computer Methods in Applied Me-
chanics and Engineering 49 (2) (1985) 221–245.
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